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PREFACE

This volume completes my work on a new version of a general
course in physics for higher technical educational institutions (the
first version was written by the author in the beginning of the
1960’s). In this connection, I would like to note the following.
Writing of this course required a fresh view on a number of questions,
the rejection of obsolete traditions in the teaching of physics that
were formed during many decades. This rejection was not at all
simple for me because I myself was brought up on these traditions
and for a number of years supported some of them (in particular,
in the preceding version of the three-volume course). Speaking
figuratively, I had to “reject myself’. This difficult process was
facilitated by daily contact with my young colleagues at the Depart-
ment of General Physics of the Moscow Institute of Engineering
Physics. Of the greatest importance was not so much the influence
of these young people on the nature of the treatment of individual
concrete questions of physics as the spirit of creative criticism and
innovation that was established in the department after their joining
it. Special mention must be made of the part played by associate
professors N.B. Narozhny, V.I. Gervids, and V.N. Likhachev.

In addition to the influence of my young colleagues noted above,
a decisive part in my work on this course was played by constant
active contact with my students at lectures, exercises, consultations,
and examinations. It is impossible to write a textbook without
being in contact with whom it is intended for, associating with
them only unilaterally at lectures. In instruction, as in any other
vocation, experiments are needed. Among several possible ways of
setting out a question, preference must be given to the one that
produces the best result in the course of instruction. Such experi-
ments were conducted quite broadly during my work on the new
three-volume eourse. '
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I shall note in conclusion that the present course is intended above
all for higher technical schools with an extended syllabus in physics.
The material has been arranged, however, so that the book can be
used as a teaching aid for higher technical schools with an ordinary

syllabus simply by omitting some sections.

Igor Savelyev

Moscow, April, 1980
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PART I  QUANTUM
OPTICS

CHAPTER 1 THERMAL RADIATION

1.1. Thermal Radiation and Luminescence

Bodies can emit electromagnetic waves (glow) at the expense of
various kinds of energy. The most widespread is thermal radiation,
i.e. the emission of electromagnetic waves at the expense of the
internal energy of bodies. All the other kinds of glow produced at
the expense of any kind of energy except internal (thermal) energy
are combined under the single term “luminescence”.

Phosphorus oxidizing in the air glows at the expense of the energy
liberated upon the chemical transformation. This kind of glow is
known as chemiluminescence. The glow produced in different kinds
of self-sustained gas discharge is called electroluminescence. The
glow of solid bodies due to their being bombarded by electrons is
known as cathodoluminescence. The glow due to a body absorbing
electromagnetic radiation is called photoluminescence.

Thermal radiation. occurs at any temperature, but at low tem-
peratures practically only long (infrared) electromagnetic waves
are emitted.

Let us put an emitting body into an enclosure having an ideally
reflecting surface (Fig. 1.1). We shall evacuate the air from the
enclosure. The radiation reflected by the enclosure will fall on the
body and be absorbed by it (partly or completely). Consequently,
a continuous exchange of energy between the body and the radiation
filling the enclosure will occur. If the distribution of energy between
the body and the radiation remains constant for every wavelength,
the state of the body-radiation system will be an equilibrium one.
Experiments show that the only kind of radiation that can be in
equilibrium with emitting bodies is thermal radiation. All other
kinds of radiation are non-equilibrium ones.

The ability of thermal radiation to be in equilibrium with emit-
ting bodies is due to the fact that its intensity grows with elevation
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of the temperature. Assume that equilibrium hetween a bedy and
radiation is violated, and the body emits more energy than it absorbs.
The internal energy of the body will therefore diminish, which leads
to lowering of the temperature. This, in turn, will result in a reduc-
tion in the amount of energy emitted by the body. The temperature
of the body will lower until the amount of energy emitted by
the body becomes equal to the amount of absorbed energy. If
equilibrium is violated in the opposite direc-
tion, i.e. if less energy is emitted than absorbed,
the temperature of the body will grow until
equilibrium sets in again. Thus, the violation
of equilibrium in the body-radiation system
gives birth to processes restoring equilibrium.

Matters are different with luminescence. We
shall show this using chemiluminescence as
an example. Proceeding of the chemical reaction
producing radiation causes the emitting body
to become more and more remote from its ini-
. tial state. The absorption of radiation by the
body will not change the direction of the reaction, but, on the con-
trary, will result in the reaction proceeding at a faster rate (owing
to heating) in the initial direction. Equilibrium wil] set in only
when the reactants will be completely used up, and the glow due to
chemical processes will be replaced by thermal radiation.

Thus, of all the kinds of radiation, only thermal radiation can be
in equilibrium. The laws of thermodynamics can be applied to
equilibrium states and processes. This is why thermal radiation
must obey some general laws following from the principles of
thermodynamics. We shall now pass over to a treatment of these
laws.

1.2. Kirchhoff's Law

We shall characterize the intensity of thermal radiation by the
magnitude of the energy flux measured in watts. The energy flux
emitted by unit surface area of a radiating body in all directions
(within the limits of a solid angle of 2n) is known as the radiant
emittance of the body. We shall use the symbol R to designate this
quantity. The radiant emittance is a function of the tempera-
ture.

Radiation consists of waves having different frequencies ® (or
wavelengths A). Let dR,, be the energy flux emitted by unit surface
area of a body within the frequency interval dw. When the interval
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dw ‘is small, the flux dR, will be proportional to dw:
dR, = r, do (1.1)

The quantity r, is called the emissivity of a body. Like the
radiant emittance, the emissivity depends greatly on the temperature
of a body. Thus, r, is a function of the frequency and temperature.

The radiant emittance and the emissivity are related by the for-
mula

Ry = S dRyr = ir,ﬂ do 1.2)
0

(to stress that the radiant emittance and the emissivity depend on
the temperature, we have provided them with the subscript T).

Radiation can be characterized by its wavelength A instead of its
frequency ®. The wavelength interval dA will correspond to the
spectrum portion dw. The quantities dw and dA determining the same
portion are related by a simple expression following from the for-
mula A = 2nc/w. Differentiation yields

2nc A2
dh= ——5 dm=—%—c—dm (1.3)
The minus sign in this expression is of no appreciable significance.
It only indicates that when one of the quantities ® or A grows, the
other one diminishes. We shall therefore omit the minus sign in the
following.

The fraction of the radiant emittance falling within the interval
dA, by analogy with Eq. (1.1), can be written in the form

dHL = r;v d}» (1‘4)

If the intervals dw and dA in expressions (1.1) and (1.4) are related
by Eq. (1.3), i.e. belong to the same portion of the spectrum, then
the quantities dR, and dR, must coincide:

rodow =r, d\

Substituting for dA in this equation its value from Eq. (1.3), we
get

2 A2
ru,dm=r;,—0§¥—dm=r;~—2“—cdm
whence
2ne A3
To=Tr—Gr =T g (1-5)

Equation (1.5) allows us'to transfer from r, to r, and vice versa.
Assume that the flux of radiant energy d®, due to electromagnetic

waves whose frequency is within the interval do falls on an element-

ary area of a body’s surface. A part of this flux d®;, will be absorbed
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by the body. The dimensionless quantity
ad;
Ay = -36:% (1.6)
is called the absorptivity of a body. The absorptivity of a body is a
function of the frequency and temperature.

By definition, a,r cannot be greater than unity. For a body com-
pletely absorbing the radiation of all frequencies falling on it, a,r =
= 1. Such a body is known as a blackbody. .A body for which
a,r == ap = const << 1 is called a gray body.

There is a definite relation between the emissivity and absorptiv-
ity of any body. We can convince ourselves that this is true by
considering the following experiment. Assume that several bodies
are confined in an enclosure maintained at a constant temperature T

Fig. 1.2

(Fig. 1.2). The cavity inside the enclosure is evacuated so that the
bodies can exchange energy with one another and with the enclosure
only by emitting and absorbing electromagnetic waves. Experiments
show that such a system will arrive at a state of thermal equilibrium
after a certain time elapses—all the bodies will acquire the same
temperature 7 equal to that of the enclosure. In this state, a body
having a greater emissivity r,r loses more energy from unit surface
area in unit time than a body whose emissivity r, is lower. Since
the temperature (and, consequently, the energy) of the bodies does
not change, then the body emitting more energy must absorb more,
i.e. have a greater a,r. Thus, the greater the emissivity r o of a
body, the greater is its absorptivity a,r. Hence follows the relation

(22),= (222 ), = (3Z) = - - (1.7)

where the subscripts 1, 2, 3, etc. relate to different bodies.
Relation (1.7) expresses the following law established by the
German physicist Gustav Kirchhoff (1824-1887): the ratio of the
emissivily and the absorptivity does not depend on the nature of a body,
it is the same (universal) function of the frequency (wavelength) and
temperature for all bodies:
Lot f(a, T) (1.8)

auT
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The quantities ror and a,r can vary exceedingly greatly for
different bodies. Their ratio, however, is identical for all bodies.
This signifies that a body which absorbs certain rays to a greater
extent will emit these rays to a greater extent too (do not confuse
the emission of rays with their reflection).

For a blackbody, by definition, a,r = 1. It therefore follows
from Eq. (1.8) that r,r for such a body equals f (®, 7). Thus, Kirch-
hoff’s universal function f (o, T) is nothing but the emissivity of
a blackbody.

It is more convenient to use the function of the frequency f (0, )
to characterize the spectral composition of equilibrium thermal
radiation in theoretical investigations. The function of the wave-
length ¢ (A, 7T) is more convenient in experimental studies. The
two functions are related by the formula

¢ 2
f@ 1) =22 (A T) = ¢ (b, T) (1.9)
similar to Eq. (1.5). According to Eq. (1.9), to find ¢ (A, T) from
the known function f (0, T), we must substitute 2mc/A for the fre-
que;lczy o in f(w, T) and multiply the expression obtained by
27/ N

o0, N=—3-f (5=, 7) (1.10)
To find f (0, T) from the known function ¢ (A, T), we must use the
relation
fo, T)=-25¢ (22, 1) (1.11)
Blackbodies do not exist in nature. Carbon black and platinum
black have an absorptivity a,r close to unity only within a limited
range of frequencies. Their absorptivity is appreciably lower than
unity in the far infrared region. It is possible to construct a device,
however, whose properties are close to those of a blackbody as much
as desired. Such a device is an almost completely enclosed cavity
provided with a small hole (Fig. 1.3). The radiation penetrating into
the cavity through the hole will undergo multifold reflections before
emerging from it. Part of the energy is absorbed upon each reflection,
and as a result virtually the entire radiation of any frequency is
absorbed by such a cavity*. According to Kirchhoff’'s law, the
emissivity of such a device is very close to f (w, T), where T stands
for the temperature of the cavity walls. Thus, if the cavity walls
are maintained at the temperature 7', then radiation will leak out
through the hole very close in its spectral composition to the radia-
tion of a blackbody at the same temperature. By obtaining the spect._
rum of this radiation with the aid of a diffraction grating and measur.

* For the same reason, the interior of a room seems dark when we look at
it from a distance through an open window on a bright sunny day.
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ing the intensity of different portions of the spectrum, we can find
the form of the function f (w, T) or ¢ (A, 7') experimentally. The
results of such experiments are shown in Fig. 1.4. Each curve is for

@(A1).10"W/m?

N
~

N\

N

IN/EN

/4 SSSPe

T600K
4 7 2 3 Apm

Fig. 1.4

a definite value of the temperature I of our blackbody. The area en-
closed by the curve gives the radiant emittance of the blackbody at
the corresponding temperature.

A glance at Fig. 1.4 shows that the radiant emittance of a black-
body grows greatly with the temperature. The maximum of the
emissivity shifts toward shorter waves with elevation of the tem-
perature.

1.3. Equilibrium Density of Radiant Energy

Let us consider radiation that is in equilibrium with a substance
For this purpose, let us imagine an evacuated cavity whose walls
are maintained at a constant temperature 7. In the equilibrium
state, the radiant energy will be distributed throughout the volume
of the cavity with a definite density u = u (T'). The spectral distri-
bution of this energy can be characterized by the function u (w, T)
determined by the condition du, = u (0, T) dw, where du, is the
fraction of the energy density falling within the interval of fre-
quencies do. The total energy density u (7') is related to the function
u (0, T) by the formula

u(T) = S u (o, T)do (1.12)
0
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It follows from thermodynamic considerations that the equilib-
rium radiant energy density u (I') depends only on the temperature
and. does not depend on the properties of the cavity walls. Let us
consider two cavities whose walls are made from different materials
and initially have the same temperature. Let the equilibrium energy
density in the two cavities be different and, say, u, (T) > u, (T).
We shall connect the cavities by means of a small hole (Fig. 1.5)
and thus permit the walls of the cavities to
exchange heat by radiation. Since we have
assumed that u; > u,, the energy flux from
the first cavity into the second one must be
greater than the flux in the opposite direc-
tion. The walls of the second cavity, as a
result, will absorb more energy than they
emit, and their temperature will start grow-
ing. The walls of the first cavity, on the .
other hand, will absorb less energy than Fig. 1.5
they emit, and they will cool. But two
bodies having the same initial temperature cannot acquire different
temperatures as a result of heat exchange with each other—this is
forbidden by the second law of thermodynamics. We must therefore
acknowledge that our assumption on u, and u, being different is not
lawful. The conclusion on the equality of u; (T) and u, (T) covers
each spectral component u (w, T).

That the equilibrium radiation does not depend on the nature of
the cavity walls can be explained by the following considerations.
Blackbody walls would absorb all the energy @, falling on them and
would emit the same energy flux ®,. Walls with the absorptivity a
will absorb the fraction a®, of the flux @, falling on them and will
reflect a flux equal to (1 — a) @,. In addition, they will emit the
flux a®, (equal to the absorbed flux). As a result, the walls of the
cavity will return the same energy flux ®, = (1 — a) P, + aD,
,to the radiation that blackbody walls would return to it.

The equilibrium radiant energy density u is related to the radiant
emittance of a blackbody R* by a simple expression which we shall
now proceed to derive*.

Let us consider an evacuated cavity with blackbody walls. In
equilibrium, a radiant flux of the same density will pass through
every point inside the cavity in any direction. If the radiation were
to propagate in one given direction (i.e. if only one ray were to pass
through a given point), the density of the energy flux at the point
being considered would equal the product of the energy density u
and the speed of an electromagnetic wave ¢. But a multitude of rays

.* We have used the symbol R* to stress that we are dealing with the radiant
emittance of a blackbody.
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whose directions are uniformly distributed within the limits of the
solid angle 4n pass through every point. The energy flux cu is also
distributed uniformly within the limits of this
dﬂ//(\\ solid angle. Consequently, an energy flux whose

) density is

dj=-£t—d9

will flow at every point within the limits of the
solid angle dQ. Let us take the elementary area
AS on the surface of the cavity (Fig. 1.6). This
Fig. 1.6 area emits the following energy flux within
the limits of the solid angle dQ = sin 0 dO do

in the direction making the angle 6 with the normal n:

d(De=deScosﬁ=£‘t—dQAScosG=

= AS cos 8 sin 88 de

The area AS emits the energy flux
/2 2n

AD,== | dD, =S5 AS i cosBsin8ad | dp=--uAS (1.13)
0

in all the directions confined within the limits of the solid angle 2m.

At the same time, the energy flux emitted by the area AS can be
found by multiplying the radiant emittance R* by AS, i.e. AD, =
= R* AS. A comparison with Eq. (1.13) shows that

R*=—-u (1.14)

Equation (1.14) must be satisfied for every spectral component
of the radiation. It thus follows that

flo, T)=—u(w, T) (1.15)

This formula relates the radiant emittance of a blackbody and the
equilibrium energy density of thermal radiation.

1.4. The Stefan-Boltzmann Law and
Wien’s Displacement Law

The theoretical explanation of the laws of blackbody radiation
had a tremendous significance in the history of physics—it led to
the concept of energy quanta.
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For a long time, attempts to obtain the form of the function
f (o, T)* theoretically did not provide a general solution of the
problem. In 1879, the Austrian physicist Joseph Stefan (1835-1893),
analysing experimental data, arrived at the conclusion that the
radiant emittance R of any body is proportional to the fourth power
of the absolute temperature. But subsequent more accurate measure-
ments, however, showed that his conclusions were erroneous. In
1884, the Austrian physicist Ludwig Boltzmann (1844-1906), on the
basis of thermodynamic considerations, obtained theoretically the
following value for the radiant emittance of a blackbody:

R*={ {(o, T)do=oT* (1.16)
0

where ¢ is a constant quantity, and 7T is the absolute temperature.
Thus, the conclusion which Stefan arrived at for gray bodies (he
ran no experiments with blackbodies) was found to be true only

for blackbodies.
Relation (1.16) between the radiant emittance of a blackbody and
its absolute temperature was named the Stefan-Boltzmann law. The
constant ¢ is called the Stefan-Boltzmann constant. Its experimental

value is
o = 5.7 X 10 W/(m?. K% (1.17)

In 1893, the German physicist Wilhelm Wien (1864-1928), using
the electromagnetic theory in addition to thermodynamics, showed
that the function of the spectral distribution must have the form

f(w, T)=o3F (-;?—) (1.18)

where 7 is a function of the ratio of the frequency to the temperature.
According to Eq. (1.10), the following expression is obtained for
the function ¢ (A, T):
2 2 3 2n 1
@ (A, T)=7;£(_;‘i) F (#):W\p(}]) (1.19)
where { (A, T) is a function of the product AT.

Equation (1.19) makes it possible to establish the relation between
the wavelength A, corresponding to the maximum of the function
@ (A, T) and the temperature. Let us differentiate this expression
with respect to A:

d 1 ' 5 i ’

= TV (M) — 5 (M) = 35 LTy (A7) =5 (AT)]  (1.20)
The expression in brackets is a certain function ¥ (AT). At the wave-
length A, corresponding to the maximum of the function ¢ (A, T)

* Or, which is the same, the function u (@, T) [see Eq. (1.15)].
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Eq. (1.20) must become equal to zero:
do _ 1

(—dT)}.-Am =7 ¥ (hnT) =0 (1.21)

It is known from experiments that Ay is finite (i.e. Ay, 5= oo).

‘Therefore, the condition ¥ (A7) = 0 must be satisfied. By solving

Eq. (1.21) relative to the unknown quantity A,7, we get a certain

value for this quantity which we shall denote by the symbol b&.
We thus obtain the relation

AT = b (1.22)

called Wien's displacement law. The experimental value of the con-
stant b is

b=2.90 X 1073 m-K = 2.90 x 10°A.K (1.23)

1.5. Standing Waves in Three-Dimensional Space

In finding the function f (w, T), and also in calculating the heat
capacities of solids (see Sec. 6.4), it becomes necessary to calculate
the number of standing waves that can be produced in a volume of
finite dimensions. We shall treat this question in the present section.

Assume that two plane waves produced as a result of reflection
from walls at the points z = 0 and x = a (Fig. 1.7) travel along the
z-axis in opposite directions. The equa-
tions of the waves have the form

E, = A cos (ot — kz) (1.24)
g, = A cos (ot + kz + a)

(the initial phase of the first wave has
- been made to vanish by properly choos-
ing the initial moment of counting

Z the time). We know that in this case a
standing wave is set up in the region

0 <<z < a, there being either nodes or
antinodesat the boundaries of theregion
depending on the real conditions. Thus, nodes are observed at the
ends of a string, and antinodes at the ends of a bar fixed at its middle.
Examination of Egs. (1.24) reveals that for an antinode to appear
at the boundary z = 0, the phase o must be zero (therefore at points
with £ = O tho oscillations will occur in the same phase). In this
case upon reflection from the boundary, the phase of the wave does
not change*. For a node to appear at the boundary 2 = 0, the phase a

NANNNNNNNN\S

A Y=
Ty __.
Y
gY

ANNNNNNNNKN
S, S

* This follows from the fact that in direct proximity to a wall (at z =~ 0)
the phases of the oscillations &, and &, coincide.
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must be @ (consequently, at points with = = 0, the oscillations
E, and &, will occur in counterphase). In this case upon reflection
from the boundary, the phase of the wave undergoes a jump through x.
Thus, when antinodes are observed at the boundaries of the region,
Egs. (1.24) have the form
£ = A cos (ot — k2),
E, = A4 cos (ot + kz)

When nodes are observed at the boundaries of the region, Eqs. (1.24)
have the following form:

E, = 4 cos (0t — kz),
£, = 4 cos (ot + kz + 7)
Addition of the oscillations &; and &, for antinodes at the boundaries
leads to the equation
E=E& + & =24 cos kx.cos wt (1.25)
and for nodes at the boundaries, to the equation

E=E,+ E,=2A4cos (kx +%)cos (mt-{—%) (1.26)

It is easy to see that when z = 0, the amplitude is maximum in the
first case and equals zero in the second one.

To observe an antinode at the other boundary (i.e. when z = a)
in the case described by Eq. (1.25) or a node in the case described
by Eq. (1.26), the product ka must be an integral multiple of =z,
that is ka = nn. Thus, regardless of what is observed at the boun-
daries of the region (antinodes or nodes), the magnitude of the wave
vector must have the values

k=%n (n=1,2,...) (1.27)

Assume that k' = (n/a) n’, k" = (n/a) n". The difference n” — n’
gives the number of standing waves AN), the magnitudes of whose
wave vectors are within the interval Ak = k" — k’. Taking into
account the values of k¥’ and k", we find that

ANy=-2 Ak (1.28)

The values of N, form a discrete sequence. Replacing this sequence
with a continuous function, we can write that
dNy=—dk (1.29)

The magnitude of the wave vector is related to the frequency ®
and the velocity v by the expression

w
= (1.30)
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Accordingly,

dk = d_;" (1.31)
(we consider that there is no dispersion, i.e. v = const). Substituting
g dwo/v for dk in Eq. (1.29), we arrive

at the formula

iNy=-2do (1.32)

where dN, is the number of standing
waves whose frequencies are within
the interval from o to o + do.
Now let us consider the two-di-
mensional case. Assume that a plane
wave (1) running in the direction
of the wave vector k, has been pro-
duced in a rectangular region with
sides a and b (Fig. 1.8a). Asa result
of reflection from the right-hand
boundary of the region, a running
wave (2) will be produced with the
wave vector k,. Reflection of the
wave (2) from the top boundary (Fig.
1.86) will produce a wave (3) with
the wave vector k,. Finally, reflec-
tion of the wave (3) from the left-
z hand boundary (Fig. 1.8¢) will pro-
duce a wave (4) with the wave vec-
tor k,. No other waves will be
produced. Indeed, reflection of the
wave (1) from the top boundary pro-
duces the wave (4), reflection of the
wave (2) from the left-hand boundary
produces the wave (1), reflection of
the wave (3) from the bottom boun-
dary produces the wave (2), and,
finally, reflection of the wave (4) from
> the bottom and the right-hand boun-
daries of the region produces the
waves (1) and (3), respectively.
Thus, the two-dimensional region will be filled with four plane
waves running in the directions of the wave vectors ky, k,, ks, and k,.
If we denote the projections of the vector k, onto the axes z and y
(see Fig. 1.8) by k. and %, then the projections of all four vectors
will be (the number of the vector is indicated in parentheses)

(A) ke kyy Q) —key ki (B) —kay —ky () ke —Fy

&Y
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We have established above that antinodes are obtained at boun-
daries if the phase of a wave does not change upon reflection from
a wall. In this case, the equations of the running waves have the
form

§y = A cos (0t — kex —kyy), & = A cos (0t + kx4 kyy)
E, = A cos (ot + kex — kyy), & = A cos (of — k. + ky)
Adding these equations in pairs, we obtain

&1 + &, = 24 cos k,x cos (of — ky)
Es + & = 24 cos k.z cos (ot + ky)

The sum of the expressions found gives an equation describing a
two-dimensional standing wave obtained when reflection from a
boundary occurs without a jump in the phase of the running wave:

§=E& + & + Es + & = 44 cos k.x cos ky cos ot (1.33)

It can be seen from Eq. (1.33) that the amplitude is maximum at
the point (0, 0). The following conditions must be satisfied for it
also to be maximum at the points (0, d), (e, 0), and (a, b), i.e. at the
other three apices of the rectangle:

ka =nm, kpb=nmn (ny, n,=1,2,...) (1.34)

We must note that owing to the presence of the multiplier cos &,y
in Eq. (1.33), the amplitude reaches its maximum value not along
the entire length of the sides x = 0 and x = a, but only at the ends
of these sides (where y = 0 and y = b), and also at n, — 1 inter-
mediate points [at these points &,y takes on the values of =, 2, . .

, (nyg — 1) n]. In the spaces between these points, the amphtude
varles according to a cosine law. Similarly, the amplitude reaches
a maximum not along the entire length of the sides y = 0 and
y = b, but only at the ends of these sides, and also at n; — 1 inter-
mediate points.

Nodes are obtained at the boundaries if upon reflection from
a wall the phase of a wave undergoes a jump through n. Each of the
waves (2), (3), (4) can be considered as the result of reflection of the
preceding wave from a wall (see Fig. 1.8). Accordingly, the equations
of the waves must be written in the form

§, = 4 cos (ot — kez — kyy),

&, = A cos (of + ke — kyy + ),

&y = A cos (ot + kuz + kyy -+ 27) (1.35)
&, = A cos (ot — kuz-+ ky + 3n)

The phase of an oscillation permits the addition to or subtraction
from it of a whole number of 2n’s. With this in view, we shall alter
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Eqs. (1.35) as follows:
£ = 4 cos (ot — kz — ky),
§, = A cos (of + k.z — kyy + n),
Es = 4 cos (ot + kuz + k,Y)
8, = 4 cos (of — kyx + kyy + n)
Adding these equation in pairs, we get

Ei+ & =24cos (k,x-}--—g—) cos (mt—kyy-{-—g-) (1.36)
Es+ & =24 cos (k,z——g—) cos ((ot-{-kyy-i-—g-) (1.37)

Let us reverse the signs of the two cosines in Eq. (1.37) by adding =
to the argument of the first cosine and subtracting & from the argu-
ment of the second cosine (the expression itself retains its previous
magnitude). As a result, the sum &; 4 &, acquires the form

§8+§4=2A cos (kx*r+ -g—) cos (mt’l"kyy—-g—)

Adding this sum to Eq. (1.36), we get the equation of a standing
wave observed when the phase of a running wave undergoes a jump
through st upon reflection from a boundary:

E=8+ &+ Es+E=4d4cos (kxx—I——zi-) cos (kyy——g-) cos wt
(1.38)

We must note that by adding (or subtracting) = to the arguments of
two of the last three multipliers, we can impart the following form
to the equation of a standing wave:

E=4A4cos (kxx—%) cos (kyy-i--zi) cos ot
or

E=4Adcos (k,,x—i—-;—)cos (kyy+-i;—) cos (ot 4 m)

It follows from Eq. (1.38) that the amplitude is zero at all points
of the boundary z = 0 and of the boundary y = 0. Conditions (1.34)
must be satisfied for it to be zero too at the points of the boundaries
z=aand y = b.

Thus, regardless of what is obtained at the boundaries of the
region (antinodes at the corners and at certain intermediate points,
or nodes along the entire boundary), the projections of the wave
vector must have the values

ky=—ny ky=-—-ny (g mp=1,2,..) (1.39)

[compare with Eq. (1.27)]
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We shall point out that the magnitude of the wave vector of all
four running waves whose superposition leads to the setting up of
a standing wave is the same and is

k=VETR (1.40)

We shall call quantity (1.40) the magnitude of the wave vector of
a standing wave.

Let us take a coordinate system on the k-plane with the axes k.,
and k, (Fig. 1.9). The four symmetrical points depicted in the figure
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Fig. 1.9 Fig. 1.10

correspond in the k-plane to the wave vectors of the four running
waves forming a given standing wave. All these points correspond
to the same standing wave. Therefore, when using the points to
count the number of standing waves, we must take into account
only the points in one of the quadrants of the k-plane. It is natural
to consider the points in the first quadrant.

According to Eq. (1.39), the points corresponding to all possible
standing waves are at the apices of rectangles with the sides z/a
and n/b (Fig. 1.10). It is easy to see that an area equal to n%*ab =
= n%/S (where S is the area of the two-dimensional region in whose
limits a standing wave is produced) falls to the share of each standing
wave on the k-plane. Hence, the density of the points on the k-plane
is S/n2.

Let us find the number of standing waves dV,_, R, for which the
projections of the wave vectors are within the limits from %, to
k, + dk, and from k, to k, 4 dk,. This number equals the density
of the points multiplied by the area dk. dk,:

AN, », = 5.k, dk, (1.41)

Now let us find the number of standing waves dNV, for which the
magnitude of the wave vector ranges from k to & 4 dk. This number

S'h
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equals the number of points within the region confined between
quarter-circles of radii k¥ and k -+ dk (Fig. 1.11). The area of this

region is -;—nk dk. Multiplying the density of the points by the area
of the region, we get

ANy =-S5 5wk dk = 2 k dk (1.42)
With a view to Egs. (1.30) and (1.31), we can write that
S
de=m(Dd(0 (1'43)

where dN, is the number of standing waves whose frequencies are
within the limits from ® to o + do [compare with Eq. (1.32)]

Aok

o
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K z
Fig. 1.11 Fig. 1.12

It is simple to generalize the results obtained for the three-dimen-
sional case. A standing wave produced within the limits of a rectan-
gular region with sides a, b, and ¢ parallel to the coordinate axes
(Fig. 1.12) is formed by the superposition of eight running waves,
the projections of whose wave vectors are

(1) kx’ kyt kz; (5) kxa —kyi —kz;
(2) —Fys kyv ky; (6) —Fs "'ky, —k;
(3) _kxl '_kya kz; (7) —kx) kyv '—kz;
(4) ks ‘—kw ks (8) ke, kyf —k,
We recommend our reader to write the equations of these waves and

by performing the relevant calculations, to convince himself that
the equation of a standing wave has the form

E=E8+E + .. .+ & = 84 cos kx cos kyy cos k,z cos ot
(1.44)
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when a wave is reflected from the walls of a cavity without a change
in phase, and

E=8+5+...+ &=
=84 cos (kxx-}-—z’l) cos (kyy——g—) cos ,(kzz-f-T“)cos (@H‘%A_)
(1.45)

when the phase of a wave undergoes a jump through s upon reflec-
tion* [compare with Eqs. (1.33) and (1.38)].

We must note that in Eq. (1.45) we may simultaneously reverse
tlflegsign of /2 in any two multipliers without changing the sign
of E.

It can be seen from Egs. (1.44) and (1.45) that for the amplitude
of a standing wave to have the same value at all eight apices of the
region in which the standing wave P
has been produced, the following A
conditions must be satisfied:

1 n i
kx"“:-a"nh ky= Ny, kz= P ng K IR

n
-b— . .
(nlYnZ’ n3=1|21---) (1.46) ::.:' ------ '

[compare with Eq. (1.39)]. N
Accordingto Eq. (1.45), the ampli- SIS
tude is zero everywhere at a boun- LS 7 Fr

dary of the region. In the case de- AT
scribed by Eq. (1.44), on the other

hand, the maximum amplitude is #

obtained at the apices of the region, "¢

and also at separate points on the Fig. 1.13
planes enclosing the region.

A point in the first octant corresponds to every standing wave in
k-space with the axes k,, k,, k, (Fig: 1.13). The volume n®/abc =
= 73/V (V is the volume of the region) falls to the share of each
point. Hence, the density of the points is V/n3.

The number of standing waves for which the projections of the
wave vectors are within the limits from k. to k. + dk,, from &,
to k, -+ dk,, and from &, to k, + dk, is determined by the expres-
sion

. 1%
ANk by hy = F7 dk, dk, dk; (1.47)
[compare with Eq. (1.41)].

The number of standing waves for which the magnitude of the
wave vector ranges from k& to &k 4 dk equals the number of points

* In this case, the initial phase of odd-numbered waves can be taken equal
to zero, and the phase of waves with even numbers taken equal to z.
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getting within the confines of one-eighth of a spherical layer of
radius &£ and thickness dk (see Fig. 1.13). Consequently,

ANy = g dnkedk =V 55k . (1.48)

[compare with Eq. (1.42)].

Taking into account Egs. (1.30) and (1.31), we get the number of
standing waves whose frequencies are in the interval from o to
w + do:

2do
AN, =V 35 (1.49)

Equation (1.49) is proportional to the volume of the space V.
We can therefore speak of the number of standing waves dn, per
uvit volume of the space. This number is

w?do

dn(x)= 2112173 (1.50)
In the following, we shall introduce into this expression a refine-
ment due to the need of taking the possible kinds of polarization of
the waves into account.

1.6. The Rayleigh-Jeans Formula

The British physicists Lord Rayleigh (John William Strutt,
1842-1919) and James Jeans (1877-1946) made an attempt to deter-
mine the equilibrium density of radiation u (®, T') on the basis of
the theorem of classical statistics on the uniform distribution of
energy among degrees of freedom. They assumed that an energy
equal to two halves of k7 falls on an average to each electromagnetic
oscillation—one half to the electrical and the other to the magnetic
energy of the wave (we remind our reader that according to classical
notions an energy equal to two halves of kT falls on an average to
each vibrational degree of freedom).

Equilibrium radiation in a cavity is a system of standing waves.
With no account taken of the possible kinds of polarization, the
number of standing waves related to unit volume of a cavity is
determined by Eq. (1.50), in which the velocity v must be assumed
equal to ¢. Two electromagnetic waves of the same frequency differing
in their direction of polarization (polarized in mutually perpendicu-
lar directions) can propagate in a given direction. To take this
circumstance into account, we have to multiply Eq. (1.50) by twoe.
The result is

2
dn, = -39 (1.51)

n3cs
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As we have already noted, Rayleigh and Jeans, proceeding from
the law of equal distribution of energy among degrees of freedom,
ascribed an energy of (e)equal to kT to each oscillation. Multiplying

Eq. (1.51) by (e}, we get the energy density falling to the frequency
interval do:

u(w, Ido=(e)dn,=kT ‘,?(:;Td@
whence
u(o, T) == kT (1.52)

2c3

Passing over from u (o, T) to f (w, T) according to Eq. (1.15), we
get an expression for the
emissivity of a blackbody:

f(@, T)=—p—kT (1.53)

‘We must note that function
(1.53) satisfies condition
(1.18) obtained by Wien.
Expressions (1.52) and
(1.53) are known as the
Rayleigh-Jeans formula. It
agrees with experimental
data satisfactorily only for
large wavelengths and sharp-
ly diverges from these data
for small wavelengths (see T ,
Fig. 1.14 in which the solid 0 7 23 45 67 8 9aum
line depicts an experimen-
tally obtained curve, and Fig. 1.14
the dash line depicts a
curve constructed according to the Rayleigh-Jeans formula).
Integration of Eq. (1.52) with respect to o within the limits from
0 to oo gives an infinitely great value for the equilibrium energy
density u (7). This result, which has been named the ultraviolet
catastrophe, also contradicts experimental data. Equilibrium be-
tween radiation and the body emitting it sets in at finite values
of u (7).
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1.7. Planck’s Formula

The derivation of the Rayleigh-Jeans formula is faultless from
the classical viewpoint. Therefore, the failure of this formula to
agree with experimental data pointed to the existence of laws that
are incompatible with the notions of classical physics.
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In 1900, the German physicist Max Planck (1858-1947) succeeded
in finding a form of the function u (w, T') that exactly corresponded
to experimental results. For this purpose, he had to make an assump-
tion absolutely alien to classical notions, namely, to assume that
electromagnetic radiation is emitted in the form of separate portions
of energy (quanta) whose magnitude is proportional to the frequency
of radiation:

e = Ao (1.54)

The constant of proportionality % was subsequently named Planck’s
constant*. Its value determined experimentally** is

h=1.054 % 107 J.5=1.054 X 102" erg-s = 0.659 x 10715 oV -5
(1.55)

In mechanics, there is a quantity having the dimension “energy X
x time” that is called action. Planck’s constant is therefore some-
times called a quantum of action. It must be noted that the dimension-
of % coincides with that of the angular momentum.

If radiation is emitted in bundles or packets of /w, then its energy’
e, must be a multiple of this quantity: '

g, =nho (n=0,1,2, ...) (1.56)

In a state of equilibrium, the distribution of oscillations by
values of the energy must obey Boltzmann's law. According to
Eq. (11.82) of Vol. I, p. 328, the probability P, of the fact that the
energy of oscillation of the frequency o has the value e, is deter-
mined by the expression

_ N, _ exp (—en/kT)
Prn= N Zexp(—sn/kT) (1.57)

(we have substituted NV, for N; and ¢, for E;).

Knowing the probability of various values of the oscillation
energy, we can find the mean value of this energy (e). According to
Eq. (11.5) of Vol. I, p. 296,

(&)= 2 P.e,

* Strictly speaking, the constant of proportionality » between & and the
frequency, & = kv, is called Planck’s constant. The constant # is Planck’s
constant h divided by 2n. The numerical value of Planck's constant is h=
= 6.62 X 10-"* J.s = 6.62 X 10-%7 erg-s.

** Planck’s constant is present in many physical relations, and in this
connection it can be determined in various ways. The most accurate value is
obtained from measurements of the short-wave boundary of the braking radia-
tion (bremsstrahlung) X-ray spectrum (see Sec. 2.1).
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Using Eqgs. (1.56) and (1.57) for ¢, and P, in this expression, we
shall get the following formula for the mean value of the energy
of radiation of frequency wo:

oo

E nko exp (— nko/kT)
=(
(e) ="
>} exp (—nko/kT)

nw0

(1.58)

To perform the calculations, let us introduce the notation Zw/kT = z
and assume that z can change by taking on a continuous series of
values. Equation (1.58) can therefore be written in the form

i ne~nx o

) =ho 20— = —hoZn 3 e (1.59)
2 e~nx n=0
n=0

Inside the logarithm in Eq. (1.59) is the sum of the terms of an
infinite geometrical progression with the first term equal to unity
and the common ratio equal to e~*. Since the denominator is less
than unity, the progression will be a diminishing one, and according
to the formula known from algebra

AN e = 1

A 1_e-x

n=0
Introducing this value of the sum into Eq. (1.59) and differentiating,
we obtain
e~x 1)

e‘xzhm T—e=  ex—1

d 1
(8)=—Tzco—d;ln 1=

Now, replacing z with its value Aw/kT, we get a final expression for
the mean energy of radiation of the frequency w:
hw
(8>=W (1.60)
We must note that when % tends to zero, Eq. (1.60) transforms
into the classical expression (e¢) = kT. We can convince ourselves
in the truth of this statement by assuming that exp (Aw/kT) =
~ 1 + Kw/kT, which is observed the more accurately, the smaller
is #. Thus, if the energy could take on a continuous series of values,
its average value would equal 7.
Multiplying Eqgs. (1.51) and (1.60), we find the density of the
energy falling within the frequency interval do:

ho o?dw
u(o, T) A0 = o i =T wic3
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whence

fho? 1
u(or I) =55 sp oy —1 (1.61)

Using Eq. (1.15), we arrive at the formula

hwd 1
Ho, T)= 4n2c? exp (ho/kT)—1 (1.62)

Equations (1.61) and (1.62) are called Planck’s formula. This
formula accurately agrees with experimental data throughout the
entire interval of frequencies from 0 to oco. Function (1.62) satisfies
Wien'’s criterion (1.18). Provided that Zw/kT <« 1 (small frequencies
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or large wavelengths), the exponent exp (Zw/kT) may be assumed
approximately equal to 1 + %w/kT. As a result, Planck’s formula
(1.61) or (1.62) transforms into the Rayleigh-Jeans formula) [(1.52)
or (1.53)]. This can also be seen from the fact that when this con-
dition is satisfied, Eq. (1.60) approximately equals k7.

Transforming Eq. (1.62) in accordance with formula (1.10), we
get

4n2hc? 1
¢ (h T)= A exp(2nhic/kTh)—1 (1.63)

Figure 1.15 compares graphs of functions (1.62) and (1.63) plotted
for the same temperature (5000 K). The logarithmic scales along the
axis of abscissas have been chosen so that the values of A and
related by the expression A = 2n¢/@ have been superposed on one
another. Examination of the figure reveals that the frequency wg
corresponding to a maximum of f (o, T) does not coincide with

2mc/My, where Ay is the wavelength corresponding to the maximum
of ¢ (A, 7).
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For the radiant emittance of a blackbody, we get the expression

oo

ry w3 do
R*= § f(o, T) d‘”'—"i 4n%c* exp (ho/kT) —1

Let us substitute the dimensionless variable £ = kw/kT for o.
The substitution o = (kT/h) z, do = (kT/k) dz transforms the
formula for R* as follows:

«___ R k_T‘lmz’d.t
R_Im‘c“(h) Se"—i

The definite integral in this expression can be calculated. It equals
n4/15 ~ 9.5. Introducing its value, we arrive at the Stefan-Boltz-
mann law:
3k
R*=WT4=0'T‘ (1.64)
Substitution in this formula of the numerical values for %, ¢, and %
gives the value of 5.6696 X 10-8 W/(m?. K*) for the Stefan-Boltzmann
constant that agrees very well with the experimental value (1.17).
In concluding, let us find the value of the constant in Wien's
displacement law (1.22). For this purpose, we shall differentiate
function (1.63) with respect to A and equate the expression obtained
to zero:

do (A, T) __ 4n2hc? [(2nhe/kTM) e2™e/RTA 5 (c27The/RTA )] 0
ai - 28 (eZI!hC/th_ 1)3 -

The values of A = 0 and A = oo satisfying this equation correspond
to minima of the function @ (A, T'). The value of A, at which the
function reaches a maximum converts the expression in brackets in
the numerator to zero. Introducing the notation 2nZc/kTA, = z,
we get the equation

ze* —5(*—1)=0

The solution* of this transcendental equation gives r = 4.965.
Hence, 2nkc/kThy, = 4.965, whence
2nkic
Substitution of numerical values for %, ¢, and % gives a value for b
that coincides with the experimentally obtained one (1.23).
Thus, Planck’s formula gives an exhaustive description of equilib-
rium thermal radiation.

* The solution can be found by the method of consecutive agproxima_tioqs.
Noting that ¢ > 1, we can in the first approximation write the equation in
the form ze* — 5e* =~ 0, whence z =~ 5. We get the second approximation from
the equation ze® — 5 (ef — 1) = 0, etc.
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2.1. Bremsstrahlung

We learned in the preceding chapter that to explain the proper-
ties of thermal radiation, it was necessary to introduce the notion of
electromagnetic radiation being emitted in portions of Zwm. The
quantum nature of radiation is also confirmed by the existence of a
short wavelength limit of the bremsstrahlung X-ray spectrum.

X-rays are produced when solid targets are bombarded with fast
electrons. An X-ray tube (Fig. 2.1) is an evacuated bulb with several
electrodes. Cathode C heated by a current is the source of free elec-
trons produced owing to thermoelectronic emission (see Sec. 9.2).
Cylindrical electrode E is intended for
focussing the electron beam. Anode 4,
also called an anticathode, is the tar-
get. It is made from heavy metals
(W, Cu, Pt, etc.). The electrons are
accelerated by the high voltage set up
between the cathode and the antica-.
thode. Virtually the entire energy of
the electrons is liberated on the anti-
cathode in the form of heat (only from 1 to 3% of the energy is trans-
formed into radiation). This is why the anticathode has to be inten-
sively cooled in powerful tubes. For this purpose, channels are made
in the body of the anticathode for the circulation of a cooling liquid
(water or oil).

If the voltage U is applied between the cathode and the anticathode,
the electrons are accelerated to the energy eU. Upon getting into
the substance of the anticathode, the electrons experience strong
deceleration and become a source of electromagnetic waves. The
radiant power P is proportional to the square of the charge of an
electron and the square of its acceleration:

Fig. 24

P oc e?q?

[see Eq. (15.47) of Vol. II, p. 317l

Let us assume that the acceleration of an electron a remains
constant during the entire duration of deceleration t. The radiant
power will therefore also be constant, and during the deceleration
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period an electron emits the energy

e3v}

E = Pt x e2a?t =

where v, is the initial velocity of the electron.

The result obtained shows that appreciable radiation can be ob-
served only upon sharp deceleration of the fast electrons. A voltage up
to 50 kV is fed to X-ray tubes. Upon passing through such a poten-
tial difference, an electron acquires a velocity of 0.4c. In a betatron
(see Sec. 10.5 of Vol. II, p. 224 et seq.)
electrons can be accelerated to an ener
gy of 50 MeV. The velocity of the elec-
trons at such an energy is 0.99995c¢.
By directing a beam of electrons accel-
erated in a betatron onto a solid tar-
get, we can get X-rays of a very small
wavelength. The smaller the wave-
length, the less are the rays absorbed
in a substance. For this reason, X-rays
obtained in a betatron have an espe-
cially high penetrability.

At a sufficiently high velocity of
the electrons, in addition to brems-
strahlung—braking radiation (i.e. radia- [
tion produced by deceleration of the Anin 4
electrons), there is also produced char- Fie. 2.2
acteristic radiation (due to excitation 8. 2
of the internal electron shells of the anti-
cathode atoms). This radiation is treated in Sec. 5.11. Now we shall
be interested only in bremsstrahlung. According to classical electro-
dynamics, when an electron is decelerated, waves of all lengths—
from zero to infinity—should be produced. The wavelength corres-
ponding to the maximum radiant power should diminish with an
increasing velocity of the electrons, i.e. with an increasing voltage U
across the tube. Figure 2.2 gives experimental curves showing how
the power of bremsstrahlung is distributed by wavelengths and
obtained for different values of U. Inspection of the figure shows that
the conclusions of theory are mainly confirmed experimentally.
There is a fundamental deviation, however, from the requirements
of classical electrodynamics. It consists in that the curves of power
distribution do not pass to the origin of coordinates, but terminate
at finite values of the wavelength A, ,. It has been established exper-
imentally that the short wavelength limit of the bremsstrahlung
spectrum A, is associated with the accelerating voltage U by the

Y=50kVY
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}am[n= U (2.1)
where Anin is in angstroms, and U in volts.

The existence of the short wavelength limit directly follows from
the quantum nature of radiation. Indeed, if radiation is produced
at the expense of the energy lost by an electron when it decelerates,
then the magnitude of a quantum %w cannot exceed the energy of
an electron eU:

ho < eU

Hence, we find that the frequency of radiation cannot exceed the
value wnay = eU/A and, consequently, the wavelength cannot be
smaller than the value

2nec  _ (2mhcle)
Omax U

(2.2)

We have thus arrived at empirical equation (2.1). The value of %
found by comparing Eqs. (2.1) and (2.2) agrees quite well with the
values determined by other methods. Of all the ways of finding #,
the one based on measuring the short-wave boundary of the brems-
strahlung spectrum is considered to be the most accurate.

}‘mxn =

2.2. The Photoelectric Effect

The photoelectric effect is the name given to the emission of elec-
trons by a substance under the action of light. This phenomenon
was discovered in 1887 by the German physicist Heinrich Hertz.

He noted that the jumping of a spark between

| the electrodes of a discharger is considerably

— facilitated when one of the electrodes is illu-
l minated with ultraviolet rays.

e In 1888-1889, the Russian physicist Alek-
—_ sandr Stoletovsystematically studied the pho-
| toelectric effect with the aid of the arrange-
— ment shown schematically in Fig. 2.3. The
I——_F-lll I| capacitor formed by a wire screen and a solid
Fig. 2.3 plate was connected in series with galvano-

meter G in the circuit of a battery. The light
passing through a screen fell on the solid plate.
As a result, a current was set up in the circuit that was registered by
the galvanometer. Stoletov arrived at the following conclusions as
a result of his experiments: (1) ultraviolet rays have the greatest
action; (2) the current grows with increasing illumination of the
plate; and (3) the charges emitted under the action of light have
a negative sign.
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Ten years later (in 1898), the German physicist Philipp Lenard
(1862-1947) and the British physicist Joseph J. Thomson (1856-
1940) measured the specific charge of the particles emitted under
the action of light and found that these particles are electrons.

Lenard and other investigators improved Stoletov’s arrangement
by putting the electrodes into an evacuated bulb (Fig. 2.4). The
light penetrating through quartz* window Q illuminates cathode C
made from the substance being investigated. The electrons emitted
as a result of the photoelectric effect move under the action of the
electric field to anode A. As a result, a photocurrent measured by

Q

)
A\,

- P

|||...|

Fig. 2.4 Fig. 2.5

7

means of galvanometer G flows through the circuit of the arrange-
ment. The voltage between the anode and the cathode can be changed
with the aid of potentiometer P.

The volt-ampere characteristic (i.e. the curve showing how the
photocurrent I depends on the voltage U across the electrodes) ob-
tained in such an arrangement is shown in Fig. 2.5. The characteristic
is naturally read at a constant light flux @. A glance at the curve
shows that at a certain not very high voltage the photocurrent reaches
saturation—all the electrons emitted by the cathode reach the anode.
Hence, the saturation current I is determined by the number of
electrons emitted by the cathode in unit time under the action of
light.

The gentle slope of the curve indicates that the electrons fly out
of the cathode with velocities different in magnitude. A fraction of
the electrons corresponding to the current when U =0 have veloci-
ties sufficient for them to reach the anode “independently” without
the aid of the accelerating field. For the current to vanish, the re-
tarding voltage U, must be applied. At this voltage, none of the

* Unlike ordinary glass, quartz transmits ultraviolet rays. . -
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electrons, even those having the maximum value of the velocity vy,
when flying out of the cathode, succeed in overcoming the retarding
field and reaching the anode. We can therefore write that

—;-mv&.=eUr (2.3)
where m is the mass of an electron. Thus, by measuring the retarding
voltage U,, we can find the maximum value of the velocity of photo-
electrons.

By 1905, it was established that the maximum velocity of photo-
electrons does not depend on the intensity of light, but depends only
on its frequency—a growth in frequency leads to an increase in
velocity. The experimentally established relations did not fit into
the framework of the classical notions. For example, according to
classical conceptions, the velocity of photoelectrons ought to grow
with the amplitude, and, consequently, with the intensity of the
electromagnetic wave.

In 1905, the German physicist Albert Einstein showed that all
the laws of the photoelectric effect can readily be explained if it is
assumed that light is absorbed in the same portions Z® (quanta) in
which, according to Planck’s assumption, it is emitted. Einstein
postulated that the energy received by an electron is supplied to it
in the form of a quantum Zw, which it assimilates completely. Part
of this energy, equal to the work function 4*, goes to allow the
electron to leave the body. If an electron is freed not at the very
surface, but at a certain depth, then part of the energy equal to E’
may be lost owing to chance collisions in the substance. The remain-
ing energy is the kinetic energy Ey of the electron leaving the sub-
stance. The energy Fy will be maximum when £’ = 0. In this case
the equation
5 Mvh+ A (2.4)
known as Einstein’s formula must be obeyed.

The photoelectric effect and the work function greatly depend on
the state of the surface of a metal (in particular, on the oxides and
adsorbed substances on it). Therefore, for a long time, Einstein's
formula could not be verified with sufficient accuracy. In 1916, the
American scientist Robert Millikan designed an apparatus in which
the surfaces being studied were cleaned in a vacuum, after which
the work function was measured and the dependence of the maximum
kinetic energy of photoelectrons on the frequency of the incident
light was determined (this energy was found by measuring the retard-
ing potential U,). The results agreed completely with formula (2.4).

o=

* The smallest amount of energy that must be imparted to an electron
in order to remove it from inside a solid or liquid body into a vacuum is known
as the work function of the body {see Sec. 9.1).
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Introducing the measured values of 4 and -;—mvfn (for a given @)

into formula (2.4), Millikan determined the value of Planck’s con-
stant %. It was found to coincide with the values determined from the
spectral distribution of equilibrium thermal radiation and from the
short-wave limit of the bremsstrahlung spectrum.

The method of studying the photoelectric efiect was further im-
proved in 1928 by the Soviet physicists P. Lukirsky and S. Prile-
zhaev, who designed an apparatus in the form of a spherical capacitor.
The silver-coated walls of a spherical glass bulb were the anode in
their apparatus. The cathode in the form of a sphere was placed at
the centre of the bulb. Such a shape of the electrodes gives a steeper
volt-ampere characteristic, which makes it possible to improve the
accuracy of determining the retarding potential.

Examination of formula (2.4) reveals that when the work function
A exceeds the energy of a quantum %o, the electrons cannot leave
the metal. Hence, for the photoelectric effect to appear, the con-
dition Zo = A or

A

0>y =-5 (2.5)

must be satisfied. The condition for the wavelength, accordingly, is

2nhe

)\<}MO= A

(2.6)

The frequency , or the wavelength Aj is called the photoelectric
threshold.

The number of electrons freed owing to the photoelectric effect
should be proportional to the number of light quanta falling on the
relevant surface. At -the same time, the light flux ® is determined
by the number of light quanta falling on the surface in unit time.
Accordingly, the saturation current /s must be proportional to the
incident light flux:

Igoc @ 2.7)

This relation is also confirmed experimentally. It must be noted
that only a small part of the quanta transmit their energy to the
photoelectrons. The energy of the remaining quanta goes to heat
the substance absorbing the light.

In the phenomenon of the photoelectric effect considered above,
an electron receives energy from only a single photon. Such processes
are called single-photon ones. The invention of lasers was attended
by the obtaining of light beam powers unachievable before that time.
This made it possible to carry out multiple-photon processes. In
particular, the multiple-photon photoelectric effect was observed.
In this process, an electron flying out from a metal receives energy
not from one, but from N photons (¥ = 2, 3, 4, 5).
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Einstein’s formula can be written as follows for the multiple-
photon photoelectric effect:

Nho =3 muh+ A (2.8)

The photoelectric threshold shifts accordingly in the direction of
longer waves (A, grows N times). Formula (2.7) for the N-photon
effect has the form

Iy @Y (2.9)
Apart from the external photoelectric effect (which is generally
called simply the photoelectric effect) treated in this section, there

also exists the internal photoelectric effect observed in dielectrics
and semiconductors. It will be discussed in Sec. 9.6.

2.3. Bothe’s Experiment. Photons

To explain the distribution of energy in the spectrum of equilibri-
um thermal radiation, it is sufficient, as Planck showed, to assume
that light is only emitted in portions of Zw. To explain the photoelec-

tric effect, it is sufficient to assume
mém that light is absorbed in the same por-
tions. Einstein, however, went con-
DF ‘ siderably further. He advanced the
] - N\ A% [

A hypothesis that light also propagates
in the form of discrete particles ini-
tially called light quanta. These par-
ticles were later named photons (this
term was introduced in 1926).

M= 4 m The most direct confirmation [of
Einstein’s hypothesis was given by an
experiment run by the -German physi-

I 7 cist Walther Bothe (1891-1957). Thin
metal foil F (Fig. 2.6) was placed be-
Fig. 2.8 tween two gas-discharge counters C

(see Sec. 12.3 of Vol.II, p. 240 et seq.).
The foil was illuminated with a weak beam of X-rays under whose
action it itself became a source of X-rays (this phenomenon is known
as X-ray fluorescence). Owing to the low intensity of the primary
beam, the number of quanta emitted by the foil was not great.
When struck by X-rays, the counter operated and actuated special
mechanism M that made a mark on moving tape T. If the emitted
energy propagated uniformly in all directions as follows from wave
notions, both counters ought to operate simultaneously, and the
marks on the tape would be opposite one another. Actually, how-
ever, an absolutely chaotic arrangement of the marks is observed.
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The only explanation is that in individual emission events, parti-
cles of light appear that fly first in one, and then in another direc-
tion.

Thus, the existence of special particles of light—photons—was
proved experimentally. The energy of a photon is determined by its

frequency:
E=ro (2.10)
We invite our reader to convince himself that the energy of a photon

of o = 2.5 eV corresponds to a wavelength of A = 5000 A (the green

part of the spectrum); when A =1 A, we have ko = 12.5 keV.

An electromagnetic wave has a momentum (sec Sec. 15.5 of Vol. II,
p. 312 et seq.). Accordingly, a photon must also have a momentum.
To find the momentum of a photon, let us use the relations of the
theory of relativity. We shall consider two reference frames K
and K’ moving relative to each other with the velocity v,. We shall
direct the axes x and z’ along v,. Assume that a photon flies in the
direction of these axes. The energy of the photon in the frames K
and K’ is ko and %', respectively. The frequencies @ and o’ are
related by the expression

(I)' = - '1—00/0
Vi—vg/c?
(see Sec. 21.4 of Vol. II, p. 481 et seq.). Hence,
' __ 1—00/4'
E=E—=ts (2.11)

Let p stand for the momentum of a photon in the frame X, and p’
for the momentum of a photon in the frame K’. It follows fromjcon-
siderations of symmetry that the momentum of a photon must be
directed along the z-axis. Therefore, p, = p, and pr = p’. In
passing from one reference frame to another, the energy and momen-
tum are transformed by means of the formula

’ E —vopx
VYV 1=0jlc? ( )
[see the last of formulas (8.49) of Vol. I, p. 244; we have replaced §
with its value vy/c and written the formula for the reverse transfor-
mation; in this connection we have changed the sign of vyp,). In

the case we are considering, we may substitute p for p, in Eq. (2.12).
A comparison of Egs. (2.41) and (2.12) shows that

E(1-2) =2
(we have written p instead of p,). Hence
p=L.=te (2.13)

[4 c
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We showed in Sec. 8.10 of Vol. I, p. 247, that such a relation between
the momentum and the energy is possible only for particles having
a zero rest mass and travelling with the speed c¢. It thus follows
from the quantum relation = %w and the general principles of
the theory of relativity that (1) the rest mass of a photon is zero,
and (2) a photon always travels with the speed c. This signifies that
a photon is a special kind of particle differing from particles such
as an electron and a proton that can exist when travelling at speeds
less than ¢ and even when at rest.

Replacing the frequency o in Eq. (2.13) with the wavelength A,
we get the following expression for the momentum of a photon:

p=-"21 =k (2.14)

(% is the wave number). A photon flies in the direction of propagation
of the relevant electromagnetic wave. Therefore, the directions of
the momentum p and the wave vector k coincide. Equation (2.14)
can therefore be written in the vector form:

p = #k 2.15)

Assume that a flux of photons falls on a light-absorbing surface
of a wall and that the photons are flying along a normal to the sur-
face. If the density of the photons is n, then nc photons fall on unit
surface area in unit time. Each photon when absorbed imparts the
momentum p = L/¢ to the wall. Multiplying p by nc, we get the
mwomentum imparted to unit surface in unit time, i.e. the pressure &
of the light on the wall

@:%-nc:En

The product £n equals the energy of the photons confined in unit
volume, i.e. the density w of electromagnetic energy. We have thus
arrived at the formula ¢ = w, which coincides with the expression
for the pressure obtained from the electromagnetic theory [see
Eq. (15.41) of Vol. II, p. 314]. Upon reflection from a wall, a photon
imparts the momentum 2p to it. Therefore, the pressure for a reflect-
ing surface will be 2w.

On the basis of the notion of an electromagnetic field as a collec-
tion of photons, it is a simple matter to obtain a relation between
the emissivity of a blackbody and the equilibrium density of radia-
tion. Assume that a unit volume of a cavity filled with equilibrium
radiation contains dn, photons whose frequency ranges from « to
® + dw. The density of the energy falling to the same interval of
frequencies will therefore be

duy, = u (0, T)do = kw dn, (2.16)
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Like the molecules of a gas, the photons fly inside the cavity in
all directions. Using Eq. (11.23) of Vol. I, p. 303, we get the value
-2—0 dn, for the number of photons colliding with a unit surface

area in unit time. If the wall is a blackbody, it will absorb all these
photons and, consequently, will receive energy equal to %h:a)c dn,,.

In equilibrium, the blackbody wall will emit the same energy.
‘Thus,

f (@, T)do = hocdn, (2.17)
A comparison of Eqs. (2.16) and (2.17) shows that
flo, I)=%u(w, T (2.18)

{compare with Eq. (1.15)].

We have treated a number of phenomena in this chapter in which
light behaves like a flux of particles (photons). One must never for-
get, however, that phenomena such as the interference and diffrac-
tion of light can be explained only on the basis of wave notions.
Thus, light displays corpuscular-wave duality: in some phenomena
its wave nature manifests itself, and it behaves like an electromag-
netic wave, whereas in other phenomena the corpuscular nature of
light manifests itself, and it behaves like a flux of photons. We shall
see in Sec. 4.1 that not only light particles, but also the particles of
a substance (electrons, protons, atoms, etc.) have corpuscular-wave
duality.

Let us find the relation between the wave and the corpuscular
pictures. We can obtain an answer to this question by considering
the illumination of a surface from both viewpoints. According to
wave notions, the illumination at a point of a surface is proportional
to the square of the amplitude of the light wave. From the corpus-
cular viewpoint, the illumination is proportional to the density of
the photon flux. Consequently, direct proportionality exists between
the square of the amplitude of a light wave and the density of a
photon flux. Energy and momentum are carried by photons. Energy
is liberated at the point of a surface onto which a photon falls. The
square of the amplitude of a wave determines the probability of
a photon falling on a given point of a surface. More exactly, the
probability of the fact that a photon will be detected within the
limits of the volume dV containing the point of space being con-
sidered is determined by the expression

dP = yA*dV

where y = constant of proportionality
A = amplitude of a light wave.
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It follows from the above that the distribution of photons over
a surface on which light is falling must have a statistical nature. The
uniform illumination observed experlmentally is due to the fact
that the density of a photon flux is usually very hlgh For example,
at an illumination of 50 1x (such an illumination is needed for the

eyes not to become tired when reading) and a wavelength of 5500 A,
about 2 X 10™ photons fall on one square centimetre of a surface
in one second. The relative fluctuation* is inversely proportional
to the square root of the number of particles [see formula (11.89) of
Vol. I, p. 335]. Hence, at this value of the photon flux, the fluctua-
tions are negligible, and the surface appears to be illuminated
uniformly.

Fluctuations of weak light fluxes were detected by the Soviet
physicist Se1ge1 Vavilov (1891-1951) and his collaborators. They
found that in the region of its greatest sensitivity (A = 5550 A) the
human eye begins to react to light when about 200 photons fall
on the pupil a second. At such an intensity, Vavilov observed fluctua-
tions of the light flux having a clearly expressed statistical nature.
True, it must be borne in mind that the fluctuations of the percep-
tion of light observed in Vavilov's experiments were due not only to
fluctuations of the light flux, but also to the fluctuations associated
with the physiological processes occuring in the eye.

2.4. The Compton Effect

The corpuscular properties of light manifest themselves especially
¢learly in a phenomenon that was named the Compton effect. In 1923,
the American physicist Arthur Compton
(1892-1962), investigating the scattering
of X-rays by different substances, discov-
ered that the scattered rays in addition
to radiation of the initial wavelength A
contain also rays of a greater wavelength
A’. The difference AL = A" — A was found
to depend only on the angle 6 made by the
direction of the scattered radiation with
that of the initial beam. The value of AA

Fig. 2.7 does not depend on the wavelength A and
on the nature of the scattering material.

Compton’s experiment is shown schematically in Fig. 2.7. A nar-
row beam of monochromatic (characteristic) X-ray radiation sepa-
rated by diaphragms D was directed onto scattering material SM.

* We remind our reader that by relative fluctuations are meant the relative
deviations of statistical quantities from their mean value.
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The spectral composition of the scattered radiation was studied with
the aid of an X-ray spectrograph consisting of crystal Cr and ioniza-
tion chamber IC.

Figure 2.8 gives the results of studying the scattering of monochro-
matic X-rays (the line Ko* of molybdenum) on graphite. Curve a
characterizes the primary radiation. The remaining curves relate to
different scattering angles 6 whose values are indicated in the figure.
The intensity of radiation is laid off along the axis of ordinates, and
the wavelength along the axis of abscissas.

Figure 2.9 shows how the relation between the intensities of the
shifted M and unshifted P components depends on the atomic num-
ber of the scattering substance. The top curve in the left-hand column
characterizes the primary radiation (the
line K, of silver). In scattering by sub-
stances with a low atomic number (Li, Be,
B), virtually all the scattered radiation
has a shifted wavelength. With an increase
in the atomic number, a greater and grea-
ter part of the radiation is scattered with-
out a change in the wavelength.

All the features of the Compton effect
can be explained by considering scatter-

Fig. 2.10 ing as a process of elastic collision of

the X-ray photons with practically free

electrons. Those electrons may be considered free that are bound

weakest to their atoms and whose binding energy is appreciably

smaller than the energy which a photon can transmit to an elec-
tron when they collide**.

Assume that a photon having the energy %Zw and the momentum
7k falls on a free electron initially at rest (Fig. 2.10). The energy of
the electron before the collision was mc? (here m is the rest mass of
an electron), and its momentum was zero. After the collision, the
electron will have the momentum p and an energy equal to
cV p® + m3*® [see Eq. (8.42) of Vol. I, p. 242]. The energy and
momentum of the photon will also change and become equal to
Zo’ and &k’. Two equations follow from the laws of energy and
momentum conservation, namely,

h® 4 mc?2= ko' +cV p2+ m2c? (2.19)
Ek = p + &k’ (2.20)

AK

* See Sec. 5.11. .

** In an elastic collision, a photon cannot transmit all its energy to an
electron (or another particle). Such a process would violate the laws of conserva-
tion of energy and momentum.
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Let us divide the first equation by ¢ and write it in the form
Vpr+mec? =h(k—k')+me
(w/c = k). Squaring yields

pr=h2(k*4k'2—2kK") 4 2hme (kK — k') (2.21)
It can be seen from Eq. (2.20) that
p2=h? (k —k')2 = h2 (k2 4 k'2 — 2Kk’ cos 0) (2.22)

(@ is the angle between the vectors k and k’; see Fig. 2.10).
We find from a comparison of Eqs. (2.21) and (2.22) that

me (k — k') = hkk' (1 — cos @)
Multiplication of this equation by 2n and division by mckk’ yield
2n 2n 2nk
=—(1—cos9)

e k me

Finally, taking into account that 2n/k = A, we arrive at the formula

AAM=)"—A=Ac (1 —cos6) (2.23)
where
h
re =22 (2.24)

The quantity Ac determined by Eq. (2.24) is called the Comp-
ton wavelength* of the particle whose mass m we have in mind.
In the case we are considering, Ac is the Compton wavelength of
an electron. Substituting for 7%, m, and ¢ in Eq. (2.24) their val-
ues, we get the following value for Ac of an electron:

Ac=0.0243 A (2.25)

(k¢ = 0.003 86 A).

The results of measurements by Compton and of subsequent mea-
surements are in complete agreement with Eq. (2.23) if we use in it
the value of Ac given by Eq. (2.25).

When photons are scattered on electrons whose bond to the atom
is strong, the energy and momentum are exchanged with the atom
as a whole. Since the mass of an atom is much greater than that of
an electron, the Compton shift in this case is negligible, and A’
practically coincides with A. An increase in the atomic number is
attended by a growth in the relative number of electrons with a
strong bond, and this is why the shifted line is weaker (see Fig. 2.9).

¢ The quantity
i
tc me

is also known as the Compton wavelength,



PART II ATOMIC PHYSICS

CHAPTER 3 THE BOHR THEORY
OF THE ATOM

3.1. Regularities in Atomic Spectra

The radiation of atoms that do not interact with one another con-
sists of separate spectral lines. The emission spectrum of atoms is
accordingly called a line spectrum. Figure 3.1 shows an emission
spectrum of mercury vapour. The spectra of other atoms have the
same nature.

The studying of atomic spectra served as a key to cognition of the
structure of atoms. It was noted first of all that the lines in the spec-
tra of atoms are arranged not chaotically, but are combined into
groups.or, as they are called, series of lines. This is revealed most
clearly in the spectrum of the simplest atom—hydrogen. Figure 3.2
shows a part of the spectrum of atomic hydrogen in the visible and
near ultraviolet region. The symbols H,, Hg, H,, and H; desig-
nate the visible lines, and H, shows the limit of the series (see be-
low). The lines are evidently arranged in a definite order. The distance
between the lines regularly diminishes upon passing from longer
waves to shorter ones.

In 1885, the Swiss physicist Johann Balmer (1825-1898) discovered
that the wavelengths of this series of hydrogen lines can be accurately

represented by the formula
2
A«=A.o-n%4" (3°1)
where A, = constant
n = integer taking on values of 3, 4, 5, etc.
If we pass over from the wavelength to the frequency in Eq. (3.1),
we get the formula

m=3(_1___‘_) (n=3,4,5,...) (3.2)

23 n3
where R is a constant called the Rydberg constant in honour of the
Swedish spectroscopist Johannes Rydberg (1854-1919). It equals
R =.2,07 x 10'® rad/s (3.3)
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Formula (3.2) is known as the Balmer for-
mula*, and the corresponding series of spectral
lines of the hydrogen atom is known as the
Balmer series. Further investigations showed
that there are some other series in the hydrogen
spectrum. The extreme ultraviolet part of the
spectrum contains the Lyman series. The re-
maining series are in the infrared region. The
lines of these series can be represented in the
form of formulas similar to formula (3.2):

Lyman series o =R (i—i,-_’%)
n=2,3,4,...)

Paschen series (0=R(§1,———1,-)

(n=4,5,6,...)

Brackett series m=R( % —l,)
(n=5,6,7,...)

Pfund series w=R (SL’_L:)

(n=6v 7' 81 -.o)

The frequencies of all the hydrogen atom
spectrum lines can be represented by a single
formula:

1 1

* |t is customary practice in spectroscopy to char-
acterize spectrum linesnot by the frequency, but by
the quantity

v’—i—.&.
~ A 2ne

that is the reciprocal of the wavelength and is
called the wave number (do not confuse it with the
wave number k = 2x/A = @/c¢). The Balmer formula
written for the wave number has the same form as
Ea. (3.2):

' 1 1

v =R (.2_’._.;;) (n=3, 4 5, ce0)

The Rydberg constant in this case has the value
R = 109 737.309 + 0.012 cm-!

The number of authentic significant digits character-
izes the accuracy of measurements achieved in spec-
troscopy. The value of the constant in Eq. (3.3) has
been rounded off to the third digit.
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where m has the value of 1 for the Lyman series, of 2 for the Balmer
series, etc. At a given m, the number n takes on all integral values
beginning from m + 1. Equation (3.4) is called the generalized Bal-
mer formula.

When n grows, the frequency of the lines in each series tends to a
limit value R/m? called the series limit (in Fig. 3.2 the symbol H
indicates the limit of the Balmer series).

Let us take a number of values of the expression I (r) = R/n?:

£ £, L. (3.5)
The frequency of any hydrogen spectrum line can be represented in
the form of the difference between two numbers of series (3.5). These
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numbers are called spectral terms or simply terms. For example, the
frequency of the first line ‘of the Balmer series is T (2) — T (3),
and of the second line of the Pfund series is T (5) — T (7).
Studying of the spectra of other atoms showed that the frequencies
of the lines in this case too can be represented as the differences be-

tween two terms:
@ =1T,(m) —T,(n) (3.6)

But the term 7' (r) usually has a more complica.ted form than for the
hydrogen atom. In addition, the first and second terms of formula
(3.6) are taken from different series of spectral terms.

3.2. The Thomson Model of the Atom

According to classical notions, an atom could emit a monochroma-
tic wave (i.e. a spectral line) when an electron in the emitting atom
performs harmonic oscillations, and, consequently, is retained near
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its equilibrium position by a quasi-elastic force of the kind F = —Fkr,
where r is the deviation of the electron from its equilibrium position.
In 1903, J. J. Thomson suggested a model of an atom according to
which an atom is a sphere uniformly filled with positive electricity,
and there is an electron inside the sphere (Fig. 3.3).
The total positive charge of the sphere equals the
charge of an electron, so that the atom as a whole
is neutral.

The strength of the field inside a uniformly
charged sphere is determined by the expression*
E(r) —%r 0<<r<R)
where e is the charge of the sphere and R is its radius
[see Eq. (1.125). of Vol. II, p. 60]. Hence, the fol-
lowing force will be exerted on an electron at the distance r from its

equilibrium position (from the centre of the sphere):

Fig. 3.3

F=(—e)E=—%rr=—kr

In such conditions, the electron, brought out of its equilibrium
position in some way or other, will oscillate with the frequency

o=y Loy =0 (3.7)

(e is the charge of an electron, m is the mass of an electron, and R
is the radius of the.atom). This equation can be used to assess the
size of an atom. By Eq. (3.7)
e \1/3
R= ( m@? )

A frequency of o =&~ 3 X 10" rad/s corresponds to a wavelength
f A =6000 A (the visible part of the spectrum). Therefore,

— 4.82 X 10-%0 13 _ »
R—( 0.91 X 10-27 x 323 1030 ) ~3%x10°% cm

The value obtained coincides in the order of its magnitude with the
gas-kinetic dimensions of atoms, which could have been considered
as a confirmation of the Thomson model. Later, however, the un-
foundedness of this model was established, and at present it is
only of historical interest as one of the links in the chain of develop-
ment of our notions on the structure of atoms.

* We shall use the Gaussian system of units here and further in this vol-
ume.
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3.3. Experiments in Scattering Alpha-Particles.
The Nuclear Model of the Atom

The distribution of positive and negative charges in an atom can
be revealed by direct experimental “sounding” of its internal regions.
Such sounding was performed by the British physicist Ernest Ruther-
ford (1871-1937) and his collaborators with the aid of alpha-particles
by watching the change in the direction of their flight (scattering)
when passing through thin metal foils,

We remind our reader that alpha-particles are particles emitted
by some substances in radioactive decay. The speeds of these par-

ticles are of the order of 10° cm/s.

/"‘-\‘\%M When Rutherford began to run his

/ Se experiments, it was known that
R / \ alpha-particles have a positive
\

7
: / Z\E charge equal to twice the elemen-
L e .
\ F 1 tary charge, and that upon losing
\ / this charge (with the attachment

| / of two electrons) an alpha-particle
AN s transforms into a helium atom.

S P

S The experiments were conduct-

. ed as follows (Fig. 3.4). A narrow

Fig. 3.4 beam of alpha-particles emitted

by radioactive substance R and

separated by an aperture fell on thin metal foil F. In passing through

the foil, the particles were deflected from their initial direction of

motion through various angles 6. The scattered particles struck screen

Sc coated with zinc sulphide, and the scintillations* they produced

were observed in microscope M. The microscope and the screen could

be rotated about an axis passing through the centre of the scattering

foil and could thus be positioned at any angle 6. The entire apparatus

was placed in an evacuated housing to exclude scattering of the
alpha-particles due to collisions with air molecules.

Some of the alpha-particles were found to become scattered through
very great angles (almost up to 180 degrees). Upon analysing the
results of the experiments, Rutherford arrived at the conclusion that
such a large deflection of the alpha-particles is possible only if there
is"an exceedingly strong electric field inside the atom that is produced
by a charge associated with a large mass and concentrated in a very
small volume. On the basis of this conclusion, Rutherford in 1911
proposed a nuclear model of the atom. According to Rutherford,
an atom is a system of charges at whose centre there is a heavy posi-
tive nucleus of charge Ze having dimensions not exceeding 10-!% cm,

* By a scintillation is meant a flash of light produced by charged particles
when they collide with a substance capable of luminescence.
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while around the nucleus there are Z electrons distributed through-
out the entire volume occupied by the atom. Almost the entire mass
of the atom is concentrated in its nucleus.

On the basis of these assumptions, Rutherford developed a quanti-
tative theory of alpha-particle scattering and derived a formula for
the distribution of the scattered particles by the values of the angle 6.
In deriving this formula, he reasoned as follows. The deflections of
the alpha-particles are due to the action of the atomic nuclei on
them. There cannot be a noticeable deflection because of interaction

Nucleus (+26)

Fig. 3.5

with electrons since the mass of an electron is four orders of magni-
tude smaller than that of an alpha-particle. When a particle flies
near a nucleus, it experiences the Coulomb force of repulsion
3
F— 2Ze (3.8)

re

In this case, the trajectory of the particle is a hyperbola (see Vol. I,
pp. 116-7). Let 6 stand for the angle between the asymptotes of the
hyperbola (Fig. 3.5). This angle characterizes the deflection of the
particle from its initial direction. The distance b from the nucleus
to the initial direction of flight of an alpha-particle is called the
impact parameter. The closer the trajectory of a particle approaches
the nucleus (the smaller is &), the more, naturally, it is deflected
(the greater is 0). There is a simple relation between b and 0 which
we shall now establish.

It follows from the law of energy conservation that at a consider-
able distance from a nueleus the magnitude of the momentum p
of a scattered particle will be the same as the magnitude of the
momentum p, before scattering: p = p,. Consequently (see Fig. 3.5b),
we can write the following expression for the magnitude of the incre-
ment of a particle’s momentum vector produced as a result of scatter-
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ing:

|Ap|=2p, sin%:?mav sin% (3.9

where m, = mass of an alpha-particle
v = its initial velocity.
At the same time according to Newton's second law, we have
Ap = S F dt

Projecting the vectors in this equation onto the direction of Ap,
we get

[Ap|= S Fap dt (3.10)

A glance at Fig. 3.5a shows that the projection of the force F onto
the direction of the vector Ap is F cos y. The angle P can be replaced
by the polar angle ¢ and the angle of deflection 6:

Hence,
Fap=Feosp=Fsin(4-3) = 22 sn (g +-3)

Using this expression in Eq. (3.10) and simultaneously substituting
do/g for dt, we obtain

a-8
|ap|=2zer | SletDBde (3.11)
0 e

The expression r’¢ equals M/m,, where M is the magnitude of
the angular momentum of the alpha-particle taken relative to the
scattering nucleus [see Eq. (3.123) of Vol. I, p. 114; in the present
volume we have denoted the angular momentum by M instead of L
for conveniencel. The force experienced by the alpha-particle is a
central one. The angular momentum M therefore remains constant
all the time and equal to its initial value M, = m,vb. After re-

placing r2(.p with vb, the integral in Eq. (3.11) is calculated quite
easily:
2z T 8
|apl=22= | sin(o+5)do=
0

2Ze% 0
o 2C08 & (3.12)

A comparison of Egs. (3.9) and (3.12) shows that

. 0 2Ze2 0 :
2mavsm7-— 3 20037'




The Bohr Theory of the Atom 55

Hence*

6 mgv?

COt-Z—-——ZE';.—b (3.13)

Let us consider a thin layer of the scattering substance such that

each particle when passing through it would fly near only one nucleus,

i.e. that each particle will be scattered only once. To experience

scattering through an angle within the limits from 6 to 8 - d9, a par-
ticle must fly near a nucleus along

a trajectory whose impact para- 0'3/#"\\\

meter is within the limits from & /\g\:/l,’ \t

to b + db (Fig. 3.6), do and db, /f o

as can be seen from Eq. (3.13), :______-gif-_-:- ¢ o

being related by the expression _EYL :‘r “

1 40 mg? SEETETEEEEA |= ”

T Tsin? (0/2) 2 2Ze3 db \\\ ‘\\ N

(3.14) W/,

The minussign in this equation is N\
due to the fact that the angle of Fig. 3.6

deflection diminishes (d6 << 0)
with increasing & (i.e. at db > 0). In the following, we shall be
interested only in the absolute value of db as a function of 6 and a6,
and we shall therefore omit the minus sign.
Let us denote the cross-sectional area of a
beam of alpha-particles by S. Hence, the
number of atoms of the scattering foil in the
path of the beam can be represented in the
form nSa, where n is the number of atoms in
unit volume, and a is the thickness of the
foil. If the alpha-particles are distributed
uniformly over the cross section of the beam
and their number is very great (which is
actually the case), then the relative number
of alpha-particles flying near one of the
nuclei along a trajectory with an impact pa-
rameter from b to b + db (and, consequently, deflected within the
limits of angles from 6 to 8 + df) will be (see Fig. 3.7):

dN Sa-2nbdb
- = = na2nb db (3.15)
In this expression, dNg is the flux of particles scattered within the
limits of angles from 6 to 8 + dO, and N is the total flux of particles
in the beam.

* The derivation of formula (3.13) given above belongs to I. E. Irodov.
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Using 6 and d8 in Eq. (3.15) instead of b and db in accordance with
Egs. (3.13) and (3.14), we get

ANe _ _ ( 2Z¢3 \2 8 1 do
1] —na(mav’) 2n ot 5 o o

We ‘transform the multipliers containing the angle 0:

cot (8/2) _  cos (0/2)sin (6/2) sin 0
sin2 (6/2) — sin* (6/2) " 2sin* (8/2)

With account of this transformation

dNg 2Ze? )2 25 sin 640
N mqu? 4 sin4 (0/2)

=na(

The expression 27 sin 0 df gives the solid angle dQ confining the
directions corresponding to scattering angles from 6 to 6 4 d9. We
can therefore write:

dNg __ Zer \2 dQ
"N—"’w(maua) 5ind (0/2) (3.16)

We have obtained the Rutherford formula for the scattering of.
alpha-particles. In 1913, Rutherford’s collaborators verified this
formula by counting the scintillations observed at different angles 6
during identical time intervals. In the conditions of the experiment
(see Fig. 3.4), the alpha-particles confined within the same solid
angle were counted (this angle was determined by the area of screen
Sc and its distance from the foil). Hence, the number of scintillations
observed at different angles should be, according to the Rutherford
formula, proportional to 1/[sin? (8/2)]. This result of theory was
confirmed quite well experimentally. The dependence of the scatter-
ing on the thickness of the foil and the speed of the alpha-particles
was also found to agree with formula (3.16).

The truth of the theory proceeding from the Coulomb interaction
between an alpha-particle and the nucleus of an atom indicates that
even an alpha-particle thrown back in the opposite direction does
not penetrate into the region occupied by the positive charge of the
atom. At the same time, an alpha-particle flying exactly in the
direction of a nucleus would approach its centre up to a distance that
can be determined by equating the kinetic energy of the alpha-
particle to the potential energy of interaction of the particle with
the nucleus at the moment when the particle comes to a full stop:

mgvd _ 27é*

2 "min

(rmin is the minimum distance between the centres of the alpha-
particle and of the nucleus). Assuming that Z = 47, v = 10°® cm/s,
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and m, = 4 X 1.66 X 102 = 6.6 X 10-** g, we get

4762 4X47%4.82x10-20
= = ~ —12
Tmin =773 Boxi0-T ko~ 6x 1072 cm

Thus, the results of experiments involving the scattering of alpha-
particles are witnesses in favour of the
nuclear model of the atom presented by
Rutherford. But the nuclear model contra-
dicted the laws of classical mechanics and
electrodynamics. Since a system of station-
ary charges cannoi be in a stable state, °
Rutherford had to renounce the static model
of the atom and assume that the electrons
travel about the nucleus along curved tra-
jectories. In this case, however, an electron
would travel with acceleration. Consequent- Fig. 3.8
ly, according to classical electrodynamics,
it must continuously emit electromagnetic (light) waves. The process
of emission is attended by the loss of energy, so that the electron in
hte long run should fall onto the nucleus (Fig. 3.8).

3.4. Bohr’'s Postulates.
The Franck-Hertz Experiment

We found in the preceding section that the nuclear model of the
atom in combination with classical mechanics and electrodynamics
was incapable of explaining the stability of an atom and the nature
of an atomic spectrum. A way out of this impasse was found in 1913
by the Danish physicist Niels Bohr (1885-1962), true, at the price
of introducing assumptions that contradicted the classical notions.
The assumptions made by Bohr are contained in his following two
postulates.

1. Among the infinite multitude of electron orbits possible from
the viewpoint of classical mechanics, only several discrete orbits
satisfying definite quantum conditions are actually encountered. An
electron in one of these orbits does not emit electromagnetic waves
(light) although it travels with acceleration.

2. Radiation is emitted or absorbed in the form of a quantum of
light energy Zw when an electron transfers from one stationary (stable)
state to another. The magnitude of a light quantum equals the differ-
ence between the energies of the stationary states between which the
quantum jump of the electron is performed:

bFo =E, — Fp, (3.17)

The existence of discrete energy levels of an atom was confirmed
by experiments run in 1914 by the German physicists James Franck
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(1882-1964) and Gustav Hertz (born 1887). A schematic view of their
apparatus is shown in Fig. 3.9a. A tube filled with mercury vapour
at a low pressure (about 1 mmHg) contained three electrodes, name-

_[_-5 I ¢ cioa ?
‘l ”J
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Fig. 3.9

ly, cathode C, grid Gr and anode A. The electrons flying out of the
cathode owing to thermionic emission were accelerated by the poten-
tial difference U applied between the cathode and the grid. The poten-

tial difference could be smoothly varied
I with the aid of potentiometer P. A weak
A electric field (a potential difference of the

order of 0.5 V) was set up between the

grid and the anode that retarded the mo-

\ tion of the electrons to the anode. Fig-

ure 3.9 shows the change in the potential

energy of an electron E, = —eg in the

space between the electrodes at different

A" values of the voltage U between the cath-

ode and the grid (¢ is the potential at
the corresponding point of the field).

/4 49 48 747 U,V  The relation between the current I in

. the anode circuit and the voltage U be-

Fig. 3.10 tween the cathode and the grid was studied.

The current and the voltage were mea-

sured by galvanometer G and voltmeter V, respectively. The results

obtained are shown in Fig. 3.10. It can be seen that the current first

monotonously increased, reaching a maximum at U = 4.9 V, after

which it sharply dropped with a further growth in U, reaching a

minimum, and then again began to increase. Maxima of the current

repeated at U equal to 9.8, 14.7 V, etc.*.
* Maxima were actually obtained at voltages of 4.1, 9.0, 13.9 V, etc.,

which is explained by the presence of a contact potential difference of the order
of 0.8 V between the electrodes.
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Such a shape of the curve is explained by the fact that owing to
the discrete nature of their energy levels, atoms can absorb energy
only in portions of

AE]_ = E2 -_— El’ or AE2 = Es —_— El! etc.

where E,, E,, E; ... are the energies of the 1st, 2nd, 3rd, etc.
stationary states.

As long as the energy of an electron is smaller than AE;, the colli-
sions between an electron and a mercury atom are of an elastic
nature; since the mass of an electron is many times smaller than
that of a mercury atom, the energy of an electron does not virtually
change in the collisions. A part of the electrons get caught on the
grid, while the remaining ones pass through the grid and reach the
anode, producing a current in the circuit of galvanometer G. The
greater the velocity with which the electrons reach the grid (the higher
is U), the larger will be the fraction of the electrons passing through
the grid and, consequently, the higher will be the current 1.

When the energy accumulated by an electron in the space between
the cathode and the grid reaches the value AE;, the collisions stop
being elastic—the electrons when they collide with the atoms trans-
fer the energy AE,; to them and then continue their motion with a
lower velocity. Therefore, the number of electrons reaching the anode
diminishes. For example, at U = 5.3 V, an electron transfers to an
atom an energy corresponding to 4.9 V (the first excitation potential
of a mercury atom) and continues to travel with an energy of 0.4 eV.
Even if such an electron does get between the grid and the anode,
it will not be able to overcome the retarding voltage of 0.5 V and
will be returned to the grid.

The atoms that upon colliding with electrons receive an energy of
AE, pass over into an excited state, from which after a time of the
order of 10~% s elapses they return to their ground state, emitting a
photon having the frequency w = AE,/A.

At a voltage exceeding 9.8 V, an electron along its path from the
cathode to the anode may undergo an elastic collision with mercury
atoms twice, losing an energy of 9.8 eV. As a result, the current [
will again begin to fall. At a still higher voltage, three inelastic
collisions of an electron with atoms are possible, which leads to the
appearance of a maximum at U = 14.7 V, and so on.

At a sufficiently high rarefaction of the mercury vapour and the
corresponding magnitude of the accelerating voltage, the electrons
during the time before they collide with atoms may acquire a velocity
high enough to transfer an atom to a state with the energy E,;. In
this case, maxima are observed on the curve I = f (U) at voltages
that are multiples of the second excitation potential of an atom (this
potential is 6.7 V for mercury), or at voltages equal to the sum of
the first and second excitation potentials, etc.
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Thus, the Franck-Hertz experiments directly detect the existence
of discrete energy levels in atoms.

In spectroscopy, the frequencies of spectral lines are customarily
represented in the form of the difference between positive numbers
T (n) called terms (see the next to last paragraph of Sec. 3.1). For
example, for hydrogen, T (n) = R/n®. Accordingly, the frequency of
the photon emitted in a transition from state n to state m is deter-
mined by the formula

Onm=T (M) =T ()=t — B (n>m) (3.18)

[see formula (3.4)].
According to Bohr’s second postulate
-t (22~ (- 5)

Opm = % T - T

h h

(we remind our reader that the energies of bound states of an electron
are negative, so that the expressions in parentheses are greater than
zero). Comparison with formula (3.18) shows that

T ()= —2n (3.19)

Thus, the term is closely associated with the energy of a stationary
state of an atom, differing from it only in the factor (—1/k).

3.5. Rule for Quantization of Circular Orbits

Bohr obtained the condition for stationary orbits proceeding from
Planck’s postulate according to which only such states of a harmonic
oscillator are possible whose energy is

E, = nho (n is an integer) (3.20)

Let us denote the coordinate of the oscillator by ¢ and its momen-

tum by p. The total energy of an oscillator is determined by the ex-
pression

En = ‘;—,: _”’E;L’ =nho
Hence,
92 P
2nhimo + 2mnko =1 (3.21)

The coordinate plane ¢, p is called a phase plane, and a curve in
this plane determining p as a function of ¢ for a given motion is
called a phase trajectory. It can be seen from Eq. (3.21) that the
phase trajectory of a harmonic oscillator is an ellipse (Fig. 3.11).
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The semiaxes of the ellipse are
a=]/?:£ , b=V 2mnke

The area of the ellipse equals the product of the semiaxes multiplied
by n:

S, = nab = 2nkn (3.22)
The area can also be represented in the form
Sn =& pdg (3.23)

(in integration, the entire ellipse is circumvented; see Fig. 3.11).
The rule for quantization follows from a comparison of Egs. (3.22)
and (3.23):

o

L g .
é} p dq = 2ankn Ny (3.24)

Bohr extended rule (3.24) obtained for a harmoni’é oscillator to
other mechanical systems. For an oscillator, ¢ = z, p = mz. For

dS=pdy 7}

AN, (2 e
\%di

Fig. 3.14 Fig. 3.12

other systems, ¢ is meant to be a generalized coordinate*, and p
the generalized momentum:

For an electron travelling around a nucleus in a circular orbit, it
is natural to take the azimuthal angle ¢ (Fig. 3.12) as the generalized

coordinate. Here, the generalized velocity will be cp We know
that in rotation the part of the linear velocity passes over to the

angular velocity c.p, and the part of the mass to the moment of inertia
mer? (where m, is the mass of an electron). The generalized momentum

is accordingly mer®¢p = meur. The latter expression determines the
conventional angular momentum M taken relative to the nucleus.
Thus, for an electron travelling in a circular orbit, condition (3.24)

* By generalized coordinates are meant any quantities with whose aid it
is possigle to set the position of a system in space.
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has the form
§> M do = 2nhn (3.25)

The force which the nucleus exerts on the electron is a central
one. Consequently, M = const, and the left-hand side of Eq. (3.25)
is 2nM. We therefore arrive at the condition

M = nh (3.26)

Thus, according to Bohr’s condition, of all the orbits of an electron
possible from the viewpoint of classical mechanics, only those are
actually encountered for which the angular momentum equals an
integral multiple of Planck’s constant #.

3.6. The Elementary Bohr Theory
of the Hydrogen Atom

According to Eq. (3.26), only such orbits are possible for which
the angular momentum of an electron meur satisfies the condition

mer=nk (nrn=1,23,...) (3.27)

The number n is called the principal quantum number.

Let us consider an electron moving in the field of an atomic nucleus
with the charge Ze. When Z = 1, such a system corresponds to
a hydrogen atom, at other values of Z, to a hydrogen-like ion,i.e.
to an atom with the atomic number Z from which all the electrons
except one have been removed. The equation of motion of the elec-
tron has the form

2 Ze?
Deleting v from Egs. (3.27) and (3.28), we get an expression for
the radii of the allowed orbits:

ke
-;n—e—z-;’—nz (n=1' 2, 37 ...) (3.29)
The radius of the first orbit of the hydrogen atom is known as the
Bohr radius (it is customarily designated by the symbol r, or a,
instead of ry). Its value is

ro= ;ﬁ-’; =0.529 A (3.30)

r.,=

We shall note that the Bohr radius has a value of the order of the
gas-kinetic dimensions of an atom.

The internal energy of an atom consists of the kinetic energy of
the electron (the nucleus is stationary) and of the energy of inter-
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action of the electron with the nucleus

__ mev? Ze?
E=———=
It follows from Eq. (3.28) that
met _ 26t
2 T 2r
Hence,
Ze? Ze2 Ze?
E=g—"F="%

Using Eq. (3.29) for r in this expression, we shall find the allowed
values of the internal energy of an atom:

meet 723

.......... £=(
En'——-—Tﬁz—-;,— (n=1, 2, 3, ) (3.31) =
The energy levels determined by formula (3.31) —— %5

are shown schematically in Fig. 3.13.

When a hydrogen atom (Z = 1) passes from £

the state n to the state m, a photon is emitted 2

471 1
ho=En— En= — 5 (5 =7

The frequency of the emitted light is

mee# 1 1
©="2m (7«‘"7)

We have arrived at the generalized Balmer for-
mula [see Eq. (3.4)], the following value being
obtained for the Rydberg constant:

4
R=T% (3.32)

When we introduce the numerical values of
me, e, and 7% into Eq. (3.32), we get a quantity
that strikingly well agrees with the experimental Fig. 3.13
value of the Rydberg constant.

Bohr's theory was a major step in the development of the theory
of the atom. It showed very clearly the impossibility of applying
classical physics to intra-atomic phenomena and the predominate
significance of the quantum laws in the microworld.

The elementary theory which we have treated was subjected to
further development and clarifications with which we shall not
acquaint our reader because at present Bohr’s theory has mainly
a historical significance. After the first successes of the theory, its
shortcomings began to stand out more and more. Especially distress-

&
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ing was the failure of all attempts to construct a theory of the helium
atom—one of the simplest atoms directly following the hydrogen
atom in Mendeleev’s periodic table of elements.

The weakest aspect of the Bohr theory underlying its subsequent
failures was its internal logical contradiction: it was neither a con-
sistent classical theory nor a consistent quantum one. After the dis-
covery of the wave properties of matter, it became absolutely clear
that the Bohr theory, based on classical mechanics, could be only
a transition step on the path to the creation of a consistent theory of
atomic phenomena.



CHAPTER 4 ELEMENTS OF
QUANTUM MECHANICS

4.1. De Broglie's Hypothesis.
Wave Properties of Matter

The inadequacy of Bohr's theory pointed to the necessity of revis-
ing the fundamentals of the quantum theory and the notions on
the nature of microparticles (electrons, protons, etc.). The question
arose as to how exhaustive is our notion of an electron as of a tiny
mechanical particle characterized by definite coordinates and a defi-
nite velocity.

As a result of the broadening of our notions on the nature of light,
it was found that a peculiar dual nature was detected in optical
phenomena. In addition to such properties of light that in the most
direct way point to its wave nature (interference, diffraction), there
are other properties that just as directly reveal its corpuscular nature
(the photoelectric effect, the Compton effect).

In 1924, the French physicist Louis de Broglie (born 1892) put
forth a bold hypothesis that duality is not a feature of only optical
phenomena, but has a universal significance. “In optics”, he wrote,
“the corpuscular way of treatment was neglected too much during
a whole century; wasn't the opposite error made in the theory of
matter?” Assuming that particles of matter have wave properties
in addition to corpuscular ones, de Broglie transferred to the case
of matter particles the same rules of transition from one picture
to another that hold for light. A photon has the energy

E =tho
and the momentum
__2nh

A

De Broglie assumed that the motion of an electron or some other
particle is associated with a wave process whose wavelength is

== — (4.1)
and whose frequency is
E
(0=T (4.2)
De Broglie’s hypothesis was soon confirmed experimentally.

In 1927, the American physicists Clinton Davisson (1881-1958)
and Lester Germer (born 1896) studied the reflection of electrons
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from a monocrystal of nickel belonging to the cubic system. A narrow
beam of monoenergetic electrons was directed onto the surface of
the monocrystal polished at right angles to the major diagonal of
a crystal cell [the crystal planes parallel to this surface are designated
by the indices (111) in crystallography; see Sec. 6.1]. The reflected
electrons were trapped by a cylindrical elec-

/To trode connected to a galvanometer (Fig. 4.1).

golvano- The intensity of the reflected beam was as-

p 7 sessed according to the current flowing through

the galvanometer. The velocity of the electrons

and the angle ¢ were varied. Figure 4.2 shows

how the current measured by the galvanome-

ter depends on the angle ¢ at different ener-

Fig. 4.1 gies of the electrons. The vertical axis in the
graphs determines the direction of the incident

beam. The current in agiven direction is represented by the length of
a linedrawn from the origin of coordinates to its intersection with the
curve. A glance at the figure shows that scattering is especially
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intensive at a definite value of the angle ¢. This angle corresponds
to reflection from the atomic planes whose spacing d was known from
X-ray investigations. At a given value of ¢, the current was espe-
cially strong at an accelerating voltage of 54 V. The wavelength
corresponding to this voltage and calculated by Eq. (4.1) is 1.67 A.
The Bragg wavelength corresponding to the condition*
2d sin 6 = nA
was 1.65 A. The coincidence is so striking that the Davisson-Germer
experiments must be acknowledged as a brilliant confirmation of
de Broglie's idea.
* The slip angle 0 is related to the angle ¢ by the expression
n P

0= _

27 7
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In 1927, the British physicist George Thomson (born 1892) and
independently of him the Soviet physicist Pyotr Tartakovsky
obtained a diffraction pattern when an electron beam was passed
through a metal foil. The experiment was run as follows (Fig. 4.3).
A beam of electrons accelerated by a potential difference of the
order of several scores of kilovolts was

passed through a thin metal foil and . Photographte
impinged on a photographic plate. An Foil plate
electron colliding with the photograph- P

ic plate has the same action on it as -

a photon. The electron-difiraction pat- S

tern of gold obtained in this way E/ZCEI;,;:” oS

(Fig. 4.4a) is compared with an X-ray

diffraction pattern of aluminium (Fig. .

4.4b) obtained in similar conditions. Fig. 4.3

The similarity of the two patterns is ‘
staggering. The German physicist Otto Stern (1888-1969) and his
collaborators showed that diffraction phenomena arealse detected in
atomic and molecular beams. In all the cases listed above, the diffrac-
tion pattern corresponds to the wavelength determined by Eq. (4.1).

Fig.4.4

In the Davisson-Germer experiments, and also in G. Thomson’s
experiments, the intensity of the electron beams was so high that
a large number of electrons passed through the crystal simultaneous-
ly. It was therefore possible to assume that the diffraction pattern
observed was due to the simultaneous participation of a large number
of electrons in the process, while a single electron passing through .
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the crystal does not display diffraction. To clarify this circumstance,
the Soviet physicists Leon Biberman, Nikolai Sushkin, and Valen-
tin Fabrikant in 1949 ran an experiment in which the intensity of
the electron beam was so low that the electrons certainly passed
through the instrument one at a time. The interval between the
passage of two consecutive electrons through the crystal was about
30 000 times greater than the time needed for an electron to pass
through the entire apparatus. With a suflicient exposure, a diffraction
pattern was obtained that differed in no way from the one observed
at the ordinary intensity of the beam. It was thus proved that a
single electron has wave properties.

4.2. The Unusual Properties of Microparticles

Microparticles are defined as elementary particles (electrons,
protons, neutrons, photons, and other simple particles), and also
as complex particles formed from a comparatively small number of
elementary particles (molecules, atoms, atomic nuclei, ete.).

The' term “microparticle” reflects only one aspect of the object
it is applied to. Any microobject (a molecule, atom, electron, photon,
etc.) is a special kind of formation combining in itself the properties
of both a particle and a wave. Perhaps it would be more correct
to call it a “particle-wave”.

A microobject is not capable of acting directly on our organs of
sengse—it can neither be seen nor felt. Nothing like microobjects
exists in the world we perceive. Microbodies “do not behave like
anything you have ever seen”.*

“Because atomic behaviour is so unlike ordinary experience, it is
very difficult to get used to and it appears peculiar and mysterious
to everyone, both to the novice and to the experienced physicist.
Even the experts do not understand it the way they would like to,
and it is perfectly reasonable that they should not, because all of .
direct human experience and of human intuition applies to large
objects. We know how large objects will act, but things on a small
scale just do not act that way. So we have to learn about them in
a sort of abstract or imaginary fashion, and not by connection with
our direct experience”.

In prequantum physics, to “understand” meant to form a visual
image of an object or process. Quantum physics cannot be understood
in this meaning of the word. Any visual model will inevitably
function according to classical laws and will therefore not be suitable
for representing quantum processes. Therefore, the best that we can

* This and the following passages in the given section in quotation marks

have been taken from Feynman, R. P., Leighton, R. B., Sands, M. The Feyn-
man Lectures on Physlcs. Reading, Mass., Addison-Wesley (1963), Chap. 37.
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do is to discard all attempts to construct visual models of the behav-
iour of quantum objects. The absence of visualization may first
give rise to a feeling of dissatisfaction, but this feeling passes with
time, and everything takes its usual place._

Combining the properties. of a particle and a wave, microbodies
“do not behave like waves, they do not behave like particles”. A
microparticle differs from a wave in that it is always detected as an
indivisible whole. Nobody ever observed, for example, a half of an
electron. At the same time, a wave can be split into parts (for ex-
ample, by directing a light wave onto a half-silvered mirror) and
each part then perceived sepa-
rately. A difference of a micropar- P
ticle from a macroparticle which
we are accustomed to is thatit ___ l]
does not have definite values of ___ ./ !
a coordinate and momentum si-
multaneously, owing to which the 2
concept of trajectory as applied ﬂ
to a microparticle loses its
meaning.

The peculiar nature of the prop- @ @ @
erties of microparticles reveals Fig. 4.5,
itself with the greatest clarity in
the following mental experi-
ment*. Let us direct a parallel beam of monoenergetic (i.e. having the
same kinetic energy) electrons onto a barrier with two narrow slits
(Fig. 4.5). We shall place photographic plate P after the barrier.
We shall first close the second slit and make an exposure during
the time 7. Blackening on the processed plate will be characterized by
curve 7 in Fig. 4.5b. We shall expose a second plate during the same
time t with the first slit closed. The nature of blackening of the
plate is shown in this case by curve 2 in Fig. 4.5b. Finally, we shall
open both slits and expose a third plate during the time 7. The
pattern of the blackening obtained in the last case is shown in
Fig. 4.5c. This pattern is not at all equivalent to the superposition
of the first two patterns. It is similar to the pattern obtained upon
the interference of two coherent light waves. The nature of the pattern
shows that the motion of each electron is affected by both sl}ts.
This conclusion is incompatible with our notion of trajectories.
If an electron at each moment of time were at a definite point in
space and travelled along a trajectory, it would pass through a defi-

* In a mental (thought) experiment, the aspect of a phenomenon being
studied is revealed in the simplest and clearest form. The authenticity of the
effect observed in a mental experiment follows from observations obtained in a
number of real experiments. In the given case, the experiments involving the
diffraction of electrons described in the preceding section are such experiments.
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nite slit—either the first or the second one. The phenomenon of diffrac-
tion proves, however, that both slits—the first and the second—
participate in the passage of each electron.

Matters, however, should not be represented as if a part of an
electron passes through one slit and its other part through the second
one. We have already noted that an electron, like other micropar-
ticles, is always detected as an entirety, with its inherent mass,
charge, and other characteristic quantities. Thus, an electron, pro-
ton, atomic nucleus are particles with very peculiar properties.
A conventional sphere, even a very tiny one (a macroscopic particle)
cannot be the prototype of a microparticle. A reduction in size is
attended by the gradual appearance of qualitatively new properties
pot found in macroparticles.

In a number of cases, the statement that microparticles have no
trajectories would seem to contradict experimental facts. For
example, the path along which a microparticle travels in a Wilson
chamber is detected in the form of narrow tracks produced by drop-
lets of mist; the motion of electrons in a cathode-ray tube is calculat-
ed excellently according to classical laws, etc. This seeming contra-
diction is explained by the fact that in known conditions the concept
of a trajectory may be applied to microparticles, but only with
a certain degree of accuracy. Matters are exactly the same as in
optics. If the dimensions of barriers or holes are great in comparison
with the wavelength, the propagation of light takes place, as it were,
along definite rays (trajectories). In definite conditions, the concept *
of a trajectory can also be approximately applied to the motion .
of microparticles, in the same way as the law of the rectilinear pro- .
pagation of light is true.

4.3. The Uncertainty Principle

In classical mechanics, the state of a point particle (a classical
particle) is set by giving the values of its coordinates, momentum,
energy, etc. These quantities are known as dynamic variables. Strict-
ly speaking, the above dynamic variables cannot be ascribed to a
microobject. We obtain information on microparticles, however,
by observing their interaction with instruments that are macroscop-
ic bodies. Therefore, the results of such measurements are willy-
mlly expressed in terms developed to characterize macrobodies,
i.e. through the values of the dynamic variables. Accordmgly, the
measured values of the dynamic variables are ascribed to micropar-
ticles. For example, we speak of the state of an electrdn in which it
has a certain value of the energy, and so on.

The peculiar nature of the properties of mlcropartlcles manifests
itself in that measurements do not always give definite values for
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all the variables. For example, an electron (and any other micro-
particle) cannot simultaneously have accurate values of its coordi-
nate = and its momentum component p,. The uncertainties in the
values of z and p, satisfy the expression

Bz-8ps>% (4.3)

(# is Planck’s constant). It can be seen from expression (4.3) that

the smaller the uncertainty of one of the variables (z or p.), the

greater is the uncertainty of the other one. A state is possible in

which one of the variables has an accurate value, while theother

one is absolutely uncertain (its uncer-

tainty equals infinity). z
A relation similar to expression (4.3)

holds for y and py, for z and p,, and

also for a number of other pairs of Az

-quantities (in classical mechanics such S

pairs of quantities are called canoni- % T

cally conjugate). Using the symbols A4

and B to denote canonically conjugate

quantities, we can write

AA-AB> (4.4) Fig. 4.6

Density of
provability

Central maximum

Expression (4.4) is known as the uncertainty relation for the quanti-
ties 4 and B. This relation was discovered by the German physicist
Werner Heisenberg (1901-1976) in 1927.

The statement that the product of the uncertainties in the values
of two conjugate variables cannot be less than Planck’s constant
in the order of magnitude is called the Heisenberg uncertainty prin-
ciple.

Energy and time are canonically conjugate quantities. Therefore,
the uncertainty relation also holds for them:

AE- A>T (4.5)

This relation signifies that the determination of the energy with
an accuracy of AE must occupy an interval of time equal at least
to At ~ K/AE.

The uncertainty relation was established when considering, in
particular, the following example. Let us attempt to find the value
of the coordinate x of a freely flying microparticle by placing in its
path a slit of width Az at right angles to the direction of motion
of the particle (Fig. 4.6). Before the particle passes through the slit,
its momentum component p, has an accurate value equal to zero
(the slit in accordance with our conditions is perpendicular to the
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momentum), so that Ap, = 0, but to make up for it the coordinate z
of the particle is absolutely uncertain. At the moment when the
particle passes through the slit, matters change. Instead of complete
uncertainty in the coordinate z, the uncertainty Az appears, but this
is achieved at the price of a loss in the certainty in the value of p,.
Indeed, owing to diffraction, there is a certain probability of the
fact that the particle will move within the limits of the angle 2¢,
where ¢ is the angle corresponding to the first diffraction minimum
(the higher order maxima may be ignored because their intensity
is low in comparison with that of the central maximum). Thus,
the following uncertainty appears:

Ap, =psing
The angle ¢ for which

. A
Sin cP:E

corresponds to the edge of the central diffraction maximum (the
first minimum) obtained from a slit of width Az [see Eq. (18.25)
of Vol. II, p. 406]. Consequently,

A
Apy~p Az
Hence with account taken of Eq. (4.1), we get the expression
Az Ap, ~ ph = 2nk

that agrees with expression (4.3).

The uncertainty relation is sometimes interpreted as follows:
a microparticle actually does have accurate values of its coordinates
and momenta, but the action of the measuring instrument perceptible
for such a particle does not make exact determination of these values
possible. Such an interpretation is absolutely wrong. It contradicts
the phenomena of microparticle diffraction ohserved experimentally.

The uncertainty relation indicates to what extent we can apply
the concepts of classical mechanics to microparticles, in particular
to what degree of accuracy we can speak of the trajectories of micro-
particles. Motion along a trajectory is characterized by quite definite
values of the coordinates and velocity at each moment of time.
Substituting mv, for p, in expression (4.3), we get the relation

Az-Av, = i/2m

We see that the greater the mass of a particle, the smaller is the’
uncertainty of its coordinate and velocity and, consequently, the
greater is the accuracy with which we can apply the concept of
trajectory. Already for a macroparticle only one micrometre in size,
the uncertainties in the values of z and v, are beyond the limits
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of the accuracy of measuring these quantities so that its motion will
virtually be indistinguishable from motion along a trajectory.

In definite conditions, even the motion of a microparticle may
approximately be considered as occurring along a trajectory. We
shall take as an example the mo-
tion of an electron in a cathode-
ray tube. Let us assess the uncer-
tainty in the coordinate and mo-
mentum of an electron for this
case. Assume that the trace of the
electron beam on the screen has
a radius r of the order of 10~ cm,
and the length [ of the tube is of
the order of 10 cm (Fig. 4.7). Hence Ap,/px ~ 10~*. The momen-
tum of an electron is related to the accelerating voltage U by
the expression

z)

—27= €U

Hence p = V 2meU. At a voltage of U ~ 10* V, the energy of an
electron is 10% eV = 1.6 X 10-® erg. Let us assess the magnitude
of the momentum:

P=V2x0.91x10% x 1.6 X 10* = 5x 1078

Consequently, Ap, &~ 5 X 1078 x 10~ = 5 X 10-?%, And. finally,
according to expression (4.3):
AI2_ 1.05%107%7/2
Az =1~ —="m
The result obtained indicates that the motion of an electron in
a cathode-ray tube is virtually indistinguishable from motion along
a trajectory.

The uncertainty relation is one of the fundamental principles of
quantum mechanics. This relation alone is sufficient to obtain
a number of important results. In particular, it allows us to explain
why an electron does not fall onto the nucleus of an atom, and alse
to assess the dimensions of the simplest atom and the minimum pos-
sible energy of an electron in such an atom.

If an electron were to fall onto a point nucleus, its coordindtes
and momentum would take on definite (zero) values, which is
incompatible with the uncertainty prineiple. This principle requires
that the uncertainty in the coordinate of the electron Ar and the
uncertainty in the momentum Ap be related by condition (4.3).
The energy would formally be minimum at r = 0 and p = 0. There-
fore, in assessing the smallest possible energy, we must assume that
Ar ~ r and Ap =~ p. Using these values in expression (4.3), we get

rp = h (4.6)

~107¢ cm
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(since our calculations can only claim to give the orders of magnitude
of the quantities being calculated, we have omitted the one-half
in the right-hand side).

The energy of the electron in a hydrogen atom is

Substituting %/r for p in accordance with Eq. (4.6), we find that
B (4.7)

2mr3 T r

Let us find the value of r at which E is minimum. Differentiating
Eq. (4.7) with respect to r and equating the derivative to zero, we
arrive at the equation

n? e?
— =0
from which it follows that
h3
me?

= 4.8)
The value we have obtained coincides with the radius of the first
Bohr orbit of the hydrogen atom [see Eq. (3.30)].

Introduction of Eq. (4.8) into Eq. (4.7) gives the energy of the
ground state:

~ h3 me? \ 2 Zme’_ meé
an =g () —¢* = — o

The found value also coincides with the energy of the first Bohr
level for Z =1 [see Eq. (3.31)].

The circumstance that we have obtained accurate values of r and E
is naturally simply good fortune. The calculations we have given
above can only claim to give an assessment ot the order of the quanti-
ties r and E. .

4.4. The Schrodinger Equation

In 1926, the Austrian physicist Erwin Schrédinger (1887-19'6%)
presented his famous equation as a development of de Brogh.es
ideas of the wave properties of matter. He associated with the motion
of a microparticle a complex function of the coordinates and time
which he called the wave function and designated by the Greek letter
“psi” (¢ or ¥). We shall call it the psi-function. '

The psi-function characterizes the state of a micropartlc!‘e.. The
form of the function is obtained from a solution of the Schrédinger



Elements of Quantum Mechanics 75

equation that appears as follows:
h? .. 0¥

Here m = mass of the particle
U = potential energy of the particle
i = imaginary unity
Vv? = Laplacian operator.

The result of the action of this operator on a function is the sum
of the second partial derivatives of this function with respect to
the coordinates:

Y | Y | Y

vy = a3+ ay? T

(4.10)

Inspection of Eq. (4.9) reveals that the form of the psi-function
is determined by the function U, i.e. in the long run by the nature
of the forces exerted on a particle.

The Schrodinger equation is a fundamental equation of non-
relativistic quantum mechanics. It cannot be derived from other
relations. It must be considered as a starting basic assumption whose
truth is proved by the fact that all its corollaries agree with experi-
mental data in the most accurate way.

Schrodinger derived his equation on the basis of an opticomechan-
ical analogy. The latter consists in the similarity of the equations
describing the path of light rays with the equations determining
the trajectories of particles in analytical mechanics. In optics, the
path of rays satisfies de Fermat’s principle (see Sec. 16.6 of Vol.lI,
p. 334), in mechanics the form of a trajectory satisfies the so-called
principle of least action.

If the force field in which a particle is travelling is stationary,
then the function U does not depend explicitly on the time. In this
case, the solution of the Schrdodinger equation breaks up into two
multipliers, one of which depends only on the coordinates, and the
other only on the time:

¥Y(z, y, 2, )= (z, ¥, 2)exp (—i %—t) (4.11)

Here E is the total energy of a particle which in the case of a sta-
tionary field remains constant. To convince ourselves that Eq. (4.11)
is true, let us introduce it into Eq. (4.9). As a result, we get the
relation

2

7=-exp —i £t} vep+-Upexp (—i%t)=
(

 2m
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Cancelling the common factor exp (—i -f— t) , we arrive at a diffe-
rential equation determining the function :

h3 2
-5V Y+ Uy=Ey (4.12)

Equation (4.12) is known as the Schrodinger equation for station-
ary states. In the following, we shall have to do only with this
equation and for brevity’s sake we shall call it simply the Schrodin-
ger equation. Equation (4.12) is often written in the form

Vip+ 2 (E—~U) y=0 (4.13)

Let us explain how we can arrive at the Schrédinger equation.
We shall limit ourselves to a one-dimensional case for simplicity.
We shall consider a freely moving particle. According te de Broglie’s
idea, a plane wave must be compared with it:

Y = a exp [—i (0t — kz)]

(in quantum mechanics, it is customary practice to take the exponent
with the minus sign). Replacing ® and %k = 2xn/A with E and p in
accordance with Eqs. (4.1) and (4.2), we arrive at the expression

¥=aexp[+ (p:c—Et)] (4.14)

Differentiating this expression once with respect to ¢, and the second
time twice with respect to z, we get

ov i Yy i\2
w=—%EY  =(7) Y
Hence,
L po_lpd¥ (4.15)

In non-relativistic mechanics, the energy E and momentum p
of a free particle are related by the expression
P
=2m
Using in this expression Eqs. (4.15) for E and p? and then cancelling
¥, we get the equation
K3 93 .. 0¥
e R
that coincides with Eq. (4.9) if we assume that U = 0 in the latter.

For a particle moving in a force field characterized by the poten-
tial energy U, the following relation exists between the energy E
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and the momentum p:

pl
2m E-U
Extending Eqs. (4.15) for E and p?® to this case too, we obtain
1 A 9y oV
v = S —U

Multiplying this equation by ¥ and transferrmg the term UY to the
left-hand side, we arrive at the equation

h3 Y .. 0¥
~ 2m 9z% +U‘F~lh-67
that coincides with Eq. (4.9).

The above reasoning does not have the validity of a proof and
may not be considered as a derivation of the Schrodinger equation.
Its object is to show how one could arrive at the establishing of
this equation.

A great part is played in quantum mechanics by the concept of an
operator. An operator is defined as a rule by means of which one
function (we shall designate it by f) is correlated with another func-
tion (we shall designate it by ¢). This is written symbolically as

follows: )
f=209 (4.16)

Here O is the symbol of the operator (we could use any other letter
with a “cap” over it, for example, A, U or M, with the same
success). In Eq. (4.10), the part of  is played by V2, the part of @
by the function ¥, and that of f by the right-hand side of the equa-
tion.

The symbol of an operator hides a complex of operations by means
of which the initial function (@) is transformed into another func-
tion (f). For example, the symbol V? hides double differentiation
with respect to all three coordinates z, y, and z with the following
summation of the expressions obtained. An operator may, in particu-
lar, represent the multiplication of the initial function ¢ by a cer-

tain function U. Thus, f = Up = Ug, and, consequently, U = U.

If we consider the function U in Eq. (4. 12) as an operator whose
action on the psi-function consists in multiplying ¢y by U, then
Eq. (4.12) can be given the form

Hp = Ev (4.47)

In this equation, the symbol H stands for an operator equal to the
sum of the operators —(k*/2m) V? and U:

. Py
H=—-2;V2+U (4.18)

The operator H is called a Hamiltonian,
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The Hamiltonian is an operator of the energy E. In quantum
mechanics, operators are also correlated with the other dynamic
variables. Accordingly, operators of the coordinates, momentum,
angular momentum, etc. are considered. An equation similar to
Eq. (4.17) is compiled for each dynamic variable g. It has the form

A oy = qp (4.19)
where () is the operator being correlated with the dynamic variable g.
The meaning of such equations will be revealed in Sec. 4.7.

4.5. The Meaning of the Psi-Function

A correct interpretation of the psi-function was given by the
German physicist Max Born (1882-1970) in 1926. He postulated
'that the square of the magnitude of the psi-function determines
the probability dP of the fact that a particle will be detected within
the limits of the volume dV:

dP = A |V |2dV = AY*Y dV (4.20)
(A is a constant of proportionality).
The integral of Eq. (4.20) taken over the entire volume must equal
unity:
5 dP = 4 S YR gV =1 (4.21)

Indeed, this integral gives the probability of the fact that a particle
is at some point in space, i.e. the probability of an authentic event,
which is unity.

It is assumed in quantum mechanics that the psi-function allows
multiplication by an arbitrary complex number C other than zero,
¥ and C¥ describing the same state of a particle. This circumstance
makes it possible to select the psi-function so that it complies with
the condition

{ YRy gy = 1 (4.22)

Condition (4.22) is known as the normalization condition. Functions
satisfying this condition are called normalized. We shall always
assume in the following that the psi-functions we are considering
are normalized.

Equation (4.20) has the following form for a normalized function:

dP = |V |2dV = ¥*¥Y dV (4.23)
[this follows from a comparison of Eqs. (4.21) and (4.22)]. We con-
clude from Eq. (4.23) that the square of the magnitude of the psi-

function gives the density of the probability (the probability related
to unit volume) of a particle being in the relevant place in space.
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The psi-function for a stationary force field has the form of Eq.
(4.11). Accordingly,

Y*¥ —exp (i-%t)xp*eXP (—i—?t) p=9*y

so that the probability density is y*y and, consequently, is inde-
pendent of time. This is why states described by psi-functions of
the form given by Eq. (4.11) were called stationary ones.

It can be seen from the meaning of the psi-function that quantum
mechanics has a statistical nature. It does not allow us to determine
the whereabouts of a particle in space or the trajectory along which
a particle is travelling. The psi-function only helps us to predict
the probability of finding a particle in different points of space.
It may-seem at first sight that quantum mechanics provides a consid-
erably less accurate and exhaustive description of the motion of a
particle than classical mechanics, which determines the “exact”
location and velocity of a particle at every moment of time. Actually,
however, this is not true. Quantum mechanics reveals the true
behaviour of microparticles to a much deeper extent. It only fails
to determine what actually does not occur. As applied to micro-
particles, the concepts of a definite location and trajectory, as we
have already noted, lose their meaning in general.

4.6. Quantization of Energy

The Schridinger equation allows us to find the psi-function of
a given state and. consequently, determine the probability of a
particle being at different points in space. But this far from exhausts
the significance of the equation. The rules for the quantization of
energy directly follow from Eq. (4.17) and from the conditions
imposed on the psi-function.

In accordance with its meaning, the psi-function must be single-
valued, continuous, and finite (except, perhaps, for special points).
In addition, it must have a continuous and finite derivative. The
collection of the above requirements is called the standard condi-
tions.

The Schriodinger equation includes the total energy E of a par-
ticle as a parameter. It is proved in the theory of differential equa-
tions that equations of the form of (4.17) have solutions satisfying
the standard conditions not at any values of the parameter (i.e. of
the energy E), but only at certain selected values. These selected
values are known as the eigenvalues of the relevant quantity (in our
case of the energy). The solutions corresponding to the eigenvalues
of E are called the eigenfunctions of the problem.
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A collection of eigenvalues is called a spectrum of a quantity. If
this collection forms a discrete succession, the spectrum is called
discrete. If the eigenvalues form a continuous succession, the spec-
trum is called continuous. In the following, we.shall only consider
problems in which the spectrum of the eigenvalues is discrete.

With a discrete spectrum, the eigenvalues and eigenfunctions can
be numbered:

E17 E2'~--y En,...;
¢1’¢21'--’¢nv---

The quantization of energy is thus obtained from the fundamental
tenets of quantum mechanics without any additional assumptions.

(4.24)
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Fig. 4.8

The finding of the eigenvalues and eigenfunctions, as a rule, is
a very difficult mathematical task. We shall consider an example
that is simple enough to permit us to solve the Schrodinger equation
without any appreciable difficulty.

Let us find the eigenvalues of the energy and the eigenfunctions
corresponding to them for a particle in an infinitely deep one-di-
mensional potential well. We shall assume that the particle can move
only along the z-axis. Let the motion be restricted by the walls
x = 0 and z = [ that are impenetrable for the particle. The potential
energy U has the following form in this case (Fig. 4.8a): it is zero at
0 <<z << ! and becomes equal to infinity at z << 0 and =z > I.

Let us take the Schrédinger equation in its form (4.13). Since the
psi-function depends only on the coordinate z, the equation is
simplified as follows:

3 2m
%’;-4-?(12—0) $v=0 (4.25)

The particle cannot get beyond the limits of the potential well.
Therefore, the probability of detecting the particle and, consequent-
ly, the function ¢ beyond the limits of the well are zero. It follows
from the condition of continuity that ¢ must also be zero at the
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boundaries of the well, i.e. that

YO =9 =0 (4.26)
This is exactly the condition which the solutions of Eq. (4.25) must
satisfy.

In the region where { does not identically equal zero, Eq. (4.25)
has the form

d? 2
2 Ey=0 (4.97)

(in this region, U = 0). Introducing the notation
w=27F (4.28)
we shall arrive at an equation that is well known from the theory

of oscillations:
P 4+ ot =0

The solution of such an equation has the form*
VY (z) = a sin (0z + @) (4.29)

Conditions (4.26) can be satisfied by the corresponding choice of
the constants w and a. First of all from the condition ¢ (0) = 0,
we get

P@0) =asina =0

whence we can see that a must equal zero. Further, the condition
Y () =asinwl =0
must be observed, which is possible only when
ol==+nn (=123 ... (4.30)

(n = 0 drops out because it yields{p = O—the particle is nowhere).
Excluding o from Egs. (4.28) and (4.30), we find the eigenvalues
of the energy of a‘'particle:
n2h?
Ep=gmnt (n=1,23, ... (4.31)
The energy spectrum was found to be discrete. Figure 4.8b shows an
energy level diagram.
Let us assess the spacings between two adjacent levels for different .
values of the mass of a particle m and the width of the well I. The
difference between the energies of two adjacent levels is

AE,=Ep4 —E,= ’2‘:3: P T P

mil3

* Seo Eq. (7.55) of Vol. I, p. 195. In the present case, it is more convenient
to take the sine instead of the cosine. , 2 2
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If we take m of the order of the mass of a molecule (~10-%% g),

and ! of the order of 10 cm (the molecules of a gas in a vessel),

we get

3.143}1.052 X 10-54
10-23 X102

Such densely arranged energy levels will practically be perceived
like a continuous energy spectrum so that although energy quanti-
zation indeed occurs in principle, it will not affect the nature of
motion of the molecules.

A similar result is obtained if we take m of the order of the mass
of an electron (~10-2?" g) at the same dimensions of the well (free
electrons in a metal). In this case

AE, ~10%nerg ~ 10 1% neV

An absolutely different result is obtained for an electron, however,
if the region within which it is moving will be of the order of atomic
dimensions (~10~% cm). In this case,

3.142X1.052X 1054
107271018

so that the discreteness of the energy levels will be quite appreciable.
Introducing in Eq. (4.29) the value of  obtained from condition
(4.30), we shall find the eigenfunctions of the problem:

AE, ~ n~ 10™32nerg

AE, ~ n =~ 101% erg ~ 102n eV

nanz
i

P, () =asin

(we remind our reader that & = 0). To find the coefficient a, let us
use normalization condition (4.22), which in the given case will
be written as follows:

1
o nnx

a? S sin? ; dr=1

0

At the ends of the integration interval, the integrand vanishes.
Hence, the value of the integral can be obtained by multiplying

the average value of sin® (nnz/l) (which, as is known, equals %)

by the length of the interval I. The result is a* (%) 1 = 1, whence
a = V' 2/l. Thus, the eigenfunctions have the form

wn@=) Zsin B (n=t,2,3,..)  (432)

Graphs of the eigenfunctions are shown in Fig. 4.9a. Figure 4.9%

gives the density of the probability of finding the particle at different
distances from the walls of the well; it equals y*}. Inspection of.
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the graphs reveals, for example, that in the state with n = 2 the

particle cannot be found at the middle of the well. At the same time,

it will be detected either in the left-hand or in the right-hand half

of the well with equal frequency. This behaviour of the particle is
»*

¢ 74

}7:4 ”=4

n=J 7=
NS =z
7=
= , '—'/
0 7z 0 7z
(@) %)
Fig. 4.9

evidently incompatible with our notion of trajectories. We must
note that in accordance with classical notions, all the positions of
the particle in the well are equally probable.

4.7. Quantization of Angular Momentum

We indicated in Sec. 4.4 that in quantum mechanics an operator Q
is correlated with every physical quantity g (the operator has a differ-

ent symbol for each quantity: H for energy, p for momentum, etc.)
By solving the equation

X = qp
we find the eigenvalues q;, gy, . . . of the operator Q. One of the
postulates of quantum mechanics states that in measurements of
the physical quantity ¢ represented by the operator @, we can
obtain only results coinciding with the eigenvalues of this operator.
States are possible for which measurements of a quantity g always

give the same value g,. Such states are said to be ones in which
the quantity ¢ has a definite value. States are also possible, however,
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for which measurements give different eigenvalues of the operator Q
with a different probability. Such states are said to be ones in which
the quantity g does not have a definite value.

Four operators are introduced in quantum mechanics conformably
to the angular momentum, namely, the operator of the square of
the angular momentum M? and three operators of the projections

of the angular momentum onto the coordinate axes: M, M, and M ,.
It was found that only the square of the angular momentum and
one of the projections of the angular momentum onto the coordinate
axes can simultaneously have definite values. The other two projec-
tions are absolutely indefinite*. This signifies that the “vector”
of the angular momentum has no definite direction and, consequent-
ly, cannot be depicted with the aid of a directed length of a straight
line as in classical mechanics.
The solution of the equation

M2y = M2y
is very difficult. We shall therefore only give the final results: the
eigenvalues of the operator of the square of the angular momentum
are
M=I1l(l4+1)Rr (=012 ...) (4.33)

Here ! is a quantum number called the azimuthal (or orbital) one.
Consequently, the magnitude of the angular momentum can have
only discrete values determined by the formula

M=#w/T0+1) (=012 ... (4.34)

The operator M . has a quite simple form. We can therefore consider
the solution of the equation

Map=M.yp (4.35)

as another example of finding eigenvalues (the first example was
treated in the preceding section, where we determined the eigenvalues
of the energy for a particle in a potential well).

In spherical coordinates (r, 8, @), the operator of the projection
of the angular momentum onto the polar axis z (from which the
polar angle 8 is measured) has the form

- .y 0
A{z = - Lh«%
Hence, Eq. (4.35) appears as follows:
@
—ih %: My (4.36)

* An exception is the case M = 0, when all three projections of the angular
momentum onto the axes z, y, z have a definite value equal to zero.
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The introduction of ¢ = exp (a®), after cancellation of the common
factor exp (x®), leads to the algebraic equation

—iha = M,

from which we get the value iM /% for a. The solution of Eq. (4.36)
thus has the form

¢=Cexp(i—1‘2—’q))

For this function to be single-valued, it is necessary to satisfy the
condition Y (¢ 4+ 2n) = P (9) or
. M .M,
exp[t ﬁ‘ (cp+2n)] = @XP (z 5 cp)
This condition will be satisfied if we assume that M, = m#, where m

is a positive or negative integer or zero. Hence, the operator M,
has a discrete spectrum:

M,=mh (m=0, =1, £2,...) (4.37)

For reasons which will be revealed on a later page, m is called the
magnetic quantum number. We remind our reader that quantization
of the projection of the angular momentum was discovered experi-
mentally by O. Stern and W. Gerlach (see Sec. 7.6 of Vol. II, p. 170).

Since the projection of a vector cannot exceed the magnitude
of this vector, the following condition must be observed: '

Imk | < B VIEH1)

Hence, it follows that the maximum possible value of |m | is I.
For convenience of reviewing, let us write the results obtained
together:

M=rVII+1) (1=0.1,2,...) } (4.38)
M,=mh (m=0, +1,+2,..., £ 1)

Inspection of these formulas shows that | M, | is always smaller
than M. Consequently, the direction of the angular momentum
cannot coincide with a direction earmarked in space. This agrees
with the circumstance that the direction of the angular momentum
in space is indefinite.

We must underline the fact that values of M and M, differing
from Egs. (4.38) cannot be observed in any circumstances. Hence,
the angular momenta of macroscopic bodies also obey rules (4.38).
True,owing to the smallness of 7, the discreteness of the angular mo-
menta of macroscopic bodies is virtually not detected, like the
discreteness of macroscopic electric charges is not detected owing
to the smallness of the elementary charge e.
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We must note that it can be seen from the rules for the quantiza-
tion of the angular momentum that the Planck constant % can be
considered as a natural unit of angular momentum.

The angular momentum of a system consisting of several micro-
particles equals the sum of the momenta of the individual particles.
The net angular momentum, like any angular momentum in general,
is determined by the expression

M=iVITZF1D (4.39)

where L is the azimuthal (orbital) quantum number of the resultant
angular momentum. For a system consisting of two particles, the
number L can have the values

L=l1+l21l1+l2—1’""'Ill—l2| (4-40)

where [, and [/, are numbers determining the magnitudes of the
angular momenta being summated according to the formula M; =
=rV5LUF1D. |

It is a simple matter to see that the resultant angular momentum
can have 2, + 1 or 2/, + 1 different values (the smaller of the two
U’s must be taken).

For a system consisting of more than two particles, we must
first add the angular momenta of any two particles. Next, we must
add the result obtained to the angular momentum of a third particle,
and so on. It is evident that the maximum value of the quantum
number L equals the sum of the numbers [; for the individual par--
ticles. The minimum value of L, for instance, for three particles is
| (0, — 13 | — I3) |. If all the I;’s are the same and equal [, then
the minimum value of L is zero with an even number of particles
and ! with an odd number of them.

The projection of the resultant angular momentum onto a certain
direction z is determined, as for any angular momentum in general,
by the expression

Mz-_—m[‘h (mL=0, + 1, i2, . ooy :f:L) (4.41)

[see Egs. (4.38)].

The mechanical angular momentum of a charged particle is inse-
parably associated with its magnetic moment (see Sec. 7.6 of Vol. II,
p. 166 et seq.). The magnetic moments, as we know, interact with
one.another. A definite value of the interaction energy corresponds
to each of the possible values of the resultant moment. When a
system experiences a weak magnetic field, the coupling between the
moments is not violated, and the resultant moment is projected onto
the direction of B. When the magnetic field is strong enough, the
moments no longer remain coupled, and each of these moments is
projected onto the direction of B independently of the others.
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4.8. The Superposition Principle

One of the main tenets of quantum mechanics is the principle of
superposition of states. The essence of this principle consists in the
following. Assume that a certain quantum-mechanical system can
be both in state ¢’ and in state {". There is consequentlv a state of
the system described by the function

,4) j— c,\PI + cll,lpll
(¢’ and ¢” are arbitrary complex numbers).
Very important corollaries follow from the superposition prin-

ciple. Let us consider the collection of eigenvalues of a physical
quantity g and the eigenfunctions corresponding to them:

ql' q21"') qn,oo.;
wl”"p2)""‘q’n’ s s e

In each of the states described by these functions, the quantity ¢
has a definite value: the value g; in the state v{,, the value ¢, in
the state v{,, etc. According to the superposition principle, a state
described by the function

Y =Py + P,

is possible. In this state, the quantity ¢ no longer has a definite
value—measurements will give either the value g, or the value g,.
The probabilities of the appearance of these values equal the squares
of the magnitudes of the coefficients ¢, and c,, i.e. the probability
of obtaining the result ¢; in measurements is |¢, |*, and the probabil-
ity of obtaining the result g, is | ¢, |* (as we agreed on in Sec. 4.5,
the functions ¢, and ¢, are assumed to be normalized).

It is assumed in quantum mechanics that a collection of eigen-
functions of any physical quantity ¢ forms a complete set. This
signifies that the psi-function of any state can be expanded by the
eigenfunctions of this quantity, i.e. can be written in the form

Y= 2 cnpn (4.42)

where ¢, are in the general case complex numbers not depending
on the coordinates (for a time-varying state, the coefficients ¢,
do depend on ). The number of addends in the sum equals the number
of different eigenfunctions of the quantity ¢ (for different quantities,
this number varies from 2 to oo).

The squares of the magnitudes of the coefficients ¢, give the pro-
babilities of obtaining the corresponding values of the quantity g
in measurements conducted on a system in the state . Since the
sum of all such probabilities must equal unity, the coefficients ¢,
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satisfy the condition

2|cn|2=1

This condition is always observed for normalized v,’s.
Knowing the probabilities of different values of the quantity g,
we can find the average value of this quantity in the state y:

= ?Iculz dn (4.43)
For non-stationary states, ¢, = ¢, (t); hence, Eq. (4.43) shows how
the average value of the quantity g varies with time.

4.9. Penetration of Particles Through
a Potential Barrier

Assume that a particle moving from left to right encounters a
potential barrier of height U, and of width ! on its path (Fig. 4.10).
According to classical notions, the particle will behave as follows.
If the energy of the particle is higher than the height of the barrier
(E > U,), the particle passes over the latter without hindrance (on

the section 0 <C z <C ! only the speed

J/(45] of the particle diminishes, but then
when x > [ it again acquires its ini-
Uy tial value). If E is lower than U,

g N N (as is shown in the figure), then the par-
ticle is reflected from the barrier and
/ Y/ /i flies in the reverse direction; the par-
ticle cannot penetrate through the
barrier.
J Z z The behaviour of the particle is abso-
lutely different according to quantum
Fig. 4.10 mechanics. First, even when £ > U,,
there is a probability other than zero
that the particle will be reflected from the barrier and fly in the re-
verse direction. Second, when £ << U,, there is a probability other
than zero that the particle will penetrate “through” the barrier and
will be in the region where £ > I. Such a behaviour of the particle,
absolutely impossible from the classical viewpoint, follows directly
from the Schrdodinger equation.
Let us consider the case £ << U,. In this case, Eq. (4.13) has the
form

¥ 2% py=0 (4.44)

dz?
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for regions I and III, and
2 \
et (E=Uyp=0 (4.45)

dz?
for region 7I: as indicated above, E — U, << 0.

We shall seek the solution of Eq. (4.44) in the form ¢ = exp (Az)
(see Sec. 7.4. of Vol. I, p. 192 et seq.). Introduction of this function
into Eq. (4.44) leads to the characteristic equation

RN
Hence, A = Z-ia, where
a=—V ImE (4.46)

The general solution of Eq. (4.44) thus has the form
Py = Aei%* + Bie—iax for region I }
Py = Azel®* 4 Be—i%x for region I1/

Solving Eq. (4.45) by introducing Y = exp (Az), we get a general
solution of this equation in the form

P, = A,ef*+ Be=Bx for region IJ (4.48)

(4.47)

Here
b=V WM T—E) (4.49)

We must note that a solution of the form exp (iaz) corresponds
to a wave propagating in the positive direction of the z-axis, and
a solution of the form exp (—iaz) to a wave propagating in the
opposite direction. To understand this, we shall remember that an
ordinary (sound, electromagnetic, etc.) plane wave propagating in
the direction of a growth in z is described by the real part of the
expression exp [i (¢ — kz)], while a wave propagating in the
direction of diminishing of z is described by the real part of the
expression exp [i (o¢ + kz)l. The function ¥ = a exp [(i/&) (px —
— Et)] [see Eq. (4.14)] is compared with a particle moving in the
positive direction of the z-axis. If we discard the temporal multiplier
in this function, then we get the expression a exp [i (p/k) z] for .
For a particle moving in the opposite direction, we get ¢ =
= a exp [—i (p/k) z].

In region 711, there is only the wave that has penetrated through
the barrier and is propagating from the left to the right. Consequent-
ly, in Eq. (4.47) for {5, we must assume that the coefficient B; is
zero. To find the other coefficients, we shall use the conditions which
the function P must satisfy. For ¢ to be continuous through the
entire region of changes in z from —oo to oo, the conditions
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P (0) = ¥, (0) and P, (I) = Py (I) must be satisfied. For ¢y to be
smooth, i.e. for it to have no breaks, the conditions ; (0) = ; (0)

and ¥, (I) = P, (I) must be satisfied. From these conditions, we get
the relations

Ai+Bi=4,1+B,
AyeBl 4 Boe=Bl = A4 einl
iod; —iaB, = pA, — BB,
pA,ebl — BB, Bl = ja A ei%

(4.50)

Let us divide all the equations by 4, and introduce the notation

=B _A =B 4
b= BT hTE BTG
and also
B/ U=k
Equations (4.50) thus acquire the form
14+by=a,+0b

ageB 4 byeBl = ggeicd
i - ib’. == naz—'— Izbz
na,ebt — nbye Bl = ig el

(4.52)

The ratio between the squares of the magnitudes of the reflected
and incident wave amplitudes
__ |1B,]3
R=1ap
determines the probability of a particle being reflected from the
potential barrier and can be called the reflection coefficient.
The ratio between the squares of the magnitudes of the transmitted
and incident wave amplitudes

A.1%
12 = lasl? (4.53)

= | by|2

T =

determines the probability of a particle penetrating through the
barrier and can be called the transmission coefficient.

We shall be interested only in the penetration of particles through
the barrier, and we shall limit ourselves to finding the quantity 7.
True, having found 7, it is simple to find R because these two coef-
ficients are related by the obvious expression R + T = 1.

Let us multiply the first of Egs. (4.52) by i and add it to the
third one. The result is

2 = (n+ i) ay — (n — i) by (4.54)
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Now let us multiply the second of Eqs. (4.52) by i and subtract it
from the fourth one. We get

(n—i)ePla,— (n+-i)e=Plb,=0 (4.55)
Solving the simultaneous equations (4.54) and (4.55), we find that
. 2 (n+4-i) e P!
2T ntire Bl (n—py2 P
bz 2i (n—i) Pl

- (nti)2 e Bl—(n—i)3 P
Finally, introducing the values of a, and b, which we have found
into the second of Egs. (4.52), we get an expression for a;:

4ni

= e—ial
(i) e Bl (n—i)2 P

a3
The quantity
Bl — 1/2’"(;70—5) !

is usually much greater than unity. For this reason, we may disregard
the addend containing the multiplier e~ in the denominator of
the expression for a; in comparison with the addend containing the
multiplier ¢# (the complex numbers n 4 i and n — ¢ have the
same magnitude). We can thus assume that

4nie~ % —Bl

St )
According to Eq. (4.53), the square of the magnitude of this quantity
gives the probability of the penetration of a particle through the

potential barrier. Taking into account that |n — i | =V n® + 1,
we get
16n2 _
T = |a3|2zme 2pl
where
Uy—E U
2 Jo = . Z0
n?=—= 5 1

Isee Eq. (4.51)].
The expression 16n%/(n? 4- 1)®> has a magnitude of the order of
unity*. We can therefore consider that

T ~ exp (—2pl) =exp [ —2VamU,— ) 1] 56

* The function 16z/(z + 1) has a maximum equal to 4 at z = 1. When =
ranges from 0.03 to 30, the values of the function range from 0.5 to 4.
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It follows from the expression we have obtained that the probability
of a particle penetrating through the potential barrier depends
greatly on the width of the barrier [ and on its superelevation above
E, ie. on U, — E. If at a certain width of the barrier the trans-
mission coefficient T equals, say, 0.01, then when the width is
doubled, T becomes equal to 0.01* = 0.0001, i.¢. diminishes to one-
hundredth of its initial value. The same effect in this case would be
caused by a four-fold growth in the quantity U, — E. The trans-
mission coefficient decreases sharply when the mass m of a particle
grows.

The relevant calculations show that when the potential barrier
has an arbitrary shape (Fig. 4.11), formula (4.56) must be replaced
with the more general formula

l

Tx exp[—%gvm dz (4.57)
0

where U = U (z).

When a particle overcomes a potential barrier, it passes, as it
were, through a “tunnel” in this barrier (see the hatched region in

Fig. 4.11), and in this connection

Uiz)h the phenomenon we have consid-
ered is known as the tunnel effect.

The tunnel effect is absurd from
£——1-- R the classical ‘viewpoint because
: a particle “in the tunnel” ought
i to have a negative kinetic energy
\ (in the tunnel E << U). The tun-
| nel effect, however, is aspecifical-
ly quantum phenomenon having
no analogue in classical physics.
In quantum mechanics, the divi-
sion of the total energy into kinet-
ic and potential energies has no sense because it contradicts the uncer-
tainty principle. Indeed, the fact that a particle has a definite kinetic
energy Ey would be equivalent to the particle having a definite
momentum p. Similarly, the fact that a particle has a definite
potential energy U would signify that the particle is in an exactly
given place in space. Since the coordinate and the momentum of
a particle cannot simultaneously have definite values, it is impos-
sible to simultaneously find exact values of £y and U. Thus, although
the total energy of a particle E has a quite definite value, it cannot
be represented in the form of the sum of the exactly determined
energies Ey and U. It is clear that in this case the conclusion on Ey
being negative “inside” the tunnel becomes groundless.

[
N
Qx>
§

Fig.4.11
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4.10. Harmonic Oscillator

A harmonic oscillator is defined as a particle performing one-
dimensional motion under the action of the quasi-elastic force
F = —kz. The potential energy of such a particle has the form

kz?
U =—;— (4.58)
The natural frequency of a classical harmonic oscillator is @ =
= V' k/m, where m is the mass of the particle (see Sec. 7.10 of
Vol. I, p. 210). Expressing &k through m Y,
and o in Eq. (4.58), we have g

U=mco3a:’ \ ’f
2| Y /é':-
In the one-dimensional case, V¥ = &

=d*p/dz®. Therefore, the Schrédinger

equation [see Eq. (4.13)] for an oscilla- L2
tor has the following form: £

&y | 2m = molsd 2
ML (ETRSE ) ym0 (459) - -
(£ is the total energy of the oscillator). Fig. 4.12

It is proved in the theory of differential
equations that Eq. (4.59) has finite, unambiguous, and continuous
solutions at values of the parameter E equal to

E,=(n+gz)io (n=0,1,2,...) (4.60)

Figure 4.12 shows schematically the energy levels of a harmonic
oscillator. For purposes of illustration, the levels have been inscribed
in the potential energy curve. It must be remembered, however,
that in quantum mechanics the total energy cannot be represented
in the form of the sum of exactly determined energies Ex and U
(see the last paragraph of the preceding section).

The energy levels of a harmonic oscillator are equidistant, i.e.
are equal distances apart. The smallest possible value of the energy

is £y, = —é—h(o. This value is called the zero energy. The existence

of zero energy is confirmed by experiments studying the scattering
of light by crystals at low temperatures. It was found that the inten-
sity of scattered light with decreasing temperature tends not to zero,
but to a certain finite value. This indicates that even at absolute
zero, the oscillations of the atoms in a crystal lattice do not stop.

Quantum mechanics allows us to calculate the probability of
various transitions of a quantum system from one state to another.
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Such calculations show that for a harmonic oscillator only transi-
tions between adjacent levels are possible. In such transitions, the
quantum number n changes by unity:

An = +1 (4.61)

The conditions imposed on the changes in the quantum numbers
upon transitions of a system from ohe state to another are known as
the selection rules. Thus, a selection rule expressed by formula (4.61)
exists for a harmonic oscillator.

It follows from rule (4.61) that the energy of a harmonic oscillator
can change only in portions of %Aw. This result, which is obtained
naturally in quantum mechanics, coincides with the very alien
assumption for classical physics which Planck had to make in order
to calculate the emissivity of a blackbody (see Sec. 1.7). We must
note that Planck assumed the energy of a harmonic oscillator to be
only an integral multiplier of Zw. Actually, there is also a zero
energy whose existence was established only after the appearance of
quantum mechanics.



CHAPTER 5 THE PHYSICS OF
ATOMS AND MOLECULES

9.1. The Hydrogen Atom

Let us consider a system formed by a stationary nucleus having
the charge Ze (where Z is an integer) and an electron in motion
around it. When Z > 1, such a system is known as a hydrogen-like
ion; when Z = 1, it is a hydrogen atom.

The potential energy of an electron is

Ze?

r

(r is the distance to the electron from the nucleus). Hence, the
Schrodinger equation has the form

2me

v+ (E+ Zez)¢=0 (5.1)

r

(me is the mass of an electron).

The field in which the electron travels is a centrally symmetrical
one. It is therefore expedient to use a spherical coordinate system:
r, 8, ¢. Using the expression for the Laplacian operator in spherical
coordinates in Eq. (5.1), we arrive at the equation

1 8 [, o0 10 [ b,
o (P 5r) Homme o (sin@ 55 ) +
1 ik 2 Ze*
+7smie at;li + F::e (E+_r€—) =0 (-2

It can be shown that Eq. (5.2) has the required (i.e. single-valued,
finite, and continuous) solutions in the following cases: (1) at any
positive values of £, and (2) at discrete negative values of the energy
equal to

E,= meed Z2

—-5555  (r=1,2,3,...) (5.3)

The case E > 0 corresponds to an electron flying near the nucleus
and again travelling away to infinity. The case £ << 0 corresponds
to an electron bound to the nucleus. A comparison with Eq. (3.31)
shows that quantum mechanics leads to the same values of the
energy of a hydrogen atom that were obtained in Bohr’s theory.
In quantum mechanics, however, these values are obtained as
a corollary of the fundamental tenets of this scierce. Bohr, on the
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other hand, had to introduce special additional assumptions to
obtain such a result.

The eigenfunctions of Eq. (5.2) contain three integral parameters
n, l, and m:

Y= Yuim (7, 6, ¢) (5.4)

The parameter »n, called the principal quantum number, coincides
with the number of the energy level [see Eq. (5.3)]. The parameters !
and m are the azimuthal and magnetic quantum numbers determin-
ing by Eqgs. (4.38) the magnitude of the angular momentum and
the projection of the angular momentum onto a certain direction z.

Solutions satisfying the standard conditions are obtained only
for values of I not exceeding n — 1. Hence, at a given n, the quantum
number ! can take on n different values:

l1=0,1,2,...,n—1

At a given [, the quantum number m can take on 2! 4 1 different
values:

m=-—I, —l+1, ..., —-1,0, +1,...,1—1,1

[see Eqs. (4.38)].

According to Eq. (5.3), the energy of an electron depends only
on the principal quantum number n. Hence, several eigenfunctions
Vn;m differing in the values of the quantum numbers I and m corre-
spond to each eigenvalue of the energy £, (except for E;). This signi-
fies that a hydrogen atom can have the same value of the energy
while being in several different states. Table 5.1 gives the states
corresponding to the first three energy levels.

Table 5.1
Energy | Psi-func- Value Energy | Psi-func Value
level E, tion level E), tion
Yaim n l m Yoim n l m
V300 3 0 0
El ‘PXOO 1 0 O w:l"l 3 1 —1
310 3 1 0
; E 3141 g ; +%
VY20 2 0 0 ’ w:::f 3 2 —
PR I R RN
210 2 1 1 1P32+l 3 2 'I'1
2141 + V3243 3 2 +2

States having the same energy are called degenerate, and the num-
ber of different states with a certain value of the energy is known as
the degree of degeneracy of the corresponding energy level.
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It is simple to calculate the degree of degeneracy of hydrogen
levels on the basis of the possible values for ! and m. For each of
the n values of the quantum number ! there are 2!+ 1 values of the
quantum number m. Hence, the number of different states corres-
ponding to the given n is

n-t{
IZ‘}) (214 1) =n?

Thus, the degree of degeneracy of the energy levels in a hydrogen
atom is n? (see Table 5.1), or, in other words, the energy levels of
a hydrogen atom are n®-fold degenerate.

States with different values of the azimuthal quantum number /
differ in the magnitude of the angular momentum. In atomic physics,
symbols are used for the states of an electron with different magni-
tudes of the angular momentum that have been borrowed from spectro-
scopy. An electron in a state with I = 0 is called an s-electron (the
corresponding state is the s-state), with / = 1 is called a p-electron,
with I = 2 a d-electron, with ! = 3 an f-electron, then come g, %
and so on according to the alphabet. The value of the principal
quantum number is indicated before the symbol of the quantum
number I. Thus, an electron in a state with n =3 and I =1 is
designated by the symbol 3p, etc.

Since [ is always smaller than », the following states of an electron
are possible:

is,

2s, 2p

3s, 3p, 3d

4s, 4p, 4d, 4f
and so on.

The energy levels could be depicted schematically as was done
in Sec. 3.6 (see Fig. 3.13). But it is much more convenient to use
the diagram shown in Fig. 5.1. This diagram reflects (true, only
partly) the degeneracy of the levels. It also has a number of other
appreciable advantages that will soon become evident.

We know that the emission and absorption of light occur upon
transitions of an electron from one level to another. It is proved
in quantum mechanics that the following selection rule holds for
the azimuthal quantum number I:

Al = 41 (5.5)

This signifies that only such transitions are possible in which I
changes by unity. Rule (5.5) is due to the fact that a photon has an
intrinsic angular momentum (spin*) approximately equal to % (we

¢ Spin will be treated in Sec. 5.4.
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shall define its value more precisely on a later page). When a photon
is emitted, it carries this momentum along with it from the atom,

s 7 a ~ g
J 4

Y
Bracket? series

Pa&‘/m) ser/es
2T Batmer—

series N\ Balmer series

™\ Lyman sertes

~/35L 7
Fig. 5.1

while when it is absorbed it gives up this momentum, so that selec-
tion rule (5.5) is simply a corollary of the law of angular momentum
conservation.
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Figure 5.1 shows the transitions allowed by rule (5.5). Using
the symbols of the electron states, we can write the transitions result-
ing in the production of the Lyman series in the form

np—>1s (n=23,...)
the transitions

ns -2p and nd -2p (n=3, 4, ...)

correspond to the Balmer series, etc. _

The state 1s is the ground state of the hydrogen atom. The latter
has the minimum energy in this state. To transfer an atom from its
ground state to an excited one (i.e. to a state with a greater energy),
it must be supplied with energy. This can be done at the expense
of the thermal collision of atoms (this is why heated bodies glow—
the atoms radiate upon returning from an excited state to the ground
one), or at the expense of a collision of an atom with a sufficiently
fast electron, or, finally, at the expense of the absorption of a pho-
ton by an atom.

A photon vanishes when it is absorbed by an atom, giving up to
the latter all of its energy. An atom cannot absorb only a part of
a photon because a photon, like an electron, and like other elemen-
tary particles, is indivisible. Consequently, in the absence of multi-
photon processes (see Sec. 5.17), an atom can absorb only the photons
whose energy corresponds exactly* to the difference between the
energies of two of its levels. Since the absorbing atom is usually in
the ground state, the absorption spectrum of the hydrogen atom
must consist of lines corresponding to the transitions

Is—>np (=23,...)

This result completely agrees with experimental data.

The eigenfunctions of Eq. (5.2) break up into two multipliers,
one of which depends only on r, and the other only on the angles 6
and o:

Ynim = Rnl (r) Ylm (ea (P) (5'6)

The multiplier R,; (r) is real and depends on the quantum numbers
n and I, while the multiplier Y, (6, ¢) is complex and depends
“on the quantum numbers ! and m.

The function Y, (0, ¢) is the eigenfunction of the operator of
the square of the angular momentum. This function is constant for
the s-states of an electron (i.e. for the states with an angular momen-
tum equal to zero), so that a psi-function of the form v,,, depends
only on r.

An element of volume in a spherical coordinate system equal to
dV = r?sin 0 dr d0 do can be represented in the form dV = r? dr dQ,

* More correctly, with an accuracy up to a small correction that will be
introduced in Sec. 5.3.
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where dQ = sin 0 d0 dp is an element of a solid angle. Therefore,
the condition of normalization of function (5.6) can be written as
follows:

S‘p;lm\pnlm av = SR:ITZ dar 5 YinYimdQ=1 (5.7)

0 dm

(the integral with respect to dQ is taken over a complete solid angle
Rerz) equal to 4m). The eigePfunc-
tions of the operator M? are
assumed to be normalized; this
signifies that

nal =0 S YinYimdQ=1 (5.8)
(4m)

Consequently, the condition of

. ........ normalization of the function

8 W 72 M4 757 Ru (r) follows from Eq. (5.7):
/,72sz oo

n=2 I=7 SR?ur‘dr=i (5.9)
o

The probability of an elec-

AT B e ~— tron being in the volume ele-
g 2 4 £ 6 1022 M Br pentdV=r®sin0drdddp=

Rérz =3 I=2 = r®dr dQ is determined by
. the expression
dp,-‘ 8, 0= H%U’z ar Ymeh,, dQ

G 2 4 6 5 mewtr Integrating this expression

Fig. 5.2 with respect to a complete solid

angle 4n, we shall find the

probability dP, of an electron being in a thin spherical layer of
radius r and thickness dr:

dP, = Ryr2dr S Yi¥ im dQ
(ém)
Taking into account condition (5.8), we obtain
dP, = Rig2dr (5.10)

‘Examination of formula (5.10) shows that the expression Rp;r? is
the density of the probability of an electron being at a distance r
from the nucleus. Figure 5.2 gives graphs of the probability density
for the hydrogen atom (Z = 1) for the states (1) n =1, [ =0,
(2 n=2,1=1, and (3) n =3, ! = 2. The scale unit for the
r-axis is the Bohr radius r, [see Eq. (3.30)]. The long vertical strokes
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on the r-axes of the graphs indicate the radii of the relevant Bohr
orbits. A glance at the figure shows that these radii coincide with
the most probable distances from the electron to the nucleus.

[}‘D\/ Q Kf»‘:/? 4‘]
5.2. Spectra of the Alkali Metals

The emission spectra of alkali metal atoms, like the spectrum of
hydrogen, consist of several series of lines. The most intensive of
them have been named the principal, sharp, diffuse, and fundamental
(or Bergmann) series. These names have the following origin. The
principal series owes its name to its also being observed in absorp-
tion. Hence, it corresponds to transitions of an atom to its ground
state. The sharp and diffuse series consist respectively of sharp and
blurred (diffuse) lines. The Bergmann series was called fundamental
because of its similarity with the hydrogen series.

The lines of the series of a sodium (Na) atom can be represented
as transitions between the energy levels depicted in Fig. 5.3. This
diagram differs from that of the hydrogen atom levels (see Fig.5.1)
in that similar levels in different sets are at different heights. Not-
withstanding this distinction, both diagrams have a great similari-
ty. This similarity gives us grounds to assume that the spectra of
the alkali metals are emitted upon transitions of the outermost
(the so-called valence or outer) electron from omne level to another.

Inspection of Fig. 5.3 reveals that the energy of a state depends,
apart from the quantum number r, also on the set which the given
term is in, i.e. on the number of the set of terms. In the diagram of
the hydrogen atom levels, the different sets of terms (with levels
coinciding in height) differ in the values of the angular momentum
of an electron. It is natural to assume that the difierent sets of terms
of the alkali metals also differ in the values of the angular momentum
of the valence electron. Since the levels of different sets in this case
are at different heights, it should be assumed that the energy of
a valence electron in an alkali metal atom depends on the magnitude
of the angular momentum of the electron (which we did not observe
for hydrogen).

The assumption that the energy of a valence electron of alkali
metal atoms depends on the quantum number ! (i.e.on the value
of M) is confirmed by quantum-mechanical calculations. For atoms
more complicated than the hydrogen atom, we may consider that
each of the electrons moves in the averaged field of the nucleus and
the remaining electrons. This field will no longer be a Coulomb one
(i.e. be proportional to 1/r?), but has central symmetry (depends.
only on r). Indeed, depending on the degree of penetration of an
electron into an atom, the charge of the nucleus will be screened for
the given electron by the other electrons to some extent or other so
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that the effective charge which the electron under consideration
experiences will not be constant. At the same time, since electrons

travel at tremendous speeds in an atom, the time-averaged field
can be considered as a centrally symmetrical one.
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The solution of the Schrodinger equation for an electron travelling
in a centrally symmetrical non-Coulomb field gives a result similar
to that for a hydrogen atom. A difference, however, is that the energy
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levels depend not only on the quantum number n, but also on the
quantum number I:
E =Ey,

Thus, in this case, the degeneracy with respect to ! is removed. The
difference in energy between states with different I's and identical
n's is in general not so great as between states with different n's.
With an increase in [, the energy of levels with identical n’s grows.

The angular momentum of an atom as a whole is the sum of the
angular momenta of all the electrons in the atom. The value of the
resultant momentum is determined by the quantum number L
(see Sec. 4.7). A different value of L corresponds to each column of
levels in Fig. 5.3.

The symbols §, P, D, F used in the diagram in Fig. 5.3 are the
initial letters of the series names: sharp, principal, diffuse, funda-
mental. Each of the series is produced at the expense of transitions
from levels belonging to the corresponding set. After it had been
established that different sets of levels differ in the value of the
quantum number L, the symbols S, P, D, F (or s, p, d, f) were
used to designate states with the corresponding values of L (or I).

Investigations of the optical spectra of alkali metal ions showed
that the angular momentum of the atomic residue (i.e. of the nucleus
and the remaining electrons except for the most loosely attached
valence electron that leaves the atom in ionization) is zero. Hence,
the angular momentum of an alkali metal atom equals that of its
valence electron, and L of the atom coincides with I of this electron.

The same selection rule is in force for I of the valence electron of
alkali metal atoms as for I of the hydrogen atom electron [see for-
mula (5.5)]. ‘

When an alkali metal atom is excited and when it emits light,
only the state of the valence electron changes. Therefore, the diagram
of the levels of an alkali metal atom may be considered identical
to that of the levels of the valence electron*.

Let us denote the terms corresponding to the columns of the levels
labelled S, P, D, F in Fig. 5.3 by the symbols nS, nP, nD, and
nF. According to Eq. (3.6), the frequency of a spectral line equals
the difference between the terms of the final and the initial states.
Hence, the spectral series of sodium can be represented in the fol-
lowing form:

sharp series: 0w=3P—nS (n=4,5,...)

principal series: @=3§—nP (n=3,4,...) (5.11)
diffuse series 0=3P—nD (n=3,4,...) )
fundamental series 0=3D—nF (n=4,9,...)

’
* The reasons why we ascribed a value of the principal quartum number
equal to 3 (see Fig. 5.3) to the fundamental state of the valence electron of a
sodium atom will be revealed on a later page.
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Back at the end of the last century, Rydberg established that the
terms of the alkali metals with a high degree of accuracy can be
represented with the aid of the empirical formula

Tén)= ﬁ (5.12)

Here R is the Rydberg constant [see Eq. (3.3)], » is the principal
quantum number, and « is a fractional number called the Rydberg
correction. This correction has a constant value for a given set of
terms. It is designated by the same letter used to denote the corres-
ponding set of terms—the letter s for the S-terms, the letter p for
the P-terms, etc. The values of the corrections are determined exper-
imentally. They are different for different alkali metals. These val~
ues for sodium are

s=—1.35 p=—087, d=—001, /=000 (5.13)

We must note that the term given by Eq. (5.12) differs from the
term of the hydrogen atom [see Eq. (3.5)] only in the presence of the
correction a. For F-terms, this correction is zero. Consequently,
the fundamental series (appearing in transitions from the F-levels)
is hydrogen-like.

Introducing the empirical expressions into Egs. (5.11), we get
the following formulas for the frequencies of the spectral series of
nitrogen:
sharp series—

R R
w=(3+p)‘— (n+s)3 (n=4) 5’ .. -)

principal series—

R R
o= (3+s)’—.(n+p)! (n—3’ 4’ o-.)

diffuse series—

R R
O=BIm = mrr "=34..)

fundamental series—

R R _
(|)=(3+d)'-—(n+f), (71«—4,5,.--)

The correctious s, p, d, f in the these formulas have the values
given by Eqgs. (5.13).

5.3. Breadth of Spectral Lines

An atom can transfer spontaneously from an excited state to a
lower energy state. The time T during which the number of atoms in
a given excited state diminishes to 1/e-th of its initial value is
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called the lifetime of the excited state*. The lifetime of the excited
states of atoms is of the order of 108 to 10-° s, The lifetime of meta-
stable states may reach tenths of a second.

The possibility of spontaneous transitions indicates that excited
states cannot be considered as strictly stationary ones. Accordingly,
the energy of an excited state is not exactly definite, and an excited

_}_ Jnaz
Qb
AN
w
Fig. 5.4 . Fig. 5.5

energy level has the finite breadth I' (Fig. 5.4). According to formu-
la (4.5), the uncertainty of the energy I' is associated with the life-
time of a state T by the relation T'-t ~ %. The breadth of a level
is thus determined by the expression

h
r=2 (5.14)

(we have written the equality sign for definiteness).

The ground state of an atom is stationary (a spontaneous transi-
tion from it to other states is impossible). Therefore, the energy of
the ground state is determined quite accurately.

Owing to the finite. breadth of the excited levels, the energy of
the photons emitted by atoms is scattered as described by the curve
depicted in Fig. 5.4. The spectral line (Fig. 5.5) accordingly has
a finite breadth**:

r
6@0=—h—=% (5.15)

Taking 1~ 10-%s, we obtain a value of the order of 10° rad/s for dw,.
The frequency interval 8w, is related to the wavelength interval
8A, by the expression

Shy = %‘,i Swo= -% 8wo= %:2_- 8w, (5.16)

* The lifetime determined in this way coincides with the average time spent
by atoms in the excited state.

*+ The breadth of a spectral line §w is determined as the difference between
the frequencies which an intensity equal to half the intensit{ at the maximum
corresponds to. In this connection, §» is sometimes called the half-breadth of
a spectral line. We shall use the term “breadth of a line”.
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(we have omitted the minus sign). Introducing A = 5000 A and
8w, = 10° rad/s, we get a value of the order of 10-¢ A for OA.
Expressions (5.15) and (5.16) determine the so-called natural -

breadth of a spectral line. The natural breadth is characterized by -
the values

Swo ~ 10°tad/s; Bhg ~ 1074 A (5.47)

The thermal motion of emitting atoms leads to the so-called Dop-
pler broadening of spectral lines. Assume that at the moment of emis-
sion of a photon an atom has the momentum p, and, accordingly,
the energy of translational motion p?/2m, (here m, is the mass of
an atom). The photon carries along with it the momentum 7%k equal
in magnitude to %Zw/c. Hence, the momentum of the atom changes
and becomes equal to p = p, — %Zk. Consequently, the energy of
the translational motion of the atom changes too. The atom receives
the recoil energy equal to ‘

__(p—rk)?  p§ _ (Rk)? _ poik
E'e“'”'__.'lm_a——z_m;'“%a___?a_ (5.18)

Let us replace k with w/c. In addition, we shall take into account
that p,/m, is the velocity v, of the atom prior to emission.

As a result, Eq. (5.18) acquires the form

Erec=—(i(£—£3ﬁ(o cos o (5.19)

where @ is the angle between the vectors p, and k, i.e. the angle
between the direction of motion of the atom and the direction in
which the photon is emitted.

Let AE,,, stand for the decrement of the internal energy of the
atom, i.e. the difference E, — E,,, where E, and E,, are the values
of the energies of the levels between which the transition occurs.
On the basis of the law of energy conservation, AE,,, must equal
the sum of the energy of the photon and the recoil energy acquired
by the atom upon emission:

AE = o+ Ereo (5.20)

If atoms upon emission did not experience recoil, they would
emit photons of the frequency w,. The value of this frequency is
obtained from the condition

By = AEnm (5.21)

We must note that in the preceding sections by @ we meant ®,.

The recoil energy for visible light is about 10-'! of the energy of
an emitted photon. For gamma-quanta with Ze = 100 keV, the
recoil energy is 10-¢ of the energy of a photon. Therefore, we may
substitute ®, for @ in Eq. (5.19). We assume that the velocity v,
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equals the average velocity v of the thermal motion of molecules.
As a result, we get

Erec = M— 'g" hr(!)o Cos & (5.22)

The average value of this expression equals the first addend (cos o
takes on all the values from —1 to 41 with equal probability,
owing to which the second addend is zero on an average).

Thus, denoting the average recoil energy acquired by an atom
upon the emission of a photon by the symbol R, we can write:

(hog)d _ AEim
R = <Erec> = ‘—'Zmacs = 2m:c’ (5-23)

With account taken of Eq. (5.23), we can represent Eq. (5.22)

as follows:

Eec=R —% Py COS ot (5.24)
It follows from Egs. (5.20) and (5.21) that
h®=ﬁmo_Erec

Using Eq. (5.24) for E;e; in this expression and dividing the relation
obtained by %, we arrive at the formula

w=mo—§-+%mocosa (5.25)
Let us introduce the notation

Aog=R _ Job ., Tt (5.26)

' GmD=2—cv-(ooz2im (5.27)
Using this notation, we can represent formula (5.25) in the form
m=mo—AmR+%6chosa (5.28)

In a source of radiation in which all the directions of thermal mo-
tion of the atoms are equally probable, the frequencies of the emit-
ted photons will be confined within the limits of the interval Swp.
Consequently, Eq. (5.27) gives the Doppler breadth of a spectral line.
A glance at Eq. (5.27) shows that the relative Doppler broaden-
ing of the lines wp/w does not depend on the frequency and equals
2 (v/c) [compare with Eq. (21.15) of Vol. II, p. 483, taking into
account that Aw in this equation corresponds to a half of Swpl.

According to Eq. (5.16), 8A/A = Sw/w. The average velocity of
the atoms (with a relative atomic mass of about 100) at a temperature
of the order of several thousand kelvins is approximately 10° m/s.
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In these conditions, the Doppler breadth of a spectral line for A =
= 5000 A will be

-— e 10’ ~ -2 A
GAD——:Z-C—X—?.XW X 5000 ~ 3 x 102 A

[compare with expression (5.17)].
The actual breadth of a spectral line §w is the sum of the natural
breadth given by Eq. (5.15) and the Doppler breadth given by (5.27):

S0 = 8w, + Swp

The middle of the line corresponds to the frequency w, — Awg
[see Eq. (5.28)]. The quantity w, is the frequency which a photon
would have provided that the energy AE,,, were completely used
for radiation. The receiving by an atom of the recoil energy R in
the emission of energy leads to shifting of the spectral line toward
lower frequencies (i.e. larger wavelengths) by the amount Awpg
determined by Eq. (5.26). It can be seen from this equation that
the relative shift of the frequency Awg/o is proportional to the
frequency o.

Let us assess Ao g for visible light (0 ~ 3 X 10 rad/s). We shall
assume that the mass of an atom is 10-*%2 g (an atomic mass of the
order of 100). By Eq. (5.26)

A o 105 X 10737 X 9 x 10%
OR = "33 10-93 x 9 x 1080

whence for ALy we get a value of the order of 10-' A, which we may
disregard.

We must note that when an atom absorbs a photon %w, the mo-
mentum of the photon %k is communicated to the atom. As a result,
the latter acquires translational motion. The average additional
energy received by an atom when it absorbs a photon coincides with
the average value of the recoil energy R. Consequently, to produce
the transition E,, — E, in an atom, a photon must have the energy

ho'=AE,m+ R

while the frequency of the photon must be ©' = w, + Awg, where
Awp is determined by Eq. (5.26).

Thus, a spectral line whose middle is in the emission spectrum of
the given atom at the frequency w, — Awpg will have the frequency
0o + Aop in the absorptxon spectrum of the same atom. For visible
light, the shift of the emission and absorption lines relative to each
other (which is 2AA, ~ 10-7 A) is five orders of magnitude less
than the Doppler breadth of the line (equal to about 3 x 10-2 A)
and three orders of magnitude less than the natural breadth of the
line (equal to about 10-* A). Consequently, for visible light, we
may consider that the emission and absorption lines exactly coincide
with one another.

~ 5 x 10 rad/s
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5.4. Multiplicity of Spectra and Spin
of an Electron

The investigation of alkali metal spectra with the aid of instru-
ments having a high resolving power has shown that each line of
these spectra is a double one (doublet). For example, the yellow line
3P — 38 characteristic of sodium (see Fig. 5.3) consists of two lines
with wavelengths of 5890 and 5896 A. The same relates to the other
lines of the principal series, and also to lines of other series.

The structure of a spectrum reflecting the splitting of the lines
into their components is called fine structure. The complex lines
consisting of several components are known as multiplets. A fine
structure is a property of other elements in addition to the alkali
metals. The number of components in a multiplet may be two (doub-
lets), three (triplets), four (quartets), five (quintets), and so on.
In a particular case, the spectral lines even with account of the fine
structure may be single (singlets).

The splitting of spectral lines is evidently due to splitting of the
energy levels. To explain the splitting of these levels, the Dutch
physicists Samuel;Goudsmit and George Uhlenbeck in 1925 advanced
the hypothesis that an electron has an intrinsic angular momentum
M, not associated with the motion of the electron in space. This
intrinsic angular momentum was called spin.

It was initially assumed that spin is due to rotation of an electron
about its axis. According to these notions, an electron was consid-
ered similar to a top or spindle. This explains the origin of the
term “spin”. Very soon, however, it became necessary to reject such
model ideas, in particular for the following reason. A spinning
charged sphere must have a magnetic moment, and the ratio of the
magnetlc moment to the mechanical angular momentum must be

I - _>_) L= - .- -

e e = "Tma 10 oply O 29)

[see Eq. (7.41) of Vol. II, p. 167; we have used the symbol u here
instead of py for conveniencel.

Indeed, it was established that an electron in addition to its
intrinsic mechanical angular momentum has an intrinsic magnetic
moment p,. A number of experimental facts, however, in particular
the complicated Zeeman effect, witness that the ratio between the
intrinsic magnetic moment and intrinsic mechanical angular mo-
mentum is double that between the orbital magnetic moment, and
orbital mechanical angular momentum:

Bs _ _ _¢ (5.30)

M, mec
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Thus, the notion of anelectron as of a spinning sphere was unfound-
ed. Spin must be considered as an intrinsic property characterizing
an electron in the same way as its charge and mass do.

The assumption on the spin of an electron was confirmed by a great
number of experimental facts and should be considered as absolutely
proved. It was also found that the presence of spin and all its prop-
erties automatically follow from the equation of quantum mechanics
satisfying the requirements of the theory of relativity that was
proposed by Paul Dirac. It was thus found that the spin of an electron
is simultaneously a quantum and a relativistic property. Protons,
neutrons, and other elementary particles (except mesons) also have
a spin. Sl :

The magnitude of the intrinsi¢ angular momentuny of an elec-
tron is determined according fo the general laws of quantum me-
chanics [see Eq. (4.34)] by the so-called spin quantum number s
equal to 1/2%

M=1VsGerD=h) +x3=Lny3 (5.31)

The projection of the spin onto a given direction can take on
quantized values differing from one another by #:

M, ,=mgh (m,=-_f—s=j—_—;-) (5.32)

To find the value of the intrinsic magnetic moment of an electron,
we shall multiply M, by the ratio of p; to M, [see Eq. (5.30)]:

e eh —
Ps= — M.=——”-%—ch(s+1)=

[us is the Bohr_magneton; see Eq. (7.45) of Vol. II, p. 169]. The
minus sign indicates that the mechanical angular momentum M,
and the magnetic moment p; of an electron are directed oppositely.

The projection of the intrinsic magnetic moment of an electron
onto a given direction can have the following values:

[4
meC

We, z= —

h
M, ,= —-—rf; fimg = —-—,-n%c- (£1/2)=F pp (5.34)

(th'e minus signis obtained if m, = + %, and the plus sign if m, =

1
--3)
Thus, the projection of the intrinsic angular momentum of an
i et 3
electron can taken on values of -+ -;—h and —-2-ﬁ., and of the intrinsic

* For a proton and a neutron,s also equals one-half, for a pboton, s equals
unity.
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magnetic moment—values of +pp and —pp. A number of formu-
las, in particular the expression for energy, include not the angular
momentum and magnetic moment themselves, but their projections.
The intrinsic mechanical angular momentum (spin) of an electron
is therefore customarily said to equal one-half (naturally, in units
of %), and the intrinsic magnetic moment to equal one Bohr magneton.

Let us now use the example of the sodium atom to show how the
existence of the spin of an electron can explain the multiplet struc-
ture of its spectrum. Since the angular momentum of the atom residue
is zero, the angular momentum of the sodium atom equals that of
its valence electron. The angular momentum of the electron will
consist, on the other hand, of two momenta: the orbital angular
momentum 3 ; due to the motion of the electron in the atom and the
spin angular momentum M, not associated with the motion of the
electron in space. The resultant of these two momenta gives the
total angular momentum of the valence electron. Summation of the
orbital and spin angular momenta to obtain the total momentum
is performed according to the same quantum laws used to summate
the orbital angular momenta of different electrons [see Egs. (4.39)
and (4.40)]. The magnitude of the total angular momentum M; is
determined by the quantum number j:

My=rVji(G+1)
Here ; can have the values
j= l+ss ll_sl

where ! and s are the azimuthal and spin quantum numbers, respec-
tively. When I =0, the quantum number ; has only one value, name-

ly, 1 =s =%. When [ differs from zero, two values are possible:

i=1 +-;— and f =1 — % that correspond to two possible mutual

orientations of the angular momenta M; and M,—“paralle]” and
“antiparallel”*,

We shall now take into consideration that magnetic moments are
associated with the mechanical angular momenta. The magnetic
moments interact with each other like two currents or two magnetic
pointers do. The energy of this interaction (called spin-orbit inter-
action) depends on the mutual orientation of the orbital and intrinsit
angular momenta. Hence, states with different j's must have dif-
ferent energy.

Thus, each term of the set P (I = 1) splits into two terms corres-
ponding to j = 1/2 and j = 3/2; each term of the set D (Il = 2)

* The words “parallel” and “antiparallel” have been taken in quotation
n:a:ikshstinlqe two angular momenta being added are never directed along a single
straight line.
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splits into terms with j = 3/2 and j = 5/2, etc. Only one value of
j = 1/2 corresponds to each term of the set S; therefore, the terms
of the set S do not split.
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Thus, each set of terms except for S splits into two sets—the
terms have a doublet structure. It is customary practice to denote
the terms by the symbols

282, 2P3yj2, 2Py2, 2Dsj2, *Dg3j2, 2F1s2, *Fsp2, ...
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The right-hand subscript gives the value of j. The left-hand super-
script indicates the multiplicity of the terms. Although the set S
is a single one, the superscript 2 is also used with its symbol to show
that this set belongs to a system of terms that is a doublet one as
a whole.

When the fine structure is taken into account, the diagram of the
terms. is more complicated, which is illustrated by the diagrams
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~ Fig. 5.7

of the levels of sodium (Fig. 5.6) and cesium (Fig. 5.7). The diagram
for sodium should be compared with the one shown in Fig. 5.3.
Since the multiplet splitting of the terms D and F for sodium is very
small, the sublevels of D and F differing in their values of f are
shown by single lines in the diagram.

The following selection rule exists for the quantum number of
the total angular momentum of an atom:

A =0, =1 (5.35)
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- The multiplet splitting of the cesium atom is considerably greater
than in the sodium one. It can be seen from the diagram for cesium
in Fig. 5.7 that the fine structure of the diffuse series consists of
three lines instead of two:

5203/2 - 62P3/2 ~ 36 127 A
52Dg5 — 62Pgj5 ~ 34892 A
52D 3/, — 62P ;5 ~ 30100 A

The appearance of these lines is explained additionally in Fig. 5.8,
The transition 52Dy/, — 62P,,, depicted by the dash line is forbidden
by selection rule (5.35). The lower part of the
diagram shows what the multiplet itself looks
like. The thickness of the lines in the diagram
corresponds approximately to the intensity of the
spectral lines. The collection of the lines obtained
looks like a doublet in which one of the com-
ponents, in turn, is double. Such a group of lines
is called not a triplet, but a complex doublet be-
cause it is produced as a result of the combina-
tion of doublet terms.

We must note that in connection with an elec-
tron having a spin it is quite natural to presume
that the levels with'l > 0 must be double in the

—~— hydrogen atom too, and the spectral lines must
% be doublets. The fine structure of the hydrogen
Fig. 5.8 spectrum was really detected experimentally.
The splitting of the energy levels due to spin
is a relativistic effect. The relativistic quantum theory gives the
following value for the distance between the levels of the fine struc-
ture of the hydrogen atom:

2
AE= 35 B (5.36)

Dy,

Py -

N

pr

Here E; is the ionization energy of the hydrogen atom (calculated
on the assumption that the mass of the nucleus is infinitely great),
and « is a dimensionless quantity called the fine structure constant.
It is determined by the expression

e? 1

We can use Eq. (5.36) to assess the mdgnitude of the multiplet
splitting of levels. The distances between levels differing in the
values of the principal quantum number have a magnitude of the
order of E; the expression «?/16 has a value of the order of 105
Consequently, the distance between the levels of the fine structure
is about 1/10% of the distance between the main levels.
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The fine structure constant is one of the fundamental constants of
nature. Its meaning becomes obvious when we pass over to the so-
called natural system of units used in quantum electrodynamics. In
this system, the unit of mass is the mass of an electron m,, the unit
of length is the Compton wavelength of an electron ¢ = h/mec (see
Sec. 2.4), the unit of energy is the rest energy of an electron mec?,
etc. Let us calculate in these units the electric energy of interaction
of two electrons at the distance of %/m.c from each other. For this
purpose, we must divide the expression e?/(i/mec) by mec?. As a re-
sult, we get a dimensionless quantity equal to

e3/(h/mec) __ €3
mecd k¢

=a (5.38)

[see Eq. (5.37)]. If we expressed the charge of an electron ¢ in natu-
ral units, then the formula for the interaction energy would have
the form
g (nat. un.) g (nat. un.)
{ nat. un. of length

=a nat. un. of energy

It thus follows that o is the square of the elementary charge expressed
in natural units.

According to Eq. (5.38), the fine structure constant eharacterizes
the energy of interaction of two electrons. We can say in other words
that o determines how strong an electron is bound to an electromag-
netic field. For this reason, the constant « is known as the constant
of electron coupling with an electromagnetic field.

The mass of an electron is absent in Eq. (5.38) for a. Hence, a
is a constant of coupling with an electromagnetic field for any ele-
mentary particle having the charge e.

5.5. Resultant Mechanical Angular Momentum
of an Atom with Many Electrons

Every electron in an atom has an orbital angular momentum M,
and an intrinsic momentum M,. The mechanical angular momenta
are related to the relevant magnetic moments, owing to which there
is interaction between all the M,’s and M,'s.

The angular momenta M, and M, add up to form the resultant
angular momentum of the atom M,. Here two cases are possible.

1. The angular momenta M, have a stronger interaction with one
another than with the M,'s which, in turn, are coupled more strongly
to one another than to the M,’s. Consequently, all the M,’sadd up to
form the resultant A/, the angular momenta #, add up to form Mg,
and only now do M, and M give the total angular momentun of
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the atom M ;. Such a kind of coupling is encountered most frequently
and is known as the Russell-Saunders or LS coupling.

2. Each pair of the Mgs and M,’s displays a stronger interaction
between the partners of the pair than between an individual partner
and the other M,’s and M,’s. Consequently, resultant M;'s are
formed for each electron separately, and they then combine into
the M, of the atom. This kind of coupling, called jj coupling, is ob-
served in heavy atoms.

The angular momenta are summated with observance of the quan-
tum laws (see Sec. 4.7). Let us consider in greater detail the sum-
mation of the angular momenta for a Russell-Saunders coupling.

The orbital quantum numbers [; are always integers. Accordingly,
the quantum number L of the total orbital angular momentum is
also an integer (or zero). ‘

The quantum number S of the resultant spin* angular momentum
of an atom Msmay be an integer or half-integer depending on whether
the number of electrons in the atom is even or odd. With an even
number of electrons N, the quantum number S takes on all the
integral values from N X 1/2 (all the M,'s are “parallel” to one
another) to zero (all the M,’s compensate one another in pairs).
For example, when N = 4, the quantum number S can have values
of 2, 1, 0. When N is an odd number, S takes on all the half-integral
values from N X 1/2 (all the M,’s are “parallel” to one another)
to 1/2 (all the M,'s except one compensate one another in pairs).
For example, when N = 5, the possible values of S are 5/2, 3/2, 1/2..

At given values of M, and Mg, the quantum number J of the
resultant angular momentum M ; can have one of the following
values: L

J=L+S8, L+S—-1,...,|L—-S8]|

Consequently, J will be an integer if S is an integer (i.e. with an
even number of electrons in an atom), and a half-integer if S is
a half-integer (i.e. with an odd number of electrons). For exampla,

(1) when L = 2 and S = 1, the possible values of J are 3, 2, 1;

(2) when L = 2 and S = 3/2, the possible values of J are 7/2,
512, 3/2, 1/2.

The energy of an atom depends on the mutual orientation of the
angular momenta M, (i.e. on the quantum number L), on the mutual
orientation of the angular momenta M (i.e. on the quantum number
S), and on the mutual orientation of M, and Mg (on the quantum
number J). The term of an atom is conventionally written as follows:

™AL, (5.39)

* Do not confuse the quantum number § with the symbol of a term S.
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where L stands for one of the letters S, P, D, F, etc., depending
on the value of the number L. For example, the terms

3p,, P, 3P, (5.40

relate to states with identical L =1, identical S = 1, but difierent
J equal to 0, 1, 2.

Symbol (5.39) contains information on the values of the three
quantum numbers L, S, and J. When § << L, the left-hand super-
script 25 + 1 gives the multiplicity of the term, i.e. the number of
sublevels differing in the value of the number J [see symbols (5.40)].
When S > L, the actual multiplicity is 2L + 1. But the symbol
of the term is written all the same in form (5.39) because otherwise
it would contain no information on the value of the quantum num-
ber S.

We have already used symbols of type (5.39) in Sec. 5.2 for alkali
metal atoms. It is characteristic of these elements, however, that §
of an atom, coinciding with s of its valence electron, equals 1/2.
Now we have acquainted ourselves with the symbols of terms for
any cases.

5.6. The Magnetic Moment of an Atom

We have noted more than once that the magnetic moment u is
associated with the mechanical angular momentum of an atom M.
The ratio /M is called the gyromagnetic ratio.

Although our notion of orbits, as in general our notion of the tra-
jectories of microparticles, is illegitimate, the angular momentum
due to the motion of the electrons in an atom is called orbital. The
experimentally determined ratio of the orbital magnetic moment
pr and the mechanical orbital angular momentum M coincides
with the gyromagnetic ratio ensuing from the classical notions (see
Sec. 7.6 of Vol. II, p. 167). This ratio is —e/2m.c; accordingly,

b= —ger AIL=——2-;—z7VL(L+1)= —psV LIL+T) (5.4

The quantity _
Up = -2,%= 0.927 x 10720 erg/Gs (5.42)

is called the Bohr magneton and is the natural unit of the magnetic
moment. The minus sign in Eq. (5.41) indicates that the directions
of the magnetic moment and the mechanical angular momentum are
opposite (this is due to the fact that the charge of an electron is
negative). The presence of the minus sign permits us to obtain the
projection of u, onto the direction z by simply substituting the
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quantum number my for VI (L 4 1) in Eq. (5.41):

ML, = —Upmy (5.43)

When my > 0, the projection of M; is positive, while the projection
of m, is negative; when m, << 0, the projection of M, is negative,
and that of m, is positive.

A number of experimental facts indicate that the gyromagnetic
ratio of the intrinsic (spin) magnetic moment and angular momentum
is double the gyromagnetic ratio of the orbital magnetic moment
and angular momentum. Thus,

ps=—-m—2;MS=—-2pBVS(S+1) (5.44)

In this connection, the spin is said to have a double magnetism.

The double magnetism of spin follows from the experiment of
A. Einstein and W. de Haas, and from S. Barnett’s experiment
(see Sec. 7.6 of Vol. II, p. 167 et seq.). In addition, the notion of
the double magnetism of spin makes it possible to give an exhaustive
explanation of the complicated Zeeman effect (see the following
section). R v

Owing to the double magnetism of spin, the gyromagnetic ratio
of the total magnetic moment w; and total angular momentum M
is a function of the quantum numbers L, §, and J. We must note
that the numbers L and S characterize the ratio of the values of
M, and Mg, while the number J determines the mutual orientation
of the orbital and spin angular momenta. The relevant quantum
mechanical calculations give the following formula for the magnetic
moment of an atom

wr=—upg V' J (T +1) (5.45)
where

JIT+DFS(S+1)—L(L41
gt 4 LUV EF Lt (5.46)

Expression (5.46) is called the Lande ¢ factor. When the total spin
angular momentum of an atom is zero (S = 0), the total angular
momentum coincides with the orbital one (J = L). Introducing
S =0 and J = L into Eq. (5.46) yields g = 1, and we arrive at
the value of the magnetic moment determined by Eq. (5.41). When
the total orbital angular momentum of an atom is zero (L = 0),
the total angular momentum coincides with the spin one (J = S).
Introduction of these values of the quantum numbers into Eq. (5.46)
yields g = 2, and we arrive at the value of the magnetic moment
determined by Eq. (5.44). We must note that the Lande g factor
can have values less than unity, and can even be zero (this is ob-
tained, for example, when L = 3, § = 2, and J = 1). In the last
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case, the magnetic moment of an atom is zero, although the me-
chanical angular momentum differs from zero.

We remind our reader that the presence of a minus sign in
Eq. (5.45) makes it possible to _obtain the projection of m, onto

the z-axis by simply substituting m; for V7 (7 + 1). Hence,
Rr, o= — Upgiy (my=0, =1, ..., = J) (5.47)

A number of questions of the physics of the atom can be treated
with the aid of the so-called vector model of an atom. In the con-
struction of such a model, the mechanical angular momenta and
magnetic moments are depicted in the form of
directed lengths of lines. Strictly speaking,
owing to the uncertainty in the directions of
the vectors M in space, such a procedure is |
not substantiated. Therefore, when working
with a vector model, we must remember the
conditional nature of the relevant construc-
tions. A vector model must not be understood
literally. It should be considered as a collec-
tion of rules permitting us to obtain results
whose truth is confirmed by strict quantum
mechanical calculations.

A vector model is constructed according to
the following rules. Let M and M, have definite
values (here M, and M, have not been deter- Fig. 5.9
mined). Consequently, the vector M can have
the direction of one of the generatrices of the cone depicted in Fig.
5.9. Wecan imagine matters as if the vector M is uniformly rotating
(precessing) about the direction z coinciding with the axis of the cone.

Assume that the magnetic field B has been set up in the direction z.
The magnetic moment u is associated with the mechanical angular
momentum M. Therefore, the field is exerted on M (through w).
We assume that the velocity of precession of the momentum M
about B is the higher, the stronger is the field acting on the angular
momentum, i.e. the greater is B.

According to the rules for constructing a vector model, the angular
momenta M; and M, being added precess about the direction of the
resultant angular momentum M (Fig. 5.10). The angular momenta
interact with each other (through the magnetic moments u, and p,).
The velocity of precession is assumed to be proportional to the
intensity of interaction. In the state in which M and M, have been
determined, the vector M precesses in turn about the direction z.
If we set up a magnetic field B along the z-axis, different phenomena
will be observed depending on the relation between the interaction
of the angular momenta with each other and with the magnetic
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field. Let us consider two cases: (1) a weak field—the interaction
of the angular momenta with each other is greater than the action
of the magnetic field on each of them; (2) a strong field—the action
of the field on each of the angular momenta exceeds their interaction
with each other.

In the first case (Fig. 5.11a), the angular momenta add up to form
the resultant angular momentum M that is projected onto the direc-

Fig. 5.10 Fig. 5.11

tion of the field. Here two kinds of precession occur: precession of
the angular momenta M, and M, about the direction of M and preces-
sion of the resultant vector M about the direction of B. The velocity
of the first precession will be much
Liigher because the interaction of
the angular momenta with each
other exceeds the action of the
magnetic field on each of them.
In the second case (Fig. 5.11b),
the field breaks the coupling be-
tween the angular momenta M,
and M,, and each of them precesses
about the direction of the field
independently of the other one.
Each of the vectors M; and M, will
also be projected separately onto
the direction of the field.
Fig.5.12 seor Let_us obtain formula (5.45)
with the aid of a vector model.
Figure 5.12 depicts the vectors My, Ms, M, and the vectors pg,
Mg, M, corresponding to them. The scales have been selected so
that the vectors M, and p, are depicted by arrows of the same length.
In this condition, the vector us will be depicted by an arrow that
is twice as long as the one depicting the vector Ms.
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Owing to the double magnetism of the spin, the vector m; is
non-collinear with the vector M ;. The vectors M; and Mg precess
about the direction of M, also involving in this precession the
resultant vector of the magnetic moment p ;. During a sufficiently
long observation time, the average value of the vector pu; will be
registered. It is designated in Fig. 5.12 by the symbol (u ;). Let us
find the projection of this vector onto the direction of M, which
we shall denote simply by u,;. A glance at the figure shows that

py=—ng lcosa — |pg|cos B (5.48)

where | uy | and | pg | are the magnitudes of the relevant vectors.
According to Egs. (5.41) and (5.44)

Ipcl=w VL F1); |ps|=2uVSES+1) (5.49)

To find the value of cos a, let us square the relation Mg = M; —
- ML:
My=M3%+ M} —2M,; M, cos o
whence
_MEAME MY T LLAD—S(S+1)
COSE=""5M ML 2y TUEIDVLEL+D (5-50)
To find the value of cos B, let us square the relation My = M, —
My =M5+Ms—2M;Mscosp

whence
M3+4+ME— M} - JI+N)+S(S+1)—L(L+1) (5.51)
M Ms 2VITUEDVSGLD '

Introducing Egs. (5.49), (5.50), and (5.51) into Eq. (5.48), we
have

ps=—ps V L(L+1)

cosf=

J(J+1)tL((L+1)—S(S+1) _
2V ITHFHVIEIFD
e J T+ 1)+8(S+1—L(L+1)
—ous VS T1
VSN = s Vse e

Let us perform cancellations, combine both addends and, in addi-

tion, multiply the numerator and the denominator by V' J (J + 1).
The result is the expression

—= 3+ )+S(S+1)—L(L+1
po=—pp Y T(T+ )LD CAY= 2 EFD

coinciding with Eq. (5.45).
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5.7. The Zeeman Effect

The Zeeman effect is the name given to the splitting of the energy
levels when a magnetic field acts on atoms*. Splitting of the levels
leads to splitting of the spectral lines into several components.
The splitting of the spectral lines when emitting atoms experience
the action of a magnetic field is also known as the Zeeman effect.

The splitting of the lines was discovered in 1896 by the Dutch
physicist Pieter Zeeman (1865-1943). The splitting is very slight—
at B of the order of 10* Gs it is only several tenths of an angstrom.

The Zeeman splitting of the levels is explained by the fact that
an atom having the magnetic moment p; acquires in the magnetic
field the additional energy

AE = - W, BB (5.52)
where p;, p is the projection of the magnetic moment onto the

direction of the field [see Eq. (6.76) of Vol. II, p. 136]. In accordance
with Eq. (5.47), we have

Wy, = — UBgMy
Introduction of this expression into Eq. (5.52) yields
AE = ppgBm; (m; =0, =1, ..., +J) (5.53)

It can be seen from this formula that the energy level corresponding
to the term *S+!L; splits into 2J + 1 equally spaced sublevels,
the amount of splitting depending on the Lande g factor, i.e. on the
quantum numbers L, S, and J of the given level. Before the switch-
ing on of a field, the states differing in the values of the quantum
number m; had an identical energy, i.e. degeneracy was observed
with respect to the quantum number m ;. The magnetic field removes
the degeneracy with respect to m.

Let us first consider the Zeeman splitting of spectral lines having
no fine structure (singlets). These lines appear in transitions between
the levels corresponding to S = 0. For such levels, g = 1. Conse-
quently, Eq. (5.533) has the form

AE = lJ.BBmJ (m; = O, :t1, ey = ) (5.54)

(J = L' mJ = mL).

~Figure 5.13 shows the splitting of the levels and spectral lines
for the transition between the states with L =1 and L = 0 (for
the P — S-transition). In the absence of a field, one line is observed
whose frequency is designated by w,. When a field is switched on,

* Splitting of the energy levels also occurs when an electric field acts on
atoms. This phenomenon is called the Stark effect.
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in addition to the line w,, two lines symmetrical relative to it
appear having the frequencies wy + Aw, and w, — Aw,.

Figure 5.14 gives a similar diagram for a more complicated case—
for the transition D — P. It may seem at first sight that in this
case the initial line ought to split into seven components. Actually,
however, only three components are obtained as in the preceding
case: a line with the frequency w, and two lines with the frequencies

mr
mr 1 ///// 13
—.+1 DZ %:— 0
) - Iz ¢
p < —— 0 \\
T :
i . R
| | 1 EEREEREE
| Fwy pod v e el 1
| i1
| v
A =— 0
le -—- a = 7
0 wy~dwy Wy Wyt4wy wy-dw, W, wy+Aw,
without field with field Without field With field
Fig. 5.13 Fig. 5.14

Wy + Awy, and 0, — Aw, arranged symmetrically relative to it.
The explanation is that there is a selection rule for the magnetic
quantum number m ; according to which only those transitions are
possible when m; either remains constant or changes by unity:

Am; =0, +1 (5.55)

Because of this rule, only the transitions indicated in Fig. 5.14
are possible. As a result, three components are obtained having the
same frequencies as in the case depicted in Fig. 5.13.

The shift of the components Aw, obtained in the cases treated
above is called the normal or the Lorentz* shift. According to Eq.
(5.54), this shift is T

_MgB _ ek B e
Awg= E 2mec kB 2mec

The splitting into three lines considered above, with two of these
lines at a distance equal to the normal shifting Aw, from the undis-
placed line, is called the simple (or normal) Zeeman effect. Let us
assess the magnitude of the simple Zeeman splitting for a field of

(5.56)

* H. Lorentz gave a classical explanation of the simple Zeeman effect and
calculated the value of the normal shift. Give attention to the fact that Aw,
coincides with the Larmor frequency [see Eq. (7.46) of Vol. II, p. 172].
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the order of 10¢ Gs. Since A = 2xrc/o,

2ne neB
| A | = oF Awy = )

The frequency o for visible light is about 3 X 10" rad/s. Hence,

_ 344 x4 8xA0ox A4 _ _ H
A2 = Terx T xox 1o ~ 0-2x 107 em=0.2 A

We have already noted that the simple Zeeman effect is observed
when the initial lines have no fine structure, i.e. are singlets. For
lines having a fine structure, the number of components may be
greater than three, while the magnitude of the splitting is a rational

8904 saud tl‘rz)c;t:ion of the normal shifting

Ao = Aw, —;- (5.57)

where r and g are small integers.
For example, the splitting of the

“” " _ “ yellow doublet of sodium appears

2 2
( Py, Sr,g) ( zpy/_," ZS”)

as shown in Fig. 5.15. Such split-
- ting of spectral lines is called the
complicated (or anomalous) Zee-
) man effect.
Fig. 5.45 The complicated Zeeman effect
. is explained by the dependence
of the magnitude of splitting of levels on the Lande g factor, i.e.
in the long run by the existence of spin of an electron and the double
magnetism of spin. We shall explain this using the following example.
Let us consider the splitting of the sodium doublet formed by the
transitions 32P,;, — 3%S,/, and 3Py, — 3%S,,, (see Fig. 5.6).
The Lande g factor has the values: :
for the term 28,,, (L =0, § =1/2, J = 1/2)
_ 1/2X 3/24+14/2%3/2—0X14 o, 4 __
g=1+ ZX 12X 312 =1+1=2
for the term 3P, (L =1, § =1/2, J = 1/2)
for the term Py, (L =1, S =1/2, J = 3/2)
5/24+1/2X 3/2—1X 2
g=1+ L /22:3//2:5/2 =1+13=4/3
Figure 5.16a shows the splitting of the levels and the transitions
allowed by rule (5.55) for the line 2P,;, — 2S,,,. For the level 281/,
the energy’ increment is
AE' = ppBg'my
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where g’ = 2 = 6/3 [see Eq. (5.53)]. For the level *P,,,
AE’" = pgBg'm;
where g”" = 2/3. HeE T
The shifting of the lines relative to the initial line is determined
by the expression .

Aw=AE—AE’ _ upB

= 2 (§"my—g'm}) = Awy (§"'ms — g'mj)
”z,y my
2 5% +%
% ' —& ;’——T — -
‘ %)\ ¢w
@ ir 1{-4@)§ (+48)
' +% ‘ 1: +%
2, L
_.z‘ ..b
. Wy
my-g my
+8 + 35
5 +% %
'”—— _% _/é
- ‘ ~%
(-%3) \(-%), |(+%)
) hay
%) %)\ (+%)
+3 T +h%
{yl,g—'_ 4
-% -%
HEHRER
)y
Fig. 5.18

The values of (g"mj—g’'mj) for the relevant spectral lines are
given in Fig. 5.16 in parentheses in gaps of the lines depicting the
transitions between the levels.

Inspection of Fig. 5.16a reveals that when a field is switched on,
the initial line is absent. Four lines appear instead of it. Their
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shifts, expressed in units of normal shift, are —4/3, —2/3, 42/3,
and +4/3, which can be written as follows:

Am=Amo[i—§, i%]

The splitting of the levels and the allowed transitions for the line
2Py, = %Sy, are shown in Fig. 5.16b. It can be seen from the diagram

(my+2mg) s
5 —— ) +7 +%
2 /4 +7 g +%
zpj/-’———_- z=/) g +1;-7 =% +72
7% S=% -7 g =%
-2 -7 -7
' i 1 1
2 7
R +7 g +%
S’/z L=\ —~d——4—=+-
S=% -7 -%
@y (ty=dwy) wy (wy+*dwp)
Without field With field

Fig. 5.17

that for such a transition the initial line is also absent when the
field is switched on. The shifts of the six lines obtained are

Aco=Amo[i--;—, i%, i%]

Everything said above holds for a weak magnetic field. A field
is considered weak with respect to the Zeeman effect if the Zeeman
splitting of the levels is less than the multiplet splitting.

The coupling between M, and Mg is broken in a strong magnetlc
field, and these angular momenta are projected vnto the direction
of the field independently of each other. In this case

AE = ugBmy + 2ugBmg = pgB (mp + 2my)

i.e. the splitting becomes an integral multiple of normal splitting.
The following selection rules hold for the transitions:

Amp =0, +£1, Amg=0

As a result, we get a normal Zeeman triplet (Fig. 5.17). This pheno-
menon is known as the Paschen-Back effect. It is observed when the
magnetic splitting of the lines becomes greater than the multiplet
splitting.
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5.8, Electron Paramagnetic Resonance

We established in the preceding section that when an atom having
a magnetic moment other than zero is in a magnetic field, each level
of the atom splits into 2J + 1 Zeeman sublevels*. According to
Eq. (5.53), the distance between the sublevels is

8F = ppgB

Let us assume that an electromagnetic wave is incident on an
atom in a constant magnetic field B, and that the frequency of the
wave satisfies the condition

ho = O8F = upgB = hhwyg (5.58)

where Aw, is the normal shift [see Eq. (5.56)]. We could expect that
the action of the magnetic field of the incident wave would cause
transitions of the atom between adjacent sublevels [rule (5.55) allows
only transitions at which m; changes by not more than unity]. Such
a phenomenon is indeed observed. It was discovered by the Soviet
physicist Yevgeni Zavoisky (1907-1976) in 1944 and was named elec-
tron paramagnetic resonance. This name is explained by the follow-
ing circumstances. The phenomenon is of a resonance nature—tran-
sitions appear at a strictly definite frequency of the incident wave.
The magnetic moment of the atom set up by the orbital and spin
moments of the electrons is responsible for splitting of the levels
(we must note that nuclear magnetic resonance due to the magnetic
moment of the nucleus is observed in addition to electron paramagnet-
ic resonance). The phenomenon occurs only in paramagnetic sub-
stances (in diamagnetics the magnetic moments of the atoms are
zero).

It can be seen from Eq. (5.58) that the resonance frequencies are
of the order of the normal shift Aw, (the factor g has a value of the
order of unity). At B = 10* Gs

ppB _ 0.927 X 10730 x 10
R 1.056X10-%7

[see Eq. (5.42)]. A wavelength of the order of a few centimetres
corresponds to such a frequency. Consequently, the resonance fre-
quencies are in the radio range. _

An electromagnetic wave can cause an atom to pass over either
to a higher energy state or to a lower one with equal probability
(this will be discussed in detail in Sec. 5.15). In the first case, the
wave will be weakened, and in the second amplified. If a paramagnet-

~ 101! rad/s

0~ Ay =

* If the magnetic moment of the atom is produced by an outer electron
in the s-state, the number of sublevels is two—spin of the electron “with the
field” and spin “against the field”.
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ic is in thermal equilibrium, the atoms are distributed by sublevels.
in accordance with the Boltzmann law [see Eq. (11.81) of Vol. I,
p- 328]. Consequently, the number of atoms in a state with a lower"
energy exceeds their number in a state with a higher energy. There- "
fore, transitions occurring with an increase in energy will predomin-
ate over the transitions with a decrease in energy. As a result,
the intensity of the wave will diminish—the paramagnetic absorbs
electromagnetic radiation, and gets heated as a result.

4
W
we
[c] A |-{0 i
A
(a) 1))
Fig, 5.18

It follows from the above that electron paramagnetic resonance
is the selective absorption of the energy of a radio-frequency field
in paramagnetic substances that are in a constant magnetic field.

We tacitly assumed in our reasoning that the atoms of a paramag-
netic do not interact with one another. In practice, electron para-
magnetic resonance is observed in crystalline or liquid paramagnet-
ics (it was also observed in some gases). In condensed media, indi-
vidual atoms, apart from the external magnetic field, also experience
‘the action of chaotically oriented internal fields. For this reason,
the resonance frequencies are slightly different for different atoms,
and as a result the electron paramagnetic resonance lines have
a finite breadth.

The instrument used to study electron paramagnetic resonance is
called a microwave spectroscope. It consists (Fig. 5.18a) of electro-
magnetic wave generator G, wave guides WG, cavity resonator CR*
suspended between the poles of an electromagnet, receiver R, and
registering device RD. The receiver is tuned to the frequency of
the generator. An oscillograph or automatic recorder is used as the
registering device. Paramagnetic specimen Sp is placed inside the
cavity resonator. In the course of an experiment, the magnetic
field produced by the electromagnet is smoothly changed. At a value
of B corresponding to condition (5.58), intensive absorption of the
wave by the specimen is observed. An absorption curve is shown in
Fig. 5.18b. As noted above, it has a finite breadth.

* Wave guides are defined as tubes with conducting walls, A cavity resonator
is a cavity with conducting walls.
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Electron paramagnetic resonance is used to study the structure

of crystals, the magnetic properties of atomic nuclei, and in a num-
ber of other cases.

5.9. The Pauli Principle. Distribution of Electrons
by Energy Levels of an Atom

Every electron in an atom travels in a first approximation in
a centrally symmetrical non-Coulomb field. The state of an electron
in this case is determined by the three quantum numbers r, I,
and m whose physical meaning was established in Sec. 5.1, In con-
pection with the existence of spin of an electron, it is necessary
to add to these quantum numbers the quantum number m, that
can take on values of 4-1/2 and determines the projection of the spin
onto the given direction. In the following, we shall use the symbol
m; instead of m for the magnetic quantum number to stress the
circumstance that this number determines the projection of the
orbital angular momentum whose value is given by the quantum
number I.

Thus, the state of every electron in an atom is characterized by
four quantum numbers:

principal n(n=1,2,3,...)

azimuthal [(l=0,1,2,..., n—1)

magnetic m; (m; = —1, ..., —1, 0, +1, ..., +))
spin m, (mg = +1/2, —1/2)

The energy of a state mainly depends on the numbers ~ and I. In
addition, there is a slight dependence of the energy on the numbers
m; and m; because their values are associated with the mutual
orientation of the angular momenta M; and M, on which the mag-
nitude of the interaction between the orbital and intrinsic magnetic
moments of an electron depends. The energy of a state grows at
a greater rate with an increase in the number » than in the number 1.
Therefore, as a rule, a state with a greater value of n has a greater
energy regardless of the value of /.

In the ground (unexcited) state of an atom, the electrons should
be at the lowest energy levels available for them. It should therefore
seem that in any atom in the ground state all the electrons ought
to be in the state 1s (n = 1, { = 0), and the fundamental terms
of all the atoms ought to be of the type of S-terms (L = 0). Experi-
ments show, however, that this is not the case. ’

The explanation of the observed types of terms is as follows. Accord-
ing to one of the laws of quantum mechanics called the Pauli prin-
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ciple* (named in honour of its discoverer, the Austrian physicist
Wolfgang Pauli, 1900-1958), the same atom (or any other quantum
system) cannot contain two electrons having the same set of the
four quantum numbers, r, I, m;, and m,. In other words, two elec-
trons cannot simultaneously be in the same state.

It was shown in Sec. 5.1 that n? states differing in the values of I
and m,; correspond to a given n. The quantum number m, can take
on two values: +1/2. Consequently, not more than 2n? electrons
can be in states with a given value of r in an atom:

Quantum number n . . . ... ..., 12 3 4 5 ...
Maximum possible number of electrons —
instate . .. ... 0000 ... 2 8 18 32 50 ... 02

P4

The set of electrons having identical values of the quantum num-
ber n forms a shell. The shells are further divided into subshells differ-
ing in the value of the quantum number /. In accordance with the

Jo 2l R G p 5
Table 5.2 }AJ,Z(' oAl 2 KO’
Shell | n ! my mg Subshell || Shell | » l m; mg Subshell
K 11 0 0 H K (1s) 0 0 N | N, (%)
9 ’ —1 H
0 0 ty | Ly (29) | ? .
+ t
L |2 —1 |
1 0 + L, (2p)
+1 t —2 | t
EREE T AT
ol ol tv |mMey| & a2 I I al
+2 H
— 1)
1 0 14 | My (3p) s ¢
+1 H - t
M3 =
— H
—2 N 3| o | 1 | N4
2 0 | 4 | My (3d) T2 I
+2 |t .

* This principle is also known as the Pauli exclusion principle or simply
the exclusion principle. It holds not only for electrons, but also for other parti-
cles with a half-integral spin.



The Physics of Atoms and Molecules 134

value of n, the shells are given symbols taken from X-ray spectro-
scopy:

Quantum numbern . . .. ... .. 1 2 3 45 6 7 ...
Symbol of shell . . .. ... ... KL MNOP Q...

The division of the possible states of an electron in an atom into
shells and subshells is shown in Table 5.2, in which the symbols 4
have been used instead of the designations m, = +1/2 for visualiza-
tion. The subshells, as indicated in the table, can be designated
in two ways (for example, L, or 2s).

A completely filled subshell is characterized by the equality
to_zero of the_total orbital and total spin angular momenta (L = 0,
S = 0). Hence, the angular momentum of such a subshell equals
zero (J = 0). Let us convince ourselves that this is true taking the
3d-subshell as an example. The spins of all ten electrons in this
subshell compensate one another in pairs, and as a result § = 0.
The quantum number of the projection of the resultant orbital
angular momentum M of this subshell onto the z-axis has the

single value m, = Ym; = 0. Consequently, L also equals zero.
Thus, when determining L and S of an atom, no attention may
be given to filled subshells.

9.10. Mendeleev’s Periodic System of Elements _ »

The Pauli principle provides an explanation of the periodic repe-
tition of the properties of atoms. Let us see how the periodic system
of elements discovered by the Russian chemist Dmitri Mendeleev
(1834-1907) is constructed. We shall begin with the hydrogen atom
having one electron. Each following atom is obtained by increasing
the charge of the preceding atom’s nucleus by unity and adding one
electron, which we shall place in the state with the smallest energy
accessible for it in accordance with the Pauli principle.

The hydrogen atom has one 1s-electron in the ground state with
an arbitrary orientation of its spin. The quantum numbers of the
atom have the values L = 0, S = 1/2, J = 1/2. Accordingly, the
fundamental term of the hydrogen atom has the form 2S,,,.

If we increase the charge of the hydrogen atom nucleus by unity
and add another electron, we get the helium atom. Both electrons
in this atom can be in the K-shell, but with an antiparallel orienta-
tion of their spins. The so-called electron configuration of the atom
can be written as 1s? (two 1s-electrons). The fundamental term will
be 1Sy (L =0, S=0, J =0).

Filling of the K-shell terminates in the helium atom. The third
electron of the lithium atom can occupy only the level 2s (Fig. 5.19).
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The electron configuration 1s?2s is obtained. The ground state is
characterized by L =0, § = 1/2, J = 1/2. Therefore, %S,,, will
be the fundamental term as in the hydrogen atom. The third electron
of the lithium atom, occupying a higher energy level than the remain-
ing two electrons, is bound to the nucleus of the atom more weakly
than they are. As a result, it determines the optical and chemical
properties of the atom.
In the fourth element, beryllium, the subshell 2s is completely
filled. In the following six elements (B, C, N, O, F, and Ne), the
subshell 2p is filled with electrons. As a
P I result, the neon atom has completely filled
shells K (with two electrons) and L (with
Lt eight electrons) forming a stable system
i A like that of helium. This explains the
s v T¥] specific properties of the inert (noble)
; gases.
ZH ?B ;;, ,B i 28 The process of building up the electron
St "So \“Sp|"S0 || shells of the first 36 elements of the pe-
riodic system is shown in Table 5.3. The
Fig. 5.19 eleventh element, sodium, in addition
to the filled shells K and L, has one
electron in the subshell 3s. The electron configuration has the form
1s?25°2p%3s. Here, %S, is the fundamental term. The electron 3s
is bound to the nucleus most weakly of all the electrons and is the
valence or optical electron. In this connection, the chemical and
optical properties of sodium are similar to thoee of lithium. The
ground state of the optical electron in the sodium atom is character-
ized by the value of n_= 3. This is exactly what explains the circum-
stance that in the diagram of the sodium atom levels (Fig. 5.6)
the ground level is indicated by the number 3. We shall note in
passing that the cesium atom has the following electron configuration
in the ground state

j/p 1522522 0353 p83d! 04s24 p®hd1055*5 pt6s

Consequently, its optical electron in the ground state has n = 6. -
The levels in Fig. 5.7 are marked accordingly.

In the elements following sodium, the subshells 3s and 3p are
filled normally. The subshell 34 with the given general configuration
is higher than the subshell 4s from the energy viewpoint. In this
connection, with filling of the M shell not completed as a whole,
filling of the NV shell begins. The subshell 4p is already higher than
3d, so that after 4s the subshell 3d is filled.

The electron levels of all the atoms are built up with similar
deviations from the ordinary sequence repeating from time to time.
Similar electron configurations (for example, 1s, 2s, and 3s) periodi-
cally repcat above the completely filled subshells. This underlies

I

2s ?

—t-
-
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Table 5.3
K L M
Element Fundamental
1s 2s 2p 3s 3p 3d 4s 4p

tH t | = = | = | =] =] =1= 251
2He 2 | — | = = =1 =1 =1 -- 15,
3Li 2 1 —_— — — —_ — — 351/2
4Be 2 2 — — — — — — 18,
5B 2 2 t | = =] =1-1- 2Pyq
6C 2 2 2 —_ — — — —_ 3Py
N 2 2 3|l — | - —=1-=1- 4533
80 2 2 4 —_— — — - —_ 3p,
9F 2l 2| 5| = | =1 —=|=1=1 %P4
10Ne 2 2 6 — —_ — —_ — 18,
1i{Na 2 8 1 — — — — 251/2
12Mg 2 8 2 - |- =1 - 189
13A1 2 8 2 |t | = = | = | 2P
{4si 2 8. . 2 2 — —_ — 3P,
15pP 2 8 2 3| — | = | = | *S3
168 2 8 2 4| = | = | =1 2P,
17C1 2 8 2 5 —_ - - 2P3/2
18Ar 2 8 2 6 — — — 18,
19K 2 8 8 — |t | = 5,
20Ca 2 8 8 — 2| = 1,
21Sc 2 . 8 8 1| 2 | — | Dy,
2274 2 8 8 2| 2 | = | sr,
23V 2 8 8 3| 2 | = | 4y,
24Cr 2 8 8 5| 1 | — | s,
25Mn 2 8 8 5 2 - S5/2
26Fe 2 8 8 6| 2 | — D,
27Co 2 8 8 7012 | — Fog
28Ni 2 8 8 8| 2 | — | oF,
20Cu 2 8 8 10| 1 | — | 38,
30Zn 2 8 8 10 2 - 1So
31Ga 2 8 8 10 [ 2 | 4| 3Py,
32Ge 2 8 8 10 2 2 3Py
33As 2 8 8 10 2 3 S3/2
34Se 2. 8 8 10 | 2 4 | °pP,
35Br 2 8 8 10 2 5 ’P3/2
36Kr 2 8 8 10 { 2 6 15,
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the periodic repetition of the chemical and optical properties of
atoms.

In establishing the kind of terms possible with a given electron
configuration, we must bear in mind that the Pauli principle does
not allow all the combinations of the values of L and § that follow
from the configuration. For example, with the configuration np?
(two electrons with the principal quantum number n and [ = 1),
the possible values of L are 0, 1, 2, while S can have the values
0 and 1. Accordingly, the following terms would seem to be possible:

1§, P, 'D, 38, 3P, D (5.59)

According to the Pauli principle, however, only such terms are pos-
sible for which the values of at least one of the quantum numbers
m; and m, for equivalent electrons (i.e. electrons with the same
n and 1) do not coincide*. The term 3D, for instance, does not comply
with this requirement. Indeed, L = 2 signifies that the orbital
angular momenta of the electrons are “parallel”, consequently, the
values of m, for these electrons will coincide. Similarly, § =1
signifies that the spins of the electrons are also “parallel”, therefore,
the values of m; also coincide. As a result, all four quantum numbers
(n, I, m;, and m) are the same for both electrons, which contradicts
the Pauli principle. Thus, the term 2D in the system of two equivalent
electrons cannot be realized.

Table 5.4
m
-
mp=2m | mg=2)m,
+1 0 -1
3 +2 0
T t 1 +1 +1 B
- 1 y +1 0
i 4 +1 0 B
4 v +1 —1 B
t 4 0 +1 B
t } 0 0 A
} 4 0 0 B
4 i 0 —1 B
t 0 0 C
+ t —1 —+1 B
b 4 —1 0 A
3 1 —1 0 B
4 i —1 —1 B
4 —2 0 A

* This requirement vanishes for non-equivalent electrons, i.e. electrons
differing either in =n, or in !, or in both of them.
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The following procedure is employed to establish the terms of
equivalent electrons allowed by the Pauli principle: the values
of mg are indicated in the form of arrows (an arrow pointing upward
signifies my, = -+1/2, and one pointing downward signifies m, =
= —1/2) in the columns of a table headed by the values of m, for
an individually taken electron (see Table 5.4 compiled for two equi-
valent p-electrons). The table contains all the combinations of the
values of m; and m, for both electrons allowed by the Pauli principle.
When both arrows get into one column (this signifies that m, is the
same for both electrons), they are directed oppositely (m; must be
different). In the next two columns of the table, we enter the values
of the quantum numbers m, and mg equal to the algebraic sum of
the numbers m; and m, and corresponding to the given combination.
The set of allowable values of m, and mg permits us to establish
the allowable combinations of the values of L and S. One of such
sets, marked by the letter 4 in the last column of the table, cor-
responds to the combination L = 2, § = 0, i.e. to the term !D;
the second set, marked by the letter B, corresponds to L =1, S =
= 1, i.e. to the term 3P, and, finally, the set marked by the letter C
corresponds to L = 0, § = 0, i.e. to the term 'S. Thus, of the six
formally possible terms indicated in expression (5.59), only three
do not contradict the Pauli principle, namely, 'S, 3P, D, the
;erm 3P being a triplet—it splits up into the components 3P,, 3P,
P,.

Now the question arises as to which of the terms

‘SOv 3P21 3Pu SPO’ 1D2 (5'60)

corresponds to the ground state, i.e. to the state with the lowest ener-
gy. The answer to this question is given by two empirical Hund’s
rules:

1. Of the terms belonging to a given electron configuration, the
term with the greatest possible value of S and with the greatest
possible value of L at this S will have the lowest energy.

2. The multiplets formed by equivalent electrons are normal (this
signifies that the energy of the state grows with an increase in J)
if not more than half of the subshell is filled, and are inverted (the
energy diminishes with an increase in J) if more than half of the
subshell is filled.

It follows from Hund's second rule that when not more than half
of a subshell is filled, the component of the multiplet with J =
= | L — S | has the lowest energy, otherwise the component with
J =L + S has such an energy.

According to Hund’s first rule, one of the P-terms of those given
in (5.60) must have the least energy (S is the greatest for these
terms). With the configuration np2, the subshell p is filled only b,y
one-third, i.e. less than-half. Consequently, according to Hund's
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second rule, the term with the smallest value of J, i.e. the term
3P,, has the lowest energy. It is exactly this term that is the funda-
mental one for the configuration np? (see 6C, 14Si, and 32Ge in
Table 5.3).

9.11. X-Ray Spectra

We already noted in Sec. 2.1 that there are two kinds of X-ray
radiation—bremsstrahlung (braking) and characteristic radiation. At
not too high energies of the electrons bombarding the anticathode,
only bremsstrahlung is observed, which has a continuous spectrum

£=0 s
9 As ¥ p) 3
& N
H Se s series | §
Le 2R
N
75 Br P y g1 &
L-::’;xb.s A
37 Rb %
38 Sr 4 S
3
At
47 Nb Ya g
Y
45 Rh
——— g ——
A H-series
Fig. 5.20 Fig. 5.21

and does not depend on the material of the anticathode. When the
energy of the bombarding electron becomes sufficient to knock
electrons out of the inner shells of an atom, sharp lines of character-
istic radiation appear on the background of the bremsstrahlung.
The frequencies of these lines depend on the nature of the substance
which the anticathode is made of (this is exactly why the radiation
is called characteristic).

X-ray spectra are distinguished by an appreciable simplicity.
They consist of several series denoted by the letters K, L, M,
N, and O. Each series contains a small number of lines designated
in the order of growth of the frequency by the subscripts a, i, v, . ..
... (K, Kgy Ky, ...; Ly, Lp, Ly, ..., etc.). The spectra of
different elements have a similar nature. With an increase in the
atomic number Z, the entire X-ray spectrum only shifts to the short-
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wave part without changing its structure (Fig. 5.20). The explanation

is that the X-ray spectra are produced in transitions of electrons

in the inner parts of atoms, and these parts have a similar structure.
A diagram showing how X-ray spectra are produced is given in

Fig. 5.24. Excitation of an atom consists in removing one of the

inner electrons. If one of the .

two electrons of the K-shell is  ¥&

knocked out, then the freed site (@#4)*

can be occupied by anelectron /

from an outer shell (L, M, N, &7° 7

etc.). Here a K-series is pro- \/

duced. Other series appear in 4. 9] N,

a similar manner. The K-series (-\zy

is attended without fail by &

other series because when its 77’ P &

lines are emitted, levels are / L&

freed in shells L, M, etc., po.p¢ .

which in turn will be filled by / 1

electrons from the higher

layers. gz 40 & & Z
The British physicist Henry .

Moseley (1887-1915) estab- Fig. 5.22

lished a lawin 1913 that relates

the frequencies of the X-ray spectrum lines to the atomic number Z
of the element emitting them. According to this law, the frequencies
of the line K, can be represented by the formula

- 1 1

(DKG=R(Z—1)2‘ (—1-’-—-27)

(R is the Rydberg constant), of the line Kg by the formula

1 1

mxB=R(z—1)2(1—,—3—,)-
of the line L, by the formula ,
i 1

oz, =R(Z—1.5) (gr—37)

and so on. All these formulas have the form

1 e o
©=R(Z—o0)? (73?—?;) (5.61)
Moseley’s law is usually expressed by the formula
Vo=C(Z-—o) (5.62)

(C and o are constants) and is formulated as follows: the square root

of the frequency is a linear function of the atomic number Z.
Figure 5.22 shows graphs of V ® against Z constructed according

to experimental points for the lines K, and L,. These graphs allow
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us to assess the accuracy with which Moseley’s law is obeyed. An
attentive examination will show that the graph for the line K,
is not completely linear.

Moseley’s law makes it possible to exactly establish the atomic
number of a given element according to the measured wavelength
of the X-ray lines; it played a great part in arranging the elements
in the periodic table.

Moseley gave a simple theoretical explanation of the law he dis-
covered. He noted that lines with frequencies determined by for-
mula (5.61) coincide with the lines emitted upon the transition of
an electron in the field of the charge (Z — o) e from the level num-
bered n, to the one numbered r,. It iseasy to understand the meaning
of the constant o: the electrons performing transitions upon the
emission of X-rays are under the action of the nucleus whose attrac-
tion is weakened somewhat by the action of the other electrons
surrounding it. It is exactly this so-called shielding (or screening)
action that is expressed in the need to subtract a certain quantity
o, called the shielding factor, from Z.

We must note that Eq. (5.61) is based on the assumption that
the shielding factor ¢ has the same value for both terms. Actually,
however, the shielding, for example, for the K-term will be weaker
than for the L-term because an electron in the L-shell is shielded
by both electrons of the K-shell. In addition, the other electrons
of the L-shell play a certain part in shielding, whereas an electron
of the K-shell is shielded only by the second K-electron. Formu-
la (5.61) ought to be written more strictly in the form

o=R { (Z—~0y)? (Z—Oz)’}

n nj

5.12. Energy of a Molecule

Experiments show that the X-ray spectra of the heavy elements
do not depend on what chemical compound the given element is in.
It thus follows that the forces retaining atoms in a molecule are
due to interaction of the outer electrons. The electrons of the inner
shells remain in their previous states when atoms combine into
molecules.

In the following, we shall limit ourselves to a consideration of only
diatomic molecules. Two kinds of bond between the atoms in a mole-
cule are distinguished. One of them is encountered when the elec-
trons in a molecule can be divided into two groups each of which
is constantly near one of the nuclei. The electrons are distributed so
that a surplus of electrons is formed near one of the nuclei, and a
shortage of them near the other one. Thus, the molecule, as it were,
consists of two ions of opposite signs attracting each other. A bond
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of this kind is called heteropolar (or ionic). Examples of molecules
with a heteropolar bond are NaCl, KBr, and HCI.

The second kind of bond is observed in molecules in which part of
the electrons travel about both nuclei. Such a bond is called homo-
polar (or covalent, or atomic). It is formed by pairs of electrons hav-
ing oppositely directed spins. Among molecules of this kind, we
must distinguish ones with iden-

tical nuclei (I{,, N,, O,) and ones 7'/{
with different nuclei (forexample, / NN
CN). In the former molecules, the ru s AN
. . Iz 7/ \ N 76

electrons are distributed symmet- \ 7% \\\
rically. In the latter ones, there V4 P, \ S
is a certain asymmetry in the -/-5.:,{\ . * > +&
distribution of the electrons owing a S \ / b
to which the molecules acquire R N
an electric dipole moment. Tze “~Q N S8

The simplest molecule with a oY
homopolar bond is the hydrogen -¢
molecule. Soon after the creation Fig. 5.23

of quantum mechanics, W. Heit-
ler and F. London (1927) successfully tried to perform a quantum-
mechanical calculation of the ground state of the H, molecule.
They succeeded in solving the Schrédinger equation for a system
consisting of two protons (hydrogen atom nuclei) and two electrons
(Fig. 5.23). The potential energy of such a system is
% e? e? e3 e3 e?
U= Tia T2q T1b ":b+rm +R
The nuclei have a mass that is about 2000 times that of an electron.
This is why they move much more slowly than electrons, and in
a first approximation, they can be considered stationary. Hence,
the Schrodinger equation has the form

2me . 1 1
Vi + Vit [ E—e (g —
1t 4 1 A7,
e ) J¥=0 (5.69)

Here V; is the Laplacian operator containing the coordinates of one
electron, and V3 is the Laplacian operator containing the coordinates
of the other electron.

The eigenvalues of the energy obtained from Eq. (5.63) are found
to depend on the distance R between the nuclei, i.e. E = E (R).
The nature of this relation appreciably differs for parallel and anti-
parallel orientation of the spins of the electrons (Fig. 5.24). The
formation of a molecule is possible only when atoms with antiparallel
spins approach each other. The asymptotic value E, which the
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energy of a molecule tends to at R — oo for both curves shown in
the figure is the same and equals the sum of the energies of the iso-
lated atoms.

Matters are similar for other diatomic molecules. The energy
due to the electron configuration (the electron energy) has a minimum
at a certain value of R and is depicted by a curve of the same kind
as that for the hydrogen molecule (see curve 7 in Fig. 5.25).

" A change in the electron configuration of a molecule leads to
a change in the curve showing how the electron energy depends
on the distance R between the nuclei. The asymptotic value of the

£ £

H £pp
£gr

£F--\-—————=

Fig. 5.24 Fig. 5.25

energy also becomes different—equal to the total energy of the isolat-
ed atoms in the new quantum state (see curve 2 in Fig. 5.25).

The store of energy in a molecule mainly changes, as in an atom,
as a result of changes in the electron configuration forming the
peripheral part of the molecule. At a given electron configuration,
however, the nuclei of the molecule may vibrate and rotate diffe-
rently relative to the common centre of inertia. The stores of vibra-
tional and rotational energy are associated with these kinds of
motion, and they must be taken into consideration in the total
balance. Let us introduce the following notation:

E, = energy due to the electron configuration (electron energy)
E, = energy corresponding to the vibrations of a molecule (vibra-

tional energy)

E, = energy associated with the rotation of a molecule (rotational

energy). ‘

In a first approximation, the separate kinds of molecular mo-
tions—motion of the electrons, vibration and rotation of a mole-
cule—can be considered to be independent of one another. Hence,
the total energy of a molecule can be represented in the form

E=E,+ E, + E;
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According to Eq. (4.60), the energy of a harmonic oscillator is
determined by the expression

E,=@+12 ko, @=01,2 ... (5.64)

where v is the vibrational quantum number, and o, is the classical
frequency of the oscillator [in Eq. (4.60) these quantities were
designated by the symbols » and w]. We remind our reader that
the following selection rule holds for the
vibrational quantum number:

Av = +1 (5.65)

[see Eq. (4.61)].

The curve of the potential energy of £,
a molecule (see Fig. 5.25) coincides with
a parabola only at small vibrations. The
anharmonicity (deviations from harmoni-
city) that sets in when the intensity of
the vibrations grows results in the fact
that an increase in the quantum number 4 R
v is attended by crowding of the levels, Fig. 5.26
their limit being the energy E, of a dis-
sociated molecule (Fig. 5.26). At small values of v, however, we
may consider with a sufficient degree of accuracy that the vibrational
energy of a molecule is determined by Eq. (5.64).

Now let us turn to the rotational energy of a molecule. The energy
of a system having the moment of inertia / and rotating with the
angular velocity @, is

= l0_ e M2

r 2 2 T 21
where M = Iw, is the angular momentum of the system. According
to Eq. (4.34), the angular momentum can take on only discrete

values:
M=rVJIUJTF1) (J=01,2...)

(J is the quantum number of the angular momentum). Hence, the
rotational energy of a molecule can have only quantized values:

E,:"_'”T';t‘_) (5.66)
where 7 is the moment of inertia of a molecule relative to the axis
passing through its centre of inertia, and J is the rotational quantum
number taking on values of 0, 1, 2, etc.

The following selection rule holds for the rotational quantum

num ber:
AJ = +1 (5.67)
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Thus, according to Egs. (5.64) and (5.66), the total energy of
a molecule is

2
E=FEe+ (v45) o, +2LTHD (5.68)

Experiments and theory show that the distance between the rota-
tional levels AE; is considerably smaller than the distance between
the vibrational levels AE,.
The latter distance, in turn,
is considerably smaller than
that between the electron
= levels AE,. Consequently,
the diagram of the energy
levels of a diatomic molecule
has the appearance shown in
Fig. 5.27 (only two electron
_________________ levels are given). The collec-
tion of levels is contained in
the right-hand column. The
first two columnsonly ex-
plain the appearance of the
levels.
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5.13. Molecular Spectra

=7 == Whereas atomic spectra
consist of separate lines,
molecular spectra when ob-
served in an instrument of
------------------ medium resolving power are
. seen to consist of bands (see
Fig, 5.27 Fig. 5.28, which depicts a
portion of the spectrum ob-
tained for a glow discharge in air). When instruments having a high
resolving power are used, the bands are found to consist of a great
number of closely arranged lines (see Fig. 5.29, which depicts the fine
structure offone of the bands of the nitrogen molecule spectrum).
In accordance with their nature, the spectra of molecules are
known as band spectra. Three kinds of bands are distinguished
depending on the kind of energy (electron, vibrational, or rotational)
whose change results in a molecule emitting a photon. They are
(1) rotational, (2) vibrational-rotational, and (3) electron-vibrational
ones. The bands in Fig. 5.28 belong to the electron-vibrational type.
Bands of this type ave characterized by the presence of a sharp band
edge. The other end of such a band is blurred. The edge is due to the
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crowding of the lines forming the band. Rotational and vibrational-
rotational bands have no edge.

We shall limit ourselves to a treatment of the rotational and
vibrational-rotational spectra of diatomic molecules. The energy
of such molecules consists of electron, vibrational, and rotational
energies [see Eq. (5.68)]. All three kinds of energy have a minimum

25702~ ﬁ

RN

value in the ground state of a molecule. When a molecule receives
a sufficient amount of energy, it transfers to an excited state, and
then, performing a transition to one of the lower energy states
allowed by the selection rules, it emits a photon:

ho=AEe+AEy+AE;=
= Ee¢— Ee+ (v +1/2) oy — (V" +1/2) Koy +
h2J' (J' 4-1) R3J" (J"+1)
LI Cn—)
(it must be borne in mind that both o, and I differ for different
electron configurations of a molecule).
It was indicated in the preceding section that
AE.> AE, > AE,
Therefore, with weak excitations, only E, changes, with stronger
ones, E,, and only with still stronger excitations does the electron

configuration of the molecule, i.e. E,, change. o
Rotational Bands. Photons corresponding to transitions of a mole-
cule from one rotational state to another have the smallest energy
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(the electron configuration and the vibrational energy do not change
in this case):

B2 (I 41 3y ()"
ho=AE, = BLUEY _ Rr Gy

The possible changes in the quantum number J are restricted
by selection rule (5.67). Hence, the frequencies of the lines emitted

J' J)

J JT+) —_— 7z
— J 72 ‘; g
v’ g a
z 6" ﬁwu i J// J’Z/’{f’}
J 72
— ] 2 2 &
7
I .7 b3
Wy 2ty Sty daly @y,
Fig. 5.30 Fig. 5.31

in transitions between the rotational levels can have the values

m-—-—Aﬂ—B[(J-Fi)(J-.—2)—J(J+1)].-QB(J+1) oy (J+1)
where J is the quantum number of the level to which the transmon
occurs (it can have the values 0, 1 2, ...), and

B= (5.69)

Figure 5.30 shows schematically the appearance of a rotational
band. A rotational spectrum consists of a number of equispaced
lines in the very far infrared region. By measuring the distance
between the lines Aw = w,;, we can find the constant B of Eq. (5.69)
and calculate the moment of inertia of a molecule. Next, knowing
the masses of the nuclei, we can calculate the equilibrium distance
R, between them in a diatomic molecule.

The line spacing Ao is of the order of 10'® rad/s, so that we get
values of the order of 10-4° g.cm?® for the moments of inertia of
molecules. For example, for the molecule HCI, we have I = 2.71 X
X 10-% g.cm?, which corresponds to R, = 1.29 A.

Vibrational-Rotational Bands. When both the vibrational and the
rotational states of a molecule change in a transition (Fig. 5.31),
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the energy of the emitted photon will be
ho=AEy+ AE; =hoy (V' +1/2) — hoy (V" +1/2) +

+ R2J' (J'4-1) _ R3J" (J"41)
21 2I
The quantum number v obeys selection rule (5.65), and J obeys
rule (5.67).
Since AE, > AE,, the emission of a photon can be observed not
only when J' > J”, but also when J' << J”. If J' > J”, the frequen-
cies of the photons are determined by the formula

=0y +BIJ+) T+ =T +1)] =
=0y +2B(J+1) =0, +2Bk (k=1,23,...)

where J is the rotational quantum number of the lower level that
can take on the values 0, 1, 2, .. ., and B is the quantity given

by Eq. (5.69). If J' << J”, the formula for the frequency of the
photons has the form

=0, +BIJ—=1)J =TT+ 1l =
=0y —2B] =w, —2Bk (k=1,23,...)

where J is the rotational quantum number of the lower level that
can take on values of 1, 2, ... (in this case J” = J cannot have
the value of O because J' would be —1).

Both cases can be covered by the single formula

0=y 2Bk=0w, & 0k (k=1,2,3,...)

The collection of lines with frequencies determined by this formula
is called the vibrational-rotational band. The vibrational part of the
frequency w, determines the spectral region in which the band is;
the rotational part 4w,k determines the fine structure of the band,
i.e. the splitting of the individual lines. The region in which the
vibrational-rotational bands are extends approximately from 8000
t0 50000 A. A glance at Fig. 5.31 shows that the vibrational-rotation-
al band consists of a collection of lines symmetrical relative to
®, and spaced at a distance of Aw = ©;. Only at the middle of
the band is the distance twice as great because no line having the
frequency o, is produced.

The distance between the components of the vibrational-rotational
band is related to the moment of inertia of a molecule by the same
expression as holds for a rotational band. We can thus find the
moment of inertia of a molecule by measuring this distance.

We must note that rotational and vibrational-rotational spectra
completely corresponding to the conclusions of theory are observed
experimentally only for non-symmetrical diatomic molecules (i.e.
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for molecules formed by two different atoms). In symmetrical mole-
cules, the dipole moment equals zero, which leads to the forbidding
of rotational and vibrational-rotational transitions. Electron-vibra-
tional spectra are observed both for non-symmetrical and for sym-
metrical molecules.

9.14. Combination Scattering of Light

In 1928, the Soviet scientists Grigori Landsberg (1890-1957) and
Leonid Mandelshtam (1879-1944), and simultaneously the Indian
physicist Chandrasekhara Raman (1888-1970) discovered a pheno-
menon consisting in that the scattered light spectrum produced when

L1

Fig. 5.32

light passes through gases, liquids, or transparent crystalline bodies
apart from the unshifted line contains new lines whose frequencies ®
are a combination of the frequency of the incident light w, and the
frequencies w; of the vibrational or rotational transitions of the
molecules scattering the light:

® = 0y + 0; (5.70)
This phenomenon was named the combination scattering of light.*
Figure 5.32 shows a spectrum of the combination scattering of

oxygenexcited by the line Hg 2536.5 A. Onto the line of combination
scattering to the right of the line of the source there was superposed

* This phenomenop is usually called the Raman effect in foreign publica-
tions.
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the line Hg 2534.8 A (less intensive than Hg 2536.5 A) owing to
which the intensity of this line obtained was greater than that of
the others. Inspection of the figure shows that the combination
scattering spectrum consists of the unshifted line ®w, and a number
of satellites arranged symmetrically relative to it. To each “red”
satellite (i.e. a satellite shifted toward greater wavelengths) with
the frequency w, — w; there corresponds a “violet” satellite* with
the frequency w, + ®;. At ordinary temperatures, the intensity of
the violet satellites is considerably lower than that of the red ones.
The intensity of the violet satellites rapidly grows with elevation
of the temperature.

According to the quantum theory, the process of light scattering
can be considered as the inelastic collision of photons with mole-
cules. In a collision, a photon can give up to a molecule or receive
from it only such amounts of energy that equal the differences
between two of its energy levels. If upon colliding with a photon,
a molecule passes from a state with the energy E’ to a state with
the energy E” (E” > E'), then the energy of the photon after scatter-
ing will become equal to Aw, — AE, where AE = E”" — E’. Accord-
ingly, the frequency of the photon will diminish by w, = AE/fi—
a red satellite appears. If a molecule was initially in a state with
the energy E”, it may pass over into a state with the energy E’
because of colliding with a photon and give up its surplus energy
AE = E" — E’ to the photon. As a result, the energy of the photon
will become equal to Zw, + AE, and the frequency will grow by w,.
The scattering of the photon Zw, may be attended by transitions
of a molecule between different rotational or vibrational levels
E', E", E", etc. The result is the appearance of a number of sym-
metrically arranged satellites.

At ordinary temperatures, the number of molecules in the ground
state greatly exceeds the number of molecules in excited states.
Hence, collisions attended by diminishing of the energy of a mole-
cule occur much more rarely than collisions attended by an increase
in the energy. This explains the low intensity of violet satellites in
comparison with red ones. The number of excited molecules rapidly
grows with elevation of the temperature, and the result is an increase
in the intensity of the violet satellites.

The investigation of combination scattering gives a lot of infor-
mation on the structure of molecules. The natural frequencies of
vibrations of molecules are determined with the aid of this method.
It also allows us to assess the nature of symmetry of a molecule.
In crystals, the combination scattering of light is usually associated
with the so-called optical branch of oscillations of a crystal lattice

* The red satellites are also called Stokes lines, and the violet ones, anti-
Stokes lines.

10*
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(see Sec. 6.4). The spectra of combination scattering are so character-
istic of molecules that they are used in the analysis of complicated
molecular mixtures, especially of organic molecules whose analysis
by chemical methods is very difficult or even impossible.

We shall note that combination scattering relates to the so-called
non-linear effects (see Sec. 5.17).

5.15. Stimulated Emission

/ Up to now, we have considered only two kinds of transitions of
atoms between energy levels—spontaneous ones from higher to
lower levels, and transitions from lower to higher levels occurring
under the action of radiation (stimulated transitions). Transitions
of the first kind result in the spontaneous emission of photons by
atoms, while transitions of the second kind result in the absorption
of radiation by a substance.

In 1918, Albert Einstein gave attention to the circumstance that
the two kinds of radiation indicated above are not sufficient for
explaining the existence of states of equilibrium between radiation
and a substance. Indeed, the probability of spontaneous transitions
is determined only by the internal properties of atoms and, conse-
quently, cannot depend on the intensity of the incident radiation,
whereas the probability of “absorbing” transitions depends both on
the properties of atoms and on the intensity of the incident radia-
tion. To permit equilibrium to set in at an arbitrary intensity of the
incident radiation, the existence of “emission” transitions is needed
whose probability would grow with an increasing intensity of ra-
diation, i.e. of “emission” transitions produced by radiation. The
emission produced as a result of such transitions is called stimulated
or induced emission.

Einstein proved on the basis of thermodynamic considerations
that the probability of stimulated transitions attended by radiation
must equal the probability of stimulated transitions attended by
the absorption of light. Thus, stimulated transitions may occur with
equal probability in either direction.

Stimulated emission has very important properties. The direction
of its propagation exactly coincides with the direction of propagation
of the stimulating radiation, i.e. of the external radiation producing
a transition. The same relates to the frequency, phase, and polari-
zation of the stimulated emission and stimulating radiation. Conse-
quently, the stimulated emission and the radiation stimulating it
are strictly coherent. This feature of stimulated emission underlies
the action of light amplifiers and generators known as lasers (see
the following section).
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Assume that P, is the probability of a stimulated transition
of an atom in unit time from the energy level E, to the level E,,,
and P, is the probability of the reverse transition. It was indicated
above that at an identical intensity of radiation, P,, = P,.
The probability of stimulated transitions is proportional to the
density of the energy u, of the electromagnetic field inducing the
transition* falling to the frequency o corresponding to the given
transition [0 = (E, — En)/k]. Letting B stand for the coeﬁlclent
of proportionality, we get

Pym = Bpmla, Prn = Bmple (5.711)

The quantities B, and B,, are known as Einstein’s coefficients
According to what has been said above, B,,, = Bmn

Einstein gave a very simple derivation of Planck’s formula on
the basis of the equal probability of the stimulated transitions
n —m and m — n. Equilibrium between a substance and radiation
will be achieved provided that the number of atoms N, performing
the transition from the state n to the state m in unit time willequal
the number of atoms N,,, performing the transition in the opposite
direction. Assume that E, > E,. Hence, the transitions m —n
will be able to occur only under the action of radiation, whereas
the transitions n — m will occur both under stimulation and sponta-
neously. Consequently,

N N(stlm) N = (stlm)+N(spont)
n

The equilibrium condition has the form

NEHm _ pstim) | (spont) (5.72)

According to Eq. (5.71)
NG _p N, =BptioNm (5.73)
NE™ _p N B uN, (5.74)

(Nm and N, are the numbers of atoms in the states m and r).

Let us denote the probability of a spontaneous transition of an
atom from the state n to the state m in unit time by A4,,,. Hence,
the number of atoms performing a spontaneous transition n —m
in unit time is determined by the expression

N — 4 N, (5.75)

The introduction ef Egs. (5.73), (5.74), and (5.75) into Eq. (5.72)
yields
BmpuoNpm = BymuoNn + ApmNy

® In Sec. 1.7, we denoted the equilibrium value of uy by u (e, 7).
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The value of u, determined by this equation is the equilibrium
value of this quantity, i.e. u (o, T). Thus,
ApmN A 1
u , T —_ nmifn = nm
(0) ) anNm"‘BnmNn Bnm Nm/Nn""1
(we have taken into account that B, = B,).
The equilibrium distribution of atoms among states with a dif-
ferent energy is determined by Boltzmann'’s law, according to which
Nm _ En—Em\ __ 10}
Na =exp (=2 ) =exp (F)

Consequently, we arrive at the formula

__Anm 1
u(o, T)=5= exp (ho/KT)—1
To determine the coefficient A,,./B,n, Einstein took advantage
of the fact that at low frequencies, Eq. (5.76) must transform into
the Rayleigh-Jeans formula. When 7%w® < k7, the substitution
exp (Rw/kT) ~ 1 + ho/kT can be made, asa result of which Eq. (5.76)
acquires the form

(5.76)

A AT

U(G),T)=m P

A comparison with Eq. (1.52) gives for A,nm/B,m the value
Anm __ hod

Bnm._ n2cd .
Introduction of this value into Eq. (5.76) leads to Planck’s formula
[see Eq. (1.61)l. :

5.16. Lasers

In 1939, the Soviet physicist V. Fabrikant first indicated the
possibility of obtaining media in which light will be amplified at
the expense of stimulated emission (see the preceding section). In
1953, the first molecular generators operating in the range of centi-
metre waves and named masers were developed independently by
the Soviet scientists N. Basov and A. Prokhorov and the American
scientists C. Townes and J. Weber*. The word maser is an acronym
for microwave amplification by stimulated emission of radiation.
In 1960, T. Meiman (USA) developed the first similar device oper-
ating in the optical range—the laser (light amplification by stimu-
lated emission of radiation). Lasers are sometimes known as optical
quantum generators.

* In 1964, Basov, Prokhorov, and Townes were awarded the Nobel prize
for this work.
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We found out in the preceding section that when light of frequency
o acts on a substance and its frequency coincides with one of the
frequencies (£, — Ep)/% of the atoms of the substance (E, > E,),
it will set up two processes: (1) a stimulated transition m — n,
and (2) a stimulated transition n —m. The first process leads to
the absorption of light and attenuation of the incident beam, while
the second one leads to an increase in the intensity of the incident
beam. The resultant change in the intensity of the light beam depends
on which of the two processes predominates.

For thermodynamic equilibrium, the distribution of the atoms
by different energy states is determined by Boltzmann's law:

N exp (— Ez/kT) E;
N;,= Zexp(—Ej/kT) = C exp( kT) (5.77)
where |V is the total number of atoms, and N; is the number of
atoms at the temperature 7 in a state with the energy E; (we have
assumed for simplicity that all the energy levels are not degenerate).
It can be seen from this formula that the population of a level,
i.e. the number of atoms in a given state, diminishes with an increase
in the energy of the state. The number of transitions between two
levels is proportional to the population of the initial level. Conse-
quently, in a system of atoms in thermodynamic equilibrium, the
absorption of the incident light wave will predominate over stimu-
lated emission, so that the incident wave is attenuated when passing
through the substance.

To obtain amplification of the incident wave, we must invert the
populatlon of the energy levels, i.e. ensure that there are more atoms
in the state with the higher energy E, than in the state with the
lower energy E,. In this case, the given collection of atoms is said
to have an inverse population. According to Eq. (5.77)

Nn En— Em

Ny OXP (—=% )

For an inverse population, (V,/N,) >1 at (E, — E,) > 0. For-
mally extending distribution (5.77) to this case, we get a negative
value for T'. Therefore, states with an inverse population are some-
times called states with a negative temperature.

The change in the intensity of light when it passes through an
absorbing medium is described by the formula

I =TI (5.78)

In a substance with inverse population of the energy levels, the
stimulated emission may exceed the absorption of light by the atoms,
and as a result the incident beam of light will be amplified when
passing through the substance. The phenomenon of amplification of
the incident beam proceeds as if the absorption coefficient % in
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formula (5.78) became negative. Accordingly, a collection of atoms
with inverse population may be treated as a medium with a negative
absorption coefficient.

The creation of the laser became possible after ways were found
for inverting the population of the levels in certain substances.
In the first laser constructed by Meiman, the working substance
was a pink ruby cylindrical rod. The diameter of the rod was about
1 cm, and its length about 5 cm. The ends of the ruby rod were
thoroughly polished to form mirrors strictly parallel to each other.

Flosh-
-discharge tube

Emergent
bed/m

‘} Cooler Power source
Fig. 5.33

One end was coated with a dense opaque layer of silver, and the other
end was coated with a layer of silver that transmitted about eight
per cent of the energy falling on it.

A ruby is aluminium oxide (Al40,) in which some of the alumin-
ium atoms are substituted by chromium atoms. When light is
absorbed, the chromium ions Cr%* (the chromium is in the ruby
crystal in this form) become excited. The reverse transition to the
ground state occurs in two stages. In the first of them, the excited
ions give up part of their energy to the crystal lattice and pass into
a metastable state. The transition from the metastable state to the
ground one is forbidden by the selection rules. Therefore, the average
lifetime of an ion in the metastable state (~10-3 s) is about 10° times
greater than the lifetime in the ordinary excited state. In the second
stage, the ions pass from the metastable state to the ground one*
emitting a photon with A = 6943 A. Under the action of photons
of the same wavelength, i.e. in stimulated emission, the chromium
ions pass from the metastable state to the ground one much more
rapidly than in spontaneous emission.

The ruby in a laser is illuminated by a flash-discharge xenon tube
(Fig. 5.33) that produces light with a broad band of frequencies.

* The selection rules are not absolutely strict. The probability of the for-
bidden transitions is considerably smaller than of the allowed ones, but never-
theless differs from zero.
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When the power of the tube is adequate, most of the chromium ions
pass into the excited state. The process of imparting energy to the’
working substance of a laser to transfer the atoms into the excited
state is called pumping. Figure 5.34 gives a diagram of the levels
of the chromium ion Cr?* (level 3 is a band formed by a collection of
closely arranged levels).

The excitation of the ions as a result of pumping is depicted by
arrow W, The lifetime of level 3 is very small (~10-8 s). During
this time, some ions pass spon-

taneously from band 3 to ground g sz

level 7. Such transitions are de- z
picted by arrow 4 ;. Most of the -

ions, however, will pass to meta- pu,,,‘g%j Wz |As Az Z/;}jl
stable level 2 (the probability

of the transition depicted by arrow 7

S3, is much greater than that of .

transition 4;,). When the pump- Fig.5.34

ing power is adequate, the num-
ber of chromium ions at level 2 becomes greater than their number
at level 7. Consequently, levels 7 and 2 become inverted.

Arrow A, depicts a spontaneous transition from the metastable
level to the ground one. The emitted photon may produce stimulated
emission of additional photons (transition W, ) which, in turn, will
produce stimulated emission, etc. A cascade of photons is formed
as a result. We remind our reader that the photons produced in
stimulated emission fly in the same direction as the incident photons.
The photons whose directions of motion form small angles with
the axis of the crystal rod experience multifold reflection from its
ends. Therefore, their path in the crystal will be very long, so that
the cascades of photons in the direction of the axis will receive spe-
cial development. The photons emitted spontaneously in other direc-
tions emerge from the crystal through its side surface.

The process of formation of a cascade is shown schematically
in Fig. 5.35. Before the beginning of a pulse, the chromium ions
are in the ground state (the black circles in Fig. 5.35a). The pumping
light (the solid arrows in Fig. 5.35b) transfers most of the ions to the
excited state (white circles). A cascade begins to develop whenthe
excited ions spontaneously emit photons (the dash arrows in Fig.
5.35¢) in a direction parallel to the axis of the crystal (the photons
emitted in other directions emerge from the crystal). The photons
multiply at the expense of the stimulated emission. This process
develops (Fig. 5.35d and e) because the photons repeatedly pass
along the crystal, being reflected from its ends. When the beam
becomes sufficiently intense, part of it emerges through the half-
silvered end of the crystal (Fig. 5.35f).
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Ruby lasers are pulsed ones (with a frequency of the order of sever-
al pulses a minute). A large amount of heat is liberated inside the
crystal. It therefore has to.be 1ntenswe1y cooled, which is done with
the aid of liquid air.

In 1961, A. Javan developed the first gas laser operating on a mix-
ture of hellum and neon. In 1963, the first semiconductor lasers
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were designed. At present, the list of laser materials includes many
scores of solid and gaseous substances.

Laser radiation is distinguished by a number of remarkable fea-
tures. It is characterized by (1) a strictly monochromatic nature
(AA ~ 0.1 A), (2) a high temporal and space coherence, (3) a high
intensity, and (4) narrowness of the beam. The angular width of the
light beam generated by a laser is so small that by using telescopic
focussing, it is possible to obtain a spot of light with a diameter
of only three kilometres on the Moon’'s surface. The high power and
narrowness of the beam make it possible, when focussing with the
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aid of a lens, to obtain a density of the energy flux that is 1000 times
greater than the density of the energy flux that can be obtained by
focussing sunlight. Light beams with such a high density of their
power can be employed for mechanical processing and welding, for
acting on the course of chemical reactions, etc.

The high coherence of the radiation opens up broad prospects for
the use of lasers for radio communication, in particular for directed
radio communication in outer space. If a method of modulation and
demodulation of light is found, one laser will be able to replace with
respect to the volume of transmitted information the entire system
of communication between the east and west coasts of the USA.

The high coherence of a laser beam made it possible to bring to
life such a remarkable phenomenon as holography.

What has been said above far from exhausts all the possibilities
of the laser. It is an absolutely new type of light source, and it is
meanwhile difficult toimagine all the possible fields of its application.

5.17. Non-Linear Optics

In a light wave produced with the aid of conventional (non-laser)
light sources, the electric field strength E is negligibly small in com-
parison with the strength of the internal microscopic field acting
on the electrons in a substance. For this reason, the optical properties
of the medium (in particular, the refractive index) and the nature
of the overwhelming majority of optical phenomena do not depend
on the intensity of light. In this case, the propagation of light waves
is described by linear differential equations. Therefore, prelaser
optics can be called linear. We must note that the principle of light
wave superposition (expressed in geometrical optics by the law
of the independence of light rays) holds only in the region of linear
optics. True, non-linear phenomena were also known in optics
before the development of lasers. They include, for example, the
combination scattering of light (the Raman effect). In combination
scattering, the transformation of the frequency of a monochromatic
light wave is observed, which is a feature of the non-linear nature
of the process. In the predominating majority of cases, however,
the optical processes were linear.

After the appearance of lasers, matters in optics changed quite
appreciably. Quantum generators (lasers) make it possible to pro-
duce light waves with a field strength of almost the same magnitude
as the strength of the microscopic field in atoms. For such fields,
the refractive index depends on the strength E. In this case, the
superposition principle is violated, the different waves propagating
in a medium affect one another, and a number of non-linear optical
phenomena appear. We shall briefly describe some of them.
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Non-Linear Reflection of Light. At high intensities, radiation on
the second harmonic of the incident radiation appears in the reflected
light. In other words, in addition to the reflected ray having the
frequency @ equal to the frequency of the incident light, a reflected
ray of intensity 2w is observed. This ray does not obey the conven-
tional law of reflection, and as a consequence the direction of the
reflected ray of frequency 2w does not coincide with the direction
of the reflected ray of frequency .

Self-Focussing of Light. At conventional intensities, an initially
parallel narrow beam of light when propagating in a vacuum or
in a medium undergoes so-called diffraction spreading, as a result
of which diffraction divergence of the beam appears. It was found
that when light beams propagate in liquids and in certain crystals,
an increase in the power of a beam is attended by diminishing of
its divergence. At a certain power called the critical one, the beam
propagates without any divergence. Finally, at a power higher than
the critical one, the beam contracts—self-focussing of the beam
takes place in the medium. This phenomenon is due to the fact that
the refractive index increases with a growth in the strength E.
Therefore, the medium becomes optically denser in the region occu-
pied by the beam, and this leads to bending of the rays toward the
beam axis, i.e. to contraction of the beam.

Optical Harmonics. In the scattering of a laser beam in liquids
and crystals, in addition to the light with the frequency of the
incident radiation o, scattered light is observed having frequencies
that are multiples of the initial frequency (i.e. the frequencies 2w,
3w, etc.). These components of the scattered light are known as
optical harmonics. The intensity of the optical harmonics may
be quite considerable; in some crystals up to 50% of the power
of the scattered radiation may transform into radiation of the har-
monics.

Multiple-Photon Processes. At conventional intensities, only one
photon is absorbed in an elementary event of interaction of light
with a substance. The energy %o of the photon coincides with the
difference between the energy levels E, — E, of the relevant atom
or molecule. At high intensities, two or more photons may be absor-
bed in an elementary event of interaction. In this case, light net
only of the frequeney o = (E, — E;)/k, but also of the frequencies
'‘@/2, ©/3, etc. may be absorbed. Such absorptionis called multiple-
photon (in particular, two-photon, three-photon, etc.).

In one elementary event of interaction of light with a substance,
two photons of different frequencies may be absorbed. This occurs
when the light field is set up by two independent monochromatic
sources. If the sum of the frequencies of these sources satisfies the
condition ®; + w, = (E; — E,)/k, an appreciable absorption of
the radiation of both frequencies is observed. For this to occur, the
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two radiations do not necessarily have to be of a high power. It is
sufficient that their total intensity will be high. Therefore, multiple-
photon absorption can be observed when light from a laser and a non-
laser source with a continuous spectrum is superposed.

Multiple-photon processes also include the multiple-photon photo-
electric effect (the multiple-photon ionization of atoms). Whereas
the conventional (single-photon) photo-electric effect is observed
at frequencies at which the energy of a photon is greater than the
energy of ionization of an atom, the multiple-photon photo-electric
effect can occur at frequencies that are 1/n-th of these frequencies
(n is the number of photons participating in an elementary event
of interaction). The seven-photon ionization of inert gases has been
reliably registered.

We have given a far from complete list of already discovered non-
linear phenomena. It is sufficient, however, to form an idea of how
rapidly the new branch of optics—non-linear optics—is developing.



PART III  SOLID STATE
PHYSICS*

CHAPTER 6  OSCILLATIONS OF
A CRYSTAL LATTICE

6.1. Crystal Lattice. Miller Indices

An ideal crystal lattice is formed of identical unit cells. Each
of them in the general case is an oblique parallelepiped constructed
on the three vectors a, b, e. The latter can be taken as the unit
vectors of the coordinate axes. The magnitudes of the vectors are
the periods of identity in the directions of the relevant axes.

The choice of the coordinate axes, generally speaking, is not
unique. The same crystal can be represented as consisting of different
unit parallelepipeds. It is customary practice to choose the axes
in the simplest way with account taken of the symmetry of the crystal.

Special symbols are used for an analytical description of the
geometrical elements of a crystal, i.e. of its points, straight lines
(directions) and planes.

Let us take a point with the coordinates z, y, z**. We shall adopt

the combination of the quantities %, %, %, which are confined

in double brackets, as the indices of a point: [[-Z——g— %]] Usually,

we have in mind points within the limits of a cell adjoining the origin
of coordinates. In this case, the indices will be numbers not exceed-

ing 1. For example, the indices 111 correspond to the centre
222

* In the present part of the course, by solids we mean crystalline substances.
Some information on crystals was given in Chapter 13 of Vol. I. There we set
out information on the classification of crystals, the physical kinds of crystal
lattices, and defects in crystals. In Vol. II we treated the classical theory of
the electrical conductance of metals (Chapter 11), and also gave some informa-
tion on the magnetic properties of bodies (Chapter 7). Naturally, we shall not
repeat all this information here and shall limit ourselves to settling out the
material that was not dealt with in the preceding volumes of the course. -

** In the general case, these coordinates are oblique, and not Cartesian ones.
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of the crystal cell, and the indices [[ %-3— ] to the centre of the

face in plane yz.

A direction in a crystal can be set with the aid of a straight line
passing through the origin of coordinates. The direction of such
a straight line is determined by the smallest integers m, n, p that
are proportional to the indices of any point through which the line
passes®.

nip=—.%.%

minip=-—::—
The numbers m, n, p are called direction indices and are confined
in single brackets: [m, n, pl. Thus, the direction of a straight line

passing through the origin of coordinates and the point H%%— 1]]

is designated by the symbol [2 3 6].

If one of the numbers m, n, p is negative, the minus sign is
put not in front of, but on top of the relevant number. For example,
the direction opposite to the y-axis is designated by the symbol
(01 0.

The position of a plane in a crystal can be determined by setting
the intercepts u, v, w formed by the plane on the coordinate axes.
For planes passing through the lattice points, however, it is more
convenient to set the position of a plane with the aid of the smallest
integers h, k, I that are the reciprocals of the intercepts u, v, w:

hokil=1 NP

u v w
The numbers, &, k, I are known as the Miller indices. When writing
the symbol of a plane, we confine the Miller indices in parentheses:

(2 k l). Assume, for instance, that the intercepts formed by a plane

on the coordinate axes are % , %, and 1. Their reciprocals will be

2, %, and 1. Multiplying these numbers by 2, we get the Miller
indices: (4 3 2).

When an intercept formed by a plane on a coordinate axis is nega-
tive, the minussign is put not in front, but on top of the correspond-
ing Miller index. If a plane is parallel to a coordinate axis, the inter-
cept on this axis is infinitely great, so that the relevant index is zero.

We must note that for cubic crystals the plane (& &k I) is perpen-
dicular to the straight line [k k& I]. This does not occur, generally
speaking, for crystals of other systems.

* The directions passing through the crystal lattice points are usually of
interest. This is why the indices form an integral proportion.
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Figure 6.1 gives the Miller indices for the basic. planes of a cubic
crystal (the z-axis is directed toward us, the y-axis to the right,
and the z-axis upward).

il

(100) (110) (1m)
Fig. 6.1

6.2. Heat Capacity of Crystals. Einstein’s Theory

According to classical notions, a crystal consisting of N atoms is
a system with 3N vibrational degrees of freedom, to each of which

there falls on an average the energy kT ( % kT in the form of kinetic

and —; kT in the form of potential energy). These notions lead to the

Dulong and Petit law, which states that the molar heat capacity of
all chemically simple bodies in the crystalline state is the same and
equals 3R (see Sec. 13.5 of Vol. I, p. 375). This law is obeyed suffi-
ciently well only at comparatively high temperatures. At low
temperatures, the heat capacity of crystals diminishes and tends to
zero upon approaching 0 K.

The value of kT for the average energy of vibrational motion is
obtained assuming that the energy of a harmonic oscillator can take
on a continuous series of values. We established in Sec. 4.10 that
vibrational energy is quantized. The result is that the average energy
of vibration differs from k7. According to Eq. (4.60), the energy
of a harmonic oscillator can have the values

en=(n+5)h0  (2=0,1,2,...)

Assuming that the distribution of the oscillators by states with
different energies obeys the Boltzmann law, we can find the average
value of the energy of a harmonic oscillator {¢). Performing calcu-
lations similar to those that led us to formula (1.60), we shall get an
expression for (¢) which differs from Eq. (1.60) only in having the

additional addend -;-nm. Thus,

1 . ko
© =7 Ao+ exp (hw/kT)—1 (6-)
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The theory of the heat capacity of crystalline bodies taking into
account the quantization of the vibrational energy was created by
Einstein (1907) and was later improved by Debye (1912).

Einstein considered that a crystal lattice consisting of N atoms
is identical to a system of 3N independent harmonic oscillators
with an identical natural frequency o. The existence of the zero
energy of oscillations was established much later, only aiter the
appearance of quantum mechanics. Therefore, Einstein proceeded
from Planck’s value of the energy of a harmonic oscillator &, = nio.
Accordingly, in the expression for {(¢) used by Einstein, the addend
%—hm was absent,

Multiplying the second addend of Eq. (6.1) by 3N, Einstein ob-
tained the following formula for the internal energy of a crystal:

3Nko

U= exp (hw/kT)—1 (6.2)

Differentiating Eq. (6.2) with respect to the temperature, Einstein
found the heat capacity of a crystal:

U 3Nko ) ho
C=—= [exp (ho/kT)—1]3 °XP (Ra/kT) 37w (6.9)

Let us consider two extreme cases.

1. High temperatures (k7 > 7%®). In this case, we may assume
that exp (Aw/kT) ~ 1 + KRw/kT inthedenominatorand exp (Zw/kT)~
~ 1 in the numerator of Eq. (6.3). As a result we get the fol-
lowing value of the heat capacity:

C = 3Nk

We have thus arrived at the Dulong and Petit law.

2. Low temperatures (k7 < %w®). For this condition, we may
disregard unity in the denominator of Eq. (6.3). The formula for
the heat capacity thus becomes

3N (ho)? ho
C=———kTT- exp( —--E]T) (6.4)

The exponential multiplier varies much more rapidly than 72
Therefore when approaching absolute zero, Eq. (6.4) will tend to
zero practically according to an exponential law. Experiments show
that the heat capacity of crystals varies near absolute zero not expo-
nentially, butaccording to the law 7. Hence, Einstein’s theory gives
only a qualitatively correct course of the heat capacity at low tem-
peratures. P. Debye succeeded in achieving quantitative agreement
with experimental resalts.
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6.3. Oscillations of Systems with a Large Number
of Degrees of Freedom

To gain an understanding of Debye's theory, we must know the
solution of the problem on small-amplitude oscillations of a sysiem
with a large number of degrees of freedom. In the present section,
we shall consider the results of solving this problem without touching
on the ways of solving it.

The position of a system with s degrees of freedom can be set with
the aid of s quantities ¢; called the generalized coordinates of the
system. The part of the generalized coordinates can be played by
lengths, angles, areas, etc. The generalized coordinates for the same
system can be chosen in different ways. It can be shown that such
a system has s natural frequencies w, ( is the number of the natural
frequency running through the values 1, 2, ..., s). With an arbitrary
choice of the generalized coordinales g;, the general solution of the
equations of motion has the form

s
9= ElAiacos(mat’i'éa) (t=1,2,...,9)

o==
Hence, each of the functions g; is, generally speaking, a superposi-
tion of s harmonic oscillations with the frequencies w,.

The energy of a system is determined by the expression
1 -1«

E=— > autigr+5 2 bin@idm

s
i, h=1 I, m=1

where the first sum gives the kinetic and the second the potential
energy of the system; a;, and b, are dimension coefficients. Thus,
the expression for the energy includes, in general, not only the squares

of the generalized coordinates g¢; or the generalized velocities g;,
but also the producis of the coordinates or velocities corresponding
“to different degrees of freedomn of the system.

It was found that we can choose the generalized coordinates of
a system so that the change in each of them is a simple harmonic
oscillation occurring with one of the natural frequencies o,.
Denoting these coordinates by E,, we can write that

Ee =Bgcos (wgt +6,) (a=1,2,...,5)

The generalized coordinates &, perform a harmonic oscillation
independently of one another, and each with its own frequency .
The generalized coordinates chosen in this way are called normal (or
principal), while the harmonic oscillations they perform are known
as the normal osciilations of the system.
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We must note that the changes in time of the arbitrarily chosen
generalized coordinates g; can be represented in the form of the
superposition of the normal oscillations g,

8§

Qz‘::E Ciala (i=1,2,...,9)
o=t
The expression for the energy in normal coordinates has the form

s S S
E=rp 3 aafit s 3 b= D (5 cabhot 5 boih)
a=1 =1 =1
Consequently, the energy of a sysiein equals the sum of the energies
falling to each of the normal oscillations separately.

Let us consider as an example a system consisting of two identical
mathematical pendulums joined by a weightless spring (Fig. 6.2).
Let us assume that the pendulums can
oscillate only in the plane of the drawing, /( b
so that the system has two degrees of ’
freedom. The position of the system can
be set by the angles of deviation of both

i L Vi
pendulums from the vertical position, or ) )
by the angle of deviation of one of the @
pendulums and the length of the spring, Fig. 6.2
and so on. The solution of the equations
of motion gives the following expressions for the angles ¢, and @,
of deviation of the pendulums from their equilibrium position:

@, = Ajcos (a5t + 8;) + A, cos (@8 4 8y)
g = A4y cos {938 4 8,) — A, cos (wgt + 8,)

Here 4,, 4,, §;, and 8, are counstants determined from the initial
~onditions, and ®, and w, are the vatural frequencies of the system

equal to
v g | o kb2
o=V'E oy Frlk

(m is themass, ! is the length of the pendulums, k is the spring con-
stant, and b is the distance from the point of suspension to the point
of fastening of the spring).
It is a simple matter to represent the oscillations @, and ¢, in
the form
o =8 +E& @=5—28
where
§ = &‘i’:& = A, cos (0t -+ &)
“ (6.5)
EZ == —(p—l:zr—?l == Az Ccos (mzt + 62)
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These two functions represent the normal oscillations of the given
system. If the pendulums are deflected to the same side through
the same angle @, = @,, and released without a push, then only
the first normal oscillation will be completed (4, % 0, 4, = 0),
and @, = ¢, = §; (Fig. 6.2a). If we deflect the pendulums through
the same angle in opposite directions (@;, = —@,,), then only
the second normal oscillation will be completed (4, = 0, 4, 5= 0),
and @, = —q, = ¥, (Fig. 6.2b). In
the first case, the pendulums oscil-
late with the frequency w,, in the
second with the frequency w, that
is greater than ®,. In other initial
conditions, both normal oscillations
will be performed simultaneously.
Let us consider as a second exam-
plea system of three identical spheres
joined by identical weightless
springs (Fig. 6.3). Spring ends 4 and
B arerigidly fixed. It is assumed that

7 J
@) A MI—, o ST, g the spheres can move only in the

@ a

b 4

LLN plane of the drawing in directions

2 at right angles te line AB. The sys-

tem has three degrees of freedom in

Fig. 6.3 these conditions. The normal oscil-

lations are shown in Fig. 6.3. In case
a, all the spheres mcve in the same phase; in case b, spheres 7 and
3 oscillate in counterphase, and sphers 2 is stationary; in case ¢,
spheres 7 and 3 oscillate in the same phase, and sphere 2 moves in
counterphase with respect to them.

6.4. Debye’s Theory

Debye took into account that the oscillations of the atoms in
a crystal lattice are not independent. Displacement of one of the
atoms from its equilibrium position results in the displacement
of other atoms neighbouring with it. Thus, a crystal is a system of NV
elastically joined atoms with s = 3N degrees of freedom.

In Sec. 14.8 of Vol. II, p. 293 et seq., we found out that thearbit-
rary oscillation of a string is the superposition of harmonic standing
waves. Consequently, every normal oscillation of a string is a stand-
ing wave. Similarly, a standing wave that sets in within acrystalline
body corresponds to every normal oscillation of the crystal lattice.
Indeed, owing to the bond between the atoms, an oscillation appear-
ing at one place in a crystal is transmitted from one atom to another,
asa result of which an elastic wave is produced. Upon reaching the
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boundary of the crystal, the wave is reflected. When the direct and
reflected waves are superposed, a standing wave is formed. Standing
waves can be produced only for frequencies (or wavelengths) satisfy-
ing definite conditions. If we take a crystalline body in the form
of a parallelepiped with sides of @, b, and ¢, then these conditions
are expressed by Eqgs. (1.46).

The number of standing waves, i.e. normal oscillations, whose
frequencies are confined within the interval from o to o -+ do
is determined by Eq. (1.49). The volume of the crystal V enters
this expression in the form of a separate multiplier. We can there-
fore speak of the number of normal oscillations per unit volume
of a crystal. In accordance with Eq. (1.50), this pumber is

widw
where v is the phase velocity of the wave in the crystal. We shall
stress that now by d NV, we undersiand the number of standing waves
per unit volume; in Sec. 1.5 this number was designated by the
symbol dr,. In connection with the fact that we shall need the
letter n to denote the number of atoms in unit volume, however,
it is expendient to write dN, instead of dn,,.

Equation (6.6) takes no account of the possible kinds of polari-
zation of a wave. Three different waves with the same value of @
can propagate in a solid medium along a certein direction. These
waves differ in the direction of polarization: one is longitudinal and
two are transverse with mutually perpendicular directions of oscil-
lations. Accordingly, Eq. (6.6) must be modified as follows:

de=w°dm (T;;T_}' 2 )

T T
Here vy is the phase velocity of the longitudinal and v, of the trans-
verse elastic waves. Let us assume for simplicity that vy = v; = v.
Hence,
2,
AN, =90 (6.7)

T 2n%08

We can find the maximum frequency op of the normal oscilla-
tions of a lattice by equating the total number of oscillations to the
number of degrees of freedom equal to 3n (n is the number of atoms
in unit volume of the crystal; we remind our reader that the calcu-
lation is being performed for unit volume):

i 3w2d o}
W“aw m
3n = Sde'—_ j; InES - IS

Hence
®p ="V f/ﬁnzn 6.8)
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We shall note that in accordance with’ Eq. (6.8), the smallest
iength of a wave excited in a crystal is

24‘” ~ "s—z:..‘ ~ 2(’
D Y n
where d is the distance beiween neighbouring atoms in a lattics.
This result agress with the fact that waves whose length is less than
the double interatowic distance have no physical meaning.
Deleting the velocity v from Egs. (6.7) and (6.8), we obtain
the following expression for the number of normal oscillations dN,,
in the frequency interval do per wait volume of & crystal:
'0% do
o (6.9)
The internal energy of unit volume of a crysial can be reprasented
in the form

Amm

= S (e (@))dN,

where (¢ (@)) is the average valuo of ths energy of normal oscii-
iation at the frequency w. Introducing Eq. (6.1) for (& (®)) and
{6.9) for dN,, we arrive at the formula

m.

m
9n 1 hw \
= 270 =
U= PR i ( 5 o - wip Galky T ) ©*d

[OFY

9nh o’dw
"Uo'l’ Y exp (ho/kT)—14 (5}103

Here U, = 3n (—gi hcom) is the energy of zero oscillations of a crystal.

The derivative of ¥ with respect to 7' gives the heat capacity
of unit volume of a crystal
Om

c=9Y . 9nz S‘ exp (Ao/kT) inddo
= 6T o)?n [exp (hw/kT)—1]2 k72

The! quantity O determined by the condiiion FAwy, = O i3
called the Debye characteristic temperature. By definition,
A
==z (6.41)

The Debye temperature indicates for each substance the region where
the quantization of the energy of oscillations becomes anprectable
Let us introduce the variable z = %w/kT. Hence, the expression
for the heat capaciiy becomes
x.

m
C =9nk (.g-)“ g (:,,—’j‘_‘})f,- (6.12)
0
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where zq = Rwn/kT = ©/T. When T < ©, the upper limit of the
integral will be very great, so that it can be assumed approximately
equal to infinity (zm & o). Therefore, the integral will be a certain
number, and the heat capacity C will be proportional to the cube of
the temperature: C oc T°. This approximation is known as the
Debye 7’2 law. At sufficiently low

temperatures, this law is obeyed 4 72
very well in many cases. a9 T
When 7> ©, i.e. when % »
hon/kT < 1, Eq. (6.10) can be as / Tominiiit
simplified by assuming that % i -39 K
oxp (Aw/kT) ~ 14 ho/kT. Hence a3\~
for the internal energy, we get 221
the expression a7
o Vi w e aw ”./017
U=U _|.9_"h_S -k-coaad(o= U :
0T 3 ) e 7" ag
; Ra: .
J— g r T
== UO + 3nkT gg L Coaer
while for the heat capacity we get a7 G=09 X
the value € = 3nk figuring in the 23
Dulong and Petit law. 2¢117
That Debye’stheory agrees with 4
experimental data can be seen g w w0 r ,;7//”
in Fig. 6.4 which gives data for . ’
the heat capacity of aluminium Fig. 6.4

(® == 396 K) and copper (@ =
=309 K); Cox isthe classical value of the heat capacity obtained
from quantum formulas for 7 — oo. The curves have been plotted
according to Eq. (6.12), the circles show the experimental points.
Debye’s formula gives the change in the heal capacity with the
temperature quite well only for bodies with simple crystal lattices,
i.e. for chemical elements and some simple compounds. The formula
may not be applied for bodies with a more intricate structure. This
is due to the spectrum of oscillations in such bodies being extremely
complicated. For the simple crystal lattice considered above (in
which a unit cell contains only one atom) three values of the natural
frequency of oscillations of the lattice (one for the longitudinal wave
and two values coinciding with each other* for the transverse waves)
corresponded to each value of the wave vector k. If the number of
atoms in a unit cell of a crystal is r, then in the general case 3r
different values of @ correspond to each value of k. Consequently,
the frequency is a multiple-valued function of the wave vector and
has 3r branches. For example, for a unidimensional chain construct-

* In a greatly anisotropic crystal, all three frequencies will be different.
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ed of alternating atoms of two species (r = 2), the dependence of o
on k has the form shown in Fig. 6.5. One of the branches is called the
acoustic, and the other the optical one. These branches are distin-
guished by their dispersion, i.e. the nature of the dependence of
o on k. The acoustic branch tends to zero when
k diminishes, while the optical branch has the
w,  terminal value of w,, as its limit.
o In the three-dimensional case, of 3r branches,
1 three are acoustic, and the remainder (3r - 3)
7 ! are optical. Sound frequencies correspond to the
coustic branch o . . .
' acoustic branches, and frequencies in thein-
P .y frared region of the spectrum, to the optical ones.
. In normal oscillations of an acoustic frequency,
Fig. 6.5] similar atoms in different unit cells oscillate
relative to one another. In normal oscillations
of an optical frequency, different atoms within each of the unit cells
oscillate relative to one another; similar atoms of different cells are
at constant distances from one another.

@ Optical bronch
zp [

6.5. Phonons

We established in the preceding section that the energy of a crystal
can be represented as the sum of the energies of normal oscillations
of a lattice:

3Nr '
U= Z (n1+7) ﬁ(l)‘

i={

(N is the number of unit cells in a crystal, and r is the number of
atoms in a cell).

With deduction of the energy of zero oscillations, the energy of
a normal oscillation of frequency w; consists of portions of the mag-

nitude
€, = ho; (6.13)

This portion (quantum) of energy is called a phonon. Many processes
in a crystal (for example, the scattering of X-rays or neutrons) pro-
ceed as if a phonon had the quasimomentur

p = fk (6.14)

where k is the wave vector of the corresponding normal oscillation.

A phonon in many respects behaves as if it were a particle having
the energy determined by Eq. (6.13) and the momentum determined
by Eq. (6.14). Unlike ordinary particles (electrons, protons, pho-
tons, etc.), however, a phonon cannot appear in a vacuum— it needs
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a medium to appear and to exist. Particles like this are known as
quasiparticles. Thus, a phonon is a quasiparticle. Accordingly, the
quantity p [Eq. (6.14)] for a phonon is called the quasimomentum.
For conditions of thermal equilibrium, the average number of
phonons (r;) of frequency ®; is determined by the expression

R i p10)
<(n‘ + T) hwi> =7 Ao+ exp (ho)iz;cT)—i
[see Eq. (6.1)]. Hence,

1
(ny) =5 okl =T (6.15)

It can be seen from Eq. (6.15) that an unlimited number ofidenti-
cal phonons can be excited in a crystal simultaneously. Hence,
the Pauli principle does not extend to phonons.

We must note that the quanta of an electromagnetic field—photons
in a state of equilibrium with the walls of a cavity (see Chap. 1),
also obey distribution (6.15).

Thus, the oscillations of a crystal lattice can be represented as
a phonon gas confined within the limits of a crystal specimen like
electromagnetic radiation can be represented as a photon gas filling
a cavity. Formally, both notions are very similar—both photons
and phonons obey the same statistics. But there is a significant dis-
tinction between photons and phonons: whereas photons are true
particles, phonons are quasiparticles.

The combination (Raman) scattering of light by crystals (see
Sec. 5.14) can be interpreted as a process of interaction of a photon
with phonons. A photon flying through a crystal lattice may excite
in it a phonon of one of the frequencies of the optical branch of the
crystal. The photon uses part of its energy to do this. Consequently,
its frequency decreases—a red satellite appears. If a phonon had
already been excited in a crystal, a photon flying through the lattice
may absorb it and increase its energy as a consequence—a violet
satlellite appears.

Distribution (6.15) is a particular case of the Bose-Einstein distri-
bution that is obeyed by particles having an integral (in particular,
a zero) spin. The geperal expression of this distribution has the form

1
(M) =P (E—p T =1 (6.16)

where (n;) = average number of particles in the state numbered &
E; = energy of a particle in this state

p = so-called chemical potential determined from the con-

dition that the sum of all the (n;)’s equals the total

aumber of particles N in the system: D) (r;)} = N.
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The values of w in distribution (6.16) cannct be positive because
if it were, at E; << u the average number (7;) would be negative,
whichis deprived of a physical meaning. Thus, p << 0. For systems
with a varying number of particles (among which are both a system
of photons and a system of phonons), u = 0, and Eq. (6.16) trans-
forms into Eq. (6.15).

Distribution (6.16) is the cornerstone of the Bose-Einstein statis-
tics. Particles obeying this statistics are known as bosons. Thus,
both photons and phonons are bosons. Bosons include all particles
having a zero or integral spin.

Bosons are characterized by the fact that the probability P of
the appearance (“birth”) of a boson in a state in which there are al-
ready n particles is proportional to the square root of n:

PV (6.17)

Thus, bosons “like” to accumulate in one state—they are “collec-
tivists”.

6.6. The Mossbauer Effect

Atoms absorb light of a frequency corresponding to the transition
from the ground state to the nearest excited state especially inten-
sively. This phenomenon is called resonance absorption. Returning
later to the ground staie, the aioms emit photons of the resonance
frequency. The corresponding radiation is known as resonance emis-
sion or resonance fluorescence. The phenomenon of resonance fluo-
rescence was discovered by the American physicist Robert Wood
(1868-1955) in 1904. He found that sodium vapour when irradiated
with light corresponding to the yellow line of sodium begins to glow,
emitting radiation of the same wavelength. Later, similar glowing
was observed in mercury vapour and in many other cases. Owing to
resonance absorption, the light passing through the fluorescing sub-
stance weakens.

Like atoms, atomic nuclei have discrete energy levels. The lowest
of them is called the ground (or normal) level, and the others are
excited levels. Transitions between these levels lead to the produc-
tion of short-wave electromagnetic radiation that has been called
gamma-rays (see Sec. 10.5). The existence of the phenomenon of
nuclear resonance fluorescence similar to the atomic resonance
flucrescence observed in visible light could be expected for gamma-
rays. For a long time, however, no investigators succeeded in observ-
ing resonance fluorescence with these rays. The explanation of this
is as follows. It was shown in Sec. 5.3 that the emission line and
the absorption line corresponding to a transition of a quantura system
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beiween two states are shifted relative to each other by 2A@y =
== 2#//k, where R 1s the recoil energy determined by Eq. (5.23).
For visible light, the shift 2Awg is many orders of magnitude smalier
than the breadth of a spectral line 6® so that the emissicn and absorp-
tion lines are virtually superimposed. Matters are different with
gamma-rays. The energy and momentum of a gamma-photen are
many times greater than those of a photon of visible light. Therefore,
the recoil energy R is considerably greater too, and in this case
must be written as follows

R= ROV (6.18)

2mpyce?

where mnye is the mass of a nucleus.

It is customary praciice in the spectroscopy of gamma-rays to
wse energies instead of frequencies. We shall therefore express the
breadth of a spectrai line, the shift of tha lines, and the likein energy
units, multiplying the relevant frequencies by Planck’s constant &
for this purpose. In these units, the natural breadth of a speciral
line wiil be characterized by the quantity I' {ses Eq. (5.15)}, the
shift of the emission and absorption lines by the quantity 2R, aad
the Doppler broadening of the line by the quantity

D=2 —ABpp =2 ho (6.19)

{see Eq. (5.27)l.

The energy of gamma-quanta usually ranges from about 10 keV
to about 5 MeV (which correspords to frequencies ranging from
10" to 10%* rad/s and wavelengths from about 1 A to about 10-* A).
Let us calcnlate the recoil energy R for the case o = 100 keV aud
Mnue = 1.7 X 10~ g (an atomic mass of the order of 100). The
value of mnuc¢®is 1.7 X 1022 X 9 X 10% = 0.15 erg, i.e. 0.15/1.6 X
X 10712 x~ 10" eV. Cousequently, in accordance with Eq. (6.18),

(10%)2

R= 5

=0.5x10"1eV

and the shift of the lines 2R is 10~ eV,

The natural breadth of spectral lines I is determined by formula
(6.14). The typical lifetime of the excited states of nuclei is 10~** s.
A value of
1.05 X 10-37

e —="1.05 X 107 erg =~ 10-%eV

r=>_—
T
corresponds to this lifetime,
For nuclei with a mass of ~10-22 g, the average velocity of thermal
motion at room temperature is about 300 m/s. At such a velocity,
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the Doppler breadth of a line with e = 400 keV has the value

9D =2 x SX0% 5 105 2 x 107 &Y
[see Eq. (6.19)).

A comparison of the obtained valves of I’ and 2D leads to the
conclusion that the breadth of the spectral lines emitted by nuclei
at room temperature is mainly determined by the Doppler breadth
and is about 0.2 eV. For a shift of the emission and absorption lines

of 2R, we obtained a value of ~0.4 eV. Thus, evon for comparatively
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soft gamma-rays with an energy of {00 keV, the shift of the emission
and absorption lines is of the same order as the breadth of aspectral
line. With an increase in the energy of a photon, R grows more
rapldly [in proportion to ®?, see expression, {6.18)] tban D [which
is proportional to ®, see expression (6.19)]. Figure 6.6 contains
a typical picture for gamma-photons showing the mutual arrangement
of the emission and absorption lines. It is guite obvious that only
a small part of the emitted photons (their relative number is deter-
mined by the corresponding ordinates of the emissioa line) can experi-
ence resonance absorption, the probability of their absorption being
low (this probability is determined by the ordinates of the absorp-
tion line).

Prior to 1958, investigators succeeded in observing the resonance
absorption of gamma-rays with the aid of devices in which a source
of gamma-radiation travelled with the velocity v toward the absorb-
ing substance. This was achieved by placing a radioactive substance
on the rim of a rotating disk (Fig. 6.7). The disk was inside a massive
lead shield absorbing gamma-rays. The irradiated beam emerged
through a narrow channel and impinged on the absorbing substance.
A counter of gamma-quanta installed after the ahsorber registered
the intensity of radiation that had passed through the latter. Owing
to the Doppler effect, the frequency of the gamma-rays emitted by
the source increased by Aw = o (v/c), where » is the velocity of the
source relative to the absorber. By properly choosing the speed of
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rotation of the disk, it was possible to observe resonance absorption.
The latter was detected according to the reduction in the intensity
of the gamma-rays measured by the counter..

In 1958, the German physicist Rudolf Mossbauer (born 1929)
studied the nuclear resonance absorption of gamma-rays from Ir'®
(the iridium isotope with a mass number of 191, see Sec. 10.1).
The energy AE,,, of the relevant transition is 129 keV, the recoil
energy is 0.0 oV, and the Doppler broadening at room temperature
is about 0.1 eV. Thus, the emission and absorption lines partly
overlap, and resouance absorption could be observed. To reduce the
absorption, Mosshauer decided to cool the source and the absorber,
thus expecting to reduce the Doppler breadth and, consequently,
the overlapping of the lines. Instead of the expected reduction,
however, he detected amplification of the resonance absorption.

Mossbauer devised an arrangement in which the squrce and the
absorber were placed inside a vertical tube cooled by liquid helium.
The source was fastened to the end of a long rod performing recipro-
cating motion. Werking with this arrangement, Massbauer observed
that the resonance absorption vanished ai linear velocities of the
source of the order of several centimetres a second. The results of
the experiment indicated that in cooled Ir'® the gamma-ray absorp-
tion and emission lines coincide and have a very small breadth equal
to the natural breadth T'. This phenomenon of the elastic (i.e. not
attended by a change in the internal energy of a body) emission or
absorption of gamma-quanta was called the Mdssbhauer effect.

The Madssbauer effect was soon discovered in Fe% and for a number
of other substances. The nucleus of Fe’? is remarkable in the respect
that the effect is observed for it at temperatures up to 1000 °C,
so that no cooling is- needed. In addition, Fe’ is distinguished by
the exceedingly small natural breadth of a line.

Let us now uncever the physical essence of the Mdssbhauer effect.
When a nucleus at a crystal point emits a gamma-quantum, the
transition energy AZL,, in principle may be distributed between
the gamma-quaniusi, the gucleus that emitted the quantum, the
solid as a whole, and, finally, between the oscillations of the lattice.
In the latter case, phonons will be produced in addition to the gamma-
quantum. Let us analyse these possibilities. The energy needed for
a nucleus to leave its site in a lattice is at least about 10 eV, whereas
the recoil energy R does not exceed several tenths of an electron-
volt. Therefore, an atom whose nucleus has emitted a gamma-quan-
tum cannot change its position in the lattice. The recoil energy which
a solid body can receive as a whole is exceedingly small, so that it
may be disregarded [this energy can be assessed by substituting
the mass of a hody for the mass of a nucleus in Eq. (6.18)]. Thus,
the transiticn eaergy can be distributed only between the gamma-
‘quantum and phonons. A Méssbauer transition occurs if the vibra-
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tional state of the lattice does not change, and the gamma-quantum
receives the entire energy of transition.

Thus, when a nucleus at a crystal lattice point emits or absorbs
a gamma-quantum, two processes may occur: (1) a change in the
vibrational state of the lattice, i.e. phonon excitation, and (2)
the transition of the;momentum of the gamma-quantum to the lattice
as a whole without a change in its vibrational state, i.e. the elastic
eraission and absorption of a
Ii gamma-quantum. Each of these
processes has a definite proba-
bility whose value depends on
the particular properties of the
crystal, the energy of the gam-
- ma-quantum, and the temper-
/ N ature: The relative probabil-
_)l P i(_ ity of the elastic processes
grows with lowering of the

temperature.
It is easy to show that in
Absor fwﬂ inelastic processes, phonons
Specer with an energy of the order of

Awm = kO should be mainly
J excited (om is the maximum

Emission
s,aecz‘rw;)

mY

frequency of oscillations of the
lattice, and © is the Debye
temperature; see Sec. 6.4). The
Fig. 6.8 wavelength Anin & 2d corre-
T sponds to oscillation of the fre-
quency o [see the paragraph
following Eq. (6.8)1. Ta this case, neighbouring atoms move in counter-
phase, which can occur when the atom emitting a gamma-quantum
receives the entire recoil energy R and then collides with the neigh-
bouring atom. To produce longer wavelengths (Jower frequencies),
several atoms must be brought into motion simultaneously, which
has a low probability. Thus, the probability of producing oscillations
of the lattice will be great provided that the recoil energy R received
in radioactive decay by an individual atom is equal to or greater
than the energy of 2 phonon of the maximum frequency: R >/, =k©.
For Ir'®!, the recoil energy R is of the order of k0. Consequently,
to obiain a measurable resonance absorption, it is necessary to
reduce the probability of exciting oscillations of the lattice. For
Fe®, the recoil energy R < k©. Owing to this circumstance, already
at room temperature, an appreciable fraction of the nuclear transi-
tions occurs elastically.
Figure 6.8 shows typical cmission and absorptxon spectra of gamma-
quanta (£ is the eneryy of a gamma-quantum, [ is the intensity,

™Y
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and R is the average recoil energy). The two spectra contain prac-
tically coinciding very narrow lines corresponding to elastic processes.
These lines are on the background of broad shifted ones due to proces-
ses attended by a change in the vibrational state of the laitice.
The background becomes weaker with lowering of the temperature,
and the fraction of the elastic processes grows, bui it never reaches
unity.

The Médssbauer effect found numerous applications. In nuclear
physics, it is used to find the lifelime of excited states of nuclei
(through I'), and also to determine the spin, magnetic moment, and
electric quadrupole moment of nuclei. In solid state physicz, the
Méssbauer effect is used to study the dynamics of a crystal lattice
and to study the intrinsic eleciric and magnetic fields in crystals.

Owing to the extremely small breadth of the Mossbauer lines, the
method of a moving source makes it possible to measure the energy
of gamma-quanta with an enormous relative accuracy (up to the
15-th significant digit). The U.S. physicists R. Pound and G. Rebka,
Jr. took advantage of this circumstance to detect the gravitational
red shift of the frequency of photons predicted by the general theory
of relativity*. It follows from the general theory of relativity that
the frequency of a photon should change with a change in the gravi-
tational potential. According to the equivalence principle (see Sec. 6.3
of Vol. 1, p. 181), a photon has a gravitational mass equal to its
inert mass m, == Zim/c? [see Eq. (8.54) of Vol. I, p. 254]. When a pho-
ton travels the path I in a direction opposite to that of the force m g
in a homogeneous gravitational field characterized by the strength
g, the energy of ‘the photon must diminish by m.gl = hogl/c.

Consequently, the energy of the photon will become equal to
" __ ﬁ(.l.)gl _ gl
fo’ = ho — o8 =0 (1 £)

c2
Hence,

where Ao is the change in the gravitational potential. The formula
we have obtained also holds for a photon travelling in an inhomoge-

neous gravitational field (in this case Ag == S gdl).

The light reaching the Earth from stars overcomes their strong
attracting field. Near the Earth, on the other hand, it experiences
the action of only a very weak accelerating ficld. Consequently, all
the spectral lines of stars must be slightly shiited toward the red
end of the spectrum. Such a shift, called the gravitational red shift,
was confirmed qualitatively by astronomical observatiops.

¢« We mentioned these experiments in Sec. 8.10 of Vol. I, p. 248.
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Pound and Rebka undertook an attempt to detect this phenomenon
in the conditions of the Earth. They put a source of gamma-radiation
Source (Fe®") and an absorber in a high tower at a- dis-
% tance of 21 metres apart (Fig. 6.9). The relative
change in the energy of a gamma-photon when it
covers this distance is only

Ae Ao gl 9.81x21

e o cd 99X 10
This change* gives rise to a relative shift in the
absorption and emission lines and should mani-
fest itself in a slight weakening of resonance
absorption. Notwithstanding the extreme small-
ness of theeffect (the shift was about 10-% of the
—_— breadth of a line), Pound and Rebka succeeded
osorber 1D detecting and measuring it with sufficient ac-
. curacy. The result they obtained was0.99 + 0.05
Fig. 6.9 of what was predicted by theory. Thus, they gave
a convincing proof of the existence of a gravita-
tional shift in the frequency of photons in the conditions of a
laboratory on the Earth.

~ 2x10°1%
2lm

* If the source is placed on top and the receiver below it, the energy of
a photon grows, so that a violet frequency shift occurs.



CHAPTER 7 THE BAND THEORY
OF SOLIDS

7.1. The Quantum Theory of Free Electrons
in a Metal

In Sec. 11.2 of Vol. II, p. 230 et seq., we set out the elementary
classical theory of free electrons in a metal. Now let us acquaint
ourselves with the fundamentals of the quantum theory.

According to the free-electron model, the valence electrons of the
atoms of a metal can almost freely travel within the confines of a spec-
imen. It is exactly the valence electrons that give rise to the electri-
cal conduction of metals, and this is why they are called conduction
electrons.

Let us consider a specimen of a metal which for simplicity we
shall consider to have the shape of a cube with the side L. Assume
that the conduction electrons travel absolutely freely within the
confines of the specimen. Assuming in Eq. (4.12) that U = 0, we
get the Schrddinger equation for a free electron

jx]
— 5 V2 =E} (7.1)

(m is the mass of an electron).
It is'a simple matter to verify by substitution that the solution
of Eq. (7.1) has the form

p=Ce'kr (7.2)

where k = p/% is the wave vector of an electron associated with

the energy by the relation
E— P _ R

2m = 2m

(7.3)

The condition of normalization of the psi-function will be written
as follows (integration is performed over the volume V of the speci-
men equal to L3):

(= av = c*cS dV = C*CL® =1
Assuming C to be real, we get the value 1/L3? for it. Substitution
in Eq. (7.2) yields
lp = —-!— ei kr (7.4)
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The psi-function must satisfy the boundary conditions consisting
in the requirement that it be periodic with respect to z, y, z with
the period L. We can see that function (7.4) will satisfy these condi-
tions at values of the wave vector components equal to

2 2
kx="L—nh ky:—‘fﬂnz: kz‘""f,n‘na (7.9)

where n,;, n,, and n, are integers taking on the values 0, 41, =2,
etc. independently of one another. Indeed, introduction of the values
(7.5) into Eq. (7.4) yields

1 . 2
b =-3m oXp [" Tit (nyz+ nzy+n3z)]

Substitution of x 4+ L for z and y + L for y, etc. leaves the function
unchanged (only a multiplier equal to 1 appears).

Thus, the values of the wave vector are quantized. Accordingly,
the energy of a conduction electron in a metal is quantized too.
Introduction of the values (7.5) into Eq. (7.3) leads to the following
expression for the energy:

Ex= g (22)* (n2 4 ny 4 nd) (7.6)

The state of a conduction electron is determined by the value of
the wave vecior k (i.e. by the values of k,, k,, k,) and by the spin
quantum number m, = i%. Hence, the state can be set by the four

quantum numbers n,, n,, ng, m,. The energy of an electron is
determined by the sum of the squares of the quantum numbers n;.

Table 7.1
ny ng ng my
1
1 0 0 i§
1
0 1 0 :bﬁ
1
0 0 1 iﬁ
1
—1 0 0 ii
1
0 —1 0 ii
1
0 0 —1 ii
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Several different combinations of the numbers n; (except for the
case ny = n, = nyg = 0) correspond to the same sum of the squares.
Consequently, the energy levels are degenerate., The level E, (n,=

= n, = nz = 0) has a degree of degeneracy equal to two (ma = :i:—z-).

The next level E, is realized at 12 different combinations of the quan-
tum numbers (see Table 7.1), the level £,—at 24 combinations, etc.
Thus, a growth in the energy is attended by an increase in the num-
ber of different states corresponding to a given value of E.

Let us introduce an imaginary space along whose axes we shall
lay off the values of the quantum numbers n,, n,, ns;. In this space,
a point corresponds to each pair of states (differing in the values
of m,). A surface of equal energy values has the shape of a sphere of
radius n* =V n? + n? 4+ ni. The number of states vy whose energy
does not exceed the value E = (%%*/2m) (2n/L)*n*2 [see Eq. (7.6)}
equals the double number of points contained within a sphere of
radius n*. Since the points are arranged with a density equal to
unity, ve is determined by the double volume of the sphere:

vg=2 X —;—mz*3=%n(nf+n§+n§)m (7.7)
Deleting the sum of the squares of the numbers rn; from Egs. (7.6)
and (7.7), we get
8 2m \3/2 { L \3 8 9m)3/3
ve=g T (ﬁ—':) (E) e i ((2";1)n)3 B (1.8)
(V is the volume of the metal specimen). The formula we have ob-
tained determines the number of states whose energy does not exceed
the value E. -
It follows from Eq. (7.8) that
. (2m)3/2 1 .
d‘VE——ZHIVW E'RdE
Here dvg is the number of states with an energy within the interval
from E to E 4 dE. Consequently, the density of the states g (E) =
= dv/dE, i.e. the number of states per unit interval of energy, is
) 2m)3/2
g (E)=4nV %I’?W Etl2 (1.9)

Let the number of free electrons in unit voluiae of the metal be n.
Hence, the metal specimen will contain nV free electrons. Owing
to the Pauli principle, at absolute zero there will be one of these
electrons in each state at the lowest energy levels. Therefore, all the\
states with an energy E less than a certain value Ep (0) will be
filled with electrons, whereas the states with £ > Ey (0) will be.
vacant. The energy Ep (0) is known as the Fermi level at absolute
zero. We shall show in the following section that the Fermi level
plays the part of the parameter Ep in the distribution of the elec-
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trons by states with different energies. This parameter depends
slightly on the temperature. The quantity E (0) is the value of the
parameter Ep at T =0 K.

An isoenergetic surface* in k-space (or, which is the same, in
p-space; p = hk) corresponding to the value of the energy equal to
Ep is called a Fermi surface. For free electrons, this surface is de-
scribed by the equation '

[see Eq. (7.3)] and, consequently, has the form of a sphere. At abso-
lute zero of temperatures, the Fermi surface separates states filled
with electrons from the unfilled states.

The value of Er (0) can be found by assuming in Eq. (7.8) that
vg = nV:
(2m)3/3

Gy LEw (0))2

nV= -g- nV
whence
Ex (0) = o (32213 (7.10)

Let us assess the value of Eg (0). The concentration of conduction
electrons in metals ranges from 10%2 to 10%® ¢cm 3. Taking the average
value of 5 X 10%* cm~3 for n, we get

Ep(0) = o0 X 10N (3% 3142 % 5 x 102)/8 =8 x 1012 exg = 5 6V

Let us find the average energy of the electrons at absolute zero.
The total energy of the electrons filling states with energies from E
to E 4+ dE is determined by the expression

E dvg = Eg (E) dE
The total energy of all the conduction electrons is
E(0)
| Eave = [ EeB)dE
b
Dividing this energy by the total number of electrons equal to
S g (E) dE, we get the average energy of one electron:
E(0)
{ Eg(E)dE
1Y == 0 :
(B)= EFfO)
§ g(E)dE
K .

* I.e., a surface of constant energy
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Introduction of Eq. (7.9) for g (E) yields
ER(0)
E3/2 dE
<E>=_E;g(7)___=.g.EF(o) (1.11)
{ EY24E
0
We obtained a value of the order of 5 eV for Ep (0). Consequently,
the average energy of the conduction electrons at absolute zero is
about 3 eV. This is a tremendous value. To impart such an energy
to a classical electron gas, it
must be heated to a tempera- g/ 4 ‘ ~kT ‘
ture of about 25 000 kelvins.

Now we can explain why an ,
electron gas contributes very ///
little to the heat capacity of %? ////
metals. The average thermal / 7 /
energy equal in its order of /// /7/ //// A
magnitude to kT is 0.025 eV 7 ///%/// |
at room temperature. Such an 0 E-(0) 3
energy can excite only elec-
trons at the highest levels
adjoining the Fermilevel. The
main body of electrons at the deeper levels will retain their previous
states and absorb no energy in heating. Thus, only an insignificant
portion of the conduction electrons participate in the process of heating
of a metal, and this is exactly what explains the low heat capacity
of the electron gas in metals.

Figure 7.1 shows a graph of function (7.9). The hatched area gives
the number of states filled with electrons at absolute zero. Heating
of a metal is attended by the transition of electrons from levels
adjoining the Fermi level to ones above Ey (0). As a result, the sharp
edge of the hatched figure will be blurred. The curve of filling of the
levels by electrons will acquire the form in this region shown by
the dash line. The area under this curve remains the same as it was
at absolute zero (the area equals nV). The blurred region has a width
of the order of £7. Hence, the fraction of the electrons participating
in the process of heating of the metal is approximately 7'/Ty, where

Tp=-220 (7.12)

is a quantity called the Fermi temperature. As a result, the heat
capacity of the electrons will be

T
Cel = Cclass T—F

At room temperature, Ce is about one-hundredth of the classical
value (T =~ 300 K, Tp &~ 25000 K).
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7.2. The Fermi-Dirac Distribution

At absolute zero, there is one electron in each of the states whose
energy does not exceed Ey (0); there are no electrons in states with
E > Ep (0). Consequently, the function of the distribution of elec-
trons by states with different energies has the form shown in Fig. 7.2
for absolute zero. Let us find the distribution function for a tempera-
ture other than absolute zero.

Following C. Kittel*, let us consider inelastic collisions of an
equilibrium electron gas with an impurity atom implanted into
E) the crystal lattice of a metal. Assume

that the impurity atom can only be in

1 two states whose energy we shall take
equal to O and e.

Of the multitude of collision process-

4 E-(0) € es, we shall consider the one as aresult

Fig. 7.2 of which an electron passes from state k

t with the energy EF to state k' with the

energy £ -+ e. The impurity atom here

passes from the level with the energy ¢ to the level with an energy equal

to zero. The probahility Pyx- of the transition k (£) — k' {E + ¢)

is proportional to%(1){ the p‘m_t}ability f (E) of the state k (E) being

occupied by an eléttron, [(2)! the probability [1 — f (E 4 ¢)] of

the state k' (E + &) being free, and (3} the probability p (e) of
the impurity atom being in the state with the energy e. Thus,

Prr o< f(E) [1— [ (E+¢)] p(e) (7.13)

The probability Py of the reverse process is proportional to the
expression

Py oc f(E+e)[1—1(E)] p(0) (7.14)

where p (0) is the probability of the impurity atom being in the
state with the energy equal to zero. )

The coefficient of proportionality in expressions (7.13) and (7.14)
is the same owing to the detailed balancing principle**.

In the equilibrium state, the probabilities of the transitions
k — k'’ and k' — k must be the same. Hence,

FEYN —f(E+e)lpe)=f(E+e)lt —f(E)]p0)
Thus,
f(E4e)  A—i(E) _ ple) _
1—f<Ejre>' T(E); “5(0)_‘”“’(—727‘)

* See C. Kittel. Elementary Solid State Physics. New York, Wiley (1962).

** The principle of detailed balancing is the name given to the statement

that in a state of statistical equilibrium the number of transitions of a system

from state 7 to state 2 equals the number of reverse transitions from state 2 to
state 1.

(7.15)
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(we have taken into account that the probabilities of the impurity
atom being at the levels 0 and ¢ obey the Boltzmann distribution
law).

Functional equation (7.15) must be obeyed at any temperature 7.
This will occur if we assume that

1—1(E) _ E—p
&= (57) (7.16)

where p is a quantity not depending on E. Accordingly,
f(E+¢)

_ NLEDETS
=P~ | (7.17)

The product of expressions (7.16) and (7.17) for any temperature is
oxp (—e/kT).

Having solved Eq. (7.16) with respect to f (E), we shall obtain
the following expression for the function of the distribution of the
electrons by states with different energies:

1
HE) = =TT

(7.18)

This expression is called the Fermi-Dirac distributien function. The
parameter p is known as the chemical potential.

In accordance with the meaning of function (7.18), the quantity
f (E;) is the average number (r;) of electrons in the state with the
energy E;. Therefore, Eq. (7.18) can be written in the forma

()= !

¥ exp [(BEe—w)/RTT+1
[compare with Eq. (6.16)]. Unlike Eq. (6.16), the parameter
in distribution (7.19) has positive values (in the given case this does
not lead to negative values of the numbers (n;)).

Distribution (7.19) underlies the Fermi-Dirac statistics. Particles
obeying this statistics are called fermions. They include all parti-
cles with a half-integral spin.

A characteristic of fermions is that they never occupy states in
which there is a particle already. Thus, fermions are “individualists”.
We remind our reader that bosons, on the contrary, are “collec-
tivists” (see the end of Sec. 6.5).

The parameter p having the dimension of energy is frequently
designated by the symbol Er and is called the Fermi level or the
Fermi_energy. When this symbol is used, function (7.18) has the
form

(7.19)

’ ,
f(B)= exp (E— Ep)/kT]+1 (7.20)
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Let us study the properties of function (7.20). For absolute zero,

we have
f(E)=1if E<Ey

and
fE)=0if E> Ey

fThus, at 0 K, the Fermi level Ey coincides with the upper level
Ey (0) filled by electrons (see the preceding section).

Regardless of the value of the temperature, when E = Ep, the
function f (E) equals 1/2. Consequently, the Fermi level coincides
with the energy level whose probability of being filled is one-half.

The value of Eg can be found from the condition that the total
number of electrons filling the levels must equal the number nV
of free electrons in a crystal (n is the density of the electrons and
V is the volume of the crystal). The number of states falling within
the interval of energies dE is g (E) dE, where g (E) is the density
of the states. The average number of electrons in these states with
thermal equilibrium prevailing is determined by the expression
f (E) g (E) dE. The integral of this expression gives the total number
of free electrons in a crystal

S f(E)g (E)dE = nV (7.2)
0

This expression is in essence the condition of normalization of the
function f (E).
Introduction of Eqs. (7.9) and (7.20) into Eq. (7.21) yields

(2m)3/2 e EUZ dE _

AV o 5; IE—Epn T =" (7.22)
This relation makes it possible in principle to find Ey as a function
of T and n. The integral in Eq. (7.22) cannot be taken. Provided
that AT < Ep, an approximate value of the integral can be found.
As a result, the following expression for the Fermi level is obtained:

Er = Ex (0)[1—%(-3%%))2] (1.23)

[we remind our reader that Eg (0) depends on n; see Eq. (7.10)].

It follows from expression (7.23) that at low temperatures (and
these are the only ones for which this expression is true), the temper-
ature dependence of the Fermi level, although it does exist, is very
slight. We can therefore often assume that Ep = Eg (0). To under-
stand, for example, thermoelectric phenomena (see Sec. 9.4), how-
ever, the dependence of Ep on T is of a fundamental significance.
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For temperatures other than absolute zero, the graph of function
(7.20) has the form shown in Fig. 7.3. When the energies are high
(i.e. when E — Eg > kT, which is observed in the region of the
“tail” of the distribution curve), we may disregard unity in the denom-
inator of the function. Hence, the distribution of the electrons by
states with different energies acquires the form

f(E)=exp ( - E;TEF) =const-exp ( _TEz"“) (7.24)

i.e. transforms into the Boltzmann distribution function.

We must note that an appreciable difference of the curve in
Fig. 7.3 from the graph depicted in Fig. 7.2 is observed only in
the region of the order of k7. The

higher the temperature, the more 7@ AT
gentle is the slope of the descending 7
portion of the curve. \

The behaviour of an electron gas fop———————=
depends to a great extent on the re- Y, L
lation between the temperature of & £
the crystal and the Fermi tempera- Fig. 7.3

ture equal to Eg/k. Two extreme
cases are distinguished:

1. kT < Ep. In this case, the electron gas is called degenerate.

2. kT > Ey. In this case, the electron gas is called non-de-
generate,

We established in the preceding section that the Fermi temperature
for metals is several tens of thousands of kelvins. Therefore even
at a temperature close to the melting point of a metal (about 10® K),
the electron gas in ‘it is degenerate. In semiconductors, the density
of the free electrons is much smaller than in metals. Accordingly,
Ey is small [Ey is approximately proportional to n??; see expres-
sions (7.23) and (7.10)]. Hence already at room temperature, the
electron gas in many semiconductors is non-degenerate and obeys
classical statistics.

7.3. Energy Bands in Crystals

We established in Sec. 7.1 that in the approximation of free elec-
trons, the energy of the valence electrons in a crystal changes
quasicontinuously. This signifies that the spectrum of the allowed
values of the energy consists of a multitude of closely arranged dis-
crete levels. Actually, the valence electrons in a crystal do not have
entirely free motion—the periodic field of the lattice acts on them.
The result of this circumstance is that the spectrum of possible
values of the energy of the valence electrons breaks up into a number
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of allowed and forbidden bands (Fig. 7.4). The energy changes quasi-
continuously within the limits of the allowed bands. The energy
values belonging to the forbidden bands cannot be realized.

To understand the origin of the bands, let us consider an imagi-
nary process of the combination of atoms into a crystal. Suppose we
originally have N isolated atoms of a substance. As long as the atoms
are isolated from one another, they have completely coinciding
schemes of their energy levels. Electrons fill the levels in each atom
independently of how similar levels are filled in the other atoms. As

{ .

y Te
§ N
N Q
=k

Q
I
3 5

W

Fig. 7.4

the atoms approach one another, a constantly increasing interaction
appears between them that results in a change in the position of the
/levels. Instead of a single level identical for all the N atoms, there
appear N very close, but not coinciding, levels. Thus, each level of
an isolated atom breaks up in a crystal into & densely arranged
ievels forming a band.

The amount of splitting is not the same for different levels. The
levels filled by the outer or valence electrons in an atom are disturbed
to a greater extent. The levels filled by the inner electrons are dis-
turbed only slightly. Figure 7.5 shows the splitting of the levels as
a function of the distance r between the atoms. Examination of the
diagram reveals that the splitting of the levels occupied by the
inner electrons is very small in a crystal. Only the levels occupied
by the valence electrons split noticeably. The higher levels not
occupied by electrons in the ground state of an atom are also sub-
jected to similar splitting. .

Depending on the particular properties of the atoms, the equilib-
rium state between neighbouring- atoms in a crystal may be either
of type r, or of type r, (see Fig. 7.5). With a distance of type r,
between the allowed bands set up from adjacent levels of an atom,
there is a forbidden band. With a distance of type r,, the adjacent
bands overlap. The number of levels in such a merged band equals
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the sum of the numbers of levels into which both levels of the atom
split up.

The band structure of the energy levels is obtained directly from
the solution of the Schrodinger equatign for an electron moving
in a periodic force field. The latter is produced by the crystal lattice.
The Schrédinger equation taking the lattice field into consideration
has the form

12 ,
— 5 V+Uy=Ey
where U is a function having the properties

U@+a,y, 2)="Ulzy, 2
U(x,y+b, Z)=U(I’ Y Z)
Uz, y,2+¢)=Ulz,y, 2

(a, b, ¢ are the lattice constants along the axes z, y, 2).

The American physicist Felix Bloch (born 1905) proved that the
solution of the Schrodinger equation with a periodic potential has
the form

Pg = Uk (!‘) etkr (7.25)

where uy (r) is a function having the periodicity of the potential,
i.e. the periodicity of the lattice. The solutions (7.25) are called
Bloch functions. They differ from Eq. (7.2) in the presence of the
periodic multiplier uy (r).

In the approximatijon of free electrous, the dependence of the energy
of an electron on the wave number (the magnitude of the wave vector)
is described by the graph depicted in Fig. 7.6 [see Eq. (7.3)]. The
values of the energy form a quasicontinuous sequence. Consequently,
the graph E (k) consists of discrete points. These points are so dense,
however, that they visually merge into a continuous curve.

When the field is periodic, the dependence of E on k& has the form
shown in Fig. 7.7. A glance at the figure shows that the bands of quasi-
continuously changing energy (allowed bands) depicted by solid lines
alternate with the forbidden bands. Each allowed band consists
of closely arranged discrete levels whose number equals the number of
atoms in the crystals specimen.

The region of k-space in which the energy of an electron in a crys-
tal changes quasicontinuously is called a Brillouin zone. There is
an interruption in the energy at the boundaries of the zones. Figure 7.7
depicts the Brillouin zones for a one-dimensional crystal. For three-
dimensional crystals, the boundaries of the Brillouin zones are closed
polyhedral surfaces contained one within another. )

Weremind our reader that a Fermi surface is defined as an isoener-
getic surface in k-space (or in p-space) corresponding to a value of
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£ equal to Ey (see Sec. 7.1). For free electrons, this surface is a sphere.
The shape of the surface for the conduction electrons of a metal
depends on the properties of the crystal lattice and is intricate,
sometimes being quite odd. The shape of the Fermi surface for a num-
ber of metals has been established experimentally with a high ac
curacy

The Fermi surface is an important characteristic of a metal. The
shape of this surface determines the nature of motion of the electrons

£}
£ \ 1
\ /
\ T
w0 +ma- k -
2nd zone _, _ 1st Brillouip;  2nd zone
0 y - zone
Fig. 7.6 Fig. 7.7

with -an energy close to Ey. The nature of motion of the electrons,
in turn, determines the physics of the various phenomena observed
when a magnetic field acts on a metal.

Thus, the spectrum of the possible values of the energy of the val-
ence electrons in a crystal is divided into a number of allowed and
forbidden bands. The widith of the bands does not depend on the
dimensions of the crystal. Hence, the greater the number of atoms
in a crystal, the closer are the levels in a band. The width of the
allowed bands has a value of the order of several eleciron-volts.
Consequently, if a crystal contains 10?® atoms, then the distance
between adjacent levels in a band is about 10-%3 eV.

Each energy level corresponds to a definite value of k. Since
the quantum number m  can take on two values, at any allowed level
there can be two electrons having opposite spins.

The existence of the energy bhands makes it possible to explain
the existence of metals, semiconductors, and dielectrics from a single
viewpoint.

The allowed band appearing from the level at which the valence
electrons are in the grouund state of an atom is called the valence
band. At absolute zero, the valence electrons fill the lower levels of
the valence band in pairs. The higher allowed bands will be free of
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electrons. The three cases shown in Fig. 7.8 are possible depending
on the degree of filling of the valence band by electrons and on the
width of the forbidden band. In case a, the electrons fill the valence
band only partly. It is therefore sufficient to impart to the electrons
at the upper levels a very small energy (of the order of 10-*3 to 10** V)
to transfer them to higher levels. The energy of thermal motion
(kT) is about 10 eV at 1 K. Hence, at temperatures other than abso-
lute zero, some of the electrons are . transferred to higher levels.

— Free band =/ — Freeband = F— freeband —]
— (conduction —3
—__  bond) ___—]
, W| Forbidden band
Forbidden band g Forbidden band <
2= Valence band ] 5> frlled valenice] 00— Filled valence?]
= (conduction = e band 3 E———  band =
[~ tand) =
(a) metal () semiconductor (c) dielectric
Fig. 7.8

The additional energy due to the action of an electric field on an
electron is also sufficient to transfer the electron to higher levels.
Consequently, the electrons can be accelerated by an electric field
and acquire an additional velocity in a direction opposite to that
of the field. Thus, a crystal with such an arrangement of its energy
levels will be a metal.

Partial filling of the valence band (for a metal it is also called
the conduction band) is observed when there is only one electron on
the last occupied level in an atom, or when overlapping of the bands
occurs (see Fig. 7.5, the distance r;). In the first case, V conduction
electrons fill in pairs only half of the valence band levels. In the
second case, the umber of levels in the conduction band will be
greater than NV so that even if the number of conduction electrons
is 2N, they will not be able to occupy all the levels of the band.

In cases b and ¢ (see Fig. 7.8), the levels of the valence band are
completely occupied by electrons—the band is filled. To increase
the energy of an electron, it is necessary to impart to it an amount
of energy not less than the width of the forbidden band AE. An
electric field (at any rate of a strength such that no electric break-
down of the crystal occurs) is unable to impart such an energy to an
electron. In these conditions, the electrical properties of a crystal
are determined by the width of the forbidden band AE. If this width
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is not great (of the order of several tenths of an electron-volt), the
energy of the thermal motion will be sufficient to transfer part of the
electrons to the upper free band. These electrons will be in conditions
similar to those in which the valence electrons in a metal are. The
free band will be a conduction band for them. Simultaneously, the
transition of the valence band electrons to its freed upper levels will
3ecome possible. Such a substance is called an electronic semicon-
uctor.

If the width of the forbidden band AE is great (of the order of
several electron-volts), then thermal motion cannot feed an- appre-
ciable number of electrons into the free band. In this case, the crystal
is a dielectric. '

7.4, Dynamics of Electrons in a Crystal Lattice

The wave number % is associated with the momentum of an electron
p by the equation p = hk. Substituting the wave number for the
momentum in the uncertainty relation Ap-Az ~ 7, we get an uncer-
tainty relation for & and a:

Ak-Az ~ 1 (7.26)

It follows from this relation that at a strictly definite %, the position
of an electron in a crystal will be absclutely indeterminate. To be
in a position to study the dynamics of an electron in a crystal, we
must have expressions for its velocity and acceleration at our dis-
posal. We can only speak about the velocity, however, if the electron
will be at least approximately localized in space.

Let us assume that Ak is other than zero. Consciuently, the elec-
tron will be localized within the region Az~ 1/Ak. According
to the superposition principle (see Sec. 4.8), the psi-function of an
electron can be represented in the form of the sum of plane waves
of the kind eikr, the values of whose wave numbers are within the
limits of Ak. If Ak is not great, the superposition of the plane waves
forms a wave packet. The maximum of the resultant wave amplitude
travels with the group velocity

Vgr =22 (7.27)

{see Eq. (20.15) of Vol. II. p. 461]. The most probable location of the
electron coincides with the centre of the wave packet. Consequently,
vgr is the velocity of an electron in a crystal.

Taking advantage of the equation £ = /4w, we shall substitute
the energy for the frequency in Eq. (7.27). As a result, we find that

Vgr = SE. (7.28)
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Let us see how an electron will behave under the action of the
external electric field & imposed on a crystal. In this case, apart
from the forces F ¢;yst produced by the field of the lattice, the electron
will experience the force F whose magnitude is eg. During the time
dt, this force does the work dA = Fv, dt on the electron. The
introduction of Eq. (7.28) for vgr yields

F dE
dA=———dt (7.29)
This work provides an increment of the energy of the electron in
the crystal: dA = dE. Using dE instead of d4 in Eq. (7.29) and
taking into account that dE = (dE/dk) dk, we arrive at the expres-
sion

dE F dE
whence it follows that
dk F

Time differentiation of Eq. (7.28) gives the acceleration of the
electron in the crystal:

dvgr {1 d (_d_E_).=id2Eﬂ_
dt h dt \ dk h dk® dt
Taking Eq. (7.30) into consideration, we obtain
dvgr 1 d2E F

Tdt T h dk* &

k dk® &
Let us write this formula as follows:

h dvgy
( d3E [dk3 ) at (7.31)

Inspection of Eq. (7.31) shows that the acceleration of an electron
in a crystal is proportional to the external force e£. This result
is non-trivial because the acceleration should be proportional to
the sum of the forces e€ and Fcryst, and only the peculiar nature
of the force Fgryst leads to the fact that with proportionality of the
acceleration to the sum of the forces e€ and Fepys: it is also propor-
tional to the addend e&.

Comparing Eq. (7.31) with Newton’s second law

mo=F

we arrive at the conclusion that the expression

53
m* = - AT (7.32)
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formally plays the part of the mass with respect to the external
force F=e&. In this connection, the quantity given by Eq. (7.32) is
called the effective mass of an electron in a crystal.

The effective mass m* may differ greatly from the actual mass of
an electron m, in particular it may take on negative values.
This is due to the fact that the equation of Newton’s second law
actually has the form

d "
m —‘—i%- = F + Fcryst (7.39)

where Fepyst is the force due to the action of the lattice field on an
electron. A comparison of Eq. (7.33) with
f* the equation

av
/4' m* gy =F

1 clearly shows that m* may noticeably difier
£ from m. Notwithstanding this circumstance,
[ Y o it is exactly the value of m* that deter-
! mines the nature of the motion of an electron
V72 ity 4 = in a lattice under the action of the force e&.
|
|

The introduction of the effective mass

A makes it possible to determine the nature of

0 n/d the motion of an electron under the action
of the external field, disengaging ourselves

Fig. 7.9 from the interaction of the electrons with the

lattice Ascribing the massm* to an electron,
we can study its behaviour under the action of the force ¢€ consider-
ing the electron to be free. It follows from what has been said above
that the relations obtained for the approximation of free electrons
also hold for an electron travelling in a periodic field if we replace
the true mass m in them with the effective mass m*.
In particular, Eq. (7.3) for a perlodxc field has the form

{7.34)
Indeed, double differentiation w1t.h respect to k yields
@*E _ B?
dkT T m*

that agrees with the definition of m* [see Eq. (7.32)l

Thus, the action of the lattice on the motion of an electron can
be taken into account by replacing in the equation of motion includ-
ing only the external force e& the true mass m with the effective
mass m#*,

Let us see how the eftective mass m* depends on the “location”
of an electron inside the allowed energy band. Near the bottom of
the band (see points A and A’ in Fig. 7.9), the course of the curve
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E (k) differs only slightly from the course of the curve for free elec-
trons (see Fig. 7.6). Accordingly, m* ~ m.

At the point of inflection (point B in Fig. 7.9), the quantity
d*E/dk* is zero. Consequently, m* becomes infinite. This signifies
that an external field can exert no action on the motion of an electron
in a state with the energy Ep.

Near the ceiling of the allowed band (point C in Fig. 7.9), the
derivative d*E/dk* << O (the quantity dE/dk diminishes with increas-
ing k). Accordingly, the effective mass m* of the electrons occupying
levels near the ceiling of the band is negative. Actually, this signi-
fies that under the joint action of the forces e§ and Fc,ys; an electron
in the state with the energy E¢ receives an acceleration opposite in
direction to the external force e&.



CHAPTER 8 THE ELECTRICAL
CONDUCTANCE OF METALS
AND SEMICONDUCTORS

8.1. The Electrical Conductance of Metals

The relevant quantum mechanical calculations show that with
a perfect crystal lattice, the conduction electrons would not exper-
ience any resistance in their motion, and the electrical conducrtance
of metals would be infinitely great. A crystal lattice is never perfect,
however. Violations of the strict periodicity of a lattice may be
due to the presence of impurities or vacancies (i.e. the absence of
atoms at a point), and also to thermal oscillations of the lattice.
Scattering of the electrons on the impurity atoms and on phonons
leads to the appearance of electrical resistance of metals. The purer
the metal and the lower its temperature, the smaller is thisresistance.

The resistivity of metals can bhe represented in the form

P = Posc + Pimp

where pggc is the resistivity due to thermal oscillations of the lat-
tice, and pyyp is the resistivity due to scattering of the electrons on
the impurity atoms. The addend p,s, diminishes with lowering of
the temperature and vanishes at 7 = 0 K. The addend p;p at a
low concentration of the impurities does not depend on the tempera-
ture and forms the so-called residual resistivity of a metal* (i.e. the
resistivity which a metal has at 0 K; see Fig. 5.5 of Vol. II, p. 105).

Assume that a unit volume of a metal contains r free electrons.
We shall call the average velocity of these electrons the drift velo-
city vy,. By definition

n

Vo= 3 Vi (8.1)

n
i=t

In the absence of an external field, the drift velocity is zero, and
there is no electric current in the metal. When an external eleciric
field E is imposed on the metal, the drift velocity becomes other
than zero—an electric current appears in the metal. According
to Ohm’s law, the drift velocity is finite and is proportional
to the force —e¢E.

It is known from mechanics that the velocity of steady motion
is proportional to the external force F applied to a body when in

* We are speaking of metals that do not pass over into the superconducting
tate (see the following section).
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addition to the force # the body experiences the force of resistance
of the medium proportional to the velocity of the body (an example
is the falling of a small sphere in a viscous medium). Hence, we
conclude that in addition to the force —e¢E, the conduction electrons
in a metal experience a force of “friction” whose average value is

Fy = —rvg, (8.2)

(r is a proportionality constant).
The equation of motion for an “average” electron has the form
\/
m‘j—d—f’-= —eE—rvy, (8.3)
where m* is the effective mass of an electron (see Sec. 7.4). This
equation allows us to find the steady value of vg,.

If the external field E is switched off after a steady state sets in,
the drift velocity begins to diminish, and completely vanishes when
a state of equilibrium between the electrons and the lattice is achieved.
Let us find the law of diminishing of the drift velocity after the exter-
nal field is switched off. Assuming in Eq. (8.3) that E = 0, we get

m* --—-df' +rvg =0

We are well acquainted with an equation of this kind. Its solution
has the form

Var (8) = Var (0) exp ( — - 1) (8.4)

where vg4, (0) is the value of the drift velocity at the moment when
the field is switched off.
Equation (8.4) shows that during the time

=10 (8.5)

the value of the drift velomty drops to 1/e-th of its initial value.
Thus, the quantity © given by Eq. (8.5) is the relaxation time (see
Sec. 10.3 of Vol. I, p. 270) characterizing the process of the establish-
ment of equ1hbr1um between the electrons and the lattice violated
by the action of the external field E.

With a view to Eq. (8.5), formula (8.2) can be written as follows:

Fre= — " var (8.6)

The steady value of the drift velocxty can be found by equatmg
to zero the sum of the force —¢E and the friction force given by
Eq. (8.6):

m*®
—€eE——var=0
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whence

eEt

m*

We get the steady value of the current density by multiplying the

value of v4. by Lhe charge of an electron —e and the density of the
electrons n:

Vgr= —

eEt

m*

2
(_e)n= n:,: E

] = e
The proportionality constant between E and j is the conductivity .
Hence,
nedt

o= (8.7)

m*

In Sec. 11.2 of Vol. II, p. 232, we obtained the following classical
expression for the conductivity of metals:
ne?t’
o= 2m (8.8)
where 1’ is the average time of flight of an electron between collisions,
and m is the conventional (not effective) mass of an electron [sel
Eq. (11.9) of Vol. II, p. 232, we have substituted the average
time t’ between collisions for /v in this equation].

A comparison of Egs. (8.7) and (8.8) reveals that the relaxa-
tion time coincides in the order of its magnitude with the average
time of flight of electrons in a metal between collisions.

On the basis of physical considerations, it is possible to assess
the quantities in Eq. (8.7) and thus calculate the conductivity o
with respect to its order of magnitude. The values obtained by this
method are in good agreement with experimenta] data. The fact
that o varies with the temperature according to the law 1/T also
agrees with experimental results. We remind our reader that accord-
ing to the classical theory, o is inversely proportional to T'? (see
Sec. 11.2 of Vol. II, p. 234).

We must note that the calculations which led us to Eq. (8.7)
are equally suitable both in the classical interpretation of the motion
of conduction electrons in a metal and in the quantum mechanical
interpretation. The distinction between these two interpretations'is
as follows. In the classical treatment, it is assumed that all the elec-
trons are disturbed by the external electric field, and in this connec-
tion each addend in Eq. (8.1) receives an addition in the direction
opposite to E. In the quantum mechanical interpretation, it is neces-
sary to take into account that only the electrons occupying states
near the Fermi level are disturbed by the field and change their
velocity. The electrons at lower levels are not disturbed by the field,
and their contribution to the sum in Eq. (8.1) does not change. Apart
from the above, in the classical interpretation, the denominator of
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Eq. (8.7) must contain the conventional mass of an electron m,
whereas in the quantum mechanical interpretation it must contain
the effective mass of an electron m* instead of the conventional one.
This is a manifestation of the general rule noted in Sec. 7.4 according
to which relations obtained for the approximation of free electrons
are also correct for electrons travelling in the periodic field of a lat-
tice if we substitute the effective mass of an electron m* for its true
mass m.

8.2. Superconductivity

At a temperature of the order of several kelvins, the electrical
resistance of a number of metals and alloys vanishes in a jump—the
substance passes into a superconducting state (see Sec. 5.4 of Vol. II,
p. 106). The temperature at which this transition occurs is known as
the critical or transition temperature and is designated by the sym-
bol T.. The highest observed value of T, is of the order of 20 K.

Superconductivity can be observed experimentally in two ways:

1. By connecting a section of a superconductor to a general electric
circuit. At the moment of transition to the superconducting state,
the potential difference across the ends of this section vanishes.

2. By placing a loop of a superconductor into a magnetic field
perpendicular to it. After the loop has been cooled to below T,
the field is switched off. As a result, a non-attenuating electric
current is induced in the loop. The current circulates in such a loop
an unlimitedly long time. The Dutch scientist Heike Kamerlingh
Onnes who discovered this phenomenon demonstrated this by taking
a superconducting loop with a current flowing through it from Ley-
den to Cambridge. In a number of experiments, no current attenua-
tion in a superconducting loop was observed for about a year. In
1959, G. Collins reported that he had observed no current attenua-
tion during two and a half years.

In addition to the absence of electrical resistance, the supercon-
ducting state is characterized by no magnetic field penetrating into’
the body of a superconductor. This phenomenon was discovered by
W. Meissner and R. Ochsenfeld in 1933 and is known as the Meissner
effect. If a superconducting sample is cooled when placed in a mag-
netic field, at the moment of transition to the superconducting state
the field is ejected from the sample, and the magnetic induction in
the latter vanishes. We can say formally that a superconductor has
a zero permeability (u = 0). Substances with p << 1 are called dia-
magnetics. Thus, a superconductor is a perfect diamagnetic.

A sufficiently strong external magnetic field destroys the supercon-
ducting state. The value of the magnetic induction at which this
occurs is called the eritical or threshold field and is designated by the
symbol B¢. The value of B, depends on the temperature of a sample.
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At the transition temperature, B; = 0. With lowering of the temper-
ature, the value of B, grows, tending to B, ,—the value of the criti-
cal field at the zero temperature. An approximate plot of this rela-
tion is shown in Fig. 8.1,

If we increase the current flowing through a superconductor con-
necled to a conventional circuit, then at a value of the current of I,
the superconducting state is destroyed. This value of the current is

called the critical current. The value

8 A of I, depends on the temperature. The
form of this relation is similar to that
B of B, against T (see Fig. 8.1).

Superconductivity is a phenomenon
in which quantum mechanical effects
are detected not on microscopic, but
on large macroscopic scales*. The
theory of superconductivity was de-
) veloped in 1957 by the American
g *7  physicists John Bardeen, Leon Cooper
and J. Robert Schrieffer. It is called

Fig. 8.1 briefly the BCS theory (an acronym).

This theory is very complicated. We

are therefore forced to treat it at the level of popular science books
which apparently will not completely satisfy our exacting readers.

The clue to superconductivity is that the electrons in a metal,
apart from Coulomb repulsion, experience a special kind of mutual
attraction which in the superconducting state predominates over
the repulsion. As a result, the conduction electrons combine to form
the "so-called Cooper pairs. The electrons forming such a pair have
oppositely directed spins. Consequently, the spin of a pair is zero,
and it is a_boson. Bosons are inclined to accumulate in the ground
energy state, from which it is comparatively difficult to transfer them
to an excited state. Hence, the Cooper pairs, after coming into
coordinated motion, stay in this state for an unlimitedly long time.
It is exactly this coordinated motion that is the superconduction
current.

Let us explain the above in greater detail. An electron moving
in a metal deforms (polarizes) the crystal lattice consisting of posi-
tive ions. As a result of this deformation, the electron is surrounded
by a “cloud” of a positive charge moving along the lattice together
with the electron. The electron and the cloud surrounding it are a
positively charged system which another electron will be attracted
to. The ionic lattice thus plays the part of an intermediate medium
whose presence results in attraction between the electrons.

N

* Another phenomenon of this kind is the superfluidity of liquid helium II.
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In the language of quantum mechanics, the attraction between
electrons is explained as a result of their exchanging quanta of lat-
tice excitation—phonons. An electron moving in a metal violates
the conditions of lattice vibrations—it produces phonons. The exci-
tation energy is transmitted to another electron that absorbs a phonon.
Owing to this exchange of phonons, additional interaction appears
between the electrons that has the nature of attraction. At low tem-
peratures, this attraction exceeds the Coulomb repulsion in substances
that are superconductors.

The interaction due to the exchange of phonons manifests itself
to the greatest extent in electrons having opposite momenta and
spins. As a result, two such electrons combine into a Cooper pair.
This pair must not be imagined as two electrons adhering to each
~other. On the contrary, the distance between the electrons in a pair
is quite great and is about 10-% cm, i.e. it is greater by four orders
of magnitude than the interatomic distances in a crystal. Approxi-
mately 10 Cooper pairs appreciably overlap, i.e. occupy a common
volume.

Not all conduction electrons combine into Cooper pairs. At a tem-
perature I other than absolute zero, there is a prohability of a pair
being destroyed. Consequently, in addition to the pairs, there are
always “normal” electrons moving in a usual way through a crystal.
The closer T is to T¢, the greater is the fraction of normal electrons,
which becomes equal to unity when 7 = T..

The formation of Cooper pairs leads to reconstruction of the energy
spectrum of a metal. To excite an electron system in the superconduct-
ing state, it is necessary to dissociate at least one pair. This needs
an energy equal to the binding energy Ej of the pair. This energy is
the minimum amount of energy that the system of electrons in a
superconductor can pick up. Hence, the energy spectrum of the elec-
trons in the superconducting state has a gap whose width is E} in
the region of the Fermi level. The values of the energy belonging to
this gap are forbidden. The existence of the gap was proved experi-
mentally.

Thus, the excited state of an electron system in the superconducting
state is separated from the ground state by an energy gap of width Ey.
Therefore, quantum transitions of this system will not always be
possible. At low velocities of its motion (corresponding to a current
less than I.), the electron system will not be excited, and this is
exactly what signifies motion without friction, i.e. without electrical
resistance.

The width of the energy gap E, diminishes with increasing tem-
perature and vanishes at the transition temperature 7'c. Accordingly,
all the Cooper pairs dissociate, and the substance passes over to its
normal (non-superconducting) state.
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It follows from the theory of superconductivity that the magnetic
flux @ associated with a superconducting loop (or cylinder) in which
a current is circulating must be an integral multiple of the quantity
2nhlq, where g is the charge of a current carrier:

O=n 2nh
The quantity
®, = Zzh (8.9)

is a quantum of magnetic flux.

The quantization of the magnetic flux was detected experimentally
in 1961 by B. Deaver and W. Fairbank, and independently of them
by B. Doll and M. Néabauer. In the experiments run by Deaver and
Fairbank, the sample was a belt of tin applied onto a copper wire
about 10-3 cm in diameter. The wire played the part of a framework
and did not pass over to the superconducting state. The measured
values of the magnetic flux in these experiments, as in the ones con-
ducted by Doll and Nabauer, were found to be integral multiples of
quantity (8.9) in which the double charge of an electron must be
substituted for ¢ (¢ = —2¢). This is an additional confirmation of
the correctness of the BCS theory according to which the Cooper
pairs having a charge of —2¢ are the current carriers in a supercon-
ductor.

8.3. Semiconductors

Semiconductors ere crystalline substances in which the valence
band is completely filled with electrons (see Fig. 7.85), and the width
of the forbidden band is not great (not over 1 eV in intrinsic semi-
conductors). Semiconductors owe their name to the circumstance
that with respect to the value of their electrical conductance they
occupy an intermediate position between metals and dielectrics.
Their feature, however, is not the magnitude of the conductance,
but the {act that their conductance grows with increasing tempera-
ture (we remind our reader that in metals it diminishes).

Intrinsic and impurity (or extrinsic) semiconductors are distin-
guished. The intrinsic semiconductors include chemically pure ones.
The electrical properties of the impurity semiconductors are deter-
mined by the impurities they have artificially been doped with.

In considering the electrical properties of semiconductors, a great
part is played by the concept of “holes”. Let us stop to deal with the
physical meaning of this concept.

In an intrinsic semiconductor at absolute zero, all the levels of
the valence band are completely filled with electrons, while the
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latter are absent in the conduction band (Fig. 8.2a4). An electric
field cannot transfer electrons from the valence band to the conduction
one. Therefore, intrinsic semiconductors behave at absolute zero
like dielectrics. At temperatures other than 0 K, a part of the elec-
trons from the upper levels of the valence band transfer to the lower
levels of the conduction band as a result of thermal excitation
(Fig. 8.2b). In these conditions, an electric field obtains the possi-
bility of changing the state of the electrons in the conduction band.
In addition, owing to the formation of vacant levels in the valence
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band, the electrons of this band can also change their velocity under
the action of the external field. As a result, the electrical conductance
of the semiconductor becomes other than zero.

It was found that when vacant levels are present, the behaviour
of the valence band electrons can be represented as the motion of posi-
tively charged quasiparticles that have been named “holes”. It fol-
lows from the equality to zero of the conductance of a completely
filled valence band that the sum of the velocities of all the electrons
of such a band equals zero:

A?JVi':-O

Let us separate from this sum the velocity of the &-th electron:

2 Vit v=0
iEh
whence
a
2 V= —Vy
iFh

This relation shows that if the k-th electron is absent in the valence
band, then the sum of the velocities of the remaining electrons is
—v,. Hence, all these electrons will set up a current equal to (—e)-
«(—vy) = ev,. Thus, the produced current is found to be equivalent
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to the current that would be set up by a particle with the charge +¢
having the velocity of the absent electron. It is exactly this imaginary
particle that is a hole.

We can also arrive at the concept of holes as follows. Vacant levels
are formed at the top of the valence band. In Sec. 7.4, we established
that the effective mass of an electron at the ceiling of an energy band
is negative. The absence of a particle having a negative charge —e
and a negative mass m* is equivalent to the presence of a particle
having a positive charge 4-e and a positive mass | m* |, i.e. of a hole.

Thus, a valence band having a small number of vacant states is
equivalent in its electrical properties to a vacant band containing
a small number of positively charged quasiparticles called holes.

We must stress the fact that the motion of a hole is not the motion
of a real positively charged particle.The notion of holes reflects the
nature of motion of the entire multiple-electron system in a semi-
conductor.

8.4. Intrinsic Conductance of Semiconductors

Intrinsic conductance appears as a result of the transition of elec-
trons from the upper levels of the valence band to the conduction
band. A certain number of current carriers—electrons_appear in the
conduction band that occupy levels near the bottom of the band;
simultaneously, the same number of sites are freed in the valence
band at its upper levels, the result being the appearance of holes
(see the preceding section).

The distribution of the electrons among the levels of the valence
band and the conduction band is described by the Fermi-Dirac func-
tion [see Eq. (7.20)). This distribution can be made very illustrative
by depicting, as has been done in Fig. 8.3, a graph of the distribution
function combined with a diagram of the energy bands.

The relevant calculations indicate that for intrinsic semiconduc-
tors the value of the Fermi level measured from the ceiling of the
valence band is '

Ep=+AE+5 kT,In 2
e

where AE is the width of the forbidden band, and m{ and m} are
the effective masses of a hole and an electron in the conduction band.
The second addend is usually negligibly small, and we may assume

that Eg ==—;— AE. This signifies that the Fermilevel is at the middle

of the forbidden band (see Fig. 8.3). Consequently, for the electrons
that have passed into the conduction band, the quantity £ — Ep
differs only slightly from half the width of the forbidden band. The
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levels of the conduction band are on the tail of the distribution curve.
Therefore, the probability of their being filled can be found by
Eq. (7.24). Assuming in this equation that £ — Ez ~ AE/2, we
find that

f(E) oc exp ( —-52) (8.10)

The number of electrons that have passed into the conduction band
and, consequently, the number of holes formed too, will be propor-
tional to the probability given by expression (8.10). These electrons
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and holes are current carriers. Since the conductance is proportional
to the number of carriers, it must also be proportional to expression
(8.10). Hence, the electrical conductance of intrinsic semiconductors
rapidly grows with the temperature, varying according to the law

0 =0 exp ( — ) 8.11)

where AFE is the width of the forbidden band, and o is a constant.

If we plot In ¢ against 1/7 on a graph, then for intrinsic semicon-
ductors we get the straight line shown in Fig. 8.4, We can determine
the width of the forbidden band AE according to the slope of this
line.

The elements of group IV of Mendeleev's periodic table germanium
and silicon are typical semiconductors. They form a diamond-type
lattice in which each atom is connected by covalent (electron-pair)
bonds to four neighbouring atoms at equal distances from it (see
Fig. 13.8a of Vol. I, p. 371). Such a mutual arrangement of the atoms
can conditionally be represented in the form of the plane structure
shown in Fig. 8.5. The circles with the sign “+-” designate positively
charged atom cores (i.e. the part of an atom that remains after de-
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pature of the valence electrons), the circles with the sign “—" de-
signate the valence electrons, the double lines show the covalent bonds.

At a sufficiently high temperature, thermal motion may dissociate
separate pairs, releasing one electron. The site left by the electron
stops being neutral, and a surplus positive charge --¢ appears in
its vicinity—a hole isformed (it is depicted by a dash circle in Fig. 8.5).
An electron from one of the adjacent pairs may jump over to this
site. As a result, the hole also begins to wander along the crystal
like the released electron.

When a free electron meets a hole, they recombine. This signifies
that the electron neutralizes the surplus positive charge in the vici-
nity of the hole and loses its free-
dom of motion until it again re-
ceives the energy sufficient for its
release from the crystal lattice.
Recombination leads to the simul-
taneous vanishing of the free elec-
tron and the hole. 1n a level diag-
ram (Fig. 8.3), the transition of
an electron from the conduction
band to one of the free levels of
the valence hand corresponds to
the recombination process.

Thus, two processes occur si-
multaneously in an intrinsic se-
miconductor: the birth of fres
electron-hole pairs and recombi-

Fig. 8.5 nation leading to the vanishing
of these pairs. The probability
of the first process grows rapidly with the temperature. The proba-
bility of recombination is proportional both to the number of free
electrons and to the number of holes. Hence, a definite equilibrium
concentration of electrons and holes corresponds to each temperature,
and it varies with the temperature in proportion to expression
8.10).
( Wl)len an external electric field is absent, the conduction electrons
and holes move chaotically. When a field is switched on, ordered
motion is imposed onto the chaotic motion: the electrons move against
the field, and the holes in the direction of the field. Both motions—
of the holes and the electrons—result in transferring the charge along
the crystal. Hence, intrinsic conductance is due, as it were, to charge
carriers of two signs—negative electrons and positive holes.

We must note that at a sufficiently high temperature, intrinsic
conductance is observed in all semiconductors without any exception.
In semiconductors containing an impurity, however, the conductance
consists of the intrinsic and impurity conductances.
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8.5. Impurity Conductance of Semiconductors

Impurity conductance appears if some atoms of a given semicon-
ductor are replaced at the points of a crystal lattice by atoms whose
valence differs by unity from that of the normal atoms. Figure 8.6
shows schematically a germanium lattice doped with pentavalent
phosphorus atoms. A phosphorus atom needs only four electrons
to form covalent bonds with its neighbours. Consequently, the fifth
valence electron is surplus, as it were, and is easily detached from
the atom at the expense of the energy of thermal motion, forming

Fig. 8.6 Fig. 8.7

a wandering free electron. Unlike the case treated in the preceding
section, the formation of a free electron is not attended by the vio-
lation of the covalent bonds, i.e. by the formation of a hole. Although
an excess positive charge does appear in the vicinity of the impurity
atom, it is bound to this atom and cannot travel along the lattice.
Owing to this charge, the impurity atom can capture an electron
approaching it, but the bond of the captured electron with the atom
will be weak and can easily be broken again at the expense of the
thermal oscillations of the lattice.

Thus, a semiconductor with an impurity whose valence is greater
by unity than that of the normal atoms has only one kind of current
carriers—electrons. Accordingly, such a semiconductor is said to
have electronic conductance or to be a semiconductor of the n-type
(negative). The impurity atoms supplying the conduction electrons
are called donors.

Now let us consider the case when the valence of the impurity is
less by unity than that of the normal atoms. Figure 8.7 shows sche-
matically a silicon lattice doped with trivalent boron atoms. The
three valence electrons of a boron atom are not enough to form bonds
with all four neighbours. One of the bonds is therefore not completed
and will be a place capable of capturing an electron. When an elec-
tron from one of the neighbouring pairs passes to this place, a hole
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will be formed that will travel along the crystal. An excess negative
charge will appear near the impurity atom, but it will be associated
with the given atom and cannot become a current carrier. Thus,
current carriers of only one kind—holes—are produced in a semi-
conductor with an impurity whose valence is less by unity than that
of the normal atoms. Such a semiconductor is said to have hole con-
ductance, and the semiconductor is said to be of the p-type (posi-
:‘i’ve). The impurity atoms causing holes to appear are called accep-

IS.

The electronic nature of the conductance of n-type semiconductors
and the hole nature of the conductance of p-type semiconductors are
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confirmed experimentally when studying the Hall effect (see Sec. 11.3
of Vol. 1I, p. 234 et seq.). The observed sign of the Hall potential
difference corresponds to negative current carriers in n-type semi-
conductors, and to positive carriers in p-type ones.

Impurities distort the field of a lattice. This results in the appear-
ance of impurity levels in the energy scheme. They are in the for-
bidden band of the crystal. The impurity levels of n-type semicon-
ductors are called donor levels (Fig. 8.8a), and of p-type semicon-
ductors acceptor levels (Fig. 8.8b).

The Fermi level in n-type semiconductors is in the upper half of
the forbidden band, and in p-type semiconductors, in the lower half
of this band. With elevation of the temperature, the Fermi level in
semiconductors of both types is displaced toward the middle of the
forbidden band. .

If the donor levels are not far from the ceiling of the valence
band*, they cannot appreciably affect the electrical properties of
the crystal. Matters are different when the distance from such levels

* This signifies that the fifth valence electron is firmly bound to its atom.
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to the bottom of the conduction band is much smaller than the width
of the forbidden band. In this case, the energy of thermal motion even
at ordinary temperatures is sufficient to transfer an electron from a
donor level to the conduction band (see Fig. 8.8a). Detachment of
the fifth valence electron from an impurity atom corresponds io
this process. The transition of an electron from the conduction band
to one of the donor levels corresponds in Fig. 8.8a to the capiure of
a free electron by an impurity atom.

The acceptor levels noticeably affect the electrical properties of
a crystal when they are not far from the ceiling of the valence zone
(see Fig. 8.8b). The transition of an electron from the valence zone
to an acceptor level corresponds to the formation of a hole. The reverse
transition corresponds to breaking of one of the four covalent bonds
of an impurity atom with its neighbours and recombination of the
electron and hole formed.

Upon elevation of the temperature, the concentration of the impu-
rity current carriers rapidly reaches saturation. This significs that
practically all the donor levels are freed of electrons or all the accep-
tor levels are filled with them. At the same time with elevation of
the temperature, the intrinsic conductance of the semiconductor,
owing to the transition of electrons directly from the valence band
to the conduction band, begins to tell more and more. Thus, at
high temperatures, the conductance of the semiconductor will con-
sist of impurity and intrinsic conductances. At low temperatures,
impurity conductance prevails, and at high ones intrinsic conduct-
ance.



CHAPTER 9 CONTACT AND
THERMOELECTRIC
PHENOMENA

9.1. Work Function

Conduction electrons do not leave a metal arbitrarily in noticeable
numbers. The explanation is that the metal is a potential well for
them. Only those electrons succeed in escaping from the metal whose
energy is sufficient to surmount the potential barrier on its surface.
The forces giving rise to this barrier have the following origin. The
chance removal of an electron from the external layer of positive
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ions of the lattice results in the appearance of an excess positive charge
at the site left by the electron. The Coulomb interaction with this
charge causes an electron whose velocity is not very high to return.
Thus, individual electronsare constantly leaving the surface of the me-
tal, travelling several interatomic distances away from it and then re-
turning. Asa result, the metal issurrounded by a thin cloud of electrons.
This cloud together with the external layer of ions forms an electrical
double layer (Fig. 9.1; the circles depict ions, and the black dots,
electrons). The forces exerted on an electron in such a layer are direct-
ed into the metal. The work done against these forces in transferring

an electron out of the metal goes to increase the potential energy E,
of the electron.
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Thus, the poiential energy of the valence electrons* inside a
metal is greater than that outside the metal by an amount equal to
the depth of the poteniial well £, 4 (Fig. 9.2). The energy changes
over a length of the ovdse of several interatomic distances, therefore
we can consider thal the walls of the well are vertical,

The potential encrgy of an eloctron &, = —e@ and the potential @
of the point where the electron is have opposite signs. 1t thus follows
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that the potential inside a meial s highee than that in direct prox-
itaily to its surface (we shall situply say “on its surface” for brevity)
by the amount i, le.

The impariing of an excess positive charge to a metal increases
the potential both on the surface and inside the metal. The potential
energy of an eleciron diminishes accordingly (Fig. 9.3a). We remind
our reader that the valuss of the po-
tential and the poetential energy at
infinity have been taken as the re-
ference point. The imparting of a
negative charge lowers the potential
inside and outside ihe metai. The J -
potential ensrgy of an electron grows é}na,«;

Al

£ 70

accordingly (Fig. $.30).

The toial energy of an electron in
a metal censists of iis poteniial and
kinetic energies. We established in
Sec. 7.1 that of absolute zero the X
valnes of the kinatic emergy of conduction clectrons vange Irom
wero to the enerey K.y coineiding with the Fermi level. 1n Fig. 9:4,
the encrgy levels of the conduction band are inscribed in the potential
well (ihe dash lines depict the levels that are not occupied at 0 K).

Fig. 9.4

* The powntial well for the electrons hiling the {evels of the lower bands
(i.0. Sronly bound io their atoms) has a greater depih. All the reasoning in this
section relatzs to valence clecirond.
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Different electrons need different energies to escape from a metal.
For example, an electron on the lowest level of the conduction band
needs the energy Epo; an electron on the Fermi level needs only
the energy Ep o — Emax = Ep g — Ep.

The smallest energy that must be unparted to an electron in order
to remove it from a solid or liquid in a vacuum is called the work
function. The work function is customarily designated by eg, where
¢ is a quantity known as the emission potential.

In accordance with what has been said above, the work function®
in the emission of an electron from a metal is determined by the
expression

ep=E, o— Ep 9.1

We have obtained this expression assuming that the temperature
of the metal is 0 K. For other temperatures, the work function is
also determined as the difference between the depth of the potential
well and the Fermi level, i.e. definition (9.1) is extended to other
temperatures. It is also employed for semiconductors.

The Fermi level depends on the temperature [see formula (7.23)].
Moreover, owing to the change in the average interatomic distances
due to thermal expansion, the depth of the potential well E, , changes
slightly. The result is that the work function has a slight tem-
perature dependence.

The work function is very sensitive to the state of a metal surface,
particularly to its purity. By appropriately choosing the coating of
a surface, we can greatly diminish the work function. For example,
the application of a layer of an alkaline-earth metal oxide (CaO,
Sr0, BaO) to the surface of tungsten reduces the work function from
4.5 eV (for pure tungsten) to 1.5-2 eV.

9.2. Thermionic Emission. Electronic Tubes

At temperatures other than absolute zero, there is a certain num-
ber of electrons whose energy is sufficient to surmount the potential
‘barrier on the boundary of a metal. The number of such electrons
sharply grows with elevation of the temperature and becomes quite
noticeable. The emission of electrons by a heated metal is known as
thermionic emission.

Thermionic emission is studied with the aid of the circuit shown
in Fig. 9.5. The main element of the circuit is a two-electrode tube,
also called a vacuum-tube diode. It is a well evacuated metal or glass
bulb containing two electrodes—cathode C and anode 4. The elec-
trodes can be designed in different ways. In the simplest design,

* The quantity determined by Eq. (9.1) is sometimes called the effective
work function, while Ep,, is called the total work function.
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the cathode has the shape of a thin straight filament, and the anode,
of a cylinder coaxial with it (Fig. 9.6).

The cathode is heated by the current provided by the filament
battery B. The temperature of the cathode can be varied by regulat-
ing the filament current with the aid of rheostat R. Anode battery B,
feeds a voltage to the electrodes. The anode voltage U, can be varied
with the aid of potentiometer P and measured with voltmeter V

Fig. 9.5 Fig. 9.6

(the voltage U, is considered to be positive if the anode potential
is higher than that of the cathode). Galvanometer G is intended for
measuring the anode current I,.

At a constant cathode filament current, the curve showing how
the anode current /, depends on the anode voltage U, has the form
shown in Fig. 9.7. This curve is called the volt-ampere characteristic
of a diode. The different curves in Fig. 9.7 correspond to different
cathode temperatures. At low values of U,, these curves coincide.

Let us consider the features of the curves I, = f (U,). When U, =
= 0, the electrons flying out of the cathode form a negative space
charge around it, i.e. an electron cloud. The latter repels the electrons
flying out of the cathode and returns the greater part of them. A small
number of electrons, nevertheless, succeed in flying up to the anode,
and as a result a weak current is set up in the anode circuit. To com-
pletely stop the electrons from getting onto the anode, i.e. to make
I, equal to zero, a certain negative voltage must be applied between
the cathode and the anode. This is why the volt-ampere characteristic.
of a diode begins not from zero, but somewhat to the left of the origin
of coordinates.

A glance at Fig. 9.7 shows that Ohm’s law is not obeyed for a
vacuum diode. The initial portion of the curve follows quite well
the three-halves power law obtained theoretically by I. Langmuir
and S. Boguslavsky. According to this law, the anode current.

changes in proportion to vyt

14
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With a growth in U,, a greater and graater anwber of slectrons
are drawn off by the eleumc field io the ancde, aud, {nally, ai s
definite value of U,, the electron cioud is compieiely d{sneh od and
all the electrons flying out of the caitode can reach the anode. A fur-
ther growth in U, cannot increase the anoda varrent--it reaches satn-
ration.

It is obviously exactly the saturaticsn sarrent Load characierizes
thermionic emission. £{ N elecirons fly vt of uwanit garface area of
the cathode in unit time, then the density of the satuvation current

{the saturstion.curren: rolated to anit

I . sutface area of the calhods) will ho
0=l Jsat == Ne. Ilepes, by msasucing lhe
foo gy 8 atiop current usit'_y ;;=1.l‘t.:ari0us
/"‘ 2777 Rlament earcenis, we can find the num-
ber of elecirons o oud feom unit
surface ajea at ’hmrom terepeiatores.

Croceeding from guaeciam actions,
5. Bashman in ’!‘”subtameu the foi-
i.‘.)wmg formuls fee the saturation
cnrrent:
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/ . Baun
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Fig. 9.7 Here e is the work Tunciion, and A

is a coastant not devending on the
kind of the metal. The theovetical value of 4 i3 140 A/(em®. K,
The experimental values of the consiani 4 are cousiderably jower
than the theoretical one and differ greatly for various metials. For-
mula (9.2) shows the temperaiure de;mnr‘n;lup of the S'llul"&ll(;n cui-
rent quite satisfactorily. A graph of fnaction {‘J 2) is given in ¥ig. 9.8.

In 1901, J. Richardson derived a classical {owmuis for thermionic
emission. Tt differs from Eq. (0.2) only in ivcludiog /% insicad of
T?. Formula (9.2) is known as thsfe Rirhardson- Dastonan formula,

Inspection of Eq (9.2) reveals that a decrease in ep sharply increases
the emission (it is easy tosee that at 1160 K, i.e. al &7 = 0.10 eV,
a decrease in e@ from 3 to 1 eV leads io a growih in jgue of alraost
5 X 10® times). Therefore, in manufacturing electronic tubses, special
coatings and ways of treating the cathodes are used thai resull iu
lowering of the work function. The maodern ze-cailed oxide cathodes
made of nickel coated with barivm er sivgniium oxids have 2 \~oris
function of the order of 1.0-1.2 &¢V.

A diode passes a current only when the poieniini of the anode is
higher than that of the cathode. At a negative volinge, thare is no
current in the anode cxmun‘ This properiy of o dicde malkas ity use
possible for rectifying an alternating SUITEn . & dinde inteade
this purpose is also called a keasives, The coiia line o Fig. 9.4

it}
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—r——

graph of the curcent flowing threvugh a kenotron if an alternating
voltage Lhat ciaunges with time according to a harmonic law is ap-
plizd to it. In hig case, the current will flow in the circuit only dur-
ing bhalf a peried, which is why this way of rectifying current is
valled half-wave.

By using simuitaneously two kenotrons or a double diode assem-
bled in ope bulb, we can odbiain full-wave rectification. The corres-

7
ap /
]
/ 2z
7 j P /\
; ; / \
./‘ ‘ ——Ar 7 AN
. \ ! \NC
\ / \
N \
e S N 4 N\
7 l -
Wig, 2.3 Fig. 9.9
nonding civenit is depicted in Fig, 9.40. The primary winding of
the transfermer is supplied with alternating current. There are two

8o v windings, The smaller one is used to heat the cathode.
The v Nz has a middle

termina) that is connected fo the

sathode via load 2. The ends of ihe —

winding are connecind to the anades.
During ~ne half of 2 peried, one

anode is under a higher poiential l"———-z R []
¢
L

7YV

than the caibede, and durivg the
second half-—the oiher anode. As a ¢
resull, the cuvrent shown graphically Lo
in Fig. 9.11 flows throngh the load.
Such a pulsating current can be ¢
srnoothed. |
I we place » third olesiveds Fig. 9.10
the form of a grid hetween the
sathods and ths anode, we get a three-elecirode tube—a triode
(Fig. 9.12; the filament circuit has been omitted in the diagram).
The gvid mavy he desipned, for example, as a spiral winding around
the cathode. When a slight positive potential relative to the cathode
is imparted to the grid {in this case we shall consider the voltage U,
between the grid and the cathode to be positive), the electrons wiﬁ
he withdrawn from the cathode at a higher rate. Some of them will
get onto tho grid (as a result, a small grid current I, is produced),
but the major part of the electrons fly through the grid and reach
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the anode. Owing to the grid being close to-the cathode, slight changes
in the voltage between the grid and the cathode greatly affect
the anode current.

A negative grid voltage U, reduces the anode current, and at a
sufficiently high negative voltage U, the current stops completely—
the tube is wiped out.

IT[\/\/\/\
b4
7st anode 2ndanode . . . . .. ...

Fig. 9.11 Fig. 9.12

1f we plot the anode current I, against the grid voltage U, for a
constant anode voltage U,, we get the curve shown in Fig. 9.13.

M, Ma

Characteristic

Fig. 9.13

A collection of such curves plotted for different values of U, forms a
family of the grid characteristics of a triode. The quantity

al
S:= 2
dUg

is known as the slope of the characteristic. .
A considerable portion of the characteristic is straight. This makes
it possible, by supplying a small sinusoidal voltage U, to the grid,
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to obtain a large sinusoidal change in the anode current. An alter-
nating voltage with a much greater amplitude than that of U, can
be taken off resistor R. This underlies the operation of a triode
as an amplifier. A triode can also be used for the conversion (chang-
ing the shape) and generation of varying currents and voltages.

Additional electrodes—grids—are introduced into electronic tubes
to improve their characteristics. A tube with two grids, i.e. a four-
electrode tube, is called a tetrode, a five-electrode one is called a
pentode, and so on. Tubes in which one bulb accommodates two
systems of electrodes have also come into great favour. Such a tube
performs the functions of two conventional ones.

9.3. Contact Potential Difference

If we bring two different metals into contact, a potential differ-
ence is produced between them that is called a contact potential.
The result is the appearance of an electric field in the space surround-
ing the metals. Figure 9.14 shows
the equipotential surfaces (solid
lines) and the strength lines (dash)
of this field; the surface of each of
the metals is an equipotential one.

The contact potential difference NNl
is due to the fact that when metals \§I
come into contact, part of the elec- \
trons pass from one metal into the \\\\

other. The upper part of Fig. 9.15
shows two metals—at the left before
they are brought into contact, and
at the right, after contact. The low-
er part of the figure gives graphs
of the potential energy of an electron. Fig. 9.14
It is assumed that the Fermi level ,
in the first metal is higher than in the second one. It is natural that
when the metals come into contact the electrons from the highest levels
in the first metal will begin to pass over to the lower free levels of the
second metal. As a result, the potential of the first metal grows,
and of the second one diminishes. Accordingly, the potential energy
of an electron in the first metal diminishes, and in the second one
grows (we remind our reader that the potential of a metal and the
potential energy of an electron in it have different signs; see Fig. 9.3).
It is proved in statistical physics that the condition for equilib-
rium bhetween metals in contact (and also between semiconductors
or a metal and a semiconductor) is the equality of the total energies
corresponding to the Fermi levels. In this condition, the Fermi
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levels of both metals are at the same heighi in the diagran. {nspec-
tion of Fig. 9.15 reveals that in this case ths potential energy of an
electron in direct prosimiiy to the suriace of ithe fivst wmeial will be
lower by ep, —- e, than near the second metal. Hence, the poten-
tial on the surface of ibe first metal will be higher by
Uygp == _;1___;4_{", =P~ Py (9.3)

than on the surface of the second one. T4 is exacily the quantity 7/,
that is the centaci polentia: differenc: between the first and th°
secoud metal.

According o Eg. (9.3}, ihe won
the first and the second meial equals i

ifferense between
s hetween the work
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functions for the second and the fst wetal divided by ihe eleman-
tary charge, or sitoply the difference of itie emission (work function)
potentials for the second snd the first meatal.

The potential differcuce given by Eq. (2.3) is established between
pomts outside the metals in dirsct proximity o their surfaces. This
is why it is known as the exiernal confact potential difference. Wo
most frequently speak simply of ihe coptact pniential difference,
having in mind the external one. There is also a potential differ-
ence between the internal poin‘i',. of the meials called the internal
one. Examination of Fig. 9.45 reveals thai the petential energy of
an electron in the first metal is lower than that in the second one by

Er 1 — Ey,,. Acror(‘mgly, the poteniinl inside the first metal is
hlgher than that inside the second one by the amowni

» o EraEr, 9.4

U,,= —--.6... X 9.4

This expression gives the internal contact potential difierence.
This is the amount by which the potential diminishes when passing
from the first metal to the second one.

If we give two different metals the shape shown in Fig. 9.16 and
bring them into contact, then an electric field is set up in gap B-C
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whose strengih lines are shown by dash lines. The change in the
potential along the contour designaied by the dot-and-dash line is
shown at the right of the figure.

Figure 9.47 shows the change in the potential energy of an electron
along three different metals 7, 2, 3 in contact with one another.
A glance ai the figure shows that the potential difference which

‘J.. g o
1 a5y ;
T
|
L b
Fig. 9.47

sets ia between metals / and J iz exactly the same in this case as
when they are in divect contact™. 'l'he same is true for any number
of intermediate metals: the poiential difference across the ends of a
circuit is determined by the difference between the work functions
{or the metals forming the exireme finks of the circuit.

The values of the external contact potential difference vary for
different pairs of weials from severzl ievths of a volt to several
volls.

We have counsidered the coniact hetween two inetals. A contact
potential difference also appenrs, liowever, on the interface between
a metal and a sesniconductor, aund 2iso on the interface between two
semiconductors.

In conclusion, we shail consider a closed circuit consisting of an
arbitrary number of different, metals or semiconductors (Fig. 9.18).

* The values of the potentials may change here. In particular, both extreme
metals may have a poiential of the same sign.
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If all the junctions are maintained at the same temperature, the
sum of the potential jumps will be zero. Therefore, no e.m.f. can
appear in the circuit. The appearance of a current in such a circuit
would contradict the second law of thermodynamics. Indeed, since
the flow of a current in metals and semiconductors is not attended by
chemical changes, the current would do work at the expense of the heat
received from the medium surround-
ing the circuit. No auxiliary processes
(for example, the transmission of part
of the heat received to other bodies)
would occur. Consequently, a perpetual
motion machine of the second kind
would be achieved here.

9.4. Thermoelectric Effects

There is a relation between thermal
Vi ’ 2 and electrical processes in metals and
[/ [ ma : semiconductors that underlies effects
—‘—""" 4 known as thermoelectric ones. Among
Fig. 9.18 them are the Seebeck effect, the Peltier

effect, and the Thomson effect.
The Seebeck Effect. The German physicist Thomas Seebeck (1770-
1831) discovered in 1821 that when junctions 7 and 2 of two different
‘metals forming a closed circuit (Fig. 9.19) have different temperatures,

7 (h<7) T

7 L & — ]
-—1 e tertl X .—

2
Fig. 9.19 Fig. 9.20

an electric current flows in the circuit. A change in the sign of the
difference between the junction temperatures isattended by a change
in the direction of the current.

The thermal electromotive force (thermal e.m.f.) is due to three
reasons: (1) the dependence of the Fermi level on the temperature,
(2) the diffusion of electrons (or holes), and (3) the carrying along of
electrons by phonons.
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The Fermi level depends on the temperature [see formula (7.23)].
Therefore, the jump in the potential when passing from one metal
to another [i.e. the internal contact potential difference, see Eq. (9.4)]
is not the same for junctions at different temperatures, and the sum
of the potential jumps differs from zero. This alone would be enough
for the appearance of an e.m.f. acting in the direction shown in
Fig. 9.19 and equal to

Econt =Uxs (T,) +Upa (T,) =
=L ((Er, A(T)— Er, 8 (T)) + [Er, 5 (T) — Es, s (To)l} =
=L {(Ez, 5(T2)— Er, 8(T)] — [Er, (T2)— Ee, a(T,)])

The last expression can be written as follows:

T, T,
Boont = | (=25 ) dT—f\' (L) g1 (9.5)

To understand the second reason for the appearance of a thermal
e.m.f., let us consider a homogeneous metal conductor along which
there is a temperature gradient (Fig. 9.20). In this case, the concen-
tration of electrons with £ > Er at the warm end will be higher
than at the cold one; conversely, the concentration of electrons with
E << Ep will be lower at the warm end. A gradient of concentration
of electrons with a given value of the energy is set up along the con-
ductor; this results in diffusion of the faster electrons to the cold
end and of the slower electrons to the warm one. The diffusion flux
of the fast electrons will be greater than the flux of the slow electrons.
Therefore, a surplus of electrons will be formed near the cold end,
and a shortage of them near the warm end. This leads to the setting
up of a diffusion component of the thermal e.m.f.

The third reason for the appearance of a thermal e.m.f. is the car-
rying along of electrons by phonons. When there is a temperature
gradient along a conductor, a drift of phonons is set up. Upon col-
liding with the electrons, the phonons impart to them directed
motion from the warmer end of the conductor to the colder one. The
result is accumulation of electrons on the cold end and a shortage of
electrons on the warm end; this leads to the appearance of a “phonon”
component of the thermal e.m.f.

Both processes—the diffusion of electrons and the carrying along
of electrons by phonons—lead to the formation of a surplus of elec-
trons near the cold end of the conductor and a shortage of them near
the warm end. The result is the setting up of an electric field inside
the conductor directed toward the temperature gradient. At a definite
value of the field, which, generally speaking, is different for each
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cross section of the conducior, the sum of the diffusion and pheonon
fluxes of the electrons becemes equal to zero avd, censeguenily, a
steady state sets in. The strength of this field can be vepresented in
the form

E% == . do dp T

g e e e (9.6}
where
p =22 9.7

Expression (9.6) relates the field strengih F* and the temperaturs
gradient d7/dl. The field set up and the temperaturs gradieut have
opposite directions. Hence, £* and A7/dl Lave opposite signa. Uow
sequently, for metals § > 0%,

The process of the appearance of the field £* in a non-uniforvwly
heated counductor described above 2lso ocours in semiconduciors.
For n-type semiconductors, we have {§ > 0. With hme coadustion,
the holes diffusing in a great number toward ihe cold end set np an
excess positive charge near it. Corrying along of ihe holes by pho-
nons leads to the same reanlt. Therefore in p-tvpe sewicenducicrs,
the potential of the cold end will be higher than ithat of the warm ous,
and, consequently, f < 0.

The field determined by Fg. (9.6) is one of exiraneous forces.
By integrating the strength of this field over the seciion of civeuit 4
from junction 2 to junction 7, we shall get the thermal e.m.f. acling
on this section™* in the direction indi: aled by the grrow in Fig. 9 10:

1
Eopy— — g fa—y dl== ) Pad? (1.8

(we have exchauvged the places of the integraiion limits). Bimwilatly,
the thermal e.m.f. aciiog on section B from junciion 7 io junction 2 is

2 Ta
Biwa=— | Po Gl = | prar (9.9)
1 Ty

The thermal e.m.f. Eiperm consists of the e.m.f.s set up in the
contacts, and the e.m.f.s-acting on sections 4 and [5:

gtherm == gcont -} (g?-Ai -+ .s.ngZ

* This holds for the overwhelming majority of metais. In some metals,
however (beryllium, zine, etc.), the conduction is of a hole nature. The sign
of the Hall potential diffeence for thesc metals correspouds to positive cvrrent
carriers. For such metals § < 0.

** See formula (5.15) of Vol. 1I, p. 103.
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Introducing Egs. (9.5), (9.8), and (9.9) and performing simple trans-
{ormations, we get

Ty To
. 1 "E. P '1 dE gt
gtherm == “J {BA e "%" éﬁ} a7 5 (ﬂB ) '—dFT )d!
Ty ‘ T1
‘The guawntity
i 1 dE
¢ =2 B ~ ,..(_i.f“‘.. (9.10)

is known as-the thecmoelecivie coethicient. Since both P and dEp/dT
depend on the lewperature, the coefiicient a is a function of 7.

With a view to Ig. (9.10), the expression for the thermal e.m.f.
can bhe written in the form

T3 To
Buneren = | wn a? - | anar 9.11)
Ty Ty
o
Ts
Einerm == s g dl (9.12)
T
where '
adpp == Uy —— GB (913)

The guantity given by Hyg. (9.13) is called tbe differential or
specific thermal oi «etromotive force of a given pair of metals or semi-
conductors. For most pairs of metals, aapg is of the order of 10-3
to 10-* V/K; for semiconductors it may be much higher (up to 1.5 X
»x 10-% ¥/Kj;. The ‘explanation is that for semiconductors with
different kinds of conduction « has different signs, owing to which
lasp | = |wa |+ as |

1n some cases, the specific thermal e.mr.f. oniy slightly depends on
the teraperature. Theretore, formula (9 12) can be written approxi-
maiely in the form

Etnerm = UiaB (Tz“‘Ti) (9~14)

As a vule, however, with an increase in the difference between the
iunction temperatures, & pecm varies not according to a linear law,
Lub in a quite complicated way, and may even change its sign. For
example, if one junction of the pair iron-copper is kept at 0 °C, then
at a temperature of the other junction »f about 540 °C the thermal
e.m.f. vanishes; at a lower temperaturs of the second junction &iperm
has one sign, and at a hlgher tempersture the opposite sign.

The Seebeck effsct is taken advantage of to measure temperatures.
1he relevant device is calied a thermocouple. One junction of a
thermocouple is kept at a constant temperature (for example, at
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0 °C), and the other is placed in the medium whose temperature is
to be measured. The value of the temperature can be assessed accord-
ing to the thermal current produced, which is measured with a gal-
vanometer. A more accurate result is obtained if the produced ther-
mal e.m.f. is measured according to the compensation method. A
thermocouple is first graduated. Thermocouples can be employed
to measure both low and high temperatures with an accuracy of the
order of hundredths of a kelvin.

Thermocouples made from metals and their alloys are not used
as current sources owing to their very low efficiency (not over 0.5%).
Thermocouples made from semiconductor materials have a much
higher efficiency (of the order of 10%). They have already found use
as small generators for powering radio apparatus. Generators devel-
oping a power of hundreds of kilowatts are on the drawing board at
present. .

The Peltier Effect. This effect, discovered in 1834 by the French
physicist Jean Peltier (1785-1845), consists in that when a current
flows through a circuit formed of different metals or semiconductors,
heat is liberated in some junctions and absorbed in others. Thus, the
Peltier effect is the reverse of the Seebeck effect.

It was established experimentally that the amount of heat liber-
ated or absorbed in a junction is proportional to the charge ¢ pas-
sing through the junction:

Qas = Ilxpg = HABII: (9.15)

(the subscripts indicate that the current flows from side A4 to side B).
The proportionality constant II 5 is known as the Peltier coefficient.

Equation (9.15) shows that unlike the Joule-Lenz heat, the Peltier
heat is proportional to the first power of the current, and not to its
square.

When the direction of the current changes, Q changes its sign,
i.e. instead of liberation (absorption) of heat, the absorption (lib-
eration) of the same amount of heat is observed (at the same ¢). Hence,

HAB = _HBA

It follows from the laws of thermodynamics that the Peltier coef-
ficient and the specific thermal e.m.f. are related by the expression

HAB = aABT (916)

When two substances with the same kind of current carrier are in
contact (metal-metal, metal-n-type semiconductor, two n-type semi-
conductors, two p-type semiconductors), the Peltier effect is explained
as follows. The current carriers (electrons or holes) at different sides
of a junction have a different average energy (we have in mind the
total energy—kinetic plus potential). If the carriers when passing
through a junction get into s region with a lower energy, they give
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up their excess energy to the crystal lattice, and the resultis heat-
ing of the junction. At another junction, the carriers pass into a
region with a higher energy; they borrow the lacking energy from
the lattice, which results in cooling of the junction.

When two semiconductors with different kinds of conduction are
in contact, the Peltier efiect has a different explanation. In this case,
the electrons and holes at one junction move toward one another.
Upon meeting, they recombine: an electron in the conduction band
of the n-semiconductor after getting into the p-semiconductor occu-
pies the place of a hole in the valence band. When this occurs, the
energy is released that is needed for the formation of a free electron
in the n-semiconductor and of a hole in the p-semiconductor; the
kinetic energy of the electron and the hole is also released. All this
energy is transferred to the crystal lattice and heats the junction.
At the other junction, the current flowing through it draws off the
electrons and the holes from the boundary between the semiconduc-
tors. The decrease in the number of current carriers in the boundary
region is replenished as a result of the birth of electron and hole pairs.
(here an electron from the valence band of the p-semiconductor pas-
ses over into the conduction band of the n-semiconductor). The energy
used for the formation of a pair is borrowed from the lattice—the
junction cools.

The Soviet physicist Abram Joffe (1880-1960) presented the idea
of using the Peltier effect for designing refrigerating installations.
The working element of such arrangements is a battery of alternat-
ing n- and p-type semiconductors. The junctions of one kind (cor-
responding, for example, to a transition from » to p) are introduced
into the space to be cooled, and of the other kind (corresponding to a
transition from p to r) are led out. With an appropriate direction of
the current, the internal junctions absorb heat and lower the tem-
perature of the space surrounding them, while the external junctions
give up heat to the surroundings.

The Thomson Effect. In 1856, the British physicist William Thom-
son (Lord Kelvin) predicted on the basis of thermodynamic consid-
erations that a heat similar to the Peltier heat should be liberated
(or absorbed) when a current flows through a homogeneous conductor
along which there is a temperature gradient. This effect was later
discovered experimentally and was called the Thomson effect.

The amount of heat liberated as a result of the Thomson effect in
unit time in a conductor element of length dl is

dQ =1L a1 (9.17)

Here I = current
dT/dl = temperature gradient
1 = proportionality constant known as the Thomson coef-
ficient.
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The Thomson effec is expiuined by analogy with tie Peltier
effect. Assume that a cuirent is flowing in the divection of iicecasing
temperature. If the current carriers ave slecicons, they will pass
during their motion fromn places having a img.w tgmperaiure (and,
consequently, a higher averags casegy) io places having a lower tem
perature (and a lower average cuneigy). The clectrons will give up
their excess energy to the laciice, which will result in the libevation
of heat. If hoies are the curreni sarriaes, ithen the effecs will have ths
opposiie sign.

9.5. Semiconductor {hiades and Tmodss

| Currents can be rectilied and voltages and powers amplified with
the aid of semiconductor devices known as sewmiconducter (or crystal)
diodes and triodes. Semiconducior iriodes ars also calisd {rapsisiors,

The main eiement of sewiconductor devices is ihe so-called p-n
junction. It is a thin layer on the Louadary beiwesn wwo re-,,ums of
the same crystal differing iu the kind of impurity sonduciion. Such
a junction is manafactured by iaking, for example, a monocrystal
of very pure germaaiwin wish an slecteonic cowduction wechanism
(due to negligible residues of impurities). A thin plaie is cul oul of
the crystal and a small piece of indivi i3 fused inte i3 ai one side.

During this operation, which is conduoted in a veeuum or inan atmio-
sphere of an inert gas, the indium atoms diffuse nto the geemaniuwm
to a certain depth. In the yegion into which the indivm atoms pene
trate, the conductance of iiwe germaniion bacomes of the hole type.
A p-n junction appears «i Lhe bouadary of ihis region. There acs
also other ways of obtaiaing pe juaciions.

Figure 9.21 shows how the impurity concenivation changes in &
direction at right angles to ihe boundary iayer. The majorily carrent
carriers in the p-region are the holes forred as & result of the capluxe
of electrons by impurity atoms; the accepiors -become negative icus
(Fig. 9.22; the circles ave ions, the black dats arce elecirons, and the
white dots are holes). In sddition, Lhe p-cegion contains a smail nuim-
ber of minority cau'i(ars—---clm’ apuearing owing to the transier
of electrons from the valence ba

1 direeily into the condaction baud
by thermal metion (t.ma process alse increases e sumber of holes
somewhat). In the n-region, the majority cuvrsut carciers are fin
elecirons given up by ihe donors iuto the conduction band (ihe do-
nors themselves transforra into positive ious); ihe transicion of elco-
trons from the valence baud io the conduciion baud ocourring ai
the expense of thermal ruoiion leads io the formation of a smali num-
ber of holes, minority cariiers i g pesion.

Diffusing m opposite directions thw.nz,h the buoundary layer, the
holes and electrons recombine wiith one anvther. Therefove, the p-n
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junction is greatly depleted of current carriers and acquires a high
resistance. At the same time, an electrical double layer appears on
the boundary between the regions. It is formed by the negative ions
of the acceptor impurity whose charge is now no longer compensated
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Fig. 9.21 Fig. 9.22

by the holes, and by the positive ions of the donor impurity whose

charge is now no longer compensated by the electrous (see Fig. 9.22).

The electric field in this layer is directed so that it counteracts the

further transition of the majority carriers through the layer. Equi-

librium sets in at such a height of the potential barrier at which the

Fermi levels of the two re-
1 levels

gions are at the same height RIS Conduction
(Fig. 9.23). Ny % band

The bending of the energy 6?55‘;” RIS
bands in the region of the __ 4\ . XTL— |e—Fermi
junction is due to the fact oo Donor level
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librium is lower than that of
the n-region; accordingly,
the potential energy of an
electron in the p-region is
higher than in the n-region. The bottom boundary of the valence band
gives the change in the potential energy of an electron Ep . in a
direction at right angles to the junction (see the solid curve in Fig.
9.244). The charge of a hole is opposite to that of an electron, there-
fore its potential energy E, y is higher where E), . is lower, and vice
versa (see the dash curve in ¥Fig. 9.24a).

In the state of equilibrium, a certain number of majority carriers
succeed in surmounting the potential barrier, and as a result the
small current I, flows through the juuction (Fig. 9.24a). This

Fig. 9.23
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current is compensated by the counter current I, set up by the
minority carriers. There are very few minority carriers, but they
easily penetrate through the boundary of the regions, “rolling down”
from the potential barrier. The value of I, is determined by the
number of minority carriers given birth to every second and does not
virtually depend on the height of the potential barrier. The value of
I'maj, on the contrary, depends greatly on the height of the barrier.
Equilibrium sets in exactly at such a height of the potential barrier
at which both currents I,,; and Iy, compensate each other.

Let us supply to a crystal an external voltage* directed so that
the plus is connected to the p-region and the minus to the n-region

+ —
Ly Sm—— g SOw—
ZIrin :f'"“-‘ Inin =~ jmj

p-71_function p-n junction ' p-71 function
@) (%) ()
Fig. 9.24

(such a voltage is called forward). The result is a growth in the poten-
tial (i.e. an increase in L, and a decrease in £} ) of the p-region
and a lowering of the potential (i.e. a decrease in £, ;, and an increase
in Ep ) of the n-region (Fig. 9.24b). As a result, the height of the
potential barrier will diminish, and the current /.,,; will grow. The
current Iy, however, will remain virtually unchanged (we have
already noted that it is almost independent of the barrier height).
Hence, the resultant current will become different from zero. The
lowering of the potential barrier is proportional to the applied volt-
age (it equals elU). With lowering of the barrier height, the current
of the majority carriers and, consequently, the resultant current,
rapidly grow. Thus, in the direction from the p-region to the r-region,
a p-n junction passes a current that rapidly grows with an increase
in the applied voltage. This direction is called the forward one.

Figure 9.25 gives a volt-ampere characteristic of a p-n junction.
The electric field set up in a crystal when a forward voltage is applied

* An external voltage violates equilibrium so that the Fermi levels of both
regions become displaced relative to each other. With a forward voltage, the
Fermi level in the p-region is lower than in the n-region.
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“forces” the majority carriers toward the boundary between the
regions, owing to which the width of the transition layer depleted of
carriers (this layer is also known as the depletion layer—see Az in
Fig. 9.24) diminishes. The resistance of the junction falls off accord-
ingly, the greater, the higher is the voltage. Hence, the volt-ampere
characteristic in the transition region is not a straight line (see the
right-hand branch of the curve in Fig. 9.25).

Now let us apply to a crystal a voltage of a direction such that
the plus is connected to the n-region and the minus to the p-region
(this voltage is called a reverse one). This will result in elevation

1 NN
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of the potential barrier and a corresponding reduction in the current
of the majority carriers I,y (Fig. 9.24c). The resultant current set
up (called the reverse one) rapidly reaches saturation (i.e. stops de-
pending on U) and becomes equal to I . Thus, in the direction from
the n-region to the p-region (called the reverse or cut-off dire.ctlo'n),
a p-n junction passes a weak current completely due to the minority
carriers. Only at a very high reverse voltage does the current begin
to grow very sharply, which is the result of electrical brea}&down of
the junction (see the left-hand branch of the curve in Fig. 9.25).
Every p-n junction is characterized by its extreme value of the re-
verse voltage that it can withstand without breakdown.
Examination of Fig. 9.25 shows that a p-n junction has a much
higher resistance in the reverse direction than in the forward one.
The explanation is that the field produced in-a crystal _when a re-
verse voltage is imposed on it “pulls back” the majority carriers
from the boundary between the regions, which leads to a grovyth
in the width of the depletion layer. The resistance of the junction
grows accordingly. )
The different resistances in the forward and in the reverse direc-
tion make it possible to use p-n junctions for rectifying an alternat-
ing current. Figure 9.26 shows a graph of the current flowing through
a junction when the applied voltage varies harmonically. In‘thls
case, the width of the depletion layer and the resistance of the junc-
tion pulsate, changing in step with the changes in the voltage.
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A semiconductor triode or transistor is a crystal with two p-n
junctions. Depending on the sequence in which the regions with
different kinds of conduction alternate, n-p-n and p-n-p transistors
are distinguished. The middle part of a transistor is called its base.
The regions adjoining the base at both sides and having a different
kind of conduction than it form the emitter and the collector.

Let us consider briefly the principle of operation of an n-p-n type
transistor. Figure 9.27 shows how such a transistor is connected to.an
amplifier circuit. A constant forward bias voltage U,y is fed to the
emitter-base junction, and a constant reverse bias voltage Uco is
fed to the base-collector junction. The alternating voltage U, being

Emitter  Base  Collector

Fig. 9.27 Fig. 9.28

amplified is fed to the small input resistor R,,. The amplified volt-
age U,y is taken off the output resistor R,y With the signs of the
bias voltages indicated in the diagram, the resistance of the emitter-
base junction is not high, whereas the resistance of the base-col-
lector junction, on the contrary, is very high. This makes it pos-
sible to use a resistor R,,; having a high resistance.

Figure 9.28a shows the change in the potential energy of the elec-
trons Ej . (the solid curve) and of the holes Epy (the dash curve)
when the bias voltages and input signal are absent. The connection
of a forward voltage Uen lowers the potential barrier at the first
junction, while the connection of a reverse voltage Ugo elevates the
potential barrier at the second junction (Fig. 9.28b). Flowing of a
current in the emitter circuit is attended by the penetration of elec-
trons into the region of the base. The electrons that have penetrated
into the base diffuse toward the collector. If the thickness of the
base is small, almost all the electrons, without managing to recom-
bine, “roll down” the potential hill at the boundary between the base
and the collector, and enter the collector circuit.

The change in the current J.p in the emitter circuit produced by
the input voltage leads to a change in the number of electrons pene-
trating into the collector and, consequently, to almost the same
change in the current I in the collector circuit. Assume that Ioo =
~ I,,. Expressing these currents through the relevant voltages and
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resistances, we find that U,/R, & Ugui/Roy. Hence,

Uout ,_ Rout

Un = R

Since Royt > Ry, the voltage U,y considerably exceeds the input
voltage U;,. Thus, a transistor amplifies the voltage and power.
The increased power taken from the device appears at the expense
of the current source connected to the collector circuit.

The operating principle of a p-n-p type transistor is similar to
that described above for a type n-p-n transistor. The only difference
is that the part of the electrons is played by the holes.

9.6. The Barrier-Layer Photoelectric Effect

Apart from the extrinsic photoelectric effect (usually called simply

the photoelectric effect) treated in Sec. 2.2, there is also an intrinsic
photoelectric effect observed in dielectrics and semiconductors. It
consists in the redistribution of the elec-
trons among the energy levels due to the
action of light. If the energy of a quantum
Ao exceeds the width of the forbidden
band, an electron that has absorbed a
quantum passes from the valence band
to the conduction band. The result is the
appearance of an additional pair of cur- p-n junction
rent carriers—an electron and a hole, )
which manifests itself in an increase in the Fig. 9.29
electrical conductance of the substance.
If the latter contains impurities, the action of light may cause
electrons to pass from the valence band onto levels of the impurity
or from the impurity levels to the conduction band. In the first case,
hole, and in the second, electron photoconduction appears.

The intrinsic photoelectric effect underlies the functioning of
photoresistors. The number of current carriers formed is proportional
to the incident light flux. This is why photoresistors are used for pho-
tometric purposes. Photoresistors made from cadmium sulphide
(CdS) are used in the visible part of the spectrum. Photoresistors
made from the semiconductors PbS, PbSe, PbTe, and InSb are used
as detectors of infrared radiation.

The barrier-layer photoelectric effect is observed in the region of
a p-n junction or on the boundary of a metal with a semiconductor.
It consists in the setting up by light of an electromotive force (pho-
to-e.m.f.). Figure 9.29 shows the change in the potential energy of
the electrons (solid curve) and holes (dash curve) in the region of
a p-n junction. The carriers that are the minority ones for the given
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region (electrons in the p-region and holes in the n-region) produced
under the action of hght penetrate through the junction without
hindrance. The result is the accumulation of an excess positive
charge in the p-region and of an excess negative charge in the n-
region. This leads to the appearance of a voltage applied to the
junction that is exactly -the photoelectromotive force.

If we connect a crystal with a p-n junction to an external load,
a photocurrent will flow in it. When the illumination is not very
great, this current is proportional to the light flux falling on the
crystal. This underlies the operation of photoelectric photometers,
in particular of the exposure meters used in photography. Several
scores of series-connected silicon p-n junctions form a solar battery.
Such batteries are used for supplying power to radio equipment on
spaceships and on satellites of the Earth,



PART IV~ PHYSICS OF
THE ATOMIC
NUCLEUS AND
ELEMENTARY
PARTICLES

CHAPTER 10 THE ATOMIC NUCLEUS

10.1. Composition and Characteristic
of the Atomic Nucleus

The nucleus of the simplest atom—the hydrogen atom—consists
of a single elementary particle called a proton. The nuclei of all
the other atoms consist of two kinds of elementary particles—pro-
tons and neutrons. These particles are known as nucleons.

The Proton. The proton (p) has a charge of ¢ and a mass of

mp=938.26 MeV* (10.1)
We shall indicate for comparison that the mass of an electron is
me = 0.511 MeV (10.2)

A comparison of Egs. (10.1) and (10.2) shows that m, = 1836m..
A proton has a spin equal to one-half (s = 1/2), and an intrinsic
magnetic moment

!J,p= +2.79P«nuc (10'3)
where
e = ?;’;_c =5.05 X 1072 erg/Gs (10.4)

is a unit of magnetic moment called the nuclear magneton. It follows
from a comparison with Eq. (5.42) that pp,c is 1/1836-th of the Bohr
magneton pg. Hence, the intrinsic magnetic moment of a proton
is about 1/660-th of the magnetic moment of an electron.

The Neutron. The neutron (n) was discovered in 1932 by the British
physicist James Chadwick (born 1891). The electric charge of this

* In nuclear physics, it is customary practice to express masses in units
of energy, multiplying them by ¢? for this purpose. A unit of mass called the
atomic mass unit is also employed (see Sec. 10.2 of Vol. I, p. 267); 1 amu=
= 931.44 MeV.
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particle is zero, and its mass
= 939.55 MeV (10.5)

is very close to that of a proton. The difference between the masses
of a neutron and a proton m, — my is 1.3 MeV, i.e. 2.5m,.

A neutron has a spin equai to one-balf (s = 1/2) and (notwith-
standing the absence of an electric charge) an intrinsic magnetic

moment equal to
Mo = — 4.9 pnue (10.6)

(the minus sign indicates tbhat the directions of the intrinsic mechan-
ical angular momentum and ol the magnetic mowment are opposite).
This astonishing fact will be explained in Sec. 10.4.

We must note that the ratio of the e).porlmenta] valves of p, and

p, with a high degree of accuracy equals — 5 . This was noted only

after such a value had been obtained tht:oretlcaily.

In the free state, a neutron is unstabie (radioactive)—it sponta-
neously decays transforming into a proton and emitting an electron
(e-) and another particle called an antineutrino (v) (see Sec. 11.8).
The half-life (i.e. the time during which half of the original number
of neutrons decays) is about 12 minutes. The decay scheme can be
written as follows:

n—>p-te v (10.7)

The mass of an antinentrino is zero*. The mass of a neutron is greater
than that of a proton by 2.5m,. Hence, the mass of a2 nentron exceeds
the total mass of the particles in the right-hand side of Eq. (10.7)
by 1.5m,, i.e. by 0.77 MeV. This euergy is liberated when a neutron
decays as the kinetic energy of the particles formed.
Characteristics of an Atomic Nucleus. Oone of the most important
characteristics of an atomicz nucleus is its charge number (or proton
number) Z. It equals the number of protons in the nuclens and de-
termines its charge, which equals -}-Ze. The number Z determines
the serial number of a chemical element in Mendeleev’'s periodic
table. It is therefore also known as the atomic number of a nucleus.
The number of nucleons (i.e. the total number of protons and
peutrons) in a nucleus is designated by the letter A and is called the
mass number of the nucleus. The number of neutrons in a nucleus
is N==A—1Z.
Nuclei are designated by the symbol
XA
2 X

where X stands for the chemical symbol of a given element. The
right-hand superscript is the mass number, and the left-hand sub-

* Here and in the following, by mass we understand the invariant quantity,
i.e. the rest mass.



The Atomic Nucleus 233

script is the atomic number (the latter symbol is often omitted).
The mass number is sometimes written at the left of the symbol of

a chemical element (7X) instead of at its right.

Nuclei having identical values of Z but different ones of A are
called isotopes. Most chemical elements have several stable iso--
topes. For example, oxygen has three stable isotopes 0%, s0%7, 08,
and tin has ten.

Hydrogen has three isotopes:

H»—ordinary hydrogen, or protium (Z =1, N = 0),

1H2%--heavy hydrogen, or deuterium (Z =1, N = 1), and

JB—tritium (Z =1, N = 2)*,

Protium and deuterinm are stable, and tritium is radioactive.

Nuclei having the same mass number 4 are called isobars. We
can cite ;gAr*® and ,,Ca*® as an example. Nuclei having the same
number of neutrons N = A4 — Z are known as isotones (;C'3, ;N4).
Finally, there are radioactive nuclei having identical Z’s and A’s,
but differing in their half-lives. They are called isomers. For exam-
ple, we know of two isomers of the nucleus 3;Br®?, the half-life of
one of which is 18 minutes, and of the other, 4.4 hours.

About 1500 nuclei are known differing either in Z, or in 4, or in
both together. About one-fifth of them are stable, the remaining ones
are radioactive. Many nuclei were obtained artificially with the
aid of nuciear reactions.

In nature, elements with an atomic number Z from 1 to 92, exclud-
ing technetium (Tc, Z == 43) and promethium (Pm, Z = 61) are
encountered. Plutoniumn (Pu, Z = 94), after being obtained arti-
ficially, was detected in minute amounts in the natural mineral
pitchblende. The other transuranium elements (i.e. elements after
araninm), with Z from 93 to 107, were obtained artificially by means
of various nuclear reactions.

The transuranium elements curium (96 Cm), einsteinium (99 Es),
fermium (100 Fm) and mendelevium (101 Md) were named in honour
of the outstanding scientists Pierre and Marie Curie, Albert Einstein,
Enrico Fermi and Dmitri Mendeleev. Lawrencium (103 Lw) was
named in honour of the inventor of the cyclotron Ernest Lawrence.
Kurchatovium (104 Ku) was named in honour of the outstanding
Soviet physicist Tgor Kurchatov.

Some of the transuranium elements, including kurchatovium and
the elements 106 and 107, were obtained in the Laboratory of Nuclear-
Reactions at the Joint Institute for Nuclear Research at Dubna by
the Soviet scientist Georgi Flerov and his collaborators.

Dimensions of Nuclei. In a first approximation, a nucleus may be
considered as a sphere whose radius is determined quite accurately

* Deutecium is also denoted by the symbol D, and tritium by the symbol T.
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by the formula )
r=1.3x10"134"° cm=1.34"° Fm (10.8)

(Fm—fermi—is the name of a length unit employed in nuclear phys-
ics and equal to 10-13 cm). It follows from Eq. (10.8) that the volume
of a nucleus is proportional to the number of nucleons in it. Thus,
the density of matter in all nuclei is approximately the same.
Spin of a Nucleus. The spins of the nucleons are summated into

the resultant spin of the nucleus. The spin of a nucleon is . There-

fore, the nuclear spin quantum number 7 will be a half—mteger with
an odd number of nucleons 4 and an integer or zero with an even
number of nucleons A. The spins I of nuclei do not exceed several
units. This points to the fact that the spins of most of the nucleons
in a nucleus mutually compensate one another, being antiparallel.
In all even-even nuclei (i.e. nuclei with an even numper of protons
and an even number of neutrons), the spin is zero.

The mechanical angular momentum of a nucleus M; is added to the
momentum of the electron shell M, to form the total angular mo-
mentum of an atom My that is determined by the quantum number F.

The interaction of the magnetic moments of the electrons and the
nucleus leads to the fact that the states of an atom corresponding to
different mutual orientations of M; and M; (i.e. to different F’s)
have a slightly differing energy. The interaction of the moments
wu, and pg is responsible for the fine structure of spectra (see
Sec. 5.4). The interaction of p; and pu; determines the hyperfine
structure of atomic spectra. The splitting of the spectral lines cor-
responding to the hyperfine structure is so small (of the order of
several hundredths of an angstrom) that it can be observed only with
the aid of instruments having the highest possible resolving power.

10.2. Mass and Binding Energy of a Nucleus

The mass of a nucleus myyc is always smaller than the sum of the
masses of the particles it consists of. The reason is that when nu-
cleons combine to form a nucleus, the binding energy of the nucleons
is liberated.

The rest energy of a particle is associated with its mass by the
relation £, = mc? [see Eq. (8.40) of Vol. I, p. 241, and the beginning
of the first paragraph on p. 242]. Hence, the energy of a nucleus at
rest is less than the total energy of the non-interacting nucleons at
rest by the amount

Ey=ct{{Zmy+ (A-— Z) my] — mpyc} (10.9)
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It is exactly this quantity that is the binding energy of the nucleons
in a nucleus. It equals the work that must be done to separate the
nucleons forming the nucleus and to remove them from one another
to distances virtually excluding their interaction.

Equation (10.9) is practically not violated if we substitute the
mass of a hydrogen atom myg for the mass of a proton, and the mass
of an atom m, for that of its nucleus m,yc. Indeed, if we disregard
the comparatively negligible binding energy of the electrons to the
nuclei, this substitution will signify the addition to the minuend
and the subtrahend in braces of an identical quantity equal to Zm..
Thus, Eq. (10.9) can be written in the form

Ey= c*{(Zmy + (A—2) my] — my) (10.10)

The latter equation is more convenient than Eq. (10.9) because usu-
ally the masses of atoms, and not of nuclei, are tabulated.

The binding energy per nucleon, i.e. Ey/A4, is sometimes called
the binding fraction.

The quantity

A=[Zmp+ (A —Z) mp] — Muye (10.11)

is known as the mass defect of a nucleus*. The mass defect is asso-
ciated with the binding energy by the relation A = E,/c*.

Let us calculate the binding energy of the nucleons in the nucleus
,He* that includes two protons (Z = 2)and two neutrons (4 — Z = 2).
The mass of the atom ,He* is 4.002 60 amu, which 3728.0 MeV cor-
respond to. The mass of a hydrogen atom ;H?* is 1.008 15 amu [938.7
MeV; compare with Eq. (10.1)]. The mass of a neutron is 939.55 MeV
[see Eq. (10.5)]. Using these values in Eq. (10.10), we get

Ey, = (2 X 938.7 4+ 2 x 939.55) — 3728.0 = 28.5 MeV

The binding energy of a helium nucleus per nucleon is 7.1 MeV.
We shall indicate for comparison that the binding energy of the
valence electrons in atoms has a value that is 1/10° of this one (of the
order of 10 eV). The binding energy per nucleon (E,/A) for other
nuclei has approximately the same value as for helium.

Figure 10.1 depicts a graph showing how the binding energy per
nucleon (the binding fraction) Ep/A depends on the mass number 4.
The nucleons are bound most stongly in nuclei having mass numbers
of the order of 50-60 (i.e. for the elements from Cr to Zn). The binding
energy for these nuclei reaches 8.7 MeV/nucleon. A growth in 4 is

* The mass defect was originally defined as the difference between the
numerical value of the mass of an atom ma expressed in atomic mass units and
the mass number 4:

A=ma — 4

This quantity has a less clear physical meaning than that determined by
Eq. (10.11).
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attended by gradual diminisbing of the binding energy per nucleon;
for the heaviest natural element-—uranium--it is 7.5 MeV/nucleon.
Such a dependence of the binding energy per nucleon on the mass num-
ber makes two processes possible from the energy viewpoint: (1) the
fission of heavy nuclei into several lighter ones, and (2) the fusion of
light nuclei into a single nucleus. Both processes should be attended
by the liberation of a great amouni of energy. For example, the fis-
sion of one nucleus with the mass number A = 240 (the binding
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energy per nucleon is 7.5 MeV) into two nuclei with mass numbers
of A == 120 (the binding energy per nucleon is 8.5 MeV) would re-
sult in the liberaiion of energy amouniing to 240 MeV. The fusion
of two nuclei of heavy hydrogen ,H? into a helium nucleus ,He?
wonld result in the liheration of energy equal to 24 MeV. We shall
indicate for comparison that when one atom of carbon combines
with two atoms of oxvgen (the combustion of coal to CO,), energy
of the order of b eV is liberated.

Nuclei with values of the mass number A ranging from 50 to 60
are the most profitable from an energy viewpoint. In this connection,
the question appears: why are nuclei with other values of A stuble?
The answer is as follows. To divide into several parts, a heavy nu-
cleus must pass through a number of intermediate states whose energy
exceeds that of the ground state of the uucleus. Hence, the nucleus
needs additional energy (the activation energy) for the fission pro-
cess. This euergy is thep returned, being added to the energy liberat-
ed upon fission as a result of a change in the binding energy. In
ordinary conditions, a nucleus does not have where to take the acti-
vation energy from, aud as a result heavy nuclei do not undergo
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spontaneous fission. The activation energy can be communicated
to a heavy nuclens by an additional neutron that it captures. The
process of fission of uranium or piutonium nuclei under the action
of the neutrons captured by the nuclei underlies the operation of
nuclear reactors and the conventional atomic bomb.

As regards light nuclei, for fusion into a single nucleus they must
approach one another to a very close distance (~10-¥ cm). Such
approaching of the nuclei is preveuted by the Coulomb repulsion
between them. To overcome this repulsion, the nuclei must travel
with enormous speeds corresponding to temperatures of the order
of several hundred millions of kelvins. For this reason, the process
of fusion of light nuclei is called a thermonuclear reaction. Ther-
monuclear reactions proceed in the interior of the Sun and stars.
In the conditions of the Earth, uncontrolied thermonuclear reactionns
were meanwhile accomplished in the explosions of hydrogen bombs.
Scientists of a number of countries are persistently working on the
finding of ways of carrying out conirollable thermonuclear fusion.
Soviet physicists occupy one of the leading places in this field.

10.3. Models of the Atomic Nucleus

Attempts to construct a theory of the nucleus are confronied by
two serious difficulties: (1) the inadequacy of ou knowledge of the
forces acting between nucleons, and (2) the exceedingly great cum-
bersomeness of the quantum problem of many bodies (a nucleus with
the mass number A4 is a system of 4 bodies). These difficulties inake
it necessary to follow the path of creating nuclear models. The latter
permit us to describe a definite collection of properties of a nucleus
with the aid of comparatively simple mathematical means. None of
such models can give an exhaustive description of a nucleus. There-
fore, several models have to be used, each of which describes its own
collection of the properties of a nucleus and its own circle of pheno-
mena. Each model contains arbitrary parameters whose values are
chosen so as to obtain agreement with experiinental results.

It is impossible to describe all the models of a nucleus that exist
within the scope of a general course of physics. We are forced io re-
strict ourselves to a brief narration only about two of them--the li-
quid-drop and the shell models.

The Liquid-Drop Model. This model was proposed by the Soviet
physicist Yakov Frenkel in 1939 and was Lhen developed by the
Danish physicist Niels Bohr and other scientists. Frenkel gave atten-
tion to the similarity between an atomic nucleus and a liquid drop,
consisting in that in both cases the forces acting between the consti-
tuent particles—molecules in the liquid and nucleons in the nucleus—
are short-range ones. In addition, the virtually identical density of
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the matter in various nuclei points to the extremely low compressi-
bility of the nuclear matter. Liquids have a compressibility that
is just as low. This circumstance gives us grounds to consider a nu-
cleus to be similar to a charged drop of a liquid.

The liquid-drop model made it possible to derive a semi-empirical
formula for the binding energy of the particles in a nucleus. This
model also assisted in explaining many other phenomena, in parti-
cular the process of fission of heavy nuclei.

The Shell Model. The nuclear shell model was developed by the
German physicist Maria Goeppert-Mayer and other scientists. In
this model, the nucleons are considered to move independently of
one another in an averaged centrally symmetrical field. Accordingly,
there are discrete energy levels (like the levels of an atom) filled
with nucleons with account taken of the Pauli principle (we remind
our reader that the spin of nucleons is 1/2). These levels are grouped
into shells, each of which can contain a definite number of nucleons.
A completely filled shell is an especially stable formation.

In accordance with experimental data, those nuclei are especially
stable in which the number of protons, or the number of neutrons
(or both these numbers) is

2, 8, 20, 28, 50, 82, 126

These numbers were named magic. Nuclei in which the number of
protons Z or the number of neutrons NV is magic (i.e. especially stable
nuclei) are also called magic. Nuclei in which both Z and N are
magic are called doubly magic.

Altogether five doubly magic nuclei are known:

JHet (Z =2, N=2), 0(Z =8, N=28),

20Ca% (Z = 20, N = 20), ,,Ca*® (Z = 20, N = 28),

82 PD?® (Z = 82, N = 126)
These nuclei are especially stable. In particular, the especial stability
of the helium nucleus ;He* manifests itself in that it is the only com-
posite particle emitted by heavy nuclei in radioactive decay (it is
called an alpha-particle).

10.4. Nuclear Forces

The tremendous binding energy of the nucleons in a nucleus indi-
cates that there is very intensive interaction between nucleons.
This interaction has the nature of attraction. It keeps the nucleons
at distances of ~10-'® cm from one another notwithstanding the
strong Coulomb repulsion between protons. The nuclear interaction
between nucleons has been named strong interaction. It can be de-
scribed with the aid of a field of nuclear forces. Let us list the di-
stinguishing features of these forces.
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1. Nuclear forces are short-range ones. Their radius of action is
of the order of 10-1® cm. At distances appreciably smaller than
10-1 c¢m, the attraction of nucleons is replaced by repulsion.

2. Strong interaction does not depend on the charge of nucleons.
The nuclear forces acting between two protons, between a proton
and a neutron, or between two neutrons, have the same magnitude.
This property is called the charge independence of nuclear forces.

3. Nuclear forces depend on the mutual orientation of the spins
of the nucleons. For example, a neutron and a proton are kept to-
gether, forming a nucleus of heavy hydrogen—a deuteron (or deuton)
only if their spins are parallel to each other.

4. Nuclear forces are not central ones. They cannot be represented
as directed along the straight line connecting the centres of the inter-
acting nucleons. The non-central nature of nuclear forces follows,
in particular, from the fact that they depend on the orientation of
the nucleon spins.

5. Nuclear forces have the property of saturation (this signifies
that each nucleon in a nucleus interacts with a limited number of
nucleons). Saturation manifests itself in that the binding energy per
nucleon does not grow with an increase in the number of nucleons,
but remains approximately constant. In addition, the saturation
of the nuclear forces is also indicated by the volume of a nucleus
being proportional to the number of nucleons forming it [see
Eq. (10.8)].

According to modern notions, strong interaction is due to the
fact that nucleons virtually exchange particles that have been called
mesons. To understand the essence of this process, let us first con-
sider what electromagnetic interaction looks like from the point.
of view of quantum electrodynamics.

Charged particles interact via an electromagnetic field. We know
that this field can be represented as a collection of photons. As quan--
tum electrodynamics indicates, a process of interaction between two
charged particles, for example, electrons, consists in an exchange
of photons. Each particle sets up a field around itself that conti-
nuously emits and absorbs photons. The action of the field on the
other particle manifests itself in its absorbing one of the photons
emitted by the first particle. Such a description of the interaction
cannot be understood literally. The photons by means of which the
interaction is carried out are not ordinary real photons, but virtual
ones. In quantum mechanics, the name virtual is applied to particles
that cannot be detected during their lifetime. In this sense, virtual
particles can be called imaginary ones.

To better understand the meaning of the term “virtual”, let us
consider an electron at rest. The process of its setting up a field
in the surrounding space can be represented by the equation

e~ =e + ko (10.12)
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The total energy of a photon and electron is greater than that of an
electron at rest. Consequently, the transformation described by
expression (10.12) is attended by violation of the law of energy
conservation. For a virtual photon, however, this violation is
seeming. According to quantum mechanics, the energy of a state
existing during the time A¢ is determinate only with the accuracy
AFE satisfying the uncertainty relation

AE.At ~ B (10.13)

[see formula (4.5)]. It follows from this expression that the energy
of a system can experience the deviations AE whose duration At
must not exceed the value determined by condition (10.13). Con-
sequently, if a virtual photon emitted by an electron is absorbed
by this or another electron before the time A¢ = 7%/e elapses (e =
= fhw), then no violation of the law of energy conservation can be
detected.

When additional energy is imparted to an electron (this may hap-
pen, for instance, if it collides with another electron), a real photon
may be emitted instead of a virtual one, and it can exist for an un-
limitedly long time.

During the time At = #i/e determined by condition (10.13),
a virtual photon can transmit interaction between points separated
by the distance

le=cAt=c L3
€

The energy of a photon ¢ = Zw can be as small as desired (the fre-
quency o varies from O to oo). Tnerefore, the radius of action of
electromagnetic forces is unlimited. If the particles exchanged by
interacting electrons had a mass m other than zero, then the radius
of action of the corresponding forces would be limited by the quan-
tity

'
r=cAtynax=¢ e = T e ke

where X¢ is the Compton wavelength of a given particle [see
Eq. (2.24)]. We have assumed that the particle which is the carrier
of the interaction is moving with the speed c.

In 1934, the Soviet physicist Igor Tamm (1895-1971) advanced
the assumption that the interaction between nacleons is also (rans-
mitted by means of virtual particles. At that time, only the photon,
electron, positron, and neutrino were known in addition to nucleons.
The heaviest of these particles—the electron-—has a Compton wave-
length ¢ = 3.86 X 10~ cm [see Eq. (2.25)] that exceeds the radius
of action of nuclear forces by two orders of magnitude. Moreover,
the magnitude of the forces that could be due to virtual electrons, as
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calculations have shown, is exceedingly low. Thus, the first atiempt
to explain nuclear forces with the aid of an exchange of virtual
particles was unsuccessful.

In 1935, the Japanese physicist Hideki Yukawa (born 1907)
advanced the bold hypothesis that particles having a mass from
200 to 300 times that of an electron exist in nature, although not
yet detected, and that it is exactly these particles that play the
part of carriers of nuclear interaction, in the same way as photons
are carriers of electromagnetic interaction. Yukawa called these
hypothetic particles heavy photons. In connection with the fact
that as regards the magnitude of their mass these particles occupy
an intermediate position between electrons and nucleons, they were
later called mesons (the Greek word “mesos” means middle).

In 1936 the American physicists C. Anderson and S. Neddermeyer
detected particles with a mass of 207m,. in cosmic rays. It was ini-
tially assumed that these particies, called p-mesons or muons, are
the carriers of interaction predicted by Yukawa. It was later estab-
lished, however, that muons interact very weakly with nucleons, so
that they cannot be responsible for nuclear interactions. Only in
1947 did C. Lattes, G. Occhialini, and C. Powell discover another
kind of meson in cosmic radiation--the so-calied n-mesons, or pions,
which were found to be the carriers of nuclear forces predicted 12
years earlier by Yukawa.

There are positive (n*), negative (m~), and neutral (n°) mesons.
The charge of m+- and n~-mesons equals the elementary charge e.
The mass of charged pions is the same and equals 273m, (140 MeV),
the mass of a n®-meson is 264m. (135 MeV). The spin of both charged
and of the neutral m-meson is zero (s == 0). All three particles are
unstable. The lifetime of n*- and n~-mesons is 2.60 X 10-% s, and
of a m’meson is 0.8 X 107 s,

The overwhelming part of charged n-mesons decay according to
the scheme

- pt 4y, T u 4 (10.14)
(u* and p- are a positive and a negative muon, respectively, v is
a neutrino, and v an antineutrino). On an average, 2.5 decays in
a million proceed according to ciher schemes (for example, m —
— e + v; - n° 4+ e 4 v, etc.; when n+ decays, e*, i.e. a positron,
is formed, and when n~ decays, e, i.e. an elactron, is formed).
On an average, 98.8 per cent of x°-mesons decay into two gamma
quanta:
>+ (10.15)
The remaining 1.2 per cent of the decays follow the schemes
n®--e*+ e+ y; a®—setde 4 et+e;
no —3- v *_ -y -+. ?
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The particles called p-mesons or muons belong to the class of
leptons (see Sec. 11.1), and not mesons. We shall therefore call
them muons in the following. Muons have a positive (u*) or a nega-
tive (n*) charge equal to the elementary charge e (no neutral muons
exist). The mass of a muon is 207m, (106 MeV), its spin is one-half
(s = 1/2). Muons, like nt-mesons, are not stable. They decay accord-
ing to the scheme

pret+vtv, p e +vtv (10.16)

The lifetime of both muons is the same and equals 2.2 X 10-¢ s.
Let us now consider the exchange interaction between nucleons.
As a result of the virtual processes

p= n-+ n* (10.17)
n= p+ n- (10.18)
p=p+a5 n= n+4n° (10.19)

a nucleon is surrounded by a cloud of virtual m-mesons forming
a field of nuclear forces. The absorption of these mesons by another

@ ® ® ®@ O©0=z®@=0®
@O-® ©® O-@ @ @O=x@d=0
@ ® @ ® Oz=@

(a) ) (c)
Fig. 10.2

nucleon leads to strong interaction between nucleons according
to one of the following schemes: :

(1) p+n=n+at+n=n+tp

A proton emits a virtual s*-meson and transforms into a neutron.
The meson is absorbed by a neutron that, as a result, transforms
into a proton. Next, the same process occurs in the reverse direction
(Fig. 10.2a). Each of the interacting nucleons spends part of its
time in the charged state and part in the neutral one.

@2 n+p=pt+a-+p=p+n
A neutron and a proton exchange m~—-mesons (Fig. 10.2d).
@ p+rn=p+n+n=p+n
ptp=p+n"+p=p+p
n+n=n+n"+n==n+n
The nucleons exchange m°-mesons (Fig. 10.2¢).
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The first of the three processes described above is confirmed
experimentally in the scattering of neutrons on protons. When
a beam of neutrons passes through hydrogen, protons appear in the
beam. Many of them have the same energy and direction of motion
as the incident neutrons. A corresponding number of neutrons
practically at rest is detected in the target. It is absolutely improb-
able that such a large number of neutrons completely transmitted
their momentum to the protons previously at rest as a result of head-
on collisions. It therefore becomes necessary to acknowledge that
part of the neutron; flying near pro-
tons capture one of the virtual s+ -
mesons. The result is the conversion g“’ “"‘@“"
of a neutron into a proton, while the 7
proton that haslost its charge trans-
forms into a neutron (Fig. 10.3). @ ®

If energy equivalent to the mass .
of a m-meson is communicated to Fig. 10.3
a nucleon, then the virtual n-meson
can become real. The required energy can be communicated upon the
collision of sufficiently accelerated nucleons (or nuclei), or when a
nucleon absorbs a gamma-quantum. At very high energies of the
colliding particles, several real s-mesons may appear.

Now we are in a position to explain the existence of a magnetic
moment of a neutron and the anomalous value of the magnetic
moment of a proton (see Sec. 10.1). In accordance with process
(10.18), a neutron spends part of its time in the virtual state (p + =t™).
The orbital motion of the m~-meson leads to the setting up of the
negative magnetic moment observed in the neutron. The anomalous
magnetic moment of a proton (2.79uyyc instead of one nuclear mag-
neton) can also be explained by the orbital motion of a m*-meson
during the time interval when the proton is in the virtual state

(n + nu+).
10.5. Radioactivity

Radioactivity is defined as the spontaneous transformation of
atomic nuclei into other ones attended by the emission of elementary
particles. Only unstable nuclei undergo such transformations.
Radioactive processes include (1) alpha decay, (2) beta decay (includ-
ing the capture of an electron), (3) gamma radiation of nuclei, (4)
spontaneous fission of heavy nuclei, and (5) proton radioactivity.

Radioactivity observed in nuclei existing in natural conditions is
called natural. The radioactivity of nuclei obtained as a result of
puclear reactions is called artificial. There is no difference of prin-
ciple between artificial and natural radioactivity. The process of
radioactive transformation in both cases obeys the same laws.

16*
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Law of Radioactive Transformation. ladividual radicactive nuclel
transform independently of ons another. We raay thereifors consids
that the number of nuclei dNV decaying during the smail tinas inier-
val dt is proportional both to the nwaber of available nuclei ¥
and to the time interval di:

AN == —AN dt (12,203

Here A is a constant characteristic of a given radicactive subsiancs
and known as the decay constant. The minus sigu las been takon i
allow us to consider dN as an incremeni of the uuraber of undecayad
nuclei N.

Integration of Eq. (10.20) leads te the expression

N = Ve~ {10.21)

where N, is the number of nuclei at the initial moment, and N
is the number of undecayed atows at the moment . Lyuaiion (10.21)
expresses the law of radioactive transformation. f'his law is very
simple: the number of undecayed nuclei diminishes with iime expo-
nentially.
The number of nuclei decaying during the time { is deterniined by
the expression
Noy—~N=N,({1—eM) (10.22)

The time during which a half of the initial number of nuciei de-
cays is called the half-life 7. It is determined by the condition

1 Ar
"2— NU == IN 03"\'1'1'

whence
2 893 o
== _2.._., o -.;il—. (1\)..23;

The half-life for the radioactive nuclei known at present ranges from
3 X 1077 s to 5 X 105 years.

Let us find the average lifetime of a cadicactive nnuciens. The
number of nuclei dN (f) transforming duvieg the time fvom 7 0
t + dt is determined by the magnitwie of Eq. (£0.20): dif {1} ==
= AN (t) dt. The lifetime of each of these nuclei is ¢. Hence, iho
sum of the lifetimes of ali the &, icitial nuciei is obtaived by indo-
gration of the expression ¢ dNV (1). Dividing this sum by the number
of nuclei V,, we get the average lifetime = of a radicactive nuclens:

¢ R
T=— g tdN (t)v-—w;-jo AV (t) dt



7The Atomic Nucleus 245

fel 03 ipiroduse into this equation expression (10.21) for N (t):
o0 oo
1 S ; 1
YT e A - A ) == Ae—M = —
v St Noe-*di Stne dt T
G 0

{it is necessary to pass nver o the variable z = At and integrate by
parts). ‘Thus, the average lifetime is a quantity that is the reciprocal
oi the decsy constant As .

‘c.—_-i- (10.24)
A comparison with Ig. (10.22) shows that the half-life T differs
from ¢ Ly a puroerical facior of ln 2.

It offen happens that the nuclei appearing as a result of radio-
active irsnsiormaiion are also radicactive and decay at a rate char-
actevized by tho decay constant A'. The new decay products may
again be radioactive, and so on. The result is a whole series of radio-
active transformations. Three radioactive series (or families) exist
in nature, whose parents (first mwembers) are U8 (the uranium
sories), Th*? (the thorium series), and U®* (the actinouranium series).
The final preducts in all three series are lead isotopes—in the first
one Ph?% in the second Pb?% and, finally, in the third Pb3"".

Natural radioactivity was discovered in 1896 by the French scien-
iisl Antoine Heuri Becguerel {1852-1908). A great contribution to
the stadying of radicaciive substances was made by the French scien-
tists Fierre Curie and Marie Skiodowska-Curie. Three kinds of ra-
diation were foend to exist. The first kind, called alpha rays, deflects
arder the action of a magnetic field in the same direction in which a
stream of positively charged particies would. The second kind,
called beta rays, deflects under the aciion of a magnetic field in the
opposite direciion, i.e. like a stream of negatively charged parti-
cles. Finally, the third kind of radiation, that shows no reaction at
all to a magnetic field, was called gamma rays. It was later found
thai gamma rays are electromagnetic radiation of a very short wave-
iength (frore 10-% to 1 A).

Alpha Decay. Alpha rays ave a flux of helium ,He* nuclei. Decay
procseds according to the fellowing scheme:

XA o YA | Het (10.25)

The letier X stands for the chemical symbol of the decaying (parent)
nuecleus, avd the letter Y for the chemical symbol of the new (daugh-
ter) nucleus formed. Alpha decay is nsnally attended by the daughter
nucleus emitting gamma rays. It can be seen from the decay scheme
that the atomic number of the daughter substance is less by 2 and
il1e mass number less by 4 than the relevant quantities of the parent
substance. An example is the decay of the uranium isotope U¥*®
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proceeding with the formation of thorium:
9U% —4gTh2% -, He*

The velocities with which alpha particles (i.e. nuclei of ,He%)
fly out from decaying nuclei are very high (~10° cm/s; the kinetic
energy is of the order of several MeV). When flying through a sub-
stance, an alpha particle gradually loses its energy, using it to
ionize the molecules of a substance, and finally stops. An average
of 35 eV is needed to form one pair of ions in air. Thus, an alpha
particle forms about 10° pairs of ions along its path. It is natural

., that the greater the density of
T a3 B g substafce, the shorter isythe
YAy path of an alpha particle before

,’/ ey it stops. Thus, its path is sev-
(}"6‘\ / / // eral centimetres in air at nor-

3 mal pressure, and is of the

0.677——-Z Q‘E\ order of 10~ ¢cm in a solid

0492 @ (alpha particles are completely

a473 r?tained by an ordinary sheet
of paper).

2327 pER The kinetic energy of an

25 ? alpha particle is produced at

2l the expense of the excess rest

dﬂg T 7 energy of the parent nucleus

Tt in comparison with the total

Fig. 10.4 rest energy of the daughter nu-

cleus and the alpha particle.

This excess energy is distributed between the alpha particle and-the
daughter nucleus in a ratio that is inversely proportional to their
masses*. The energies (velocities) of the alpha particles emitted by
a given radioactive substance are strictly definite. In the majority
of cases, a radioactive substance emits several groups of alpha par-
ticles having close but different energies. This is due to the fact
that the daughter nucleus may appear not only in the normal, but
also in the excited state. Figure 10.4 explains schematically the
appearance of different groups of alpha particles (the appearance
of the fine structure of an alpha spectrum) emitted upon the decay
of the nuclei g;Bi**? (bismuth-212). The energy levels of the daughter
nucleus gT120® (thallium-208) are shown at the left of the diagram.
The energy of the ground state has been taken as zero. The excess
rest energy of the parent nucleus above the rest energy of an alpha
particle and the daughter nucleus in the normal state is 6.203 MeV.
If the daughter nucleus appears in the unexcited state, all this energy
* The velocities which alpha particles fly out with are of the order of 0.1c.

We may therefore use the classical expressions for the momentum and kinetic
energy of a particle.
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is liberated in the form of kinetic energy, the share of the alpha
particle being
Ey=6.203 X 20— 6.086 MoV

(this group of particles is denoted by a, in the diagram). If the daugh-
ter nucleus appears in the fifth excited state whose energy exceeds
that of the normal state by 0.617 MeV, then the liberated kinetic
energy will be 6.203 — 0.617 = 5.586 MeV, and 5.481 MeV will
fall to the share of the alpha particle (the group of particles as).
The relative number of particles is about 27% for @, about 70%
for o,, and only about 0.01% for a;. The relative numbers of a,,
a3, and o, are also very small (of the order of 0.1 to 1%).

The average lifetime T of the excited states for most nuclei ranges
from 10-% to 10-!5 s*, During an average time of 7, the daughter
nucleus passes over to the normal or to a lower excited state, emit-
ting a gamma photon. Figure 10.4 shows the appearance of gamma
photons of six different energies.

The excitation energy of the daughter nucleus can also be separat-
ed in other ways. An excited nucleus may emit a particle: a proton,
neutron, electron, or an alpha particle. Finally, the excited nucleus
formed as a result of alpha decay can give up its excess energy di-
rectly (without first emitting a gamma quantum) to one of the elec-
trons of the K-, L-, or even the M-shell of the atom, as a result of
which an electron flies out of the latter. This process is called inter-
nal conversion. The vacancy appearing as a result of the ejection of
an electron will be filled by electrons from the higher energy levels.
Consequently, internal conversion is always attended by the emis-
sion of characteristic X-rays.

In the same way as a photon “ready for use” does not exist inside
an atom and appears only at the moment of its emission, an alpha
particle also appears at the moment of radioactive decay of a nucleus.
In leaving a nucleus, an alpha particle has to surmount a potential
barrier whose height exceeds the total energy of an alpha particle
equal on an average to 6 MeV (Fig. 10.5). The outer side of the
barrier falling asymptotically to zero is due to Coulomb repulsion
of the alpha particle and the daughter nucleus. The inner side of
the barrier is due to nuclear forces. Experiments involving the
scattering of alpha particles by heavy alpha-radioactive nuclei
have shown that the height of the barrier noticeably éxceeds the
energy of the alpha particles flying out in decay. Classical notions
say that a particle cannot surmount the potential barrier in these
conditions. According to quantum mechanics, however, there is
a probability other than zero that the particle will penetrate through

* It may sometimes be very great (up to several years). Levels with such
a lifetime are called isomeric, and the excited nucleus, an isomer.
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the barrier, passing, as it were, through a tunnel in the latter. We
treated this phenomenon, called the tunnel effect, in Sec. 4.9. The
theory of alpha decay based on the notion of the tunnel effect leads
to results that well agree with experimental data.

Beta Decay. There are three varieties of beta decay. In one of
them, the parent nucleus emits an electron, in another, a positron,
and in the third variety, called electron capture (e-capture), the

174

/
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Fig. 10.5 Fig. 10.6

nucleus absorbs one of the electrons of the K-shell, considerably
more rarely of the L- or M-shell (accordingly, we speak of K-cap-
ture, L-capture, or //-capture insicad of e-capture).

The first kind of beta decay (f~ decay or electron decay) follows
the scheme

zXA""'Z+‘Y‘4 '-1—_1@0 +; (10-26)

To underline the conservatlion of the charge and number of nucleons
in beta decay, we have assigned a charge number of Z = —1 and
a mass number of A = 0 to a beta electron.

Inspection of scheme (10.26) reveals that the daughter nucleus
has an atomic number that is greater by unity than that of the parent
nucleus, whilre~ the mass numbers of both nuclei are the same. An
antineutrino v is emitted in addition to an electron. The entire
process occurs as if one of the neutrons of the nucleus X4 transferred |
into a proton, changing according to scheme (10.7). In general,
process {10.7) is a particular case of process (10.26). A free neutron
is therefore said to bhe beta-radioactive.

Beta decay may be attended by the emission of gamma rays.
The mechanism of their appearance is the same as in alpha decay—
the daughter nucleus appears not only in the normal state, but also
in excited ones. Next passing over to a state with a lower energy,
the nucleus emits a gamma photon.

An example of B~ decay is the transformation of thorium Th?3*
into protactinium Pa?* with the emission of an electron and an
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antineutrino:
g0 Th2¥% s  Pah | g0

Unlike alpha particlos which have a sirictly definite energy
within the limits of each group, beia electrons have the most diverse
kinetic energy from O to £, ... Figure 10.6 shows the energy spectrum
of electrons emitted by nuclei in beta decay. The area covered by
the curve gives the total number of electrons emitted in unit time,
dN is the number of electrons whose energy is within the interval dE.
The energy Epax correspouds to the difference between the mass of
the parent nuclens and the masses of an electron and the daughter
nucleus. Consequently, decays in which the energy of an electron E
is iower than ¥, occor with an apparent violation of the law of
energy conservation.

To explain the vanishing of the evergy E,,x — E, the Swiss
physicist Wolfgang Pauli (1900-1958) advanced the assumption
in 1932 that in beta decay auother particle is emitted apart from
an electron, and this particle carries with it the energy Fpax — E.
Since this particle does not reveal itself in any way, it should he
acknowledged that it js neutral and has a very small mass (it has
been established at present that ihe rest mass of this particle is
zero). According to the proposal of Ewnrico Fermi, lhis hypothetic
particle was called a neutrimo® (which means “tiny neutron”).

There is another reason for the assumption on the existence of
the neutrino (or antiveutrine). The spin of a neutron, proton, and
electron is the same and equals 1/2. If we write scheme (10.26)
without an antinentrivo, then the total spin of the appearing par-
ticles (which for iwo particles with s = 1/2 can be either zero or
unity) will differ frora that of the initial particle. Thus, the partic-
ipation of another particle in beta decay is dictated by the law of
angular momentum conservation, and a spin of 1/2 (or 3/2) must be
ascribed to this particle. It has been established that the spin of
a neutrino (aud antineutrino) is 1/2. A direct experimental proof
of the existence of neutrinos was obtained only in 1956.

Thus, the energy liberated in B~ decay is distributed between an
electron and an antineutrino (or hetween a positron and a neutriuo,
see below) in the most diverse proportions.

The second kind of beta decay (B* decay or positron decay) proceeds
according to the scheme

XA, Y44 e v (10.27)
An example is the transformation of nitrogen N** into carbon C3:
ANy gC13 10V

* In accordance with the classification adopted at present, in - decay an
antineutrino is emitted, and not a neutrioo.
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It can be seen from scheme (10.27) that the atomic number of
the daughter nucleus is less by unity than that of the parent one.
The process is attended by the emission of a positron e+ [in formula
(10.27) it is designated by the symbol ,,e°] and a neutrino v. The
appearance of gamma rays is also possible. A positron is an electron’s
antiparticle. Consequently, both particles emitted in decay (10.27)
?11'8 2zzsntiparticles with respect to the particles emitted in decay

.26).

The process of f+ decay occurs as if one of the protons of the
parent nucleus transformed into a neutron, having emitted a posi-
tron and a neutrino:

p—>n—+et+wv (10.28)

Such a process is impossible for a free proton from energy considera-
tions because the mass of a proton is less than that of a neutron.
A proton in a nucleus, however, can borrow the required energy from
other nucleons in the nucleus.

The third kind of beta decay (electron capture) consists in that a
nucleus absorbs one of the K-electrons (less often one of the L-
or M-electrons) of its atom, and as a result one of the protons trans-
forms into a neutron emitting a neutrino:

pt+e —->n+4w

The appearing nucleus may be in the excited state. Passing later
into lower energy states, it emits gamma photons. The scheme of
the process is as follows:

XA+ 0>, Y44 v (10.29)

The site in the electron shell freed by the captured electron is filled
by electrons from the higher layers. The result is the appearance of"
X-rays. Electron capture is easily detected by the X-radiation attend-
ing it. It is exactly in this way that the American physicist Luis
Alvarez (born 1911) discovered K-capture in 1937.

An example of electron capture is the transformation of potassium
K% into argon Ar‘:

19]( 40 + _180 - 13AI‘L0 + b

Spontaneous Fission of Heavy Nuclei. In 1940, the Soviet phys-
icists Georgi Flerov and Konstantin Petrzhak discovered a process
of the spontaneous fission of uranium nuclei into two approximately
equal parts. Later, this phenomenon was also observed for many
other heavy nuclei. Spontaneous fission in its characteristic features
is close to stimulated fission, which will be treated in Sec. 10.7.

Proton Radioactivity. As follows from its name, in proton radio-
activity, a nucleus transforms by emitting one or two protons (in
the latter case we speak of double proton radioactivity). This kind
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of radioactivity was first observed in 1963 by a group of Soviet
physicists headed by Flerov.

Activity of a Radioactive Substance. The activity of a radioactive
preparation is defined as the number of disintegrations occurring
in it in unit time. If dV 4,5 nuclei decay during the time d¢, then the
activity is dN4,,/dt. According to Eq. (10.20),

dNgs=|dN| =AN dt

Hence it follows that the activity of a radioactive preparation equals
AN, i.e. the product of the decay constant and the number of unde-
cayed nuclei in the preparation.

The SI unit of activity is thé disintegration per second (d/s).
The use of non-system units such as the disintegration per minute
(d/min) and the curie (Ci) is permitted. The unit of activity called
the curie is defined as the activity of any substance in which
3.700 X 10 atoms disintegrate per second. Submultiple (millicurie,
microcurie, etc.) and multiple (kilocurie, megacurie) units are also
used.

10.6. Nuclear Reactions

A nuclear reaction is defined as a process of strong interaction
of an atomic nucleus with an elementary particle or with another
nucleus resulting in the transformation of a nucleus (or nuclei).
The reacting particles interact when they approach each other up
to distances of the order of 10-1% cm owing to the action of nuclear
forces. '

The most widespread kind of nuclear reaction is the interaction
of a light particle a with a nucleus X, the result being the formation
of a light particle & and a nucleus Y:

X+a—>Y+D

The equation of such reactions is customarily written in the follow-
ing abbreviated form:

X (g, b)Y (10.30)

The light particles participating in the reaction are indicated in-
parentheses, first the initial particle, then the final one.

The light particles a and » may be a neutron (n), proton (p),
deuteron (d), alpha particle («), and a gamma photon (y).

Nuclear reactions may be attended either by the liberation or by
the absorption of energy. The amount of liberated energy is called
the reaction energy. It is determined by the difference between the
masses (expressed in energy units) of the initial and final nuclei. If
the sum of the masses of the nuclei formed exceeds the sum of the
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masses of the initiul nuclei, the reaciion preceeds with the absorption
of energy, and ihe rs*a(,tn.n 2uergy el be aogalive,

In 1938, Niels Bohr established thai tiuns iaitizied by not
very fast particles proceed in iwo sieges. The firsi one consists in
the capture of the particle o spproaching tae nucleus ¥ and in t}
formation of the eompound nuclens C. The ensrgy supplied by
particle a (it coosists of the kinetic energy of the ticle :md
energy binding it 1o the nualeus) is redisizibuied in 5 very sh
time between all the nucieons of the compound ancicws, as a zesuit
of which this nucleus is i the excited state. (n the second siage,
the compound nuclous emits the porticls 2. Such a two-sisge reac-
tion is written as follows:

X o @-s G Vo d (10.21;

If the emitted pariicle is
process (10.31) is called zca
b equals that of the particie a (le &y = ot
elastic, otherwise (i e. when ORI fastic. A wuciear re-
action ocowrs if the parciicle & 15 noi identical o a.

The tine Ty, awd"d for a neeleon having an enccgy of the eris
of 41 MeV {which corresnonds to a nucisoa velocity ~ l““ cmfs) te
cover a distance equal 10 the distaeior of ihe vucieus {403 eany
is called the nuclear fime (or the nuclear {ransit time).
magnitude of this time is

o

~

dentical W6 Tae capiurad o

ring. When the o

,mt?erlm" %

.9 (3 \
Tome ™ 7 uu/" 8 (10.32

The average lifeiime of a compm,w waelens (equal 16 frera {024
to 1012 5) is many orders greater than the nuclear time Taucs Henre,
the decay of the compound nucieus {i.e, ihe e’na‘;.’-‘.on of ihe particle
b by it) is a process tbat does not d@pe nd on the ivsi stage of the
reaction consisting in the capture of the particis o fihs cowmpound
nucleus “forgets”, as it were, the way it was formad), The same
compound nucleus may decay in different ways, tha pature of these
ways and their relative probability noi degending oo how the com-
pound nuncleus was jormed.

Reactions causcd by {ast nucleons and deuvirrons proceed withous,
the formation of a compound nucleus. Such teactions are known as
direct nuclear interactions. A typical divect interaciion reaction is
the stripping reaction observed in non-ceniral collisions of a deuteron
with a nucieus. In sueh collisions, one of the denteron nucleons |,
may get into the zene of action of the mnuciesr fovces avnd will be
capturted by the nncleus, wheveas the other pucleon will remain
outside the zone of action of the nnciear forcos and will fly past
the nucleus. This reaction can be vepresenied symbolically in the
form (d, p) ov (d, n).
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The reverse ot a stripping reaction is a pickup reaction-—-a bombard-
ing nuclson {(n ov p) «mm off a nucleon (p or n) from a nucleus,
transicrming into a dentecon: (n, d) or (p, d).
omary pmu's.we in nuclear plysics to characterize inter-
ction with the aild of the offective svess seetiom ¢. The meaning of
this quantity is a3 follows. Assurs that a flux of particles, for exam-
ele, weutrons, f=ils on s target 89 ihin that ihe nuclei of the target
do not overlan (Wig. 46 7). If the noclei were rigid

spheres with a cress soction of ¢ and the falling -
particles were rigid spherss with a vanishingly N O
staall cross seciion, thon the prohability of a fall- ) /AN
ing paviicle  grazicg one of the target anclei T 0
would be

— | 0

P oz Gpb

where 2 is the connenieation of tie nuclei, i.e. their -—>

auwber in wail voioms of the targel, and # is the 4
thickness of the target {vad detervainss the relative

fraction of the fargel wrea coveved by the nuclei- Fig. 10.7
spheres).

« 2

Assunie that a pariicls flux A* falis on a target at right angles to
8 surface. Hence, the namber of particies colliding with the target
guclel in woit time AN is dstermined by the formula

AN = NP = Nond (10'33)

C‘nanumtly, ‘wvmg dotermined the ralative number of particles

axperiencing collisions AN/, it weuld be possible to calculate the
cross section o = wi* of a nuchm% by the formula

: ) ay 4

F a= }7-;'6—' (10.3'—1)

Actually, neither the barget auelel nor the pat’uulus falling on the
fapget ave xigid apbeess. By awaiogy with the model of colliding
bph“ &8, however, ihe proba]nin,v “of interaction is characterized
by the quantity o deiercuined by FEg.o (10.34%) in which by AN is
meant not the number of colliding particles, but the namber of par-
ticles thai have wateractad with ihe target nuclei. It is exactly this
quantity that is culled the effestive cross section for a given reaction
{or pm(,css)

When the target is vhick, the flux of particles will gradually weaken
48 it passes thromgh it. Aher dividing the target into thin layers,
et us write mq¢ {10.33) for a Jayer of thickness dz at the depth x
from the suwrisce:

Al =2 =¥ (@) on dz

miud cuar uaadur thai « flax of pariicles is defined as the uamber of
surface in unit jlme.
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where N (z) is the particle flux at the depth z. We have written the
minus sign to permit dNV to be considered as an increment (and not
as a decrement) of the flux along the path dz. Integration of this equa-
tion gives the expression

N (6) = ]\’(,e_aﬂ'6

in which N, is the initial flux, and N (8) is the flux at the depth 8.
Thus, by measuring the weakening of the particle flux when it
passes through a target of thickness 0, we can find the interaction
cross section by the formula
1 No

It is usual practice to express the effective cross sections of nuclear
processes in units called barns:

1 barn =10724 cm? (10.36)

A nuclear reaction was carried out for the first time by Ernest
Rutherford in 1919. In irradiating nitrogen with the alpha particles
emitted by a radioactive source, some of the nitrogen nuclei trans-
formed into oxygen nuclei, emitting a proton. The equation of this
reaction has the form

g =

N (@, p) g0

Rutherford used natural projectiles—alpha particles—for disinte-
gration of an atomic nucleus. The first nuclear reaction induced by
artificially accelerated particles was carried out by the British
physicist John Cockeroft (1897-1967) and the Irish physicist Ernest
Walton (born 1903) in 1932. Using the so-called voltage multiplier,
they accelerated protons to an energy of the order of 0.8 MeV and
observed the reaction

sLi7 (p, o) ,Het

The development of the equipment and techniques used for accel-
erating charged particles was attended by multiplication of the
number of nuclear transformations accomplished artificially.

Of the greatest significance are reactions induced by neutrons.
Unlike charged particles (p, d, a), neutrons do not experience Cou-
lomb repulsion, owing to which they can penetrate into nuclei while
having a very low energy. The effective cross sections of reactions
usually grow with a decrease in the energy of neutrons. This can be
explained by the fact that the lower the velocity of a neutron, the
greater is the time it spends in the sphere of action of the nuclear
forces when flying near a nucleus and, consequently, the greater is
the probability of its capture. Therefore, many effective cross sec-
tions vary like 1/v oc E-V/2, Cases are often observed, however, when
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the cross section of neutron capture has a sharply expressed maxi-
mum for neutrons of a definite energy E,. Figure 10.8 shows as an
example a curve giving the dependence of the cross section of neutron
capture by a U?*® nucleus on the energy of a neutron E. A logarithmic
scale is used on both axes. In this case, the dependence ¢ oc E-Y/2
is depicted by a straight line described by the equation In ¢ =

= const — -;7111 E. A glance at the figure reveals that apart from

the region of energies near 7 eV, the dependence of In ¢ on In E is
indeed close to a linear one.
When £ = E, =7 eV, the cap- Vi —
ture cross section sharply grows
and reaches 23 000 barns. The  Zsarns
shape of the curve indicates that
the phenomenon has a resonance
nature. Such resonance absorp-
tion occurs when the energy
brought by a neutron into a com-
pound nucleus exactly equals
the energy needed for transfer- ~7V £
ring the compound nucleus to .
an excited energy level. Similar- Fig. 10.8
ly, the probability of the absorp-
tion of photons whose energy equals the difference between the
energies of the first excited level and the ground level of an atom
is especially great (the resonance absorption of light).

Of interest is the reaction

7N# (n, p)Ct*

that constantly proceeds in the atmosphere under the action of the
neutrons formed by cosmic rays. The carbon isotope ¢C!¢ produced
in this reaction is called radiocarbon because it is p--radioactive;
its half-life is 5730 years. Radiocarbon is assimilated by plants in
photosynthesis and participates in the cycle of substances in nature.
The number of radiocarbon nuclei AV, produced in the atmosphere
in unit time remains constant on an average. The number of decaying
nuclei AN_ is proportional to the number of nuclei N present:

AN_ = kN

Since the half-life is very great, an equilibrium concentration of the
nuclei of C' in ordinary carbon sets in that meets the condition

AN. = AN_. or AN, =kN

Special research has shown that owing to the action of winds and
ocean currents, the equilibrium concentration of C' at different
places on the globe is the same and corresponds to about 14 disinte-
grations a minute per gramme of carbon.

t~23 Q0 barns
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In a living organism, the diminishing of C** in it owing to radio-
activity is replenished as a result of its participation in the cycle
of substances in nature. When an organism dies, the process of
assimilation immediately steps, and the concentration of C! in
ordinary carbon begins to diminish according to the law of radio-
active decay. Consequently, by measuring the concentraiion of CM
in the remains of organisms (in wood, boues, ete.), we can determine
the date when they died or, as is said, their age. Verification of this
method using ancient specimens whose age was determined exactly
by historical methods gave quite satisfactory results.

10.7. The Fission of Nuclel

In 1938, the German scientists Otte Hahu (1879-1968) and Fritz
Strassmann (born 1902) discovered that the hombardment of uraui-
um with neutrons results in the formaiion of eiements from the
middle of ilie periodic table —barium aud lanthanum. This phenow-
enon was explained by the German sciedtists Otto Frisch (born
1904) and Lise Meitner (1878-1968). They put forward the assump-
tion that an uranivm nucieus which has captured a neulron decays
into two approximcately equal

Z F"" A paris called iission fragments.

. Further investigations sho-

7 - wed that fission may cecur in

different wavs. A total of

/a4 about 80 differsut [fragments

~e arc formed, the most probable
[N -2 . L . P

O/ e being fission into iragments

3 [ the vatio of whose masses is

R//4c WY I SR S W ce) 2:3. The curve shown in

[ Fig. 10.9 gives the relative

b7 g - yield {(in percent) of fragments

& 20 7 #0 4 of different mass obtained in

the fission of U produced

Fig. 10.9 by slow (thermal*) neutrons

(a logarithmic scale is used

along the axis of ordinates). Inspection of ihe curve reveals that the

relative number of fission events when two fragments of equal mass

are formed (4 =z 117) is 10-? per cent, wheveas the formation of

fragments with mass numbers of the order of 95 and 140 (95 : 140 =~

Az 2 : 3) is observed in 7 per cent of all cases.

The binding energy per nucleon for nuclei of a medium mass is

greater than that of heavy nuclei by about 1 MeV (see Fig. 10.1).

* The name thermal is applied in neuirons that are in thermal equilibrium
with the atoms of a substance. Their cnergy is about 0.03 oV.
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Hence, it follows that the fission of nuclei must be attended by the
liberation of a great amount of energy. But of special importance
is the fact that several neutrons are freed upon the fission of every
nucleus. The relative number of neutrons in heavy nuclei is apprecia-
bly greater than in medium-size ones. Consequently, the fragments
formed are greatly overloaded with neutrons, and as a result they
liberate several neutrons each. Most of the neutrons are emitted
instantaneously (during a time less than ~10-' s). Part (about
0.75%) of the neutrons called delayed neutrons are emitted not
instantaneously, but with a delay ranging from 0.05 s to 1 min.
On an average, 2.5 neutrons are released per fission event.

The liberation of instanlaneous and delsyed neutrons does not
cowpletely eliminate the overloading of the fission fragments with
neutrons. Therefore, the fragments are mainly radioactive and
undergo a chain of f~ transformations attended by the emission of
gamma rays. Let us explain what has been said above with an exam-
ple. One way in which fission may proceed is as follows:

92U235 -+ n— 55C3140 '{- 371:{1)9A + 2n

hie fission fragments—cesium and rubidium—undergo transfor-
mations:

5505‘40 Lo 56Ba“° - 57La“° -— 58C91k0
37Rb91‘ - 3881‘94 - 39Y% -— ,‘OZI‘M‘

The products-~cerium Ce'*® and zirconium Zr**—are stable.

In addition to uranium, bombardment by neutrons* causes the
fission of thorium (30Th?®?) and protactinium (;,Pa®'), and also
of the transuranium element plutonium (y3,Pu?3). Neutrons of super-
high energies (of the order of several hundred MeV) produce the
fission of lighter nuclei too. The fission of the nuclei of U?% and
Pu?® is produced by neutrons of any energy, but especially well
by slow neutrons. The fission of U3 and Th?*® is also produced by
thermal neutrons, but these isotopes are not encountered in nature,
they are prepared artificially.

Only fast neutrons (with energies not lower than ~41 MeV) can
cause the fission of nuclei of U?®, At lower energies, the neutrons
are absorbed by the nuclei of U?*® without their following fission.
The result is the formation of a nucleus of U%*® whose excitation
energy is liberated in the form of a gamma photon. This is why such
a process is called radioactive capture [the reaction (r, y)]. The
effective cross section of this process sharply grows at an energy of
the neutrons equal to ~7 eV, reaching 23 000 barns (see Fig. 10.8).

* The fission of heavy nuclei may be produced not only by neutrons, but
also by other particles-—protons, deuterons, alpha particles, and also by gamma
photons. In the latter case, we bave to do with the photofission of nuclei.



258 Physics of Atomic Nucleus and Elementary Particles

The cross section of the capture by a nucleus of U?® of thermal neu-
trons is less than three barns.

The nucleus of U?? formed as a result of the capture of a neutron
is not stable (its half-life 7 is 23 min). Emitting an electron, an anti-
neutrino, and a gamma photon, it transforms into a nucleus of the
transuranium element neptunium Np?*®. Neptunium also experiences
B~ decay (I = 2.3 days) and transforms into plutonium Pu®*. This
chain of transformations can be written as follows:

(25 min) (2.3 days)

) o Pz (10.37)

39
02U 03 NP2

Plutonium is alpha-radioactive, but its half-life is so great
(24 400 years) that it may be considered virtually stable.

The radiative capture of neutrons by a nucleus of Th*® leads to the
formation of the fissioning uranium isotope U?3 that is absent in
natural uranium:

(22 min) (27 days)
00Th?2 4 n— Th23 ——— | Ac233 — 5, U233

Uranium-233 is alpha-radioactive (I = 162 000 years).

The emission of several neutrons in the fission of nuclei of U235,
Pu?®9, and U?3 makes it possible to achieve a chain nuclear reaction.
Indeed, the z neutrons emitted in the fission of one nucleus may cause
the fission of z nuclei; as a result z2 new neutrons will be emitted, which
will cause the fission of z® nuclei, and so on. Thus, the number of
neutrons born in each generation grows in a geometrical progression.
The neutrons emitted in the fission of nuclei of U??*® have an average
energy of ~2 MeV, which corresponds to a velocity of ~2 X 10° cm/s.
Therefore, the time that elapses between the emission of a neutron and
its capture by a new fissioning nucleus is very small. Hence, the pro-
cess of multiplication of neutrons in a fissioning substance goes on
quite rapidly.

The picture we have drawn above is ideal. Neutrons would multi-
ply as described above provided that all the liberated neutrons are
absorbed by fissioning nuclei. Actually, matters are far from being
so. First of all, owing to the finite dimensions of the fissioning body
and the high penetrating ability of the neutrons, many of them will
leave the reaction zone before they are captured by a nucleus and
cause its fission. Moreover, part of the neutrons will be absorbed by
non-fissioning impurities owing to which they drop out of the game
without causing fission and, consequently, without giving birth to
new neutrons.

The volume of a body grows as the cube and its surface as the
square of its linear dimensions. Therefore, the relative part of the
peutrons flying out of a body diminishes with an increasing mass of
the fissioning substance.
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Natural uranium contains 99.27% of the isotope U238, 0.72%
of U2 and about 0.01% of U234, Hence, for each nucleus of U235
that fissions under the action of slow neutrons there are 140 nu-
clei of U?®® that capture not too fast neutrons without fission.
This is the reason why no chain fission reaction occurs in natural
urapium.

A chain nuclear reaction can be achieved in uranium in one of two
ways. The first consists in recovering the fissioning isotope UZ23%
from natural uranium. Owing to the chemical indistinguishability
of the isotopes, it is a very difficult task to sepa-
rate them. It was solved, however, in several ways.

In a piece of pure U%*?® (or Pu®?) each neutron
captured by a nucleus produces fission with the emis-
sion of ~2.5 new neutrons. If the mass of such a
piece, however, is less than a definite critical
value, most of the emitted neutrons will fly out
without producing fission, so that a chain reaction
does not occur. At a mass greater than the critical
one, the neutrons rapidly multiply, and the reaction
acquires an explosive nature. The functioning of an
atomic bomb is based on this principle. The nuclear
charge of such a bomb is two or more pieces of Fig. 10.10
almost pure U235 or Pu®?® (they are denoted by the
reference number 1 in Fig. 10.10). The mass of each piece is less
than critical, as a result of which no chain reaction occurs.

The Earth’s atmosphere always contains a certain number of neu-
trons produced by cosmic rays. Therefore, to call forth an explosion,
it is sufficient to connect the parts of the nuclear charge into one piece
with a mass greater than the critical one. This must be done very
rapidly, and the pieces must be connected very tightly. Otherwise,
the nuclear charge will fly apart into fragments before an appreciable
portion of the fissioning substance has time to react. Ordinary ex-
plosive substance 2 (an igniter), by means of which one part of the
nuclear charge is shot into the other, is used for connecting them.
The entire device is confined in massive shell 3 of a high-density me-
tal. The shell reflects neutrons and, in addition, prevents scattering
of the nuclear charge until the maximum possible number of its
nuclei have liberated their energy in fission. The chain reaction in
an atomic bomb proceeds on fast neutrons. Only a part of the nuclear
charge has time to react upon an explosion.

A different way of carrying out a chain reaction is used in nuclear
reactors. The fissioning substance employed in reactors is natural
uranium (or uranium enriched somewhat with the isotope UZ%).
To prevent radiative capture of neutrons by the nuclei of U?® (which
becomes especially intensive at an energy of the neutrons of ~7 V),
comparatively small rods of the fissioning substance are spaced at
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a certain distance apart, and the spaces between these rods are filled
with a moderator, i.e. a substance in which the neutrons are retarded
to thermal velocities. The cross section of thermal neutron capture
by a nucleus of U?® js only three barns, whereas the fission cross
section of U5 by thermal neutrons is almost 200 times greater
(580 barns). Therefors, although the neutrons collide with (U238
nuclei 140 times more often than with U?® nuclei, radiative capture
occurs less frequenily than fission, and at large critical dimensions
of the entire device, the neutron multiplication factor (i.e. the ra-
tio of the number of neutrons born in each of two consecutive genera-
tions) may reach values greater than unity.

The neutrons are retarded at the expense of elastic scattering.
In this case, the energy lost by a particle being retarded depends on
the ratio of the masses of the colliding particles. The maximum
amount of energy is lost when both particles have the same mass
(see Sec. 3.11 of Vol. I, p. 104 et seq). From this viewpoint, a sub-
stance containing ordinary hydrogen, for example, water (the masses
of a proton and a neutron are approximately the same) ought to be
an ideal moderator. Such substances were found to be unsuitable as
a moderator, however, because protons absorb neutrons, entering
with them into the reaction .

p(n, y)d

The moderator nuclei must have a small cross section of neutron
capture and- a large cross section of elastic scattering. This condi-
tion is satisfied by a deuteron (a nucleus of heavy hydrogen—deuter-
ium D), and also by nuclei of graphite (C) and beryllium (Be). About
25 collisions are sufficient to reduce the energy of a neutron from
2 MeV to thermal energies in heavy water (D,0), and about 100
collisions in C or Be.

The first uranium-graphite reactor was started in December, 1942,
at the University of Chicago under the supervision of the Italian
physicist Enrico Fermi. In the Soviet Union, a reactor of the same
kind was placed into operation under the supervision of Igor Kur-
chatov in December, 1946, in Moscow.

A schematic view of an uranium-graphite reactor is shown in
Fig. 10.11. Reference number 7 designates the moderator—graphite;
2—uranium elements; and 3—rods containing cadmium or boron.
These rods are used to control the process in the reactor. Cadmium
and boron are intensive absorbers of neutrons. Therefore, when the
rods are pushed into the reactor, the neutron multiplication factor
diminishes, and when they are pulled out, this factor grows. A spe-
cial automatic device controlling the rods makes it possible to main-
tain the power developed in the reactor at the preset level. Control
is considerably facilitated by the circumstance that part of the neu-
trons, as we have already noted, are emitted upon the fission of nu-
clei not instantaneously, but with a delay of up to 1 min.
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The first industrial reactors were intended to produce a fissioning
material for atomic bombs—plutonium. In such reactors, part of the
neutrons emitted in the fission of U235 nuclei maintains the chain
reaction, while the other part experiences radiative capture by nuc-
lei of U8, which, as we have seen, leads in the long run to the for-
mation of Pu®*® [see scheme (10.37)]. After a sufficient amount of

Fig. 10.11 Fig. 10.12

Pu has accumulated in the uranium elements, the latter are extracted
from the reactor and delivered for chemical treatment to recover the
Pu from them.

The use of nuclear energy for peaceful purposes was first achieved
in the USSR under the supervision of Igor Kurchatov. In 1954, the
first atomic power plant with a capacity of 5000 kW was placed into
service in the USSR. A schematic view of an atomic power plant is
shown in Fig. 10.12. The energy liberated in the active zone of reac-
tor 7 is picked up by a heat carrying agent flowing in circuit 2. Cir-
culation is ensured by pump 3. Water or alkali metals having a low
melting point, for example, sodium (T ey = 98 °C) are used as the
heat carrying agent. In heat exchanger 4, the heat carrying agent
gives up its heat to water and transforms it into steam that rotates
turbine 5.

Reactors with a moderator operate on slow (thermal) neutrons.
By using fuel enriched with fissioning isotopes (U?*® or Pu®®), it is
possible to construct a reactor operating on fast neutrons. Part of
the neutrons in such reactors are used to transform U?® into Pu?3® .
or Th®? into U%*3, Here the number of nuclei formed that are capa-
ble of fission under the action of thermal neutrons may exceed the
number of fissioning nuclei used for maintaining operation of the
reactor. Hence a greater amount of nuclear fuel is reproduced than
burns in the reactor. Such nuclear reactors are therefore called breed-
er reactors or breeders.
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We shall note in conclusion that by-products of the processes
occurring in nuclear reactors are radioactive’isotopes of many chem-
ical elements that find widespread use in biology, medicine, and
engineering.

10.8. Thermonuclear Reactions

Nuclear fusion, i.e. the fusion of light nuclei into a single nucleus,
is attended, like the fission of heavy nuclei, by the liberation of
enormous amounts of energy. Since very high temperatures are
needed for the synthesis of nuclei, this process is called a thermonuc-
lear reaction.

To surmount the potential barrier due to Coulomb repulsion,
nuclei with the atomic numbers Z; and Z, must have the energy

E—= Z,Z,e2
Tnuc

where rpuc is the radius of actiun of nuclear forces equal to ~2 X
X 10713 cm. Even for nuclei with Z, = Z, = 1, this energy is

e (4.8X10-10)2 o
E= T = T axI0T =1.15x10%erg = 0.7 MeV
An energy of 0.35 MeV falls to the part of each colliding nucleus. A
temperature of the order of 2 X 10® K corresponds to an average
energy of thermal motion equal to 0.35 MeV. The fusion of light nu-
clei, however, can proceed at considerably lower temperatures. The
matter is that owing to the random distribution of particles by ve-
locities, there is always a certain number of nuclei whose energy
considerably exceeds the average value. Moreover, which is especial-
ly important, the fusion of nuclei may occur owing to the tunnel
effect. Therefore, some thermonuclear reactions proceed with an
appreciable intensity already at temperatures of the order of 107 K.
The conditions for the fusion of nuclei of deuterium and tritium
are especially favourable because the reaction between them has a
resonance nature. It is exactly these substances that form the charge
of a hydrogen (or thermonuclear) bomb*. The igniter in such a bomb
is a conventional atomic bomb upon whose explosion a temperature
of the order of 107 K is produced. The reaction of fusion of a deuteron
(d) and a tritium nucleus (;H3)

ldz + iIHz - ZHe‘* -+ oni :

is attended by the liberation of energy equal to 17.6 MeV, which is
~3.5 MeV per nucleon. We shall indicate for comparison that the

* The first thermonuclear explosion was conducted in the Soviet Union
in 1953.
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fission of a uranium nucleus leads to the liberation of about 0.85 MeV
per nucleon.

There was no doubt up to recent times that the fusion of hydrogen
nuclei into helium nuclei is the source of energy of the Sun* and
stars, the temperature inside of which reaches 107 to 10® K. This
fusion may occur in two ways. At lower temperatures, the proton-
proton cycle occurs, which proceeds as follows. First the fusion of
two protons occurs with the formation of a deuteron, a positron,
and a neutrino:

p+p—>d+er—+wv

The deuteron formed collides with a proton and combines with it
to form a He® nucleus:

d-+p—,He’ +v
The last link in the cycle is formed by the reaction
oHed +,He? — ,Het 4 p+ p

At higher temperatures, the carbon (or carbon-nitrogen) cycle
proposed by the German physicist Hans Bethe (born 1906) has a
greater probability. It consists of the following reactions:

6(:12 _l_ 1pl. —_ 7Nl3 + Y
7N13_,,6C13+e++\»

CB3+ypt— Nt +

7N14 -+ ipi — 8015 + y
50‘5—->7N15+e++‘v

NS 4 pt o> oC12 4, ot

The result of the carbon cycle is the vanishing of four protons and the
formation of one alpha particle. The number of carbon nuclei re-
mains constant; these nuclei participate in the reaction as a catalyst.

In a hydrogen bomb, the thermonuclear reaction has an uncontrol-
led nature. To carry out controlled thermonuclear reactions, it is
necessary to set up and maintain a temperature of the order of
108 K in a certain volume. At such a high temperature, a substance is
a completely ionized plasma (see Sec. 12.5 of Vol. 11, p. 249 et seq).
There are tremendous difficulties in the path of carrying out a con-
trolled thermonuclear reaction. In addition to the need of obtaining

* In the middle of the seventies, grounds appeared to doubt the correctness
of this statement. It can be seen from the equations of the reactions given below
that the fusion of protons is attended by the appearance of neutrinos whose
number can be assessed. Measurements have shown, however, that the number of
neutrinos liberated on the Sun is extremely small. In this connection, the ques--
tion of the nature of solar energy remains unclear.
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extremely high temperatures, the problem appears of keeping the
plasma within the preset volume. Contact of the plasma with the
walls of the vessel will result in its cooling. In addition, a wall of
any substance will immediately evaporate. In this connection, a
magnetic field has to be used to retain the plasma within the preset
volume. The forces acting in this field on moving charged particles
make them travel along trajectories arranged in a limited part of
space.

The achievement of controlled thermonuclear fusion will provide
mankind with a virtually inexhaustible source of energy. This is
why work on mastering controlled thermonuclear reactions is going on
in many countries. The scope of this work is the greatest in the USSR
and the USA.



CHAPTER 11 ELEMENTARY PARTICLES

11.1. Kinds of Interactions and Classes
_of Elementary Particles

It is rather difficult to give a strict definition of the concept of an
elementary particle. As a first approximation, we can define elemen-
tary particles to be such microparticles whose internal structure at
the present stage of development of physics cannot be presented as
a combination of other particles. In all phenomena observed to date,
each such particle behaves like a single whole. Elementary particles
can transform into one another. We encountered such transforma-
tions in the preceding chapter [see (10.7), (10.14), (10.15), and (10.16)1.

To explain the properties and the behaviour of elementary par-
ticles, we have to supply them, in addition to mass, electric charge
and spin, with a number of additional quantities characterizing
them (quantum numbers), which will be treated on a later page.

Four kinds of interactions between elementary particles are known:
strong, electromagnetic, weak, and gravitational (we have listed
them in the order of diminishing of their intensity).

The intensity or strength of an interaction is customarily charac-
terized with the aid of the so-called coupling constant. The latter is
a dimensionless parameter determining the probability of the pro-
cesses due to the given kind of interaction. The ratio of the values
of the constants gives the relative strength of the corresponding
interactions. .

Strong Interaction. This kind of interaction ensures the binding
of nucleons in a nucleus. The coupling constant in strong interaction
has a value of the order of 10. The greatest distance over which strong
interaction manifests itself (the radius of action r) is about 1013 cm.

Electromagnetic Interaction. The coupling constant is 1/137 =~
=~ 10-2 [see formula (5.37) and the text following it]. The radius of
action is unlimited (r = oo).

Weak Interaction. This interaction is responsible for all kinds
of beta decay of nuclei (including e-capture), for many disintegrations
of elementary particles, and also for all the processes of interaction
of neutrinos with a substance. The coupling constant is 10~ in its
order of magnitude. Weak interaction, like its strong counterpart, is
short-range.

Gravitational Interaction. The coupling constant has a value of
the order of 10-3%. The radius of action is unlimited (r = oo0). Gra-
vitational interaction is universal. All elementary particles without
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any exception are subjected to it. In the processes of the microworld,
however, gravitational interaction does not play an appreciable part.

Table 11.1 gives the values (the order of magnitude) of the coupl-
ing constants for the different kinds of interaction. The last column

Table 11.1

Kind of interaction Couplin« Lifetime, s
Strong 10 10-28
Electromagnetic 10-3 10-16
Weak 10~14 10~-8
Gravitational 10-39 —_

of the table indicates the average lifetime of particles that decay as
a result of the given kind of interaction (this time is also known as
the decay time).

Elewmentary particles are usually divided into four classes*. The
first of them includes culy a single particle-—the photon. The second
class includes leptons, the third—mesons, and, finally, the fourth
class includes baryons. Mesons and baryons are often combined into
a single class of strongly interacting particles called hadrons (the
Greek word “hadros” means large, massive).

Let us briefly characterize the listed classes of particles.

1. Pholons, y (quanta of an electromagnetic field), participate in
electromagnetic interactions, but do not have strong and weak in-
teractions.

2. Leptons derive their name from the Greek word “leptos”, which
means “light-weight”. They include particles having no strong in-
teraction: muons (pn-, ft*), electrons (e-, e*), electron neutrinos

(Ve, ;e) and muop neutrinos (v,, v,) (see Sec. 11.8). All leptons have
a spin equal to % , and are therefore fermions. All leptons have weak

interaction. Those of ithem that carry an electric charge (i.e. muons
and electrons) also have electromagnetic interaction.

3. Mesons are strongly interacting unstable particles not carrying
a so-called baryon charge (see below). They include n-mesons or pions
(m*, n~, n%), K-mesons or kaons (K+, K-, K° K°), and the eta-meson
(n). Pions were treated in Sec. 10.4. The mass of K-mesons is about
970 m, (494 MeV for charged and 498 MeV for neutral K-mesons).
‘The lifetime of K-mesons is of the order of 10-® s. They decay with °

* There presumably exists anotber class of particles—gravitons (quanta

ofl:i\ gravitational field). These particles have not yet been discovered experiment-
tally.
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the formation of n-mesons and leptons or only leptons. The mass of
an eta-meson is 549 MeV (1074 m,), its lifetime is of the order of
101% s. Eta-mesons decay with the formation of n-mesons and y-
photons.

Unlike leptons, mesons have not only weak (and, if charged,
electromagnetic), but also strong interaction. The latter manifests
itself when they interact with one another, and also in interaction
between mesons and baryons. The spin of all mesons is zero, so that
they are bosons.

4. The class of baryons combines nucleons (p, n) and unstable
particles having a mass greater than that of nucleons and called
hyperons (A, 2+, 20 Z-, BO E-) Q-). All bharyons have strong
interaction and, consequently, readily interact with atomic nuclei.
The spin of all baryons is 1/2, so that baryons are fermions. Except
for the proton, all baryons are unstable. When a baryon decays, a
baryon is formed without fail in addition to other particles. This
is one of the manifestations of the law of baryon charge conservation,
which we shall deal with in Sec. 11.4.

In addition to the particles listed above, a great number of strong-
ly interacting short-lived particles called resonances have been
discovered. These particles are resonance states formed by two or
more elementary particles. The lifetime of resonances is only about
10-%3 to 10-%22 s. Some of the resonances are bosons and must be in-
cluded in the class of mesons. Others are fermions and must be in-
cluded in the class of hyperons. We shall not consider resonances in
the following.

11.2. Methods for Detecting Elementary Particles

We succeed in observing elementary particles, and also complex
microparticles (&, d, etc.) owing to the traces they leave in passing
through a substance. The nature of the traces makes it possible to
judge about the charge sign of a particle, its energy, momentum, etc.
Charged particles ionize the molecules along their path. Neutral
particles leave no traces, but they may reveal their presence at the
moment of decaying into charged particles or at the moment of collid-
ing with a nucleus. Hence, in the long run, neutral particles are also
detected according to the ionization produced by the charged particles
they give birth to.

The instruments used to detect ionizing particles are divided into
two groups. The first group includes devices that register the fact
of a particle flying through them and, in addition, sometimes make
it possible to judge about its energy. The second group includes
track-detecting instruments, i.e. instruments that make it possible
to observe the tracks of particles in a substance.



268 Physics of Atomiec Nucleus and Elementary Particles

The registering instruments include ionization chambers and gas-
discharge counters (see Sec. 12.3 of Vol. II, p. 240 et seq), and also
Cerenkov counters (see Sec. 20.6 of Vol. II, p. 471), scintillation
counters, and semiconductor counters.

The operation of scintillation counters is based on the fact that a
charged particle when flying through a substance produces not only"
ionization, but also excitation of the atoms. Upon returning to their
normal state, the atoms emit visible light. Substances in which
charged particles produce a noticeable flash of light (scintillation)
are called phosphors or scintillators. A scintillation counter consists
of a phosphor from which light is supplied via.a special light guide
to a photomultiplier. The pulses obtained at the
output of the photomultiplier are counted. The
amplitude of the pulses (which is proportional to
the intensity of the scintillations) is also deter-
mined. This provides additional information on the
particles being registered.

A semiconductor counter is a semiconductor diode
to which a voltage is fed of a sign such that the
main current carriers are pulled back from the
junction layer. Consequently, in the normal state,
the diode is cut off. A fast charged particle when

\
7Y N passing through the junction layer gives birth to
\J  electrons and holes that are drained off to the elec-
Fig. 11.1 trodes. The result is the appearance of an elec-

tric pulse proportional to the number of current
carriers produced by the particle.

Counters are often combined into groups and are connected so as
to register only those events that are recorded by several instru-
ments simultaneously, or, conversely, that are recorded only by one
of the instruments. In the first case, the counters are said to form a
coincidence system or circuit, and in the second cne an anticoinci-
dence system or circuit. By using different systems of connection,
one can single out the phenomenon of interest from a multitude of
phenomena. For example, two coincidence counters (Fig. 11.1) in-
stalled one after the other register particle 7 flying along their com-
mon axis and do not register particles 2 and 3.

Track-detecting instruments include Wilson chambers, diffusion
chambers, bubble chambers, spark chambers, and emulsion chambers.

The Wilson Cloud Chamber. This instrument was developed by the
British physicist Charles Wilson (1869-1959) in 1912. A track of the
ions formed by a charged particle flying through the cloud chamber
becomes visible in it because the supersaturated vapour of a liquid
condenses on the ions. The instrument operates in cycles, and not
continuously. The comparatively short (about 0.1 to 1 s) time of
sensitivity of the cloud chamber alternates with the dead time (from
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100 to 1000 times greater) during which the chamber is prepared for
the next working cycle. Supersaturation is achieved by sudden cool-
ing produced by the sharp (adiabatic) expansion of the working mix-
ture consisting of a non-condensing gas (helium, nitrogen, argon)
and the vapour of water, ethyl alcohol, etc. At the same moment,
the working volume of the cloud chamber is photographed stereoscop-
ically (i.e. from several points). Stereophotography makes it pos-
sible to reproduce a three-dimensional picture of the recorded phenom-
enon. Since the ratio of the sensitive time to the dead time is very
small, sometimes tens of thousands of photographs have to be made
before an event having a low probability will be recorded. To in-
crease the probability of observing rare phenomena, controlled Wilson
chambers are used in which the operation of the expansion mechanism
is controlled by particle counters included in the electronic circuit
singling out the required event.

In 1927, the Soviet scientist Dmitri Skobeltsyn (born 1892) for
the first time placed a Wilson cloud chamber between the poles of
an electromagnet, which greatly extended its possibilities. The cur-
vature of the trajectory produced by the action of the magnetic field
makes it possible to determine the sign of the charge of a particle
and its momentum. An example of a photograph obtained with the
aid of a Wilson cloud chamber placed in a magnetic field is Fig. 11.7
(see p. 275), in which the tracks of an electron and a positron can be
seen.

The Diffusion Chamber. Like the Wilson cloud chamber, the
working substance in a diffusion chamber is a supersaturated vapour.
The state of supersaturation, however, is produced not by adiabatic
expansion, but as a result of the diffusion of alcohol vapour from the
lid of the chamber, which is at a temperature of about 10 °C, to its
bottom, which is cooled by solid carbon dioxide (to about —70 °C).
A layer of supersaturated vapour a few centimeters thick appears not
far from the bottom. It is exactly in this layer that tracks are formed.
Unlike the Wilson cloud chamber, a diffusion chamber functions
continuously.

The Bubble Chamber. In the bubble chamber invented by the
American physicist Donald Glaser (born 1926) in 1952, the supersa-
turated vapour is replaced with a transparent superheated liquid
(i.e. a liquid under an external pressure that is less than its saturated
vapour pressure; see Sec. 15.5 of Vol. I, p. 394 et seq). An ionizing
particle flying through the chamber causes violent boiling of the
liquid, owing to which the track of a particle is indicated by a chain
of vapour bubbles. A bubble chamber, like a Wilson cloud chamber,
operates in cycles. The chamber is started by a sharp lowering of the
pressure, owing to which the working liquid transforms into the meta-
stable superheated state. The capacity of the working liquid, which
simultaneously is a target for the particles flying through it, is fiiled
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by hydrogen, xenon, propane (C,Hg) and certain other substances.
The working volume of a chamber reaches 1000 litres.
The Spark Chamber. In 1957, T. Cranshaw and J. De Beer devel-
oped an instrument for registering the trajectories of charged particles
) called a spark chamber. The in-
Tovnter strument consists of an array of
::/1—"_—\ plane parallel metal electrodes
[ / puise |Electrome (Fig. 11.2). The even-numbered
cirevsf glectrodes are grounded, and the
odd-numbered ones are periodi-
cally supplied with a short (last-
| ing 10-7 -s) high-voltage pulse
I S— (10-15 kV). If an ionizing par-
ticle flies through the chamber
at the moment when a pulse is
= supplied to it, its track will be
. marked by a chain of sparks
Fig. 11.2 jumping between the electrodes.
The chamber is switched -on auto-
matically with the aid of additional counters connected in a coinci-
dence circuit that register the passage of the particles being
investigated through the working volume of the chamber.
An improved variant of the spark chamber is the streamer
chamber. In this chamber the high voltage is removed before

Topm
Fig. 11.3

a spark manages to develop completely. Therefore, only embryonic
sparks develop that form a clearly visible track.

The Emulsion Chamber. The Soviet physicists Lev Mysovsky and
Aleksandr Zhdanov were the first to use photographic plates for
recording microparticles. Charged particles act on a photographic
emulsion in the same way as photons. Therefore, after the develop-
ment of a plate, a visible track of a particle that has flown past it is
formed. A shortcoming of the photographic plate method was the
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small thickness of the emulsion layer, as a result of which only the
tracks of particles flying parallel to the plane of the layer were ob-
tained completely. In emulsion chambers, thick bundles (with a
mass of up to several scores of kilogrammes and a thickness of sever-
al hundred millimetres) made up from separate layers of photograph-
ic emulsions (without a substrate) are subjected to radiation. After
irradiation, the bundle is taken apart into layers, each of which is
developed and examined under a microscope. To be able to trace the
path of a particle when passing from one layer to another, before the
bundle is taken apart an identical coordinate network is inscribed on
all the layers by means of X-rays. The tracks of particles obtained
in this way are shown in Fig. 11.3, in which the consecutive transfor-
mation of a n-meson into a muon and then into a positron has been
recorded.

11.3. Cosmic Rays

Before the development of powerful accelerators of charged parti-
cles, cosmic radiation was the only source of particles having an
energy sufficient for the formation of mesons and hyperons. The
positron, muons, si-mesons, and many strange particles (see Sec.
11.6) were discovered in the composition of cosmic rays.

Primary and secondary cosmic rays are distinguished. The primary
rays are a flux of atomic nuclei (mainly protons) of a high energy
(on an average of about 10 GeV, the energy of individual particles
reaching 10’ GeV*) continuously falling on the Earth. The particles
of primary cosmic rays collide inelastically with atomic nuclei in the
upper layers of the atmosphere, the result being secondary radiation.
At altitudes below 20 km, cosmic rays are virtually completely of
a secondary nature. All the elementary particles known at present
are encountered in the secondary rays.

The intensity of the primary cosmic rays at the atmosphere’s
boundary (i.e. at an altitude of about 50 km) is approximately 1
particle/(cm®.s). The flux of charged particles at sea level averages
about 2 X 10-? particle/(cm”-s). The existence of the Earth’s mag-
petic field leads to the fact that the intensity of cosmic rays varies
with the latitude. This phenomenon is known as the latitude effect.

Instruments installed on artificial satellites of the Earth and on
spaceships helped scientists discover radiation belts near the Earth.
These are two zones with a sharply increased intensity of ionizing
radiation surrounding the Earth. Their existence is due to the cap-
ture and retaining of charged cosmic particles by the Earth’s magnet-
ic field. In the plane of the equator, the internal radiation belt ex-

* We remind our reader that 1 GeV (gigaelectron-volt) equals 10° eV.
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tends from 600 to 6000 km, and the external belt from 20 000 to
60 000 km. At latitudes of 60 to 70 degrees, both belts approach the
Earth to a distance of several hundred kilometres.
Secondary cosmic rays contain two components. One of them is
greatly absorbed by lead and was therefore called soft; the second
one penetrates through thick layers of lead and
» was called hard.
The soft component consists of cascades or -
e;/\e.- showers of electron-positron pairs. A gamma pho-
- ton produced as a result of the decay of a n’-me-
> é, son [see (10.15)] or of the sharp retardation of
a fast electron when flying near an atomic nucleus
f‘/ \¢* e \,. gives birth to an electron-positron pair (Fig. 11.4).
The retardation of these particles again results
7y 7 7 ér in the formation of gamma photons, and so on.
The processes of the birth of pairs and of the pro-
duction of gamma photons alternate until the
Fig. 11.4 energy of the gamma photons becomes inadequate
for the formation of pairs. Since the energy of the
initial photon is very high, many generations of secondary particles
have time to appear before the development of a shower stops.

The hard penetrating component of cosmic rays consists mainly
of muons. It is formed predominatingly in the upper and middle
layers of the atmosphere as a result of the decay of charged n-mesons
[see (10.14)].

With the appearance of accelerators making it possible to accel-
erate particles up to energies of hundreds of GeV (see Sec. 10.5 of
Vol. II, p. 223 et seq.), cosmic rays have lost their exclusive signific-
ance in studying elementary particles. As previously, however, they
remain the only source of particles having superhigh energies.

11.4. Particles and Antiparticles

The Schrédinger equation does not satisfy the requirements of
the theory of relativity—it is not invariant with respect to the Lo-
rentz transformations. In 1928, the British physicist Paul Dirac
succeeded in finding a relativistic quantum-mechanical equation
for an electron from which a number of remarkable corollaries follow.
First of all, this equation naturally, without any additional assump-
tions, gives us the spin and the numerical value of the intrinsic mag-
netic moment of an electron. The spin was thus found to be a quantity
that is simultaneously a quantum and a relativistic one.

But this does not exhaust the significance of Dirac’s equation.
It also made it possible to predict the existence of an electron’s
antiparticle—the positron. Dirac’s equation gives not only positive,
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but also negative values for the total energy of a free electron. In-
vestigation of the equation shows that at a given momentum of a
particle p it has solutions corresponding to the energies

E=+V ctp?4 mict (11.1)

There is an interval of energy values between the maximum negative
energy (—mec?) and the minimum positive energy (+mec?) that can-
not be realized. The width of this interval is 2m.c® (Fig. 11.5). Hence,
two regions of energy eigenvalues are obtained, one begins from
+m.c?® and extends to +oo and the other begins from —m.c? and
extends to —oo.

In non-quantum relativistic mechanics, the energy is expressed
through the momentum with the aid of an expression coinciding
with Eq. (11.1) [see Eq. (8.42) of Vol. I, p. 242], so that it formally
can also have negative values. In the non-quantum theory, however,
energy changes continuously and therefore cannot intersect the for-
bidden band and pass from positive values to negative ones. In the
quantum theory, the energy can change not only continuously, but
also in a jump, so that the existence of a forbidden band cannot pre-
vent the transition of a particle to states with a negative energy
(compare with the transition of an electron in a semiconductor from
the valence band to the conduction band, Fig. 8.3).

A particle with a negative energy must have very strange proper-
ties. Upon passing over to states with a decreasing energy (i.e. with
a negative energy increasing in magnitude), it could liberate energy,
say, in the form of radiation, and since | £ | is restricted by nothing,
a particle having a negative energy could emit an infinitely great
amount of energy. A similar conclusion can be arrived at as follows.
A glance at the equation E = mc? reveals that the mass of a particle
having a negative energy will also be negative. Under the action of
a retarding force, a particle with a negative mass should accelerate
instead of retarding, doing an infinitely great amount of work on the
source of the retarding force.

These difficulties should seem to make us acknowledge that states
with a negative energy must be excluded from consideration as lead-
ing to absurd results. This, however, would contradict some of the
general principles of quantum mechanics. Therefore, Dirac chose a
different way. He assumed that transitions of electrons to states
with a negative energy are usually not observed because all the avail-
able levels with a negative energy are already occupied by electrons.
We remind our reader that electrons obey the Pauli principle which
prohibits more than one particle from being in the same state.

According to Dirac, a vacuum is a state in which all the levels of
negative energy are populated by electrons, while the levels with a
positive energy are vacant (Fig. 11.6a). Since all the levels below the
forbidden band are occupied without any exception, the electrons at
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these levels do not reveal their presence in any way*. If the energy’

E>2mec? (11.2)°
is imparted to one of the electrons at negative levels, then this elec-
tron will transfer to a state with a positive energy and will behave

in the usual way like a particle with a positive mass and a negative
charge. The vacancy (“hole”) formed in the collection of negative

2mpc? 7 2\ ome?
————————————— rf-ﬂ ————M-——«———— =0
—e [
(@) (4
Fig. 11.5 Fig. 11.6

levels must behave like an electron having a positive charge. In-
deed, the absence of a particle having a negative mass and charge will
be perceived as the presence of a particle having a positive mass and
a positive charge. This first particle of those predicted theoretically
was called a positron.

When a positron and an electron meet, they annihilate (vanish)—
the electron transfers from a positive level to a vacant negative one**.
The energy corresponding to the difference between these levels is.
liberated in the form of radiation. In Fig. 11.66, arrow 7 depicts the
process of the birth of an electron-positron pair, and arrow 2—their
annihilation. The term “annihilation” must not be understood liter-
ally. In essence, the particles (electron and positron) do not vanish,
but transform into other particles (gamma photons).

Dirac’s theory was so “crazy” that most physicists were very dis-
trustful of it. It won recognition only after the American physicist
Carl Anderson in 1932 detected a positron in the composition of
cosmic rays. In a Wilson cloud chamber placed between the poles of
an electromagnet, a positron left the same track as an electron born
simultaneously with it, except that this track was curled in the oppo-
site direction (Fig. 11.7).

Electron-positron pairs are born when gamma photons pass through
a substance. This is one of the main processes resulting in a substance:

* Similarly, in a dielectric, the electrons completely filling the valence band
do not react in any way to the action of an electric field. .

** This process is similar to the recombination of an electron and a hole in
a semiconductor.
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absorbing gamma rays. In complete accordance with Dirac's theory,
the minimum energy of a gamma photon at which the birth of a pair
is observed is 2mqc* = 1.02 MeV [see expression (11.2)]. To observe

Fig. 11.7

the law of momentum conservation in the process of the birth of a
pair, another particle (electron or nucleus) must participate in it
that receives the excess momentum of a gamma photon over the
total momentum of an electron and a positron. Hence, a pair is born
as follows:

Yy+e —e +e +e€ (11.3)
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or
v+ X >X e et (11.4)

where X is the nucleus in whose force field the pair is born.
Electron-positron pairs may also be produced when two charged
particles, for example, electrons, collide:

e~ +e —»>e e 4 e 4+ et (11.5)
In annihilation, the requirements of the law of momentum conser-

vation are observed in that two (more rarely three) gamma photons
are produced that fly away in different directions: '

e”+e’ =y +vy(+7) (11.6)

The fraction of the energy received by the nucleus X in process
(11.4) is so small that the threshold of the reaction of pair formation
(i.e. the minimum energy of a gamma photon needed for it) virtually
equals 2mec®. The threshold of reaction (11.3) is 4m.c?, and of reac-
tion (11.5) is Tmqc? (in the latter case by the threshold of the reaction
is meant the minimum total energy of the colliding electrons). Thus,
the requirements of the simultaneous conservation of energy and
momentum result in the fact that the threshold of a reaction (the
minimum energy of the initial particles) may be appreciably greater
than the lotal rest energy of the born particles.

Dirac’s equation in a somewhat modified form may be applied not
only to electrons, but also to other particles having a spin of 1/2.
Consequently, for each such particle (for example, a proton or a
neutron) there must exist an antiparticle*. By analogy with process

(11.5), the birth of a proton-antiproton pair (p-p) or of a neutron-
antineutron pair (n-7) can be expected when nucleons having a
sufficiently high energy collide. The total rest energy of a proton and
antiproton, like that of a neutron and antineutron, is almost 2 GeV
{see Eqs. (10.1) and (10.5)]. The threshold of the reaction determined
by the requirements of energy and momentum conservation is
5.6 GeV. In 1955, an accelerator (synchrophasotron; see Sec. 10.5 of
Vol. 1I, p. 227) was put into service at Berkeley, California (USA)
that made it possible to accelerate particles up to an energy of
6.3 GeV. By irradiating a copper target with a beam of accelerated
protons, the American physicists O. Chamberlain, E. Segré, C. Wie-

gand, and T. Ypsilantis observed the formation of a p-p pair. The
reaction proceeded according to one of the following schemes:

p+p—-p+p+p+p oo ptn—o>p+nt+p+p (1.7
The second nucleon in the left-hand side is in a Cu nucleus. Since the

* An antiparticleis designated by the same symbol as the particle correspond-
ing to it, with the addition of a tilde ( ~) or a bar over the symbol. For exam-

ple, an antiproton is designated by the symbol p or p.
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nucleons in a nucleus are in motion, the threshold energy of the im-
pinging particle in this case is about 4.3 GeV.

An antiproton differs from a proton in the sign of its electric charge
and in its intrinsic magnetic moment (in an antiproton the magnetic
moment is negative, i.e. directed oppositely to the mechanical angu-
lar momentum). The main feature distinguishing an antiproton from
a proton (and in general a particle from an antiparticle) is their abil-
ity of mutual annihilation, as a result of which other particles are
produced. An antiproton may annihilate when it encounters not onty
a proton, but also a neutron. The collection of particles produced in
separate events of annihilation is different. For example, the follow-
ing processes arc possible:

P+ p—rat a4 at a4 00
p+p—at+a+ad+n0 4 no (11.8)
ptn—snta 4 a4 a0 4o

In 1956, using the same accelerator at Berkeley, B. Cork, G. Lam-
bertson, O. Piccioni, and W. Wenzel observed antineutrons obtained
by the recharging of antiprotons, i.e. as a resuit of the processes

pt+p—ntn
;+n->'ﬁ+n+n'

An antineutron differs from a neutron in the sign of its intrinsic
magnetic moment (in an antineutron the direction of the magnetic
moment coincides with that of the mechanical angular momentum)
and in its ability to annihilate when it encounters a nucleon (neutron
or proton). Annihilation results in the birth of new particles (mainly
T-mMesons).

Not only fermions, but also bosons have antiparticles. For example,
a n~-meson is the antiparticle with respect to a m*-meson.

There are particles that are identical with their antiparticles (i.e.
that have no antiparticles). Such particles are called absolutely neu-
tral. They include the photon, n®meson, and the n-meson. Particles
identical with their antiparticles are not capable of annihilation.
This, however, does not signify that they in general cannot trans-
form into other particles.

If a baryon charge* (or baryon number) B = +1 is ascribed to
baryons (i.e. nucleons and hyperons), a baryon charge B = —1 is
ascribed to antibaryons, and a baryon charge B = 0 to all other
particles, then all the processes occurring with the participation of
baryons and antibaryons [for example, processes (11.7), (11.8) and

(11.9)

* The baryon charge is one of the quantum numbers mentioned in the second
paragraph of Sec. 11.1.
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(11.9)] will be characterized by conservation of the baryon charge,
like processes (11.3)-(11.6) are characterized by conservation of
the electric charge.

The law of baryon charge couservation results in the stability of
the lightest of the baryons—the proton. The other conservation laws
(of energy, momentum, angular momentum, electric charge, etc.)
do-not forbid, for example, the process

p—rettvtv (11.10)

that in the long run would lead to annihilation of atoms. Such a
process, however, would be attended by a reduction in the baryon
charge by unity, and is therefore not observed. Similarly, the law of
electric charge conservation results in stability of the lightest charged
particle—the electron, forbidding, for example, the process

e —>y+vy+wv (11.11)

To explain the features of processes with the participation of lep-
tons and antileptons, it is necessary to introduce the quantum num-
ber L called the lepton charge (or lepton number). For leptons, L ==
= —+1, for antileptons L = —1, and for all other particles L = Q.
When this condition is observed, conservation of the total lepton
charge of the physical system being considered is observed in all -
processes without any exception.

The transformation of all the quantities describing a physical '
system in which all the particles are replaced with antiparticles (for
example, electrons with positrons, positrons with electrons, etc.)
is called charge conjugation. Which of two charge-conjugated par-
ticles is to be considered a particle and which an antiparticle is, ge-
nerally speaking, a purely conditional matter. Having made a choice
for one pair of charge-conjugatcd particles, however, the choice for
the other pairs must be made so as to conserve the baryon and lepton
charges in the observed interactions. The electron and the proton are
conventionally considered to be particles, and the positron and the
antiproton to be antiparticles. When this condition is observed, the
choice for the remaining baryons and leptons is unambiguous. For
example, to conserve the baryon charge in the course of process (10.7),
we must consider the neutron to be a particle. The resulls obtained
when account of the requirements of conserving B and L for other
particles is taken are given in Table 11.2.

Table 11.2 indicates all the particles discovered up to 1977 ex-
cept for resonances. The first column gives the names of the particles.
When the antiparticle is designated with the aid of a tilde (~) or a
bar (—), the name of the antiparticle is obtained by adding the prefix
“anti” to the name of the relevant particle. For example, the antipar-
ticle of the lambda hyperon is called the antilambda hyperon. The
antiparticle of the electron is the positron. In the remaining cases,
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Table 11.2
- | Anti-
Name of particle I;g{: ;::i-tl- N’Ine'v 1,8 Decay scheine
cle
Photon v 0 stable
Leptons
Electron e et 0.511 stable
Muon U pr 106 2.2x 10" e+ Vet
Electron neutrino Ve Ve 0 stable
Muon neutrino Vo | v 0 stable
Mesons
Positive pi-meson at | a- 140 2.6x 108 pr vy
Neutral pi-meson no 135 0.8 X 10-16 Y4y
et f-e"+y
Positive K-meson K* | K- 494 1.2x 1078 pr4-vy
nt4 o
~ nt4at4-ns
Neutral K-meson Ko | Ko 498 10-10-10-8 at4n-
n0+4 no
it 4 v,
n-+tet+v
Eta-meson " 549 2.4x101%  |y4y ®
nt+4 a4 a0
O 504 50
Baryons
Proton p | 938.2 | stable
Neutron n no| 939.6 | 0.9x10° p4em+Ve
Lambda hyperon A Al 1116 2.5x 10710 P i no‘
n4n
Porsoiltlive sigma hype-| =+ [ Z+ | 1189 | 0.8x 1071 p._t n0
ntn
Nel%;ral sigma hype-| z0 | o 1192 < 10714 Aty
Negative sigma hy-| Z- - 1197 1.5 x 10710 ntn-
peron B
Neutral xi hyperon g0 | B° 1315 3x 10710 A+ 70
Negative xi hyperon | E- E- 1321 1.7 x 10710 A+
Negative omega hy-| Q- Q 1672 1.3 x 10710 04 q-
peron E-+ﬂo
A+ K-
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the names of particles and antiparticles are distinguished by adding
the words “positive” and “negative”. For example, the negative pi-
meson is the antiparticle of the positive pi-meson*. The second and
third columns give the symbols of the particle and its antiparticle.
The symbols of absolutely neutral particles are inserted in interrup-
tions of the vertical line dividing the particle and antiparticle columns.
The fourth and fifth columns give the mass of a particle m and its
average lifetime t. Finally, the last column indicates the main
schemes of decay of the particles. To obtain the scheme of decay of an
antiparticle, the particles must be replaced with antiparticles and
the antiparticles with particles For example, the scheme of the decay

of a positive muon has the form e* 4 v, + v

Now we can explain why the particle produced in decays (10. 7)
and (10.26) should be called an antineutrino, and that produced in
decay (10.27) a neutrino. This follows from the requirement of con-
servation of the lepton charge. For an electron and a neutrino, L =
= - 1, and for a positron and an antineutrino, L = — 1. Hence,
the total lepton charge does not change if an electron is produced
together with an antineutrino, and a positron together with a neu-
trino.

Ascribing L = + 1 to an electron, we must also ascribe L = + 1
to a negative muon in accordance with decay reaction (10.18), i.e.
consider p~ to be a particle, and a positive muon to be an antiparticle
with a value of L = — 1. It is easy to see that the lepton charge is
also conserved in m-meson decay processes [see (10.14)}.

11.5. Isotopic Spin

It follows from the charge independence of nuclear forces (see
Sec. 10.4) that a proton and a neutron display much more similarities
than distinctions. They participate equally in strong interaction, the -
spin of both particles is the same, their masses are very close. This
gives us grounds to consider a proton and a neutron as two different
states of the same particle—a nucleon. If electromagnetic interaction
is “switched off”, then both these states coincide completely (the slight
difference between the masses of a proton and a neutron is due to
electromagnetic interaction).

Let us turn to the diagram of the sodium atom levels (see Fig. 5.6).
We remind our reader that the multiplet structure of the levels isdue
to the interaction between the spin and the orbital moments of the
electrons. “Switching off” of the spin-orbital interaction would re-
sult in vanishing of the difference between, for example, the levels

* The terms pion and kaon are sometimes used instead of z:-meson and
K-meson, respectively.
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3°Py, and 3°Py, and in their merging into the single level 3P.
Switching on of the spin-orbital interaction, on the contrary, results
in the formation of multiplets like the switching on of electromagnetic
interaction results in the appearance of differences between a proton
and a neutron. This analogy served as the grounds for calling a pro-
ton and a neutron a charge multiplet (doublet). Other particles can
also be combined into charge multiplets. For example, a lambda
hyperon forms a singlet (see Table 11.2), n-mesons a triplet (when
electromagnetic interaction is switched off, all three mn-mesons be-
come indistinguishable).

A definite value of the spin § corresponds to each spectral mul-
tiplet (the number of components in a multiplet is 2§ -+ 1). The
separate components of a multiplet are distinguished by the values
of the projection of the spin onto the z-axis. By analogy with con-
ventional spin, to each charge multiplet there is ascribed a definite
value of the isotopic spin (or isospin)* T selected so that 27 -4 1
equals the number of particles in a multiplet. Different values of
T ,—the projection of the isotopic spin onto the z-axis in imaginary
isotopic space—are ascribed to different particles. For example, for
nucleons T = 1/2, T, = +1/2 corresponds to a proton, and 7T, =
= —1/2 to a neutron. For sm-mesons, T = 1, the projections T,
equal +1, 0, and —1 for n*-, n%, and n--mesons, respectively.

To avoid misunderstanding, we must note that the quantum num-
ber T called the isotopic spin hasnorelation to isotopes or to conven-
tional spin. The word “isotopic” appedred in the name of the quantum
number 7 because a proton and a neutron form different “varieties”
of a nucleon, like real isotopes form varieties of a given chemical ele-
ment. The word “spin” appeared in the name because the mathematic-
al apparatus describing the quantum number 7 was found to be exact-
ly the same as the mathematical apparatus describing conventional
spin. Otherwise, there is nothing in common between isotopic and
conventional spins.

Table 11.3 gives the values of T and T, for different particles.
Each line in this table gives a charge multiplet. Hence, if there are,
for example, two lines for a nucleon, this signifies that nucleons form
two charge multiplets.

Let us consider two charge multiplets differing in that the particles
forming one multiplet are antiparticles with respect to the particles
forming the other multiplet. The isotopic spins of both multiplets are
obviously the same (2T - 1 gives the number of particles in a mul-
tiplet). As regards the projections of the isotopic spin T,, they differ
in sign for a particle and antipacticle. Thus, for a proton, 7T, =

¢ Tsotopic spin was first introduced into consideration by Werner Heisen-
berg i? 1932 in order to describe a proton and a neutron as different states of
a nucleon.
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Table 11.3
. Projection of isotopic spin TZ
Particle Isotopﬁ}c spin
-1 ~1/2 0 +1/2 +1
n-Meson 1 n no nt
K-Meson 1/2 K° K+
1/2 K- %o
1-Meson 0 "
Nucleon 1/2 n P
1/2 P n
A-Hyperon 0 A
0 x
Z-Hyperon 1 z- z0 : i+
1 3+ 30 -
Z-Hyperon 1/2 g- 2o
1/2 =0 g+
Q-Hyperon 0 Q-
-0 ﬁ‘_
= - 1/2, for an antiproton, T, = — 1/2, for a neutron 7', = — 1/2,

for an antineutron, T, = -+ 1/2. .

At first sight, it may appear strange that for m-mesons, both a
particle (it*) and its antiparticle (s~) combine to form a single charge
multiplet, whereas, for example, a A-hyperon and an anti-A-hyperon
form two different charge multiplets. The explanation is that a charge
multiplet unites particles differing only in the magnitude or the
sign of their electric charge; all the other quantities characterizing
the particles must be the same*. The hyperons A and A differ in
the value of their baryon number, and therefore cannot be included
in one multiplet. The baryon number of all m-mesons is zero, and
the other quantum numbers are also the same; hence, there are no
obstacles preventing their combination into one multiplet.

A conservation law is associated with the isotopic spin. In strong
interactions, both the isotopic spin T and its projection T, are con-

* The difference between charged and neutral particles due to electromag-
netic interaction, for example, their slight difference in mass, is not taken
into consideration.
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served. In electromagnetic interactions, only T, is conserved, while
the isotopic spin 7 itself is not conserved. Weak interactions pro-
ceed, as a rule, with a change in the isotopic spin.

The concept of isotopic spin was a very fruitful one. It played a
major part in systematizing elementary particles. In particular, it
suggested the idea to the American physicist Murray Gell-Mann
(born 1929) and independently of him to the Japanese physicist
Kazuhiko Nishijima (born 1926) of combining particles into charge
multiplets and then led them to the concept of strangeness (see the
following section).

11.6. Strange Particles

K-mesons and hyperons (A, Z, B) were discovered in cosmic
rays in the early 1950’s . Beginning from 1953, scientists have been
using accelerators to produce them. The behaviour of these particles
was found to be so unusual that they were called strange.

The singularity of the behaviour of strange particles consists in
that they are obviously born as a result of strong interactions with
a characteristic time of the order of 10-2® s, whereas their lifetimes
were found to be of the order of 10-3 to 10-1°s. The latter circumstance
pointed to the fact that the particles decay as a result of weak in-
teractions. It was absolutely incomprehensible why strange particles
live so long, and what hinders them from decaying at the expense of
the strong interaction giving birth to them. For example, one of the
processes producing strange particles has the form

a4+ p—>K + A (11.12)
while the lambda hyperon decays according to the scheme
A—>n+p (11.13)

(see the photograph of tracks of particles obtained in a liquid hydro-
gen bubble chamber given in Fig. 11.8). Since the same particles
(a m~-meson and a proton) participate both in the birth and in the
decay of a lambda hyperon, it is surprising that the speed (i.e. prob-
ability) of the two processes is so different.

Further investigations showed that strange particles are born in
pairs [see (11.12)]. This suggested the idea that strong interactions
cannot play a part in the-decay of these particles because the presence
of two strange particles is needed for their manifestation. For the
same reason, the single birth of strange particles is forbidden.

A law of conservation always underlies the forbiddenness of a
process. Thus, the decay of a free proton according to the scheme
p —n + et -+ v is forbidden by the law of energy conservation, ac-
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cording to the scheme p— e* -+ v by the law of baryon charge conserva- -

tion, etc.
To explain the forbiddenness of the single birth of strange particles,

Gell-Mann and Nishijima introduced a new quantum number S
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whose total value, according to their assumption, must be conserved
in strong interactions. This quantum number was called the stran-
geness* of a particle. In weak interactions, the strangeness may not

* Names of the quantum numbers such as “strangeness” and “charm” (such
a quantum number also exists) prove that physicists, as a rule, have a sense
of humour. Naturally, terms such as “quantum number No. 1", “quantum number
No. 2", etc. could have been introduced instead of such exotic names. But this

would be awfully boring.
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be conserved. It is therefore ascribed only to strongly interacting
particles—mesons and baryons. Thus, for K-mesons, S = + 1, and
for A-hyperons, § = — 1. Consequently, process (11.12) occurs with
conservation of the strangeness (the total strangeness of both the
initial and the formed particles is zero), whereas in the course of
process (11.13) the strangeness changes by unity. Therefore, process
(11.13) cannot proceed with the participation of strong interactions.

Gell-Mann and Nishijima related the strangeness to the average
electric charge (Q) of the particles forming a charge multiplet and to
the baryon charge B of a particle:

§=2(Q)—B (11.14)

The data of Table 11.3 can be used to find (Q) for each of the multi-
plets, and from Table 11.2 the value of B can be determined for dif-
ferent particles (we remind our reader that for particles B = 4 1,
and for antiparticles B = — 1). It is easy to see that for nucleons,
antinucleons, n-mesons, and the n-meson, we get S = 0. For examp-
le, for nucleons, (@) = 1/2, B = + 1, for antinucleons (Q) = - 1/2,
B = — 1. The substitution of these values in Eq. (11.14) gives § ==
for both cases. Particles with S = O are conventional, non-strange
ones.

At that time, not all K-mesons and hyperons were known. Gell-
Mann and Nishijima ascribed such values of the quantum number S
to the known strange particles which with the aid of the law of stran-
geness conservation could explain the features of their birth and de-
cay. This made it possible to establish the possible number of particles
in charge multiplets and to predict the existence and properties of

new particles. In this way, the 3° and E°-hyperons and the A°-
meson were predicted. They were later discovered experimentally.

The average charge ‘(Q) for many multiplets is a half-integer. To
avoid dealing with fractions, the quantum number

Y =2 (Q) (11.15)

was introduced, and it was called the hypercharge. According to
Eq. (11.14),

Y=B+S (11.16)

Since the baryon charge is conserved in all interactions, the hyper-
rharge behaves in the same way as the strangeness: it is conserved in
strong and electromagnetic interactions and may not be conserved in
weak interactions.

It is a simple matter to see that the three quantum numbers (Q)
Y and S are in essence absolutely equivalent—the value of one of
them determines the values of the other two (B is assumed to be
known). The most convenient of these three quantum numbers is the
hypercharge Y; this is why it is ordinarily used instead of S.
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Table 11.4 gives the values of the hypercharge Y, the baryon charge
B, and the strangeness S for various charge multiplets.

Table 11.4

Charge multiplet Composition of multiplet Y B S
n-Mesons nt a0 - 0 0 0
K-Mesons K+ IS“ +1 0 | +1
Anti-K-mesouns K- KO —1 0 | -1
Eta-meson n 0 0 0
Nucleons on +1 -+1 0
Antinucleons pn —1 —1 0
A-Hyperon A 0 +1 | -1
Anti-A-hyperon A 0 —1 | 41
Z-Hyperons Ir 02 0 +1 | —1
Anti-X_-hyperons DA% 0 —1 +1
Z-Hyperons 8- 380 —1 44 =2
Anti-Z-hyperons Z+ B0 -+1 —1 | +2
Q-Hyperon S_Z‘ —2 —1 | -3
Anti-Q-hyperon Q- +2 —1 “+3

It must be noted that the electric charge Q of a particle can be
expressed through the projection of the isotopic spin 7', and the hy-
percharge Y (or the batyon charge B and the strangeness S):

Q=T,+5 =T+ 5%

i (11.17)

We can convince ourselves that this relation is true by using the
data of Tables 11.3 and 11.4.

11.7. Non-Conservation of Parity
in Weak Interactions

Among the quantities characterizing microparticles, there is a
purely quantum-mechanical quantity called the parity (P). We know
that the state of a particle is described in quantum mechanics by
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the function ¢ (z, ¥, z). Let us see how the function i can behave in
the so-called inversion of space, i.e. upon transition to the coordi-
nates z’, y’, 2’ associated with z, y, z by the relations

]

"= —z, Y

x ===y, z'=—z

Examination of Fig. 11.9 shows that such a transformation signifies
a transition from a right-handed coordinate system to a left-handed
one. The same transition occurs upon reflection in a mirror
(Fig. 11.10). Hence, the inversion transformation results in a right-
handed reference frame being replaced with a left-handed one. The
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Fig. 11.10

two reference frames z, y, z and z’, y’, z’ differ from each other in the
same way as the right-hand and left-hand gloves of a pair do. If we
turn right-hand glove, for example, inside out (i.e. subject it to in-
version), it will coincide with the left-hand one.

The operation of inversion done twice obviously returns a system
of coordinates to its initial form. Assume that the operation of in-
version leads to multiplication of the function 1 by a certain number
a:

Y (' Y, ) =ay (2, ¥, 2)

Applying the operation of inversion once more to the expression ob-
tained, we arrive at the function

ap (&', ¥, 2') = ™ (z, y, 2)

that must coincide with the initial function ¢ (z, y, z). Hence, a?
must be 1, and a itself may be +1 or —1.

It follows from the above that the operation of inversion either
leaves the function ¥ unchanged or reverses the sign of . In the first
case, the state described by the function v is called even, in the sec-
ond one odd. The behaviour of the function y upon inversion de-
pends on the internal properties of the particles described by this
function. Particles described by even functions are said to have
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positive (even) intrinsic parity (P = -+-1); particles described by odd
functions have negative (odd) intrinsic parity (P = —1). The parity
of a system of particles equals the product of the parities of the sep-
arate particles in the system.

The law of parity conservation follows from quantum mechanics.
According to it, in all the transformations experienced by a system of
particles, the parity of the state remains unchanged. Conservation
of parity signifies invariance of the laws of nature with respect to
replacement of right with left (and vice versa).

There was no doubt up to 1956 that the law of parity conservation
is observed in all interactions. In 1956, the American physicists
Tsung Dao Lee (born 1926) and Chen Ning Yang (born 1922) advanced
the assumption that parity may not be conserved in weak interactions.
This assumption was based on the following. At that time two me-
sons designated © and 6 were known. Both mesons were absolutely
identical in all respects except one: the t-meson decayed into three
mni-mesons, and the O-meson only into two n-mesons. It could natural-
ly have been assumed that both mesons are the same particle capable
of decaying in two different ways. This assumption, however, con-
tradicted the law of parity conservation. The parity of a m-meson
P = — 1. Therefore, the parity of a system of two m-mesons is
(—1)2 = 4 1, and of a system of three m-mesons is (—1)® = — 1.
It followed from the law of parity conservation that t- and 6-me-
sons differ in their intrinsic parity (for a t-meson decaying inte three
n-mesons, P = — 1, and for a 9-meson decaying into two n-mesons,
P = -+ 1), and are therefore two different particles.

It was authetically established with time that the t- and 6-mesons
are the same particle now called a K%meson, for which P = — 1.
Consequently, the process

K>t 4 n-

occurs with viclation of parity.

Lee and Yang proposed the idea of an experiment for verifying
the non-conservation of parity that was carried out at the Columbia
University (USA) by Chien-Shiung Wu (born 1913) and her collabo-
rators. The idea of the experiment was as follows. If right and left
are indistinguishable in nature, then in beta decay the flying out of
an electron in the direction of spin of the nucleus and in the opposite
direction must be equally probable. Indeed, upon reflection of a
nucleus in a mirror, the direction of its “rotation”, i.e. the direction
of its spin, is reversed (Fig. 11.11). If a nucleus emits beta electrons
with equal probability in both directions (Fig. 11.11a), then the
mirror image of the system nucleus-electrons will.be indistinguish-
able from the system itself (they are only turned relative to each other
through 180 degrees). If the beta electrons are emitted mainly in one
direction (Fig. 11.11b), then “left” and “right” become distinguishable.
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In Wu's experimeni, nuclei of radioactive cobalt Co® were orient-

S
—

N

ed with their spins in one direction with the aid of a magnetic field.
To keep thermal motion from hindering such orientation, the radio-
active preparation was cooled to superlow temperatures (~0.1 K). A
considerable difference in the numbers of beta electrons emitted in
both directions was detected. The beta electrons were found to be
emitted mainly in the direction opposite to that of the nuclear spins.
It was thus proved experimentally that right and left are not equal in
weak interactions (we remind our reader that beta decay is due to
weak interaction).

After it had been established that space parity (P) is not conserved
in weak interactions, the Soviet physicist Lev Landau and inde-
pendently of him Lee and Yang advanced the hypothesis that any
interactions are invariant relative to a com-
plex transformation consisting in the simul-

{aneous inversion of space and in the repla- f
cement of particles with antiparticles. } , '
Such a transformation was called combined N C’wf
inversion. According to this hypothesis, (@ { { ‘ ‘
symmetry between right and left is con-

served if in the mirror image of space, parti- T” T
¢les are replaced with antiparticles. Indeed, @ )
if we replace the mirror image of the nu- (5 ™ Qf)
cleus in Fig. 11.11H with an antinucleus,

then the direction of the spin will be re- Fig. 11.14
versed and the mirror image of the system T

will not differ from the system itself.

Let us designate the operation of space inversion by the symbol P,
and the operation of charge conjugation (i.e. the replacement of
particles with antiparticles) by the symbol C. The symbol of com-
bined inversion will therefore be CP. This is why the invariance re-
lative to combined inversion is called CP-invariance. The parity of
the state of a particle relative to combined inversion is called com-
bined parity. Therefore, the two previously existing laws—the law
of invariance relative to charge conjugation* and the law of space
parity conservation-—form a single law of combined parity conser-
vation for weak interactions.

The combined parity is indeed conserved in a number of processes in
which space parity is violated. In 1964, however, data were obtained
in studying the decays of K°-mesons that point to the violation in
these decays of the law of combined parity conservation. We do not
have the possibility of delving into the details of this matter.

* ].e., the inalterability of the laws of nature when particles are replaced
with ant particles.
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11.8. The Neutrino

The neutrino is the only particle that does not partjcipate in strong
or in electromagnetic interactions. Excluding gravitatioral interac-
tion, which all particles participate in, a neutrino can take part only
in weak interactions.

It was not clear for a long time in what a neutrino differs from an
antineutrino. The discovery of the law of combined parity conser-
vation (see the preceding section) made it possible to answer this
question: they differ in their helicity.

By helicity is meant a definite relation between the directions of
the momentum p and spin s of a particle. The helicity is considered
positive if the spin and the momentum have the same direction. In
this case, the direction of motion of a particle (p) and the direction of
“rotation” corresponding to the spin form a right-handed screw
(Fig. 11.12a). With oppositely directed spin and momentum
(Fig. 11.12b), the helicity will be negative (the forward motion and
“rotation” form a left-handed screw). It is obvious that the helicity
can be determined as the sign of the scalar product sp.

Helicity can have an absolute value, i.e. be an intrinsic property,
only for a particle with a zero rest mass (such a particle exists only
when travelling with the speed ¢). A particle whose rest mass differs
from zero will travel with a speed v less than ¢. The helicity of such
a particle in reference frames travelling with speeds less than v and
with speeds exceeding v (but less than ¢) will be different (the mo-
mentum of a particle in such reference frames has opposite directions).
Thus, of all particles, only a neutrino can have helicity as an intrinsic
property*.

According to the theory of the longitudinal neutrino developed
by Yang and Lee, Landau, and also by the Indian physicist Abdus
Salam (born 1926), all neutrinos existing in nature,. regardless of
how they were produced, are always completely longitudinally po-
larized (i.e. their spin is either parallel or antiparallel to the momen-
tum p). A neutrino has a negative (left-handed) helicity (the direc-
tions of s and p shown in Fig. 11.12b correspond to it) and an anti-
neutrino has a positive (right-handed) helicity (Fig. 11.12a). Thus,
the helicity is what distinguishes a neutrino from an antineutrino.

Upon reflection in a mirror, a right-handed helix transforms into
a left-handed one. Hence, the existence of helicity in neutrinos con-
tradicts the law of space parity conservation (the particle does not
coincide with its image). But if simultaneously with reflection in a

* A photon also has a zero rest mass, but unlike a neutrino, the two helicity
values obtained for a photon (positive and negative) correspond not to a particle
and antiparticle, but to two different states of polarization of the same particle.
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mirror we replace a neutrino (having left-handed helicity) with an
antineutrino (having right-handed helicity), then the requirements
of the law of combined parity conservation will be observed.

That a neutrino has helicity is observed in the chain of transfor-
mations  — u — e. At the end of its path, a n*-meson decays into
a muon and a neutrino:

Rt ut v

The spin of a 5t *-meson is zero, the momentum at the end of its path
also vanishes. Therefore, the muon and the neutrino must fly away

v ’E\* ~c nt
w L e/

Fig. 11.12 Fig. 11.13

in opposite directions, the neutrino “imposing” its helicity on the
muon* (Fig. 11.13); otherwise the spin of the system will not remain
equal to zero.

The muon at the end of its path decays as follows:

p+—>e++v+,\;

Since here we have to do with the decay of polarized muons, the same
phenomenon should be observed in their decay as in the beta decay
of polarized nuclei (in Wu's experiment)—the angular distribution
of the positrons should be anisotropic relative to the direction of
polarization of the muon, i.e. relative to the direction of its motion
before stopping. Indeed, studying of the photographs registering the
processes of 1 — p — e decay in a bubble chamber shows that pos-
itrons are most often emitied in a direction opposite to that of motion
of the muons (see Fig. 11.13).

The hypothesis on the existence of neutrinos was advanced in
1932. During the following quarter of a century, numerous indirect
proofs of the correctness of this hypothesis were obtained, but no-
one succeeded in directly observing neutrinos. The reason is that neu-
trinos do not have an electric charge and mass and therefore interact
extremely weakly with a substance. For example, a neutrino with
an energy of about 1 MeV has a path of about 102° cm or 100 light
years in lead. Only after the development of nuclear reactors, which

* The spin of a muon is usually not fixed relative to the direction of its
motion.

19+
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are sources of powerful streams of neutrinos [about 10® part/(cm?-s)],
did the possibility appear of observing reactions with the participa-
tion of these elusive particles.

Antineutrinos were directly observed in a series of experiments run
in 1953-1956 by the American physicists F. Reines and C. Cowan, Jr.
The reaction

~
v4-p=>n-tet (11.18)
was observed, which is in essence an inversion of neutron decay

reaction (‘10..7)*.. That an antineutrino entered into a reaction with
a proton is indicated by the simultaneous appearance of a neutron
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and a positron (Fig. 11.14). The positron virtually immediately an-
nihilated with an electron, which resulted in the production of two
gamma quanta each having an energy of 0.51 MeV. The neutron after
retardation was captured by a cadmium nucleus. The excited nucleus
formed as a result emitted luminescently several gamma photons
with a total energy of 9.1 MeV.

The installation is shown schematically in Fig. 11.15. Two tanks
(190 X 130 X 7 cm) filled with an aqueous solution of cadmium
chloride were the target. Three tanks (190 X 130 X 60 cm) were
filled with a liquid capable of scintillation under the action of gamma
photons. The scintillation flashes were registered by 110 photomul-
tipliers. The tanks were confined in a paraffin and then in a lead
shield for protection against cosmic radiation and against neutrons

* The inversion of the reaction of neutron decay in the literal meaning

of the word would be the reaction v + p + e™— n, but such a reaction requires
the meetin% of three particles and is therefore practically impossible. The “sub-
tract on” of a particle is equivalent to the addition of an antiparticle; by sub-
tracting e~ from the left-hand side and addinge* to the right-hand one, we get
reaction (11.18).
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leaving the reactor. The entire installation was embedded deep in
the earth near a large reactor. The scintillation flash produced by
the captured gamma photons lagged behind the flash caused by anni-
hilation gamma photons by several scores of microseconds. Both
flashes were registered according to a delayed coincidence circuit.
In addition, the energy of the gamma photons producing each flash
(1.02 MeV and 9.1 MeV) was also assessed. This made it possible to
reliably separate the effect being studied from the background due
to other processes. The experiment lasted 1371 hours (57 days). Every
hour, an average of about three double flashes of the expected inten-
sity were registered. These results are a direct proof of the existence
of antineutrinos.

In some processes, a neutrino (or antineutrino) appears together
with an electron (positron), in others together with a muon (examples
can be found in Table 11.2). It was assumed for a long time that the
former (electron) neutrinos v, are identical with the latier (muon)
neutrinos v,. In 1962, it was proved experimentally that this is not
correct. The idea of the experiment belongs to Bruno Pontecorvo
(born 1913). The inversion of reaction (10.28) will be the process

Vet+n-—>pte- (11.19)

(see the footnote on page 292). A similar process is possible in which
a muon appears instead of an electron

vyt n—>p4p” (11.20)

(the particle participating in this reaction must obviously be a
muon neutrino, and not an electron one). Pontecorvo proposed to
irradiate the substance with the muon neutrinos formed in the decay
n+— p+ + v, and observe the particles produced. The presence of
both e~ and p~ among them would indicate that ve and v, are iden-
tical. The presence of only p~ would indicate that electron and muon
neutrinos differ.

The experiment was carried out by the American physicists L. Le-
derman, M. Schwartz and others at Brookhaven (USA). The accel-
erator produced s *-mesons with an energy of 15 GeV. The process
of n-p-decay [see (10.14)] resulted in the formation of muon neutrinos
with an energy of about 500 MeV. The stream of these neutrinos was
directed into a spark chamber with massive iron plates (with a total
mass of 10 tonnes). During 800 hours, 51 cases of the birth of muons
were registered, and not a single case of the birth of electrons. T}Lis
result proves the existence of four different neutrinos: ve, ve,
Vi, Vpe

uIn gonnection with the need to distinguish electron and muon neu-
trinos, the symbol of the neutrino in formulas (10.7), (10.26), (10.2:7)
and (10.28) must be supplemented with the subscript “e”, and in
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formulas (10.14) with the subscript “p”. Formulas (10.16) maust be
written as follows:

P Vet vy B e ety

11.9. Systematization of Elementary Particles

The regularities observed in the world of elementary particles can
be formulated as conservation laws. Quite a lot of such laws have
accumulated (see Table 11.5). Some of them are not accurate, but

Table 11.5
Kind of interaction
Law of conservation of
strong nf;;‘;‘]"ém weak

energy £ -+ - +
momentum p -+ - +
angular momentum M + + -+
electric charge Q + + +
baryon charge B + + +
lepion charge L + + +
isotopic spin T -+ -— -—
hypercharge Y (or strangeness S) -+ -+ -
charge conjugation C -+ + —
parity P + -+ -
combined parity CP + + -

only approximate. For example, the law of hypercharge Y (or
strangeness §) conservation is obeyed for strong and electromagnetic
interactions and is violated for weak interactions (observance of a
law in a given kind of interaction is indicated in Table 11.5 by a
plus sign, and violation by a minus sign).

Every conservation law expresses a definite symmetry of a system.
The laws of conservation of momentum p, angular momentum M,
and energy E reflect the properties of symmetry of space and time:
the conservation of E is a result of the uniformity of time, the con-
servation of p is due to the uniformity of space, and the conservation
of M to its isotropy. The law of parity conservation is associated with
symmetry between right and left (P is the invariance}. Symmetry
relative to the charge conjugation (symmetry of particles and anti-
particles) leads to conservation of the charge parity (C-invariance).
The laws of conservation of the electric, baryon, and lepton charges
express the special symmetry of the y-function. Finally, the law of
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isotopic spin conservation reflects the isotropy of isotopic space. The
failure to observe one of the conservation laws signifies violation of
the corresponding kind of symmetry in the given interaction. For
example, electromagnetic interaction violates the symmetry of iso-
topic space, owing to which the isotopic spin T is not conserved in
electromagnetic interactions.

The introduction of the isotopic spin made it possible to combine
particles into charge multiplets (see Sec. 11.5). Extension of the
scheme of isotopic spin led Gell-Mann and independently of him
Yu. Ne'eman to the creation in 1961 of the theory of unitary sym-
metry. It is assumed in this theory that strong interaction is invar-
iant relative to special transformations* in a certain three-dimen-
sional complex vector space (the space of unitary spin) that keep the
isotopic spin T and the hypercharge
Y wunchanged. In this way, it
becomes possible to group charge
multiplets into supermultipiets (or
unitary multiplets). The system of
symmetry of particles established
by the unitary theory is also called
the eightfold way.

The particles** forming a super-
multiplet must have the same spin
and the same parity P. They may
differ in mass, electric charge, hy-
percharge, and isotopic spin, but
these quantities must be related to
one another by definite rules. )

Figure 11.16 depicts an octet Fig. 11.16
{a supermultiplet including eight
particles) combining mesons (except for resonances). All of them have
a spin equal to zero and a negative parity. The hypercharge Y is
laid off along the vertical axis, the projection of the isotopic spin T,
(the third component of the isotopic spin) along the horizontal axis,
and the electric charge Q along the inclined axis. The particles of
the meson octet are arranged at the apices and at the centre of a
regular hexagon. The centre accommodates two particles: n® and
7. At the time when the theory of unitary symmetry was developed,
only seven mesons (except for 1) were known. In accordance with-
the conclusions of this theory, the existence of an eighth meson and
its properties were predicted. In 1961, the predicted meson (r) was
discovered, and its properties agreed quite well with the theoretical
predictions.

* Belonging to the so-called SU (3) group.
** We have in mind only strongly interacting particles.
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Figure 11.17 shows an octet of long-lived baryons. All the particles
have a spin of 1/2 and a positive parity. The centre of the hexagon
accommodates the hyperons 2? and A.

Finally, Fig. 11.18 shows a baryon decuplet (a supermultiplet
combining 10 particles). It includes nine resonances and a long-lived
“genuine” particle—an Q -hyperon. The spin of all the particles is
3/2, the parity is positive. The particles are arranged in the diagram
in the form of an equilateral triangle. The mass m of the pariicles and
the mass difference Am expressed in MeV are indicated at the right
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of the figure. It is worthy of note that when passing from one group
of particles to another, the mass changes by almost the same amount
(about 145 MeV).

At the time when the theory was created, Z*-hyperons and the
Q--particle were not yet known. The resonances Z*¥~ and E*° were
discovered in 1962. The apex of the pyramid remained unfilled. Gell-
Mann predicted that the particle corresponding to it should have a
spin of 3/2, a hypercharge of Y = — 2, and a mass of about 1675 MeV
(greater by 145 MeV than the mass of a E*-particle). Almost imme-
diately systematic searches of this particle were begun, the particle
being called the Q--hyperon. At the Brookhaven laboratory, an ac-
celerator for 33 GeV and a two-metre bubble chamber containing
900 litres of liquid hydrogen were used for this purpose. About
300 000 photographs were made before the process of the birth and
decay of an Q-particle was recorded on one of them in January, 1964,
Its properties, in particular its mass, exactly coincided with those
predicted by theory. Thus, the discovery of the Q--hyperon was a
triumph of the theory of unitary symmetry.

The question arises as to why a “genuine” particle, an Q--hyperon,
which lives approximately 10-1° s, got into one decuplet with reso-
nances whose lifetime is of the order of 10-2* s. The reason for such
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a “vitality” of the Q--hyperon is that its hypercharge is —2 (its
strangeness S = — 3). As a result, the Q--hyperon cannot decay at
the expense of strong interactions, with whose participation the re-
maining particles of the decuplet decay.

The resonances in the decuplet decay as follows:

A— N+ a, A—>N+nt4an-, A—>N+9y
2*¥ 5> Atm, I* >34 m
E*-—»E—{-—ﬂ

where N is a nucleon, and A, Z, and E are the corresponding hyper-
ons. In the course of all these processes, the hypercharge (and, there-
fore, the strangeness) is conserved (this can easily be seen by compar-
ing the diagrams shown in Figs. 11.17 and 11.18). Consequently, the
decays occur at the expense of strong interactions with a characteris-
tic time of about 10-% s.

Conservation of the hypercharge (strangeness) of an Q~-hyperon
could occur upon its decay into two or more strange particles. Such
processes, in which the electric and the baryon charges are also con-
served in addition to the hypercharge; include:

Q B+ K0

Q- — 324+ Ko Ro

Q@ —~n+ K-+ Kot Ko

Q- p+ K +K-+K°
These processes, however, are forbidden by the law of energy con-
servation. Thus, an $2--hyperon can decay only by violating the
law of hypercharge conservation, i.e. at the expense of weak interac-

tions. Accordingly, its lifetime is 10-1° s. Decay occurs in one of the
following ways:
Q- >E°4+na-, Q- >E-+ 1% @ A+ K-
The spin of an Q--hyperon is 3/2, that of a E- and A-hyperons is
1/2, and the spin of n- and K-mesons is zero. The law of angular mo-
mentum conservation is not violated, however, because the formed

pair of particles has an orbital angular momentum equal to 1. Con-
sequently, the total angular momentum of these particles is 3/2.

11.10. Quarks

The number of particles called elementary has become so great
that serious doubts concerning their actually being elementary have
appeared. Each of the strongly interacting particles is characterized
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by three independent additive quantum numbers: the charge Q,
hypercharge Y, and baryon charge B. In this connection, a hypothesis
was advanced that all particles are built up of three fundamental
particles—the carriers of these charges. The first model of such a
kind was proposed by the Japanese physicist Shoichi Sakata (born
1911). He considered the proton p, neutron n, and A-hyperon to be
the fundamental particles*. Sakata's model, however, was found to
be inapplicable to the field of strong interactions.

In 1964, Gell-Mann advanced the hypothesis that all elementary
particles are built up of three particles which he named quarks**,
Fractional quantum numbers are ascribed to these particles, in partic-
ular an electric charge equal to +2/3, —1/3, —1/3, respectively, for
each of the three quarks. Quarks are usually designated by the letters
P, N, and A (other symbols are also used). In addition to quarks,
antiquarks (P, N, A) are also considered. The properties assigned to
quarks are indicated in Table 11.6.

Mesons are formed from a quark-antiquark pair, and baryons from
three quarks. Table 11.7 gives some of these formations. The letter
A in the first column of this table signifies a A-hyperon, and the same
letter in the second column signifies a A-quark.

An identical magnetic moment pqk is ascribed to each quark. Its
magnitude is not determined from theory. Calculations performed on
the basis of such an assuraption give the value of the magnetic mo-

2
ment of pp = pgk for a proton, and un = — 5 ugk for a neutron.
Table 11.6
quark | JElestrie | Banony | spin | Lintorle | Strangences
P +2/3 -+1/3 172 1/2 0
N —1/3 +1/3 1/2 1/2 0
A —1/3 +1/3 1/2 0 —1
P —2/3 —1/3 1/2 1/2 0
N +1/3 —~1/3 | 12 1/2 0
A +1/3 —1/3 1/2 0 +1

* The fact that many particles have a mass considerably smaller than the
sum of the masses of p, n, and A should not confuse us because the mass of
a system of bound %articles may be much smaller than the sum of the masses
of the particles in the system (compare with the binding energy of particles in
a nucleus, Sec. 10.2).

*% Gell-Mann took the name “quark” from James Joyce's science-fiction
novel “Finnegan s Wake”, from the line “three quarks for Mr. Marks".
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Table 11.7
Mutual orientati Mutual “orientation”
Particle | Composition | ' of quark spins | ©f quark isotopic

Fia fﬁ +H +1

a- PN H tt

K+ PA t t

r PPN t4t pt

n PNN 1t %)

T+ PPA t '

A PNA 1t kNG

A+ PPP tt t

A= NNN $14 £14

Q- AAA 4 —

Thus, for the ratio of the magnetic moments, we get the value
Up 3

Hn 2

which excellently agrees with the experimental value (see Sec. 10.1).

It later became necessary to extend the system of quarks. The rea-
son for this, in particular, was the fact that bound states of three
quarks such as PPP (A**), NNN (A-), and AAA (Q-) contradict
the Pauli principle. Indeed, inspection of Table 11.8 reveals that all

Table 11.8

Quark cIE]aether,i% c}?;:gyang S,f;;‘s“’gg' Charm, C Colour

P +2/3 1/3 0 0 Red, yellow, blue
N —1/3 1/3 0 0 Ditto

A —1/3 1/3 —1 0 Ditto

C +2/3 1/3 0 1 Ditto

the quantum numbers of quarks in these formations are the same.
But since the spin of quarks is 1/2, one system cannot contain not
only three, but even two quarks with the same set of quantum num-
bers.

For a number of considerations, in particular to eliminate the con-
tradiction with the Pauli principle, the concept of the “colour” of
a quark was introduced. Physicists began to say that each quark can
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exist in three “coloured” forms: red, yellow, and light blue (we must
note that a mixture of these colours gives the “neutral” white colour).
Therefore, let us say, the A-quarks forming the Q--hyperon have
different colours, and the Pauli principle is not violated.

The combination of the colours of quarks in hadrons must be such
that the average colour of a hadron is neutral. For example, the com-
position of a proton includes the quarks P (red), P (yellow), and N
(light blue). The sum gives the neutral (white) colour.

Antiquarks are considered to have the anticolour that together
with the colour gives neutrality. Accordingly, mesons, cousisting of
a quark and an antiquark, also have a neutral colour.

Basically, however, the colour of a quark (like the sign of an elec-
tric charge) began to express the difference in its property deter-
mining the mutual attraction and repulsion of quarks. By analogy
with the quanta of fields of different interactions (photons in elec-
tromagnetic interactions, m-mesons in strong interactions, etc.),
particles were introduced that are carriers of interaction hetween
quarks. These particles were named gluons (from the word “glue”).
They transfer colour from one quark to another, as a result of which
the quarks are kept together. :

In 1974-1975, particles (resonances) with enormous masses of
3.1,3.7and 4.1 GeV (from three to four nucleon masses) were discov-
ered in powerful accelerators in various laboratories of the world.
Thus, a new family of strongly interacting \p-particles was discovered.
This discovery confirmed the earlier proposed model of particles con-
sisting of four quarks. In addition to the P-, N-, and A-quarks men-
tioned above, a fourth “charmed” C-quark figures in this model. It
differs from the other quarks in that the quantum number C*, called
“charm”, equals 1 for it, whereas it is zero for the other quarks. The
properties of all four quarks are given in Table 11.8 (only the quarks
are indicated, but there are also four antiquarks).

The C-quark does not enter the composition of ordinary “uncharmed”
particles (mesons and baryons). The structure CC is ascribed to
the recently discovered -particles. The correspondingly named
“charm” quantum number C is zero for these particles. The y-particles
are said to have a concealed charm.

Theory predicts the existence of charmed particles, i.e. of particles
having a quantum number C other than zero. The following structures
are examples: AC (the charm C = + 1), and ACC (C = + 2).
Such charmed particles have meanwhile not been observed.

The hypothesis of quarks was quite fruitful. It made it possible
to predict new particles in addition to systematizing the already

* The symbol C is used to designate both a charmed quark and the quantum
number called the charm,
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known ones. In particular, the existence of Q—-hyperons was predict-
ed with the aid of the quark model. The quark hypothesis also made
it possible to explain many properties of particles and relate differ-
ent processes to one another. It is quite natural that attempts were
made to discover quarks. Several sensational reports appeared on the
experimental discovery of quarks. But these reports were not con-
firmed subsequently. To date, quarks have not been observed, and
their existence is problematic.

11.11. Conclusion

The situation in the physics of elementary particles reminds one
of the situation in the physics of the atom after Dmitri Mendeleev
discovered the periodic law in 1869. Although the essence of this law
was determined only when about 60 years had passed, after the advent
of quantum mechanics, the law made it possible to systematize the
chemical elements known at that time and, in addition, led to the
prediction of the existence of new elements and their properties. In
exactly the same way, physicists have learned how to systematize
elementary particles, and in a number of cases this has made it pos-
sible to predict the existence of new particles and anticipate their
properties.

The establishment of a classification of elementary particles, how-
ever, “... will not at all solve the fundamental problem of understand-
ing all the laws of the microworld. This understanding will evidently
arrive only when a new physical theory will be developed... At pres-
ent, we are approaching a new state in the cognition of the fundamen-
tal laws of structure of nature, from which the quantum theory, the
theory of relativity, and Newton's theory should follow as a particu-
lar case of the general one... We are not able to predict when and how
a new comprehensive physical theory will be created... But the fact
that an enormous army of experimenters and theoreticians all over
the world are working on this front line for physics allows us to hope
that this time is not far distant.”

The quotation belongs to Academician Igor Tamm. It will com-
plete our tale of the physics of elementary particles.
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List of Symbols

A amplitude; mass number of nucleus; work; work function
a absorptivity; amplitude
a acceleration
B baryon charge
B magnetic induction
b constant in Wien’s displacement law; impact parameter
C charge conjugation; charm; charmed quark; constant; heat capac-
ity
¢ speed of light
d dimension; distance
E energy
Eg Fermi level
E electric field strength
€ electric field strength;electromotive force
e base of natural logarithms; electron; elementary charge
F quantum number of angular momentum of atom
F force
f function
g density of states; Landé g factor
g acceleration of free fall

H Hamiitonian operator

h Planck’s constant

% Planck’s constant k divided by 2n

I current; intensity of light; moment of inertia; nuclear spin quan-
tum number

i imaginary unity

J quantum number of angular momentum of electron shell

j density of energy flux; quantum number of angular momentum of
electron

j current density

K K-meson (kaon)

k wave number

k wave vector

L azimuthal (orbital) quantum number of electron shell; lepton
charge

! azimuthal (orbital) quantum number of electron
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M angular momentum (in Vols. I and II the symbol L was used for
the angular momentum)
m magnetic quantum number; mass
ms spin quantum number
m* effective mass
N number; quark
n integer; neutron; number; principal quantum number
P parity; probability; quark; radiant power; space inversion
& pressure of light
p proton
p momentum
Q amount of heat; charge of a particle
g charge
R average recoil energy of atom; distance; radiant emittance;
radius; reflection coefficient; IRR'ydberg constant
r distance; emissivity
r, Bohr radius
S area; spin quantum number of electron shell; slope of character-
istic; strangeness
s spin quantum number of electron
T absolute temperature; half-life; isotopic spin; term; transmis-
sion coefficient
t time
U internal energy; potential energy; voltage
v radiant energy density
V volume
v vibrational quantum number
v velocity
w energy density
z Cartesian coordinate
Y hypercharge
y Cartesian coordinate
Z charge number
z Cartesian coordinate
o alpha particle; fine structure constant; initial phase of oscilla-
tions; Rydberg correction; thermoelectric coefficient
P beta particle
I' breadth of energy level
9 gamma radiation; photon
A increment; mass defect
§ increment
€ energy
n eta-meson
© Debye characteristic temperature
0 angle
% wave absorption coefficient
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A lambda hyperon; quark

A decay constant; wavelength

p chemical potential; mu-meson (muon); permeability
ps Bohr magneton

@ magnetic moment

v neutrino

v’ wave number

Z ksi hyperon

E displacement of medium particles in wave
IT Peltier coefficient

n pi-meson (pion)

© resistivity

Z sigma hyperon

o conductivity; shielding factor; Stefan-Boltzmann constant
T Thomson coefficient; time

@ flux; magnetic flux

¢ angle; function; polar angle; potential

¥ psi-function

P angle; psi-function

Q omega hyperon; solid angle

o angular velocity; cyclic frequency

o angular velocity
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Absorption,
multiple-photon, 156f
resonance, 170, 174

gamma rays, 172f
Absorptivity, 14
blackbody, 15
and emissivity, 14f
Acceptors, 206, 224
Activity, radioactive substance, 251
units, 251
Alpha particle(s), 52, 238
impact parameter, 53
Angular momentum,
atom, 103, 115f, 234
atomic residue, 103
direction, 85
electron, 110, 117
mechanical, and magnetic moment,
108, 110
microparticle system, 86
operators, 84
orbital, 117
quantization, 83ff
summation, 111
Annihilation, .
particle-antiparticle, 277
positron-electron pair, 274, 276
Anode, 211
Antineutrino, 232, 241, 249, 280,
90ff
Antineutrons, 277
Antiparticles, 277ff
decay scheme, 280
Antiproton, 277
Antiquarks, 300
Atom(s),
angular momentum, 103
alkali metal, 103
resultant, 115f
total, 234
electron configuration, 131ff
energy, 116
energy levels, see Energy level(s)
excitation, 137
excited states, 105
ground state, 105

20¢

Atom(s),
hydrogen, 95ff
Bohr's theory, 62ff
electron distance from nucleus,

energy, 96

energy levels, 63
internal energy, 62f

allowed values, 63
light absorption, 170
light emission, 170
magnetic moment, 118
metastable states, 105
model,

nuclear, 52ff

Rutherford’s, 52ff

Thomson’s, 51

vector, 119f
nucleus, see Nucleus(i)
recoil energy, 106

average, 107
size assessment, 51
term, 116f

Bands,
allowed, 186, 187
width, 188
conduction, 189
in semiconductor, 201
energy level. 186£
forbidden, 186
width, 203
spectrum,
edge, 142f
electron-vibrational, 142f
rotational, 143f
vibrational-rotational, 143, 144f
valence, 188f
in semiconductor, 200f
Barn, 254
Baryons, 266, 267, 279, 285
charge, 277, 285f
number, 277
Battery, solar, 230
Belts, Earth's radiation, 271f
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Subject Indes

Blackbody, 14, 15

absorptivity, 15

emissivity, 15f, 29

and equilibrium radiation den-
sity, 42f

radiant emittance, 16, 19, 33
Body, gray, 14
Bomb

mb,
atomic, 237, 259, 262
hydrogen, 237, 262
thermonuclear, 262
Bosons, 170, 198, 267, 277
Breadth,
energy level, 105
spectral line, 105, 108
Doppler, 107f
natural, 106
Breeders, 261
Bremsstrahlung, 35, 136
spectrum, gl'fxort wavelength limit,

Broadening, Doppler, spectral line,
6, 107

*

Capture,

()

electron, 248, 250

K, 248, 250

L, 248

M, 248

radioactive, 257f
Cascades, electron-positron pairs, 272
Catastrophe, ultraviolet, 29
Cathode(s), 211

oxide, 212
Cathodoluminescence, 11
Chamber(s),

bubble, '269f, 296

diffusion, 269

emulsion, 270f

ionization, 268

spark, 270, 293

streamer, 270

Wilson, cloud, 268f
Charge,

baryon, 277, 285f, 298

conjugation, 278, 289

lepton, 278
Charm, 300
Chemiluminescence, 11, 12
Coeflicient,

absorption, negative, 152

Einstein’s, 149

Peltier, 22

and specific thermal e.m.f., 222
reflection, from potential barrier, 90

Coefficient,
thermoelectric, 221
Thomson, 223f
transmission, through potential bar-
rier, 90, 92
Conductance, electrical, 194ff
Conductivity, electrical, 196
Conjugation, charge, 278, 289
Constant,
coupling, 265f
decay, 244
electron coupling with electromag-
netic field, 115
fine structure, 114f
Planck’s, 30, 86
determination, 36, 39
Rydberg, 48, 49, 63
Stefan-Boltzmann, 19, 33
Wien’s displacement law, 33
Conversion, internal, 247
Coordinate(s),
generalized, 61
normal, 162
principal, 162
Correction, Rydberg, 104
Counters,
anticoincidence circuit, 268
Cerenkov, 268
coincidence circuit, 268, 270
gas-discharge, 268
scintillation, 268
semiconductor, 268
Coupling,
ji, 116
LS, 116
Russel-Saunders, 116
Cross section,
effective, 253, 254f
neutron capture and optical frequen=
cy, 168 energy, 255
Crystal(s),
combination scattering of light, 169
direction indices, 159
electrons in, 184, 190fi
energy, 168
heat capacity, 160f, 166f
high temperatures, 161
low temperatures, 161
internal energy, 161, 166, 167
lattice, see Crystal lattice
Miller indices, 159f
point indices, 158f
standing wave in, 164f
Crystal lattice,
normal oscillations, 164f
acoustic frequency, 168
maximum frequency, 165f
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Crystal lattice,
oscillation frequency,
acoustic branch, 168
optical branch, 168
periods of identity, 158
unit cells, 158
Curie (Ci), 251
Curium, 233
Current,
carriers,
majority, 224, 225
minority, 224, 226
critical, 198
density, 196
rectification,
full-wave, 213f
half-wave, 243
saturation, 212
superconduction, 198
Cycle,
carbon, 263
carbon-nitrogen, 263
proton-proton, 263

Decay,
alpha, 245ff
antiparticles, 280
beta, 248ff, 288
electron, 248
muons, 242
omega hyperon, 297
particles, 279
positron, 249f
Decuplet, baryon, 296
Degree, degeneracy, 96f
Density,
probability, 78f, 82f, 100
states, 179
Deuterium, 133, 262
Deuteron, 239, 260
Deuton, 239
Diagram, energy level, 81f, 97
cesium, 113f
diatomic molecule, 142
hydrogen, 98f, 101
sodium, 101, 102, 112f
Dielectric, 190
Diode(s),
semiconductor, 224, 268
vacuum-tube, 210f
volt-ampere characteristic, 211f
Distribution, Bose-Einstein, 169
Donors, 205, 224
Doublet, 109
complex, 114
sodium, splitting, 124

Edge, spectrum band, 142f

Effect(s),
Compton, 44ff
latitude, 271
Meissner, 197
Méssbauer, 173ff
non-linear, in optics, 148
Paschen-Back, 126
Peltier, 222f
use for refrigeration, 223
photoelectric, 36ff
barrier-layer, 229f
external, 40
internal, 40
intrinsic, 229
multiple-photon, 39f, 157
Raman, see Light, combination
scattering
Seebeck, 218ff
Stark, 122
thermoelectric, 218ff
Thomson, 223f
tunnel, 92, 248
Zeeman, 122ff
anomalous, 124
complicated, 124
normal, 123
simple, 123f
Eigenfunctions, 79f, 82, 96, 99
complete set, 87
graphs, 82f
normalized, 100
for particle energy eigenvalues, 80
Eigenvalues, 79f, 83
energy, 80f, 139f
particle energy, 80f
Einsteinium, 233
Electroluminescence, 11
Electron(s), 266, 278, 279
acceleration in crystal, 191
angular momentum,
intrinsic, 110
orbital, 117
beta, energy, 249
carrying by phonons, 219
in circular orbit, 61f
Compton wavelength, 47, 115, 240
conduction, 177, 180
Cooper pairs, 198f
escape from metal, 208
configuration, atom, 131ff
diffraction, 67f, 70
diffusion in metal conductor, 219
distance from nucleus, 100f
distribution by energy states, 185
drift velocity, 194ff
dynamics in crystal, 190ff
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Electron(s),
effective mass, 192f
in crystal, 202
energy, 96
in diatomic molecule, 140
in hydrogen atom, 74
and wave number, 187f
equation of motion, 195
equivalent, 134

free, 177
number in crystal, 184
gas,

degenerate, 185
non-degenerate, 183
heat capacity, in metals, 181
magnetic moment, intrinsic, 111,
272
motion in  cathode-ray  tube,
73
optical, 132
outer, 101
paramagnetic resonance, 127ff
photoconduction, 229
potential energy, 95, 209
at p-n junction, 229f
psi-function, 190
quantum numbers in atom, 128,
see also Quantum number(s)
shells, 130ff
symbols, 131
spin, 111, 272
state(s),
in atom, 129
epergy, 129
stationary, 57
superconductivity, 198f
symbols, 97
subshells, 130ff
total energy, 209
valence, 101, 132
energy, 101, 185
Elements, transuranium, 233
Emission,
induced, 148
resonance, 170
stimulated, 148ff
and stimulating radiation, 148
thermionic, 210ff
saturation current, 212
Emissivity, 13
and absorptivity, 14f
blackbody, 15f, 29
and equilibrium density of ra-
diation, 42f
Emittance, radiant, 12
blackbody, 16, 19, 33
and emissivity, 13

Energy,
- activation, nucleus, 236

alpha particles, 246f
atora, 116
beta electrons, 249
binding,
average per nucleon, 235, 239, 256
and mass nuraber, 235f
nucleons, 1234f
nucleus, 234f
conduction electron, 178
crystal, 168
eigenvalues, 80f, 139f
electron(s), 96
at absolute zero, 180f
diatomic molecules, 140
and electron configuration, 140
in hydrogen atom, 74
state, 129
total, 209
and wave number, 187f
Fermi, 183
ﬁamma quanta, 171
armonic oscillator, 60, 141, 160f
hydrogen atom, 96
internal,
atom, 62f
crystal, 161, 166, 167
levels, see Energy level(s), Level(s)
molecule, 138ft
rotational, 141
total, 142
vibrational, 141
in normal coordinates, 163
nuclear reaction, 251f
nucleus at rest, 234
operator, 78
phonons, 174
photon, 41, 65, 143, 145, 175, 176
potential,
electron, 95, 209, 229f
hydrogen molecule, 139
molecule, 141
quantization, 79ff
quantum, 30
radiant,
equilibrium density, 16ff
and radiant emittance of black-
body, 17
recoil, 106, 171, 173, 174
average, 107
visible light, 106
rest, particle, 234
spectrum, 81f
valence electron, 185ff
system, 162f
total, in quantum mechanics, 92
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Energy,
valence electron, 101
in crystal, 185
zero, 93, 94
Energy level(s), see also Level(s)
breadth, 105
degeneracy degree, 96f, 179
diagram, 81f, 97, 98f, 101f, 112ff, 142
discrete, 60
harmonic oscillator, 93f
hydrogen atom, 63
inverse population, 151
population, 151
splitting, 122
transitions between, 148f
Equation(s), see also Formula
Dirac’s, 272f, 276
dynamic variables, 78
electron motion, 195
motion, 162
relativisti? guantum-mechanical,
272

Schrodinger, 74ff, 95

with consideration of lattice field,
187

free electron, 177

harmonic oscillator, 93

hydrogen molecule, 139

solutign with periodic potential,
187

stationary states, 76

and theory of relativity, 272

Equilibrium, substance and radiation,

Experiment(s),
Bothe’s, 40f
Compton’s, 44ff
Davisson's and Germer's, 65f
Franck's and Hertz's, 57{f
gedanken, see Experiment(s), mental
Lederman’s and Schwartz’s, 293
mental (thought), 69
Millikan’s, 38f
Pound’s and Rebka’s, 176
Reines’s and Cowan’s, 292f
Rutherford’s, 52ff
Stern's, 67
Stoletov's, 36f
Tartakovsky’s, 67
Thomson's, 67
Wu’s, 288f, 291

Factor,
Lande g, 118, 124 N
neutron multiplication, 260
shielding, 138

Families, radioactive, 245
Fermi (Fm), 234
Fermions, 183, 266, 267, 277
Fermium, 233
Field,
critical, 197f
and temperature, 198
threshold, 197
Fission, nuclei, 236, 256ff
fragments, 256
spontaneous, 250
Fluorescence,
resonance, 170
X-ray, 40
Force(s),
nuclear, 238
charge independence, 239, 280
radius of action, 239, 262
saturation, 239
photo-electromotive, 229f
short-range, 239
thermal electromotive, 218f, 220, 221
differential, 221
specific, 221
Formula, sec also Equation(s)
Balmer, 49, 50
gencralized, 50, 63
Debye’s, 166f
Einstein’s, 38
for multiple-photon photoelectric
effect, 40
Planck’s, 32
Rayleigh-Jecans, 29
Richardson-Dashman, 212
Rutherlord, 56
Rydberg’s, 104
Fraction, binding, 235
Fragments, fission, 256
Function(s),
Block, 183
Boltzmann distribution, 185
Fermi-Dirac distribution, 183, 202
normalized, 78
psi-, see Psi-function
spectral distribution, 19
wave, 74, see also Psi-function
work, 38, 210, 212
Fusion, nuclei, 236, 237, 262f

Gamma quantum(a), 173
absorption spectrum, 171f
ernission specirum, 174
energy, 171

Gas, electron,
degenecrate, 185
non-degenerate, 185



312 Subject Index

Generators,
molecular, 150
optical quantum, 150
Gluons, 300
Gravitons, 266
Grids, 245

Hadrons, 266, 300
Half-breadth, spectral line, 105
Hal{-life,
neutrons, 232
radioactive nuclei, 244, 245
Hamiltonian, 77f
Harmonic oscillator, 93f
energy, 141, 160f
average value, 160
energy levels, 93f
phase trajectory, 60
possible states, 60
Schrédinger equation, 93
selection rule, 94
total energy, 60
Harmonics, optical, 156
Heat, Peltier, 222
Heat capacity,
crystals, 160f, 166f
electrons in metals, 181
Holes,
photoconduction, 229
in semiconductors, 200ff, 204
Hydrogen,
atom, 62ff, 95ff, 100f, see also Atom,
hydrogen
heavy, 233
molecule, potential energy, 139
Hypercharge, 285f, 297, 298
Hyperons, 267, 279, 283
ambda, 279
omega, 279, 296, 301
decay, 297
sigma, 279
xi, 279
Hypothesis,
de Broglie’s, 651
Planck’s, 30, 94
Yukawa's, 241

Impurity,
acceptor;, 225
donor, 225

Indices, crystal, 158ff

Instruments,
registering, 268
track-detecting, 267

Interaction(s), )
electromagnetic; 265f, 280, 283
from viewpoint of quantum elec-
trodynamics, 239ff
exchange, between nucleons, 242f
gravitational, 265f
nuclear, direct, 252
spin-orbital, 111, 280f
strong, 238f, 251, 265f, 282
between nucleons, 242f
weak, 265f, 283, 288f, 290
parity conservation law, 288
Invariance, CP-, 289
Inversion,
combined, 289
space, and psi-function, 287f
Ton, hydrogen-like, 95
Isobars, 233
Isomers, 233
Isospin, 284, see also Spin, isotopic
Isotones, 233
Isotopes, 233

Junction, p-n, 224ff
cut-off direction, 227
depletion layer, 227
forward direction, 226
forward voltage, 226
resistance, 227
reverse direction, 227
reverse voltage, 227
transition layer, 227
use for current rectification, 227
volt-ampere characteristic, 226f

Kaons, 266, 280
Kenotron, 212f
Kurchatovium, 233

Lasers, 148, 150ff, 155
gas, 154
pumping, 153
radiation, 154f
ruby, 152ff
Law(s),
Boltzmann's, 30, 150, 151
conservation,
angular momentum, 249, 294
baryon charge, 267, 278, 294
combined parity, 289
electric charge, 278, 294
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and electromagnetic interaction,

Law(s),
energy, 294
hypercharge, 285, 294
isotopic spin, 282f, 295
lepton charge, 280, 294
momentum, 275, 276, 294
parity, 288, 294
space parity, 289, 290
strangeness, 285, 294
and strong interaction, 294
and weak interaction, 294
Debye 73, 167
Dulong and Petit, 160, 161
invariance relative to charge con-
jugation, 289
Kirchhoff’s, 14
Moseley’s, 137f
Newton’s second, 192
Ohm’s, 194
periodic, 301
radioactive transformation,
Stefan-Boltzmann, 19, 33
three-halves power, 211
Wien’s displacement, 20
Lawrencium, 233
Layer,
depletion, 227
transition, 227
Leptons, 242, 266, 278, 279
charge, 278
number, 278
Level(s), see also Energy level(s)
acceptor, 206f
donor, 206f
Fermi, 183f, 196, 199, 202, 206
210, 215, 225, 226
at absolute zero, 179
temperature dependence, 184
impurity, 206
Lifetime,
compound nucleus, 252
elementary particles, 266, 279
excited states,
atoms, 105
nuclei, 171, 175, 247
metastable states, atoms, 105
radioactive nuclei, 244f

2441

Li%ht,

eam, critical power, 156
combination scattering, 146f{f, 155

by crystals, 169

corpuscular-wave duality, 43, 65
non-linear reflection, 156
pressure, 42
recoil energy, 106

Light,
resonance absorption, 170, 255
resonance emission, 170
self-focussing, 156
Line,
anti-Stokes, 147
spectral,
breadth, 105, 108
natural, 106, 171
Doppler breadth, 107f, 171, 172
Doppler broadening, 106, 171, 172
relative, 107
half-breadth, 105
Stokes, 147
Luminescence, 11

Magneton,
Bohr, 117
nuclear, 231
Masers, 150
Mass,
atomic nucleus, 234
critical, radioactive substance, 259
defect, nucleus, 235
elementary particles, 279
neutron,
proton, 231
Mendelevium, 233
Mesons, %%%, 241, 266f, 279, 285, 288,

eta-, 266f, 277, 279, 295
K-, 266f, 279, 283, 288
mu-, 241
octet, 295
pi-, 241, 266, 279, 300
decay, 241
Metal(s), 189
electrical conductance, 194ft
electrical conductivity, 196
resistivity, 194
residual, 194
Microparticles, 65, 68ff
diffraction by slit, 74f
trai’ectory, 69f, 73
Model,
atom, S51ff, 119f
nucleus, 237f
Sakata's, 298
Moderator, 260
Molecule(s),
diatomic, 138f
covalent bond, 139
electron energy, 140
heteropolar bond, 139
homopolar bond, 139
ionic bond, 139
energy, 138fi
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Molecule(s),
energy,
potential, 141
rotational, 141
total, 142
vibrational, 141
hydrogen, potential energy, 139
moment of inertia, 144, 145
Moment, magnetic,
atom, 118
electron, 111, 272
neutron, 232, 243, 298f
proton, 231, 243, 298f
Momentum,
angular, see Angular momentum
photon, 41f
Multiplet(s), 109, 114
charge, 281ff
baryon charge, 286
electric charge, 285
hypercharge, 286
strangeness, 286
inverted, 135
normal, 135
unitary, 295
Muons, 241, 242, 266, 272, 279
decay, 242

Neptunium, 258

Neutrino(s), 241, 249, 280, 290ft
electron, 266, 279, 293
longitudinal, 290
muon, 266, 279, 293

Neutron(s), 231, 254, 280
magnetic moment, 232, 243, 298f
mass, 232
radioactivity, 248
resonance absorption, 255
sgin, 232
thermal, 256, 261

Normalization condition, 78, 100
psi-function, 177§

Nucleons, 231, 267, 280,

Neutron(s), Protons

binding energy in nucleus, 234f

Nucleus(i),
activation energ?', 236
atomic, see Nucleus(i)
atomic number, 232
binding energy, 234f
characteristics, 232f
charge number, 232
composition, 231
compound, 252
cross section, 253
daughter, 245

see also

Nucleus(i),

doubly magic, 238

energy, 234

even-even, 234

excited states, lifetime, 171, 175
average, 247

fission, 236, 256ff
fragments, 256
spontaneous, 250

fusion, 236, 237, 262f

internal conversion, 247

light, fusion, 262f

magic, 238

mass, 234

mass defect, 235

mass number, 232

models, 237f
liquid-drop, 237f
shell, 238

parent, 245

photofission, 257

proton number, 232

radioactive,
average lifetime, 244f
half-life, 244, 245

radius, 233f

spin, 175, 234

theory, 237

velocity of thermal motion, 171

Number(s),

atomic, determination, 138

baryon, 277

lepton, 278

magic, 238

quantum, see Quantum number(s)

wave, 49

Octet,
baryons, 296
mesons, 295
Operator, 78
definition, 77
energy, 78
Laplacian, 75
Optics,
linear, 155
non-linear, 155ff
Orbits, stationary, 60
Oscillations, normal, 162ff
crystal lattice, 164f
acoustic frequency, 168
maximum frequency, 165f
optical frequency, 168
Oscillator, harmonic, see Harmonic
oscillator
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Packet, wave, 190
Pairs,
Cooper, 198f
electron-positron, 272, 274f
annihilation, 274, 276
birth, 274f
cascades, 272
showers, 272
Parameter, impact, 53
Parity, 286, 288
combined, 289
non-conservation, 288
Particles,
absolutely neutral, 277, 279, 280
alpha, 246f
energies, 246f
scattering, 247
and antiparticles, 277ff
charmed, 300
elementary, 265ff, 297
average lifetime, 266, 279
classes, 266
decay scheme, 279
detecting methods, 267f
helicity, 290f
mass, 279
with even intrinsic parity, 288
with negative intrinsic parity, 288
with odd intrinsic parity, 288
with positive intrinsic parity, 288
penetration through potential bar-
rier, 88ff
psi, 300
rest energy, 234
scattering, 252
elastic, 252
inelastic, 252
strange, 283ff
strangeness, 283, 284ff
virtual, 240
Phonon(s), 168, 173, 199
average number, 169
carrying of electrons by, 219
energy, 174
and photons, 169
quasimomentum, 168, 169
Photoconduction,
electron, 229
hole, 229
Photocurrent, 37, 230
and voltage, 37
Photoelectrons, maximum velocity, 38
Photoluminescence, 11
Photon(s), 40, 41, 99, 247, 266, 277,
- 279, 290, 300
cascade formation in stimulated
emission, 153f

Photon(s),
collisions with molecules, 147
distribution, 169
energy, 41, 65, 143, 145, 175
flux, relative fluctuation, 44
frequencies, 145
gravitational red shift, 175
gamma, 247, 248
absorption lines, 172, 176
emission lines, 172, 176
energy, 176
gravitational mass, 175
momentum, 41f, 65
and phonous, 169
rest mass, 42
scattering, 147
speed, 42
spin, 97f
virtual, 239f
Photoresistors, 229
Pions, 241, 266, 280
Plane, phase, 60
Plant, atomic power, 261
Plasma, 263
Plutonium, 233, 258, 261
Population, energy level, 151
inverse, 151
Positron, 249f, 272, 274
Postulates, Bohr’s, 57
Potential,
chemical, 169f
2454

contact, 215
difference,
external, 216f
internal, 216
emission, 210
Power, critical, light beam, 156
Pressure, light, 42
Principle,
exclusion, see Principle, Pauli
Heisenberg uncertainty, 71
Pauli, 12Sf9ﬁ, 134, 169, 179, 273,
299

superposition, 190
of states, 87
Process,
forbiddenness and conservation
laws, 283f
multiple-photon, 39
single-photon, 39
Protium, 233
Proton, 231, 280
charge, 231
magnetic  moment, 231, 243,
298f
mass, 231
spin, 231
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Psi-function, 74f
meaning, 78§
normalization condition,
in space inversion, 287f
standard conditions, 79, 96
Pumping, laser, 153

177¢

Quantities, canonically conjugate, 74
Quantizatitgn, apgular momentum,
83

Quantum(a),
action, 30
energy, 30
maximumw value, 36
light, 40
light energy, 57
magnetic flux, 200
Quantum number(s),
angular momentum,
resultant, 116
resultant spin, 116
total, 111, 113, 234
total orbital, 116
azimuth;ﬁl), 84, 86, 96, 97, 103, 111,
1

charm, 300

electron in atom, 129

hypercharge, 285

isotopic spin, 281f

magnetic, 85, 96, 123, 129

nuclear spin, 234

orbital, 84, 86

principal, 62, 96, 129

rotational, 144

spin, 410, 111, 129, 178

and state of conduction electron,

1781

strangeness, 284f

vibrational, 141
Quarks, 297f

baryon charge, 298

charmed, 300

colour, 299f

electric charge, 298

spin, 298f

strangeness, 298
Quasiparticles, 169, 202

Radiation,
braking, sce Bremsstrahlung
characteristic, 35, 136
equilibrium, in cavity, 28
mean energy, 31
minimum wavelength, 36
thermal, 11ff

Radiation,
thermal,
equiliffrium with emitting bodies,
111 .

eguilibrium energy density and
radiant emittance of black-
body, 18
wavelength, 13
X-ray, 1364
Radioactivity, 243ff
artificial, 243
natural, 243, 245
proton, 250f
Radiocarbon, 255f

Radius,

action, 265

Bohr, 62
Ratio, gyromagnetic, 1471
Rays,

alpha, 245

beta, 245

cosmic, 241, 271f
primary, 271
secondary, 271
hard component, 272
soft component, 272
gamma, 170, 245, 248
resonance absorption, 172f

Reaction(s),
auclear, 251ff
chain, 258f

effective cross sections, 254f
energy, 251f
pickup, 253
stripping, 252
thermonuclear, 237, 262ff
conirolled, 263f
threshold, 276

Reactors,
breeder, 261
nuclear, 237, 2594
Recombigation, electron-hole, 204,
07

grobability, 204
Relation, uncertainty, 71ff, 190, 240
Resistivity, metals, 194
Resonancs,
electron paramagpetic, 127ff
nuclear magnetic, 127

Resonances, 267, 300
Rule(s),
Hund’s, 135f
selection, 94, 152
for J, 141
for j, 113
for 2, 97, 103

for my, 123, 127
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Rule(s),
selection,
for mp, 126
for v, 141

Satellite,
red, 147, 169
violet, 147, 169
Scintillation, 52
Semiconductor(s), 200ff
conductance,
electronic, 205
hole, 206
impurity, 205ff
intrinsic, 202{f, 207
and temperature, 200f
electronic, 190
extrinsic, 200
holes, 200ff, 204
impurity, 200
intrinsic, 200f
n-type, 205, 206
non-uniformly heated, 220
p-type, 206
non-uniformly heated, 220
typical, 203f
Series,
Balmer, 49, 99
Bergmann, 101
Brackett, 49
diffuse, 101, 103, 104
fine structure, 114
fundamental, 101, 103, 104
limit, 50
Lyman, 49, 99
Paschen, 49
Pfund, 49, 50
principal, 101, 103, 104
radioactive, 245
sharp, 101, 103, 104
X-ray spectra, 136
Shells,
electron, 130ff
symbols, 131
nuclear, 238
Shift,
gravitational, red, 175
Lorentz, 123
normal, 123

Showers, electron-positron pairs, 272

Singlets, 109, 122
Space, isotopic, 281
Spectroscope, microwave, 128
Spectrum(a),
ahsorption, gamma quanta, 174f
alpha, fine structure, 246

Spectrum(a),
atomic, 48
fine structure, 234
hyperfine structure, 234
band, 142ff
bremsstrablung X-ray, short wave-
length limit, 34, 35f
combination scattering, 146f
continuous, 80
discrete, 80, 81, 85
emission,
alkali metals, 101
gamma quanta, 174f
energy, 81f
valence electron, 185ff
fine structure, 109
hydrogen atom, 48ff
frequencies of lines, 49f
line, 48
molecular, 142ff
of quantity, 80
series of lines, 48, see also Series
X-ray, 34, 136ft
Spin, 110, 272
atomic nucleus, 234
double magnetism, 118
electron, 111, 272
isotopic, 28{if, 298f
neutron, 232
nuclei, 175
photon, 971, 110
proton, 231
quantum number, 110, 111, 129, 178
quarks, 298f
State(s),
degenerate, 96
electron, symbols, 97
even, 287
excited, 29, 105
ground, 99, 105
metastable, 105
with negative iewmperatures, 151
odd, 287
stationary, 79
electron, 57
Scheadinger equation, 76
suporconducting, 197ff
Statistics,
Bose-Einstein, 170
Fermi-Dirac, 183
Strangeness, 297, 298
quarks, 298
Strength, electric field, and tempera-
ture gradient, 220
Subshelis, electron, 130ff
Superconductivity, 197f
Superconductor, 187
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Subject Index

Superfluidity, 198
Supermultiplets, 295
Surface, Fermi, 180, 187f
Symbols,
electron shells, 131
electron states, 97
terms, 112f
System,
generalized coordinates, 162
periodic, of elements, 131ff

Temperature,
characteristic Debye, 166
critical, 197
Fermi, 181, 185
transition, 197
Term(s), 50, 60
atom, 1161
multiplicity, 117
spectral, 50, see also Term(s)
symbols, 112f, 116f
Theory,
BCS, 198if
Bohr's, hydrogen atom, 62ff
Debye's, 164ff
Dirac’s, 273ff
longitudinal neutrino, 290
superconductivity, 198ff
unitary symmetry, 295
Thermocouple, 221f
Threshold,
photoelectric, 39, 40
reaction, 276
Time,
decay, 266
nuclear, 252
transit, 252
relaxation, 195, 196
Trajectory,
microparticle, 69f, 73
particle, 79
and particle mass, 72f
phase, 60
Transistor(s), 224, 228
base, 228
collector, 228

Transistor(s),
emitter, 228
n-p-n, 228f
p-n-p, 229
Triode(s), 213ff
grid characteristics, 214
slope, 214
semiconductor, 224, 228
Tritium, 233, 262
Tube,
electronic, 210ff
three-electrode, 213f
two-electrode, 210f
X-ray, 34

Unit(s),

activity, radioactive substances, 251

atomic mass (amu), 231
natural system, 115
Uranium, natural, 259

Variables, dynamic, 70
equation, 78
Velocity,
drift, 194ff
group, 190
Voltage, retarding, 37f

Water, heavy, 260
Wave(s),
number, 49
packet, 190
standing,
in crystal, 164f

in three-dimensional space, 20ff

two-dimensional, 23
wave vector, 25
Wavelength, Compton, 47
electron, 47, 115, 240
Way, eightfold, 295
Work function, 38, 210, 212

Zone, Brillouin, 187
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