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PREFACE 

This volume completes my work on a new version of a general 
course in physics for higher technical educational institutions (the 
first version was written by the author in the beginning of the 
1960's). In this connection, I would like to note the following. 
Writing of this course required a fresh view on a number of questions, 
the rejection of obsolete traditions in the teaching of physics that 
were formed during many decades. This rejection was not at all 
simple for me because I myself was brought up on these traditions 
and for a number of years supported some of them (in particular, 
in the preceding version of the three-volume course). Speaking 
figuratively, I had to "reject myself". This difficult process was 
facilitated by daily contact with my young colleagues at the Depart­
ment of General Physics of the Moscow Institute of Engineering 
Physics. Of the greatest importance was not so much the influence 
of these young people on the nature of the treatment of individual 
concrete questions of physics as the spirit of creative criticism and 
innovation that was e~tablished in the department after their joining 
it. Special mention must be made of the part played by associate 
professors N.B. Narozhny, V.I. Gervids, and V.N. Likhachev. 

In addition to the influence of my young colleagues noted above, 
a decisive part in my work on this course was played by constant 
active contact with my students at lectures, exercises, c.onsultations, 
and examinations. It is impossible to write a textbook without 
being in contact with whom it is intended for, associating with 
them only unilaterally at lectures. In instruction, as in any other 
vocation, experiments are needed. Among several possible ways of 
setting out a question, preference must be given to the one that 
produces the best result in the course of instruction. Such experi­
ments were conducted quite broadly during my work on the new 
three-volume eourse. 
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I shall note in conclusion that the present course is intended above 
all for higher technical schools with an extended syllabus in physics. 
The material has been arranged, however, so that the book can be 
used as a teaching aid for higher technical schools with an ordinary 
syllabus simply by omitting some sections. 

Igor Savelyev 

Moscow, April, 1980 
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PART I 

CHAPTER 1 

QUANTUM 
OPTICS 

THERMAL RADIATION 

1..1. Thermal Radiation and Luminescence 

Bodies can emit electromagnetic waves (glow) at the expense of 
various kinds of energy. The most widespread is thermal radiation, 
i.e. the emission of electromagnetic waves at the expense of the 
internal energy of bodies. All the other kinds of glow produced at 
the expense of any kind of energy except internal (thermal) energy 
are combined under the single term "luminescence". 

Phosphorus oxidizing in the air glows at the expense of the energy 
liberated upon the chemical transformation. This kind of glow is 
known as chemiluminescence. The glow produced in different kinds 
of self-sustained gas discharge is called electroluminescence. The 
glow of solid bodies due to their being bombarded by electrons is 
known as cathodoluminescence. The glow due to a body absorbing 
electromagnetic radiation is called photoluminescence. 

Thermal radiation. occurs at any temperature, but at low tem­
peratures practically only long (infrared) electromagnetic waves 
are emitted. 

Let us put an emitting body into an enclosure having an ideally 
reflecting surface (Fig. 1.1). We shall evacuate the air from the 
enclosure. The radiation reflected by the enclosure will fall on the 
body and be absorbed by it (partly or completely). Consequently, 
a continuous exchange of energy between the body and the radiation 
filling the enclosure will occur. If the distribution of energy between 
the body and the radiation remains constant for every wavelength, 
the state of the body-radiation system will be an equilibrium one. 
Experiments show that the only kind of radiation that can be in 
equilibrium with emitting bodies is thermal radiation. All other 
kinds of radiation are non-equilibrium ones. 

The ability of thermal radiation to be in equilibrium with emit­
ting bodies is due to the fact that its intensity grows with elevation 
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of the temperature. Assume that equilibrium hetwren a body and 
radiation is violated, and the body emits.more energy than it absorbs. 
The internal energy of the body will therefore diminish, which leads 
to lowering of the temperature. This, in turn, will result in a reduc­
tion in the amount of energy emitted by the body. The temperature 
of the body will lower until the amount of energy emitted by 
the body becomes equal to tho amount of absorbed energy. If 

equilibrium is violated in the opposite direc­
tion, i.e. ifless energy is emitted than absorbed, 
the temperature of the body will grow until 
equilibrium sets in again. Thus, the violation 
of equilibrium in the body-radiation system 
gives birth to processes restoring eqnilibrium. 

Matters are different with luminescence. We 
shall show this using chemiluminescence as 
an example. Proceeding of the chemical reaction 
producing radiation causes the emitting body 

Fig. 1.1 to become more and more remote from its ini-
. tial state. The absorption of radiation by the 

body will not change the direction of the reaction, but, on the con­
trary, \Vill result in the reaction proceeding at a faster rate (owing 
to heating) in the initial direction. Equilibrium wilJ set in only 
when the reactants will be completely used up, and the glow due to 
chemical processes will be replaced by thermal radiation. 

Thus, of all the kinds of radiation, only thermal radiation can be 
in equilibrium. The laws of thermodynamics can he applied to 
equilibrium states and processes. This is why thermal radiation 
must obey some general laws following from the principles of 
thermodynamics. We shall now pass over to a treatment of these 
laws. 

1.2. Kirchhoff's Law 

We shall characterize the intensity of thermal radiation by the 
magnitude of the energy flux measured in watts. The energy flux 
emitted by unit surface area of a radiating body in all directions 
(within the limits of a solid angle of 2tt) is known as the radiant 
emittance of the body. We shall use the symbol R to designate this 
quantity. The radiant emittance is a function of the tempera~ 
ture. 

Radiation consists of waves having different frequencies ro (or 
wavelengths A.). Let dR., be the energy flux emittecl by unit surface 
area of a body within the frequency interval dro. When the interval 
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dffi is small, the flux dRw will be proportional to d(J): 

dRw = rw dw (1.1) 

The quantity r 00 is called the emissivity of a body. Like the 
radiant emittance, the emissivity depends greatly on the temperature 
of a body. Thus, r w is a function of the frequency and temperature. 

The radiant emittance and the emissivity are related by the for­
mula 

00 

Rr = ~ dRwT = ~ rwT dffi (1.2) 
0 

(to stress that the radiant emittance and the emissivity depend on 
the temperature, we have provided them with the subscript T). 

Radiation can be characterized by its wavelength ').. instead of its 
frequency w. The wavelength interval dt. will correspond to the 
spectrum portion dw. The quantities dffi and dt. determining the same 
portion are related by a simple expression following from the for­
mula 'A = 2ncl ffi. Differentiation Jields 

2:n:c :v 
d'A= --dffi= ---dw w2 2:n:c (1.3) 

The minus sign in this expression is of no appreciable significance. 
It only indicates that when one of the quantities w or 'A grows, the 
other one diminishes. We shall therefore omit the minus sign in the 
following. 

The fraction of the radiant emittance falling within the interval 
dt., by analogy with Eq. (1.1), can be written in the form 

dR,_ = r,_dt. (1.4) 

If the intervals dffi and d'A in expressions ( 1.1) and ( 1. 4) are related 
by Eq. (1.3}, i.e. belong to the same portion of the spectrum, then 
the quantities dRw and dR,_ must coincide: 

rw dw = r,_ d'A 

Substituting for dt. in this equation its value from Eq. (1.3), we 
get 

2:n:c Aa 
r (J) dw = r,. - 2- dw = r,_ -2- dw w :n:c 

whence 

(1.5) 

Equation (1.5) allows us'to transfer from r, to rw and vice versa. 
Assume that the flux of radiant energy d<l>Ol due to electromagnetic 

waves whose frequency is within the interval dw falls on an element­
ary area of a body's surface. A part of this flux dctJ~ will be absorbed 
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by the body. The dimensionless quantity 
dct>~ 

a roT = dct>w ( 1. 6) 

is called the absorptivity of a body. The absorptivity of a body is a 
function of the frequency and temperature. 

By definition, aCilT cannot be greater than unity. For a body com­
pletely absorbing the radiation of all frequencies falling on it, aCilT = 
== 1. Such a body is known as a blackbody . . A body for which 
awr == ar = const < 1 is called a gray body. 

There is a definite relation between the emissivity and absorptiv­
ity of any body. We can convince ourselves that this is true by 
considering the following experiment. Assume that several bodies 
are confined in an enclosure maintained at a constant temperature T 

Fig. 1.2 Fig. 1.3 

(Fig. 1.2). The cavity inside the enclosure is evacuated so that the 
bodies can exchange energy with one another and with the enclosure 
only by emitting and absorbing electromagnetic waves. Experiments 
show that such a system will arrive at a state of thermal equilibrium 
after a certain time elapses-all the bodies will acquire the same 
temperature T equal to that of the enclosure. In this state, a body 
having a greater emissivity rwT loses more energy from unit surface 
area in unit time than a body whose emissivity rwT is lower. Since 
the temperature (and, consequently, the energy) of the bodies does 
not change, then the body emitting more energy must absorb more, 
i.e. have a greater awT· Thus, the greater the emissivity rwT of a 
body, the greater is its absorptivity awT· Hence follows the relation 

( ::~ ) 1 = ( ::; ) 2 = ( ;:; ) 3 = . . . ( 1. 7) 
\vhere the subscripts 1, 2, 3, etc. relate to different bodies. 

Relation (1. 7) expresses the following law established by the 
German physicist Gustav Kirchhoff (1824-1887): the ratio of the 
emisflivity and the absorptivity does not depend on the nature of a body, 
it is the same (universal) function of the frequency (wavelength) and 
temperature for all bodies: 

rroT = f (w, T) 
awT 

(1.8) 
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The quantities r wT and awT can vary exceedingly greatly for 
different bodies. Their ratio, however, is identical for all bodies. 
This signifies that a body which absorbs certain rays to a greater 
extent will emit these rays to a greater extent too (do not confuse 
the emission of rays with their reflection). 

For a blackbody, by definition, awT = 1. It therefore follows 
from Eq. (1.8) that rwT for such a body equals I (w, T). Thus, Kirch­
hoff's universal function I (w, T) is nothing but the emissivity of 
a blackbody. 

It is more convenient to use the function of the frequency f (w, T) 
to characterize the spectral composition of equilibrium thermal 
radiation in theoretical investigations. The function of the wave­
length cp (A., T) is more convenient in experimental studies. The 
two functions are related by the formula 

2nc 1,2 
I (w, T) = (;)2 cp (J., T) = Znc cp (A., T) (1.9) 

similar to Eq. (1.5). According to Eq. (1.9), to find cp (A., T) from 
the known function I (w, T), we must substitute 2nc/A. for the fre­
quency w in I (w, T) and multiply the expression obtained by 
2nc/A.2 : 

(A T) _ 2nc I { 2nc T) 
cp ' - /,2 A. ' (1.1 0) 

To find I ( w, T) from the known function cp (A., T), we must use the 
relation 

I ( T) = 2nc ( 2nc T) w' w2 cp w ' (1.11) 

' Blackbodies do not exist in nature. Carbon black and platinum 
black have an absorptivity awT close to unity only within a limited 
range of frequencies. Their absorptivity is appreciably lower than 
unity in the far infrared region. It is possible to construct a device, 
however, whose properties are close to those of a blackbody as much 
as desired. Such a device is an almost completely enclosed cavity 
provided with a small hole (Fig. 1.3). The radiation penetrating into 
the cavity through the hole will undergo multifold reflections before 
emerging from it. Part of the energy is absorbed upon each reflection, 
and as a result virtually the entire radiation of any frequency is 
absorbed by such a cavity*. According to Kirchhoff's law, the 
emissivity of such a device is very close to f (w, T), where T stands 
for the temperature of the cavity walls. Thus, if the cavity walls 
are maintained at the temperature T, then radiation will leak out 
through the hole very close in its spectral composition to the radia­
tion of a blackbody at the same temperature. By obtaining the spect_ 
rum of this radiation with the aid of a diffraction grating and measur_ 

* For the same reason, the interior of a room seems dark when we look at 
it from a distance through an open window on a bright sunny day. 
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ing the intensity of different portions of the spectrum, we can find 
the form of the function f ( (1) 1 T) or q> (A., T) experimentally. The 
results of such experiments are shown in Fig. 1.4. Each curve is for 

(j?(J.,T), tO"W/mJ 

~~--~r~~~~~~~~~2UUUK 

0 2 

Fig. 1.4 

77g0K 
16'00K 

J A,,f"m 

a definite value of the temperature T of our blackbody. The area en­
closed by the curve gives the radiant emittance of the blackbody at 
the corresponding temperature. 

A glance at Fig. 1.4 shows that the radiant emittaJJ.ce of a black­
body grows greatly with the temperature. The maximum of the 
emissivity shifts toward shorter waves with elevation of the tem­
perature. 

1.3. Equilibrium Density of Radiant Energy 
Let us consider radiation that is in equilibrium with a substance 

.For this purpose, let us imagine an evacuated cavity whose walls 
are maintained at a constant temperature T. In the equilibrium 
state, the radiant energy will be distributed throughout the volume 
of the cavity with a definite density u = u (T). The spectral distri­
bution of this energy can be characterized by the function u (ro, T) 
determined by the condition du(iJ = u (ro, T) dro, where du(iJ is the 
fraction of the energy density falling within the interval of fre­
quencies dro. The total energy density u (T) is related to the function 
u (ro, T) by the formula 

00 

u(T)= J u(ro, T)dro 
0 

(1.12) 
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It follows from thermodynamic considerations that the equilib­
rium radiant energy density u (T) depends only on the temperature 
and does not depend on the properties of the cavity walls. Let us 
consider two cavities whose walls are made from different materials 
and initially have the same temperature. Let the equilibrium energy 
density in the two cavities be different and, say, u1 (T) > u2 (T). 
We shall connect the cavities by means of a small hole (Fig. 1.5) 
and thus permit the walls of the cavities to 
exchange heat by radiation. Since we have 1 2 
assumed that u1 > u2 , the energy flux from 
the first cavity into the second one must be 
greater than the flux in the opposite direc­
tion. The walls of the second cavity, as a 
result, will absorb more energy than they 
emit, and their temperature will start grow­
ing. The walls of the first cavity, on the 
other hand, will absorb less energy than Fig. 1.5 
they emit, and they will cool. But two 
bodies having the same initial temperature cannot acquire different 
temperatures as a result of heat exchange with each other-this is 
forbidden by the second law of thermodynamics. We must therefore 
acknowledge that our assumption on u1 and u2 being different is not 
lawful. The conclusion on the equality of u1 (T) and u2 (T} covers 
each spectral component u ( (1), T). 

That the equilibrium radiation does not depend on the nature of 
the cavity walls can be explained by the following considerations. 
Blackbody walls would absorb all the energy C!>e falling on them and 
would emit the same energy flux C!>e. Walls with the absorptivity a 
will absorb the fraction act>e of the flux C!>e falling on them and will 
reflect a flux equal to (1 -a} C!>e. In addition, they will emit the 
flux act>e (equal to the absorbed flux). As a result, the walls of the 
cavity will return the same energy flux C!>e = (1 -a) C!>e + a<I>e 

, to the radiation that blackbody walls would return to it. 
The equilibrium radiant energy density u is related to the radiant 

emittance of a blackbody R* by a simple expression which we shall 
now proceed to derive*. 

Let us consider an evacuated cavity with blackbody walls. In 
equilibrium, a radiant flux of the same density will pass through 
every point inside the cavity in any direction. If the radiation were 
to propagate in one given direction (i.e. if only one ray were to pass 
through a given point), the density of the energy flux at the point 
being considered would equal the product of the energy density u 
and the speed of an electromagnetic wave c. But a multitude of rays 

.• We have used the symbol R* to stress that we are dealing with the radiant 
emittance of a blackbody. 
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whose directions are uniformly distributed within the limits of the 
solid angle 4n pass through every point. The energy flux cu is also 

n 

tJS 

Fig. 1.6 

distributed uniformly within the limits of this 
solid angle. Consequently, an energy flux whose 
density is 

dj=~dQ 4n 

will flow at every point within the limits of the 
solid angle dQ. Let us take the elementary area 
f:...S on the surface of the eavity (Fig. 1.6). This 
area emits the following energy flux within 
the limits of the solid angle dQ =sin e de dqJ 

in the direction making the angle e with the normal n: 

d<l>e = dj t:.S cos e = ~~ dQ 118 cos e = 

= ~~ 118 cos e sine de dqJ 

The area 118 emits the energy flux 
n/2 2n 

L\<l>c == ) d<l>e = ~~ 118 ) cos e sine dtl ) dqJ = + u 118 (1.13) 
0 0 

in all the directions confined within the limits of the solid angle 2n. 
At the same time, the energy flux emitted by the area 118 can be 

found by multiplying the radiant emittance R* by 118, i.e. 11<l>e = 
= R* 118. A comparison with Eq. (1.13) shows that 

R* =-.!.- u 
4 

(1.14) 

Equation (1.14) must be satisfied for every spectral component 
of the radiation. It thus follows that 

/(ro, T)=+u(ro, T) (1.15) 

This formula relates the radiant emittance of a blackbody and the 
equilibrium energy density of thermal radiation. 

1.4. The Stefan-Boltzmann Law and 
Wien's Displacement Law 

The theoretical explanation of the laws of blackbody radiation 
had a tremendous significance in the history of physics-it led to 
the concept of energy quanta. 
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For a long time, attempts to obtain the form of the function, 
f ( (!), T)* theoretically did not provide a general solution of the 
problem. In 1879, the Austrian physicist Joseph Stefan (1835-1893), 
analysing experimental data, arrived at the conclusion that the 
radiant emittance R of any body is proportional to the fourth power 
of the absolute temperature. But subsequent more accurate measure­
ments, however, showed that his conclusions were erroneous. In 
1884, the Austrian physicist Ludwig Boltzmann (1844-1906), on the 
basis of thermodynamic considerations, obtained theoretically the 
following value for the radiant emittance of a blackbody: 

00 

R*= i /((!), T)d(t)=aTt. (1.16) 
0 

where a is a constant quantity, and T is the absolute temperature. 
Thus, the conclusion which Stefan arrived at for gray bodies (he 
ran no experiments with blackbodies) was found to be true only 
for blackbodies. 

Relation (1.16) between the radiant emittance of a blackbody and 
its absolute temperature was named the Stefan-Boltzmann law. The 
constant a is called the Stefan-Boltzmann constant. Its experimental 
value is 

(1.17) 

In 1893, the German physicist Wilhelm Wien (1864-1928), using 
the electromagnetic theory in addition to thermodynamics, showed 
that the function of the spectral distribution must have the form 

(1.18) 

where F is a function of the ratio of the frequency to the temperature. 
According to Eq. (1.10), the following expression is obtained for 

the function !p (A, T): 

('A T) _ 2nc ( 2nc ) 3 F ( 2nc ) __ 1 ,1, (A T) 
(j) • - 1..2 t. "J...T , - t.• 'I' • 

(1.19) 

where 'ljJ ('A, T) is a function of the product 'AT. 
Equation (1.19) makes it possible to establish the relation between 

the wavelength Am corresponding to the maximum of the function 
!p ('A, T) and the temperature. Let us differentiate this expression 
with respect to A,: 

:~ = J...~ Tljl' ('AT)- ~6 'ljJ ('AT)= ;e ['ATljJ' (1-T)- 5'¢ (A-T)] (1.20) 

The expression in brackets is a certain function 'I' (A-T). At the wave­
length Am corresponding to the maximum of the function !p (A, T) 

* Or, which is the same, the function u ((J), T) [see Eq. (1.15)]. 
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Eq. (1.20) must become equal to zero: 

( d<p ) 1 
-;n; >.->.m = A.~ '¥ (A.mT) = 0 (1.21) 

It is known from experiments that "-m is finite (i.e. Am ;:/=: oo ). 
Therefore, the condition 'I' (A.mT) = 0 must be satisfied. By solving 
Eq. (1.21) relative to the unknown quantity A. 01 T, we get a certain 
value for this quantity which we shall denote by the symbol b. 
We thus obtain the relation 

A.rnT = b (1.22) 

.called Wien's displacement law. The experimental value of the con­
stant b is 

b= 2.90 x 10-3 m· K = 2.90 X 107.A·K (1.23) 

1.5. Standing Waves in Three-Dimensional Space 

In finding the function f (w, T), and also in calculating the heat 
capacities of solids (see Sec. 6.4), it becomes necessary to calculate 
the number of standing waves that can be produced in a volume of 
finite dimensions. We shall treat this question in the present section. 

Assumo that two plane waves produced as a result of reflection 
from walls at the points x = 0 and x = a (Fig. 1. 7) travel along the 
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x-axis in opposite directions. The equa­
tions of the waves have the form 

£1 = A cos ( wt - kx) (1.24) 
s2 = A cos (wt + kx + a) 

x (the initial phase of the first wave has 
been made to vanish by properly choos­
ing the initial moment of counting 
the time). We know that in this case a 
standing wave is set up in the region 

Fig. 1.7 0 ~x ~ a, there being either nodes or 
an tin odes at the boundaries of the region 

dep•~nding on the real conditions. Thus, nodes are observed at the 
ends of a string, and antinodes at the ends of a bar fixed at its middle. 

Examination of Eqs. (1.24) reveals that for an antinode to appear 
at the boundary x = 0, the phase a must be zero (therefore at points 
with x = 0 tho oscillations will occur in the same phase). In this 
case upon reflection from the boundary, the phase of the wave does 
not change*. For a node to appear at the boundary x = 0, the phase a 

• This follows from the fact that in direct proximity to a wall (at z = 0) 
the phases of the oscillations i 1 and £2 coincide. 
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must be n (consequently, at points with x = 0, the oscillations 
~1 and ~ 2 will occur in counterphase). In this case upon reflection 
from the boundary, the phase of the wave undergoes a jump through n. 

Thus, when antinodes are observed at the boundaries of the region, 
Eqs. (1.24) have the form 

~1 =A cos (rot- kx), 

~ 2 = A cos (rot + kx) 
When nodes are observed at the boundaries of the region, Eqs. (1.24) 
have the following form: 

61 = A cos (rot - kx), 
62 = A cos (rot + kx + n) 

Addition of the oscillations s1 and 62 for antinodes at the boundaries 
leads to the equation 

s = s1 + s2 = 2A cos kx·cos rot (1.25) 
and for nodes at the boundaries, to the equation 

~ = ~ 1 + ~2 == 2A cos ( kx + ~ ) cos (rot + ~ ) (1.26) 

It is easy to see that when x = 0, the amplitude is maximum in the 
first case and equals zero in the second one. 

To observe an antinode at the other boundary (i.e. when x = a) 
in the case described by Eq. (1.25) or a node in the case described 
by Eq. (1.26), the product ka must be an integral multiple of n, 
that is ka = nn. Thus, regardless of what is observed at the boun­
daries of the region (antinodes or nodes), the magnitude of the wave 
vector must have the values 

k=~n (n=1,2, ... ) (1.27) 
a 

Assume that k' = (n/a) n', k" = (nla) n". The difference n" - n' 
gives the number of standing waves f).N 11 , the magnitudes of whose 
wave vectors are within the interval f).k = k" - k'. Taking into 
account the values of k' and k", we find that 

f).N k r::a...!!:... f).k ( 1. 28) 
n 

The values of N 11 form a discrete sequence. Replacing this sequence 
with a continuous function, we can write that 

dN,_=..!;...dk (1.29) 
n 

The magnitude of the wave vector is related to the frequency (I) 

and the velocity u by the expression 

k=..!!!... (1.30) 
II 
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Accordingly, 
dk= d~ (1.31) 

(we consider that there is no dispersion, i.e. v = const). Substituting 
!J dwlv for dk in Eq. (1.29), we arrive 

a at the formula 

(a) 

4 
dNw=-dw nv (1.32) 

where dN w is the number of standing 
waves whose frequencies are within 
the interval from w to w + dw. 

Now let us consider the two-di­
mensional case. Assume that a plane 
wave (1) running in the direction 

;c of the wave vector k1 has been pro­
duced in a rectangular region with 
sides a and b (Fig. 1.8a). As a result 
of reflection from the right-hand 
boundary of the region, a running 
wave (2) will be produced with the 
wave vector k2 • Reflection of the 
wave (2) from the top boundary (Fig. 
1.8b) will produce a wave (3) with 
the wave vector k 3 • Finally, reflec­
tion of the wave (3) from the left-

x hand boundary (Fig. 1.8c) will pro­
duce a wave (4) with the wave vec­
tor k,,. No other waves will he 
produced. Indeed, reflection of the 
wave (1) from the top boundary pro­
duces the wave (4), reflection of the 
wave (2) from the left-hand boundary 
produces the wave (1), reflection of 
the wave (3) from the bottom boun­
dary produces the wave (2), and, 
finally, reflection of the wave (4) frotn 

.1! the bottom and the right-hand boun-
F' daries of the region produces the 

Ig. LS waves (1) and (3), respectively. 
Thus, the two-dimensional region will be filled with four plane 

waves running in the directions of the wave vectors k1 , k 2 , k 3 , and k4 • 

If we denote the projections of the vector k1 onto the axes x and y 
(see Fig. 1.8) by kx and k 11 , then the projections of all four vectors 
will be (the number of the vector is indicated in parentheses) 

(1) k~, k 11 ; (2) -k~, k 11 ; (3) -kx, -k 11 ; (4) k~, -ku 
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We have established above that antinodes are obtained at boun­
daries if the phase of a wave does not change upon reflection from 
a wall. In this case, the equations of the running waves have the 
form 

61 =A cos (wt- kx;X- k 11y), 

~ 2 = A cos (wt + kxx- k 11 y), 

6s =A cos (wt + kxx + k 11y) 

64 = A cos (wt - kx;X + k 11y) 
Adding these equations in pairs, we obtain 

61 + s2 = 2A cos kx;X cos (rot - k 11y) 

~a + 64 = 2A cos kx;X cos (cut + lc 11y) 

The sum of the expressions found gives an equation describing a 
two-dimensional standing wave obtained when reflection from a 
boundary occurs without a jump in the phase of the running wave: 

s = S1 + s2 + Sa + 6, = 4A cos kxx cos k 11y cos wt (1.33) 

It can be seen from Eq. (1.33) that the amplitude is maximum at 
the point (0, 0). The following conditions must be satisfied for it 
also to be maximum at the points (0, b), (a, 0), and (a, b), i.e. at the 
other three apices of the rectangle: 

(1.34) 

We must note that owing to the presence of the multiplier cos k 11 y 
in Eq. (1.33), the amplitude reaches its maximum value not along 
the entire length of the sides x = 0 and x = a, but only at the ends 
of these sides (where y = 0 and y = b), and also at n2 - 1 inter­
mediate points [at these points k 11 y takes on the values of n, 2n, ... 
. . . , (n 2 - 1) nl. In the spaces :Oetween these points, the amplitude 
varies according to a cosine law. Similarly, the amplitude reaches 
a maximum not along the entire length of the sides y = 0 and 
y = b, but only at the ends of these sides, and also at n1 - 1 inter­
mediate points. 

Nodes are obtained at the boundaries if upon reflection from 
a wall the phase of a wave undergoes a jump through n. Each of the 
waves (2), (3), (4) can be considered as the result of reflection of the 
preceding wave from a wall (see Fig. 1.8). Accordingly, the equations 
of the waves must be written in the form 

s1 =A cos (wt- kxX- k 11y), ) 
s2 =A cos (wt + kxx- k 11y + n), 
s3 =A cos (wt + kxx + k 11y + 2n) 
s4 =A cos (wt- kxx·+ k 11y + 3n) 

(1.35) 

The phase of an oscillation permits the addition to or subtraction 
from it of a whole number of 2n's. With this in view, we shall alter 



24 Quantum Opttcs 

Eqs. (1.35) as follows: 

61 =A cos (rot- k;r;X- k 11y), 

s2 =A cos (rot + k;r;X- k 11y + n), 

ss = A cos (rot + k;r;X + k 11y) 

64 = A cos (rot - k;r;X + k 11y + n) 
Adding these equation in pairs, we get 

s1 +£2 =2Acos (k;r;X+ ~)cos (rot-k 11y+ ; ) 

ss+ S4 = 2A cos ( kxx- ; ) cos (rot +k11y + ; ) 
(1.36) 

(1.37) 

Let us reverse the signs of the two cosines in Eq. (1.37) by adding n 
to the argument of the first cosine and subtracting n from the argu­
ment of the second cosine (the expression itself retains its previous 
magnitude). As a result, the sum £3 + £4 acquires the form 

Ss + £4 = 2A cos ( kxx+ ; ) cos (rot+ k 11y- ; ) 

Adding this sum to Eq. (1.36), we get the equation of a standing 
wave observed when the phase of a running wave undergoes a jump 
through n upon reflection from a boundary: 

£ = St + £2 +Sa+ S4 = 4A cos ( kxx + ; ) cos ( k 11y- ; ) cos rot 

(1.38) 
We must- note that by adding (or subtracting) n to the arguments of 
two of the last three multipliers, we can impart the following form 
to the equation of a standing wave: 

£ = 4A cos ( kxx- ; ) cos ( k 11y + ; ) cos rot 

or 

£ = 4A cos ( kxx + ; ) cos ( k 11y + ; ) cos (rot+ n) 

It follows from Eq. (1.38) that the amplitude is zero at all points 
of the boundary x = 0 and of the boundary y = 0. Conditions (1.34) 
must be satisfied for it to be zero too at the points of the boundaries 
x =a andy= b. 

Thus, regardless of what is obtained at the boundaries of the 
region (antinodes at the corners and at certain intermediate points, 
or nodes along the entire boundary), the projections of the wave 
vector must have the values 

1t k 1t kx =a nu II = T nz (ns n2 = 1, 2, .. ) (1.39) 

[compare with Eq. (1.27)1 
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We shall point out that the magnitude of the wave vector of all 
four running waves whose superposition leads to the setting up of 
a standing wave is the same and is 

(1.40) 

We shall call quantity (1.40) the magnitude of the wave vector of 
a standing wave. 

Let us take a coordinate system on the k-plane with the axes k:r: 
and k-v (Fig. 1. 9). The four symmetrical points depicted in the figure 

kg dk:c 
kg • • • r;--:-~ 

(-k;»,kg) (k:c,kg) 1• •ldk 
• • • • • l.!_ !.1 '!/ 

• • 
1& • • 

0 k~ 7i • • 
• • 

(-k;:,-ky) (k:;;, -kg) k:tJ 

Fig. 1.9 Fig. 1.10 

correspond in the k-plane to the wave vectors of the four running 
waves forming a given standing wave. All these points correspond 
to the same standing wave. Therefore, when using the points to 
count the number of standing waves, we must take into account 
only the points in one of the quadrants of the k-plane. It is natural 
to consider the points in the first quadrant. 

According to Eq. (1.39), the points corresponding to all possibl& 
standing waves are at the apices of rectangles with the sides n/a 
and nib (Fig. 1.10). It is easy to see that an area equal to n2/ab = 
= n 2/S (where S is the area of the two-dimensional region in whose 
limits a standing wave is produced) falls to the share of each standing 
wave on the k-plane. Hence, the density of the points on the k-plane 
is S/n2 • 

Let us find the number of standing waves dN kx· 11. 11 for which the 
projections of the wave vectors are within the limits from kx to 
kx + dkx and from k 11 to k 11 + dk 11 • This number equals the density 
of the points multiplied by the area dkx dk 11 : 

s 
dN k:r:• 11.11 = --;_s dk:e dk11 (1.41) 

Now let us find the number of standing waves dN11. for which the 
magnitude of the wave vector ranges from k to k + dk. This number 
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equals the number of points within the region confined between 
quarter-circles of radii k and k + dk (Fig. 1.11). The area of this 

region is ~ nk dk. Multiplying the density of the points by the area 

of the region, we get 
s 1 s 

dN k =1i2 2 nk dk = 2n: k dk (1.42) 

With a view to Eqs. (1.30) and (1.31 ), we can write that 

s 
dN w = -2 • w dw n:v 

(1.43) 

where dN Col is the number of standing waves whos~ frequencies are 
within the limits from w to w + dw [compare with Eq. (1.32)]. 

/ 

z 
Fig. 1.11 
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Fig. 1.12 

It is simple to generalize the results obtained for the three-dimen­
sional case. A standing wave produced within the limits of a rectan­
gular region with sides a, b, and c parallel to the coordinate axes 
(Fig. 1.12) is formed by the superposition of eight running waves, 
the projections of whose wave vectors are 

(1) k:c, k 11 , kz; (5) 

(2) (6) 

(3) (7) 

(4) (8) 

k:c, -k 11 , -k z; 
-k:c, -k11 , -kz; 
-k:c, k 11 , -kz; 

k:c, k 11 r -kz 

We recommend our reader to write the equations of these waves and 
by performing the relevant calculations, to convince himself that 
the equation of a standing wave has the form 

~ = s1 + s2 + ... + sa= BA cos k;c:c cos k 11y cos kzz cos wt 
. (1.44) 
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when a wave is reflected from the walls of a cavity without a change 
in phase, and 

~=~~+~2+ · · · +~s= 
= 8A cos ( k:tx + ~ ) cos ( kyy- ~ ) cos .( kzz + ; ) cos {rot+ ~ ) 

(1.45) 

when the phase of a wave undergoes a jump through n upon reflec­
tion* [compare with Eqs. (1.33) and (1.38)]. 

We must note that in Eq. (1.45) we may simultaneously reverse 
the sign of n/2 in any two multipliers without changing the sign 
of ~. 

It can be seen from Eqs. (1.44) and (1.45) that for the amplitude 
of a standing wave to have the same value at all eight apices of the 
region in which the standing wave k 
has been produced, the following !I 
conditions must be satisfied: 

(n1,n2,na=1,2, ... ) (1.46) 

!compare with Eq. (1.39)]. 
According to Eq. (1.45), the ampli-

tude is zero everywhere at a boun- k.r 
dary of the region. In the case de­
scribed by Eq. (1.44), on the other 
hand, the maximum amplitude is k 
obtained at the apices of the region, z 
and also at separate points on the Fig. 1.13 
planes enclosing the region. 

A point in the first octant corresponds to every standing wave in 
k-space with the axes kx, k 11 , kz (Fig: 1.13). The volume n 3/abc = 
= n 3/V (V is the volume of the region) falls to the share of each 
point. Hence, the density of the points is V/n3 • 

The number of standing waves for which the projecti9ns of the 
wave vectors are within the limits from kx to kx + dkx, from k 11 
to k 11 + dk 11 , and from kz to kz + dkz is determined by the expres­
sion 

dN II. ,'II. • R = ~ dk:t dky dk~ (1.47) 
:t · 11 % n 

[compare with Eq. (1.41)1. 
The number of standing waves for which the magnitude of the 

wave vector ranges from k to k + dk equals the number of points 

• In this case. the initial phase of odd-numbered waves can be taken equal 
to zero, and the phase of waves with even numbers taken equal to n. 
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getting within the confmes of one-eighth of a spherical layer of 
radius k and thickness dk (see Fig. 1.13). Consequently, 

dN k = __.!::._ ·..!. 4nk2 dk = V k2 dk (1.48) 
n;3 8 2~ll --:t. 

( i l 

[compare with Eq. (1.42)]. 
Taking into account Eqs. (1.30) and (1.31), we get the number of 

standing waves whose frequencies are in the interval from (J) to 
(J) + dw: 

w2 dCD dN(I)=V-2 28 n:v 
(1.49) 

Equation (1.49) is proportional to the volume of the space V. 
We can therefore speak of the number of standing waves dn(l) per 
unit volume of the space. This number is 

w2 dCD 
dn(J)= 2 a a n: v (1.50) 

In the following, we shall introduce into this expression a refine­
ment due to the need of taking the possible kinds of polarization of 
the waves into account. 

1.6. The Rayleigh-Jeans Formula 

The British physicists Lord Rayleigh (John William Strutt~ 
1842-1919) and James Jeans (1877-1946) made an attempt to deter­
mine the equilibrium density of radiation u (w, T) on the basis of 
the theorem of classical statistics on the uniform distribution of 
energy among degrees of freedom. They assumed that an energy 
equal to two halves of kT falls on an average to each electromagnetic 
oscillation-one half to the electrical and the other to the magnetic 
energy of the wave (we remind our reader that according to classical 
notions an energy equal to two halves of kT falls on an average to 
each vibrational degree of freedom). 

Equilibrium radiation in a cavity is a system of standing waves. 
With no account taken of the possible kinds of polarization, the 
number of standing waves related to unit volume of a cavity is 
determined by Eq. (1.50), in which the velocity v must be assumed 
equal to c. Two electromagnetic waves of the same frequency differing 
in their direction of polarization (polarized in mutually perpendicu­
lar directions) can propagate in a given direction. To take this 
cil'cumstance into account, we have to multiply Eq. (1.50) by two. 
The result is 

(1.51) 



Thermal Radiation 29 
------------------------------------------------~ 

As we have already noted, Rayleigh and Jeans, proceeding from 
the law of equal distribution of energy among degrees of freedom, 
ascribed an energy of (e) equal to kT to each oscillation. Multiplying 
Eq. (1.51) by (e), we get the energy density falling to the frequency 
interval dw: 

whence 

w' u (w, T) dw = (e} dn(iJ = kT -rr- dw nc 

w2 
u (w, T) = - 2 -3 kT n c 

(1.52) 

Passing over from u (w, T) to f (w, T) 
get an expression for the 

according to Eq. (1.15), we 

emissivity of a blackbody: 
w' f (w, T) = 4n2c2 kT (1.53) 

We must note that function 
(1.53) satisfies condition 
(1.18) obtained by Wien. 

Expressions (1.52) and 
( 1.53) are known as the 
Rayleigh-Jeans formula. It 
agrees with experimental 
data satisfactorily only for 
large wavelengths and sharp­
ly diverges from these data 
for small wavelengths (see 
Fig. 1.14 in which the solid 
line depicts an experimen­
tally obtained curve, and 
the dash line depicts a 
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curve constructed according to the Rayleigh-Jeans formula). 
Integration of Eq. (1.52) with respect to w within the limits from 

0 to oo gives an infinitely great value for the equilibrium energy 
density u (T). This result, which has been named the ultraviolet 
catastrophe, also contradicts experimental data. Equilibrium be­
tween radiation and the body emitting it sets in at finite values 
of u (T). 

1.7. Planck's Formula 

The derivation of the Rayleigh-] eans formula is faultless from 
the classical viewpoint. Therefore, the failure of this formula to 
agree with experimental data pointed to the existence of laws that 
are incompatible with the notions of classical physics. 
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In 1900, the German physicist Max Planck (1858-1947) succeeded 
in f\nding a form of the function u (w, T) that exactly corresponded 
to experimental results. For this purpose, he had to make an assump­
tion absolutely alien to classical notions, namely, to assume that 
electromagnetic radiation is emitted in the form of separate-portions 
of energy (quanta) whose magnitude is proportional to the frequency 
of radiation: 

e = !iw (1.54) 

The constant of proportionality n was subsequently named Planck's 
constant*. Its value determined experimentally** is 

n = 1.054 X 10-3~ J · s = 1:054 X 1Q-z7 erg· s = 0.659 X 1Q-t5 eV · s 

(1.55) 

In mechanics, there is a quantity having the dimension "energy X 
X time" that is called action. Planck's constant is therefore some­
times called a quantum of action. It must be noted that the dimension. 
of n coincides with that of the angular momentum. 

If radiation is emitted in bundles or packets of !iw, then its energy' 
en must be a multiple of this quantity: · 

en = n!iw (n = 0, 1, 2, ... ) (1.56) 

In a state of equilibrium, the distribution of oscillations by 
values of the energy must obey Boltzmann's law. According to 
Eq. (11.82) of Vol. I, p. 328, the probability Pn of the fact that the 
energy of oscillation of the frequency w has the value En is deter­
mined by the expression 

p n = NNn = --=e=-x....:.·p--'(_-_e-'n'-/_kT-')_ 
~ exp (- Bn!kT) 
n 

(we have substituted Nn for Ni and en for Ei)· 

(1.57) 

Knowing the probability of various values of the oscillation 
energy, we can fmd the mean v~ue of this energy (e). According to 
Eq. (11.5) of Vol. I, p. 296, 

(e)=~ Pnen 
n 

• Strictly speaking, the constant of proportionality h between e and the 
frequency, e = hv, is called Planck's constant. The constant li is Planck's 
constant h divided by 2n. The numerical value of Planck's constant is h= 
= 6.62 X 10-'4 J ·S = 6.62 X 10-27 erg·s. 

• • Planck's constant is present in many physical relations, and in this 
connection it can be determined in various ways. The most accurate value is 
obtained from measurements of the short-wave boundary of the braking radia­
tion (bremsstrahlung) X-ray spectrum (see Sec. 2.1). 
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Using Eqs. (1.56) and (1.57) for En and Pn in this expression, we 
shall get the following formula for the mean value of the energy 
of radiation of frequency ffi: 

00 

~ nnw ex p (-nnw/ kT) 

<e) = _n----'-:0 "":-:--------­

~ exp (- nnw/kT) 
n-o 

(1.58) 

To perform the calculations, let us introduce the notation nffilkT = X 

and assume that x can change by taking on a continuous series of 
values. Equation (1.58) can therefore be written in the form 

00 

~ ne-nx ao 

(e)= liffi -'n-'=-'~--- = - liffi ~ ln ~ e-nx (1.59) 
~ e-nx n-O 

n=O 

Inside the logarithm in Eq. (1.59) is the sum of the terms of an 
infinite geometrical progression with the first term equal to unity 
and the common ratio equal to e-x. Since the denominator is less 
than unity, the progression will be a diminishing one, and according 
to the formula known from algebra 

~. e-nx= 1 
L...:. 1-e x 
n=O 

Introducing this value of the sum into Eq. (1.59) and differentiating, 
we obtain 

d 1 e-x nw 
(e)= -1iffi dx ln 1-e-x=liffi 1-e-x = e"'-1 

Now, replacing x with its value liffilkT, we get a final expression for 
the mean energy of radiation of the frequency ffi: 

nw 
(e)= exp (nw/kT)-1 (1.60) 

We must note that when !i tends to zero, Eq. (1.60) transforms 
into the classical expression (e) = leT. We can convince ourselves 
in the truth of this statement by assuming that exp (liffi!kT) ~ 
~ 1 + nffi!kT, which is observed the more accurately, the smaller 
is !i. Thus, if the energy could take on a continuous series of values, 
its average value would equal kT. 

Multiplying Eqs. (1.51) and (1.60), we find the density of the 
energy falling within the frequency interval dffi: 

nw w11 dw 
U(ffi, T)dffi=exp(nw/kT)-1 n2c3 
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whence 

u(w T)=~ 1 
' n2c3 exp (liw/kT)-1 (1.61) 

Using Eq. (1.15), we arrive at the formula 
!iw3 1 I (w, T) = -4- (1 62) n2c2 exp (!iw/kT)-1 • 

Equations (1.61) and (1.62) are called Planck's formula. This 
formula accurately agrees with experimental data throughout the 
entire interval of frequencies from 0 to oo. Function (1.62) satisfies 
Wien's criterion (1.18). Provided that liw/kT ~ 1 (small frequencies 

1./J 
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Fig. 1.15 

or large wavelengths), the exponent exp (liw/kT) may be assumed 
approximately equal to 1 + liw/kT. As a result, Planck's formula 
(1.61) or (1.62) transforms into the Rayleigh-Jeans formula1 [(1.52) 
or (1.53)]. This can also be seen from the fact that when this con­
dition is satisfied, Eq. (1.60) approximately equals kT. 

Transforming Eq. (1.62) in accordance with formula (1.10), we 
get 

(A. T) - 4n21ic2 1 (1 63) 
<p ' - ~~ exp (2.nlic/kTA)-1 · 

Figure 1.15 compares graphs of functions (1.62) and (1.63) plotted 
for the same temperature (5000 K). The logarithmic scales along the 
axis of abscissas have been chosen so that the values of A. and w 
related by the expression A. = 2nc/w have been superposed on one 
another. Examination of the figure reveals that the frequency Wm 

corresponding to a maximum of f (w, T) does not coincide with 
2nc!A.m, where A.m is the wavelength corresponding to the maximum 
of <p (A., T). 
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For the radiant emittance of a blackbody, we get the expression 
00 00 

R* r I ( T) d r !ioo3 dw = J w, w = J 4n1c1 exp (hw/kT) -t 
0 0 

Let us substitute the dimensionless variable x = ftwlkT for w. 
The substitution w = (kT In) x, d(J) = (kT IIi) dz transforms the 
formula for R* as follows: 

00 

R*- _h_ (.!:.'!...)' r x8dz 
- 4n'c2 li J ex-t 

0 

The definite integral in this expression can be calculated. It equals 
n4115 ~ 6.5. Introducing its value, we arrive at the Stefan-Boltz­
mann law: 

n'k' R* = 60clllia T4 =aT,. ( 1.64) 

Substitution in this formula of the numerical values for k, c, and ft 
gives the value of 5.6696 X 10-8 Wl(m2 ·K4)for the Stefan-Boltzmann 
constant that agrees very well with the experimental value (1.17). 

In concluding, let us find the value of the constant in Wien's 
displacement law (1.22). For this purpose, we shall differentiate 
function (1.63) with respect to A. and equate the expression obtained 
to zero: 

d<p (A., T) __ 4n2!ic2 [(2nlic/kTA.) e2nhc/kTA_5 (e2nhc/kT~-1)] _ O 
dA. - A,& (e2nhc/kTA_1)ll -

The values of A. = 0 and A. = oo satisfying this equation correspond 
to minima of the function c:p (A., T). The value of A.m at which the 
function reaches a maximum converts the expression in brackets in 
the numerator to zero. Introducing the notation 2nftc!kTA.m = x, 
we get the equation 

xeX- 5 (ex- 1) = 0 

The solution* of this transcendental 
Hence, 2nftc/kTA.m = 4.965, whence 

2nlic 
TA.m = 4.965k 

equation gives x = 4.965. 

b (1.65) 

Substitution of numerical values for ft, c, and k gives a value for b 
that coincides with the experimentally obtained one (1.23). 

Thus, Planck's formula gives an exhaustive description of equilib­
rium thermal radiation. 

• The solution can be found by the method of consecutive approximations. 
Noting that e5 ~ 1, we can in the first approximation write the equation in 
the form xex - Sex ~ 0, whence x ~ 5. We get the second approximation from 
the equation xe5 - 5 (e& - 1) = 0, etc. 



CHAPTER 2 PHOTONS 

2.1.. Bremsstrahlung 

We learned in the preceding chapter that to explain the proper­
ties of thermal radiation, it was necessary to introduce the notion of 
electromagnetic radiation being emitted in portions of /i(•l. The 
quantum nature of radiation is also confirmed by the existence of a 
short wavelength limit of the bremsstrahlung X-ray spectrum. 

X-rays are produced when solid targets are bombarded with fast 
electrons. An X-ray tube (Fig. 2.1) is an evacuated bulb with several 
electrodes. Cathode C heated by a current is the source of free elec­
trons produced owing to thermoelectronic emission (see Sec. 9.2). 

Cylindrical electrode E is intended for 
focussing the electron beam. Anode A~ 
also called an anticathode, is the tar­
get. It is made from heavy metals 
(W, Cu, Pt, etc.). The electrons ar& 
accelerated by the high voltage set up 
between the cathode and the antica-· 

Fig. 2.1 thode. Virtually the entire energy of 
the electrons is liberated on the anti­

cathode in the form of heat (only from 1 to 3% of the energy is trans­
formed into radiation). This is why the anticathode has to be inten­
sively cooled in powerful tubes. For this purpose, channels are made 
in the body of the anticathode for the circulation of a cooling liquid 
(water or oil). 

If the voltage U is applied between the cathode and the anticathode, 
the electrons are accelerated to the energy eU. Upon getting into 
the substance of the anticathode, the electrons experience strong 
deceleration and become a source of electromagnetic waves. The 
radiant power P is proportional to the square of the charge of an 
electron and the square of its acceleration: 

[see Eq. (15.47) of Vol. II, p. 317]. 
Let us assume th;~t the acceleration of an electron a remains 

constant during the entire duration of deceleration 't. The radiant 
power will therefore also be constant, and during the deceleration 
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period an electron emits the energy 

e2v2 
E = Pr: o:: e2a2r; = --0-

'f 

where v0 is the initial velocity of the electron. 

35 

The result obtained shows that appreciable radiation can be ob­
served only upon sharp deceleration of the fast electrons. A voltage up 
to 50 kV is fed to X-ray tubes. Upon passing through such a poten­
tial difference, an electron acquires a velocity of 0.4c. In a betatron 
(see Sec. 10.5 of Vol. II, p. 224 et seq.) 
electrons can be accelerated to an ener dP 
gy of 50 MeV. The velocity of the elec- ti.2 

trons at such an energy is 0.99995c. 
By directing a beam of electrons accel­
erated in a betatron onto a solid tar-
get, we can get X-rays of a very small 
wavelength. The smaller the wave­
length, the less are the rays absorbed 
in a substance. For this reason, X-rays 
obtained in a betatron have an espe­
cially high penetrability. 

At a sufficiently high velocity of 
the electrons, in addition to brems­
strahlung-braking radiation (i.e. radia­
tion produced by deceleration of the 
electrons), there is also produced char­
acteristic radiation (due to excitation 
of the internal electron shells of the anti-

//=S!JkV 

A min 

Fig. 2.2 

cathode atoms). This· radiation is treated in Sec. 5.11. Now we shall 
be interested only in bremsstrahlung. According to classical electro­
dynamics, when an electron is decelerated, waves of all lengths­
from zero to infinity-should be produced. The wavelength corres­
ponding to the maximum radiant power should diminish with an 
increasing velocity of the electrons, i.e. with an increasing voltage U 
across the tube. Figure 2.2 gives experimental curves showing how 
the power of bremsstrahlung is distributed by wavelengths and 
obtained for different values of U. Inspection of the figure shows that 
the conclusions of theory are mainly confirmed experimentally. 
There is a fundamental deviation, however, from the requirements 
of classical electrodynamics. It consists in that the curves of powe:r 
distribution do not pass to the origin of coordinates, but terminate 
at finite values of the wavelength Am 10 • It has been established exper­
imentally that the short wavelength limit of the bremsstrahlung 
spectrum AmJn is associated with the accelerating voltage U by the 



yuan~um upucs 

relation 
~-min = 12 ~90 (2.1) 

where Amin is in angstroms, and U in volts. 
The existence of the short wavelength limit directly follows from 

the quantum nature of radiation. Indeed, if radiation is produced 
at the expense of the energy lost by an electron when it decelerates, 
then the magnitude of a quantum nw cannot exceed the energy of 
an electron eU: 

nw ~ eU 
Hence, we find that the frequency of radiation cannot exceed the 
value Wmax = eU/n and, consequently, the wavelength cannot be 
smaller than the value 

').., _ 2nc _ (2nlic/e) 
mtn- Wmax - U (2.2) 

We have thus arrived at empirical equation (2.1). The value of n 
found by comparing Eqs. (2.1) and (2.2) agrees quite well with the 
values determined by other methods. Of all the ways of finding n, 
the one based on measuring the short-wave boundary of the brems­
strahlung spectrum is considered to be the most accurate. 

2.2. The Photoelectric Effect 
The photoelectric effect is the name given to the'emission of elec­

trons by a substance under the action of lighL This phenomenon 
was discovered in 1887 by the German physicist Heinrich Hertz. 

I -I -I -I -~lltl_ 
Fig. 2.3 

He noted that the jumping of a spark between 
the electrodes of a discharger is considerably 
facilitated when one of the electrodes is illu­
minated with ultraviolet rays. 

In 1888-1889, the Russian physicist Alek­
sandr Stoletov systematically studied the pho­
toelectric effect with the aid of the arrange­
ment shown schematically in Fig. 2.3. The 
capacitor formed by a wire screen and a solid 
plate was connected in series with galvano­
meter Gin the circuit of a battery. The light 
passing through a screen fell on the solid plate. 

As a result, a current was set up in the circuit that was registered by 
the galvanometer. Stoletov arrived at the following conclusions as 
a result of his experiments: (1) ultraviolet rays have the greatest 
action; {2) the current grows with increasing illumination of the 
plate; and (3) the charges emitted under the action of light have 
a negative sign. 
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Ten years later (in 1898), the German physicist Philipp Lenard 
(1862-1947) and the British physicist Joseph J. Thomson (1856-
1940) measured the specific charge of the particles emitted under 
the action of light and found that these particles are electrons. 

Lenard and other investigators improved Stoletov's arrangement 
by putting the electrodes into an evacuated bulb (Fig. 2.4). The 
light penetrating through quartz* window Q illuminates cathode C 
made from the substance being investigated. The electrons emitted 
as a result of the photoelectric effect move under the action of the 
electric field to anode A. As a result, a photocurrent measured by 

Ur 0 {/ 

Fig. 2.4 Fig, 2.5 

means of galvanometer G flows through the circuit of the arrange­
ment. The voltage between the anode and the cathode can be changed 
with the aid of potentiometer P. 

The volt-ampere characteristic (i.e. the curve showing how the 
photocurrent I depends on the voltage U across the electrodes) ob­
tained in such an arrangement is shown in Fig. 2.5. The characteristic 
is naturally read at a constant light flux <1>. A glance at the curve 
shows that at a certain not very high voltage the photocurrent reaches 
saturation-all the electrons emitted by the cathode reach the anode. 
Hence, the saturation current Is is determined by the number of 
ele~trons emitted by the cathode in unit time under the action of 
light. 

The gentlll slope of the curve indicates that the electrons fly out 
of the cathode with velocities different in magnitude. A fraction of 
the electrons corresponding to the current when U = 0 have veloci­
ties sufficient for them to reach the anode "independently" without 
the aid of the accelerating field. For the current to vanish, the re· 
tarding voltage Ur must be applied. At this voltage, none of the 

• Unlike ordinary glass, quartz transmits ultraviolet rays. . . 
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electrons, even those having the maximum value of the velocity Vro 

when flying out of the cathode, succeed in overcoming the retarding 
field and reaching the anode. We can therefore write that 

1 2 u 2mvm=e r l2.3) 

where m is the mass of an electron. Thus, by measuring the retarding 
voltage U r• we can find the maximum value of the velocity of photo­
electrons. 

By 1~05, it was established that the maximum velocity of photo­
electrons does not depend on the intensity of light, but depends only 
on its frequency-a growth in frequency leads to an increase in 
velocity. The experimentally established relations did not fit into 
the framework of the classical notions. For example, according to 
classir,al conceptions, the velocity of photoelectrons ought to grow 
with the amplitude, and, consequently, with the intensity of the 
electromagnetic wave. 

In 1905, the German physicist Albert Einstein showed that all 
the laws of the photoelectric effect can readily be explained if it is 
assumed that light is absorbed in the same portions Tiro (quanta) in 
which, according to Planck's assumption, it is emitted. Einstein 
postulated that the energy received by an electron is supplied to it 
in the form of a quantum !i(J), which it assimilates completely. Part 
of this energy, equal to the work function A*, goes to allow the 
electron to leave the body. If an electron is freed not at the very 
surface, but at a certain depth, then part of the energy equal to E' 
may be lost owing to chance collisions in the substance. The remain­
ing energy is the kinetic energy E1< of the electron leaving the sub­
stance. The energy Ek will be maximum when E' = 0. In this case 
the equation 

Tiro = ~ :nvin. + A (2.4) 
known as Einstein's formula must be obeyed. 

The photoelectric effect a_nd the work function greatly depend on 
the state of the surface of a metal (in particular, on the oxides and 
adsorbed substances on it). Therefore, for a long time, Einstein's 
formula could not be verified with sufficient accuracy. In 1916, the 
American scientist Robert Millikan designed an apparatus in which 
the surfaces being studied were cleaned in a vacuum, after which 
the work function was measured and the dependence of the maximum 
kinetic energy of photoelectrons on the frequency of the incident 
light was determined (this energy was found by measuring the retard­
ing potential U r)• The results agreed completely with formula (2.4). 

• The smallest amount of energy that must be imparted to an electron 
in order to remove it from inside a solid or liquid body into a vacuum is known 
as the work function of the body {see Sec. 9.1). 
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Introducing the measured values of A and ~ mv~ (for a given oo) 
into formula (2.4), Millikan determined the value of Planck's con­
stant n. It was found to coincide with the values determined from the 
spectral distribution of equilibrium thermal radiation and from the 
short-wave limit of the bremsstrahlung spectrum. 

The method of studying the photoelectric effect was further im­
proved in 1928 by the Soviet physicists P. Lukirsky and S. Prile­
zhaev, who designed an apparatus in the form of a spherical capacitor. 
The silver-coated walls of a spherical glass bulb were the anode in 
their apparatus. The cathode in the form of a sphere was placed at 
the centre of the bulb. Such a shape of the electrodes gives a steeper 
volt-ampere characteristic, which makes it possible to improve the 
accuracy of determining the retarding potential. 

Examination of formula (2.4) reveals that when the work function 
A exceeds the energy of a quantum nro, the electrons cannot leave 
the metal. Hence, for the photoelectric effect to appear, the con­
dition nro ;;;;::, A or 

A 
ro~wo=T (2.5) 

must be satisfied. The condition for the wavelength, accordingly, is 

~ ....- 1 _ 2nhc 
"'""'=::ll.o--A- (2.6) 

The frequency <t)o or the wavelength A.0 is called the photoelectric 
threshold. 

The number of electrons freed owing to the photoelectric effect 
should be proportional to the number of light quanta falling on the 
relevant surface. At -the same time, the light flux <J) is determined 
by the number of light quanta falling on the surface in unit time. 
Accordingly, the saturation current / 8 must be proportional to the 
incident light flux: 

(2.7) 
This relation is also confirmed experimentally. It must be noted 
that only a small part of the quanta transmit their energy to the 
photoelectrons. The energy of the remaining quanta goes to heat 
the substance absorbing the light. 

In the phenomenon of the photoelectric effect considered above, 
an electron receives energy from only a single photon. Such processes 
lire called single-photon ones. The invention of lasers was attended 
by the obtaining of light beam powers unachievable before that time. 
This made it possible to carry out multiple-photon processes. In 
particular, the multiple-photon photoelectric effect was observed. 
In this process, an electron flying out from a n;tetal receives energy 
not from one, but from N photons (N = 2, 3, 4, 5). 
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Einstein's formula can be written as follows for the multiple­
photon photoelectric effect: 

1 
Nliro == 2 mv~ +A (2.8) 

The photoelectric threshold shifts accordingly in the direction of 
longer waves (/,0 grows N times). Formula (2.7) for the N-photon 
effect has the form 

IN ex f!IN (2.9) 
Apart from the external photoelectric effect (which is generally 

called simply the photoelectric effect) treated in this section, there 
also exists the internal photoelectric effect observed in dielectrics 
and semiconductors. It will be discussed in Sec. 9.6. 

2.3. Bothe's Experiment. Photons 

To explain the distribution of energy in the spectrum of equilibri­
um thermal radiation, it is sufficient, as Planck showed, to assume 
that light is only emitted in portions of Jiw. To explain the photoelec­

Fig. 2.6 

tric effect, it is sufficient to assume 
that light is absorbed in the same por­
tions. Einstein, however, went con­
siderably further. He advanced the 
hypothesis that light also propagates 
in the form of discrete particles ini­
tially called light quanta. These par­
ticles were later named photons (this 
term was introduced in 1926). 

The most direct confirmation {of 
Einstein's hypothesis was given by an 
experiment run by the·German physi­
cist Walther Bothe .(1891-1957). Thin 
metal foil F (Fig. 2.6) was placed be­
tween two gas-discharge counters C 
(see Sec. 12.3ofVol.II, p. 240etseq.). 

The foil was illuminated with a weak beam of X-rays under whose 
action it itself became a source of X-rays (this phenomenon is known 
as X-ray fluorescence). Owing to the low intensity of the primary 
beam, the number of quanta emitted by the foil was not great. 
When struck by X-rays, the counter operated and actuated special 
mechanism M that made a mark on moving tape T. If the emitted 
energy propagated uniformly in all directions as follows from wave 
notions, both counters ought to operate simultaneously, and the 
marks on the tape would be opposite one another. Actually, how­
ever, an absolutely chaotic arrangement of the marks is observed. 
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The only explanation is that in individual emission events, parti­
cles of light appear that fly first in one, and then in another direc­
tion. 

Thus, the existence of special particles of light-photons-·was 
proved experimentally. The energy of a photon is determined by its 
frequency: 

E = n(J) (2.10) 

We invite our reader to convince himself that the energy of a photon 
of 1i,(J) = 2.5 eV corresponds to a wavelength of 'A = 5000 A (the green 
part of the spectrum}; when 'A= 1 A, we have 1i,(J) = 12.5 keY. 

An electromagnetic wave has a momentum (soc Sec. 15.5 of Vol. II, 
p. 312 et seq.). Accordingly, a photon must also have a momentum. 
To find the momentum of a photon, let us use the relations of the 
theory of relativity. We shall consider two reference frames K 
and K 1 moving relative to each other with the velocity v0 • We shall 
direct the axes x and X 1 along v 0• Assume that a photon flies in the 
direction of these axes. The energy of the photon in the frames K 
and K 1 is n(J) and 1im 1 , respectively. The frequencies m and (J) 1 are 
related by the expression 

1 1-vo/c 
(j) = (I) --.,-,====-v 1-va/ca 

(see Sec. 21.4 of Vol. II, p. 481 et seq.). Hence, 

E'=E 1-vo/c (2.11} 
Y 1- vfi/c 3 

Let p stand for the momentum of a photon in the frame K, and p1 

for the momentum of a photon in the frame K 1 • It follows fromlcon­
siderations of symmetry that the momentum of a photon must be 
directed along the .+-axis. Therefore, p~ = p, and p~ = p'. In 
passing from one reference frame to another, the energy and momen­
tum are transformed by means of the formula 

El = E-vop~ (2.12} 
V 1-valc3 

[see the last of formulas (8.49) of Vol. I, p. 244; we have replaced ~ 
with its value v0/c and written the formula for the reverse transfor­
mation; in this connection we have changed the sign of v0p~]. In 
the case we are considering, we may substitute p for p~ in Eq. (2.12). 

A comparison of Eqs. (2.11) and (2.12) shows that 

E ( 1 - ~0 ) = E-VoP 

(we have written p instead of p~)· Hence 
E lioo 

p=-c-=-c- (2.13) 
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We showed in Sec. 8.10 of Vol. I, p. 247, that such a relation between 
the momentum and the energy is possible only for particles having 
a zero rest mass and travelling with the speed c. It thus follows 
from the quantum relation E = liro and the general principles of 
the theory of relativity that (1) the rest mass of a photon is zero, 
and (2) a photon always travels with the speed c. This signifies that 
a photon is a special kind of particle differing from particles such 
as an electron and a proton that can exist when travelling at speeds 
less than c and even when at rest. 

Replacing the frequency ro in Eq. (2.13) with the wavelength A., 
we get the following expression for the momentum of a photon: 

li2n 
p=-'A-=Iik (2.14) 

(k is the wave number). A photon flies in the direction of propagation 
of the relevant electromagnetic wave. Therefore, the directions of 
the momentum p and the wave vector k coincide. Equation (2.14) 
·can therefore be written in the vector form: 

p = lik (2.15) 

Assume that a flux of photons falls on a light-absorbing surface 
of a wall and that the photons are flying along a normal to the sur­
face. If the density of the photons is n, then nc photons fall on unit 
surface area in unit time. Each photon when absorbed imparts the 
momentum p = E/c to the wall. Multiplying p by nc, we get the 
momentum imparted to unit surface in unit time, i.e. the pressure fP 
of the light on the wall 

E 
fP =-·nc= En c 

The product En equals the energy of the photons confined in unit 
volume, i.e. the density w of electromagnetic energy. We have thus 
arrived at the formula fP = w, which coincides with the expression 
for the pressure obtained from the electromagnetic theory [see 
Eq. (15.41) of Vol. II, p. 314]. Upon reflection from a wall, a photon 
imparts the momentum 2p to it. Therefore, the pressure for a reflect­
ing surface will be 2w. 

On the basis of the notion of an electromagnetic fteld as a collec­
tion of photons, it is a simple matter to obtain a relation between 
the emissivity of a blackbody and the equilibrium density of radia­
tion. Assume that a unit volume of a cavity filled with equilibrium 
radiation contains dnw photons whose frequency ranges from ro to 
ro + dro. The density of the energy falling to the same interval of 
.frequencies will therefore be 

dulil = u ( ro, T) dro = liro dnlil (2.16) 
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Like the molecules of a gas, the photons fly inside the cavity in 
all directions. Using Eq. (11.23) of Vol. I, p. 303, we get the value 

! c dn00 for the number of photons colliding with a unit surface 

area in unit time. If the wall is a blackbody, it will absorb all these 

photons and, consequently, will receive energy equal to ! liwc dn00 • 

In equilibrium, the blackbody wall will emit the same energy. 
Thus, 

1 f ( w, T) dw = 4 nwc dnw 

A comparison of Eqs. (2.16) and (2.17) shows that 

f(w, T)= ~ u(w, T) 

{compare with Eq. (1.15)]. 

(2.17) 

(2.18) 

We have treated a number of phenomena in this chapter in which 
light behaves like a flux of particles (photons). One must never for­
get, however, that phenomena such as the interferenc.e and diffrac­
tion of light c.an be explained only on the basis of wave notions. 
Thus, light displays corpuscular-wave duality: in some phenomena 
its wave nature manifests itself, and it behaves like an electromag­
netic wave, whereas in other phenomena the corpuscular nature of 
light manifests itself, and it behaves like a flux of photons. We shall 
see in Sec. 4.1 that not only light particles, but also the particles of 
a substance (electrons, protons, atoms, etc.) have corpuscular-wave 
duality. 

Let us find the relation between the wave and the corpuscular 
pictures. We can obtain an answer to this question by considering 
the illumination of a surface from both viewpoints. According to 
wave notions, the illumination at a point of a surface is proportional 
to the square of the amplitude of the light wave. From the corpus­
cular viewpoint, the illumination is proportional to the density of 
the photon flux. Consequently, direct proportionality exists between 
the square of the amplitude of a light wave and the density of a 
photon flux. Energy and momentum are carried by photons. Energy 
is liberated at the point of a surface onto which a photon falls. The 
square of the amplitude of a wave determines the probability of 
a photon falling on a given point of a surface. More exactly, the 
probability of the fact that a photon will be detected within the 
limits of the volume dV containing the point of space being con­
sidered is determined by the expression 

dP = xA 2 dV 

where X = constant of J?roportionality 
A = amplitude of a light wave. 
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It follows from the above that the distribution of photons over 
a surface on which light is falling must have a statistical nature. The 
uniform illumination observed experimentally is due to the fact 
that the density of a photon flux is usually very high. For example, 
at an illumination of 50 lx (such an illumination is needed for the 
eyes not to become tired when reading) and a wavelength of 5500 A, 
.about 2 X 1013 photons fall on one square centimetre of a surface 
in one second. The relative fluctuation* is inversely proportional 
to the square root of the number of particles [see formula ( 11.89) of 
V()l. I, p. 335]. Hence, at this value of the photon flux, the fluctua­
tions are negligible, and the surface appears to be illuminated 
uniformly. 

Fluctuations of weak light fluxes were detected by the Soviet 
physicist Sergei Vavilov (1891-1951) and his collaborators .• They 
found that in the region of its greatest sensitivity (A.= 5550 A) the 
human eye begins to react to light when about 200 photons fall 
on the pupil a second. At such an intensity, Vavilov observed fluctua­
tions of the light flux having a clearly expressed statistical nature. 
True, it must be borne in mind that the fluctuations of the percep­
tion of light observed in Vavilov's experiments were due not only to 
fhu-.tuations of the light flux, but also to the fluctuations associated 
with the physiological processes occuring in the eye. 

2.4. The Compton Effect 

The corpuscular properties of light manifest themselves especially 
dearly in a phenomenon that was named the Compton effect. In 1923, 

the American physicist Arthur Compton 
(1892-1962), investigating the scattering 
of X-rays by different substances, discov­
ered that the scattered rays in addition 
to radiation of the initial wavelength A. 
contain also rays of a greater wavelength 
A.'. The difference L\1.. = A.' - t.. was found 

Cr to depend only on the angle e made by the 
direction of the scattered radiation with 
that of the initial beam. The value of L\A. 

Fig. 2.7 does not depend on the wavelength t.. and 
on the nature of the scattering material. 

Compton's experiment is shown schematically in Fig. 2.7. A nar­
row beam of monochromatic (characteristic) X-ray radiation sepa­
rated by diaphragms D was directed onto scattering material SM. 

* We remind our reader that by relative fluctuations are meant the relative 
deviations of statistical quantities from their mean value. 
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The spectral composition of the scattered radiation was studied with 
the aid of an X-ray spectrograph consisting of crystal Cr and ioniza­
tion chamber /C. 

Figure 2.8 gives the results of studying the scattering of monochro­
matic X-rays (the line Ka* of molybdenum) on graphite. Curve a 
characterizes the primary radiation. The remaining curves relate t() 
different scattering angles e whose values are indicated in the figure. 
The intensity of radiation is laid off along the axis of ordinates, and 
the wavelength along the axis of abscissas. 

Figure 2.9 shows how the relation between the intensities of the­
shifted M and unshifted P components depends on the atomic num­
ber of the scattering substance. The top curve in the left-hand column 

nk' 
characterizes the primary radiation (the­
line Ka of silver). In scattering by sub-

\ stances with a low atomic number (Li, Be, 
',, B), virtually all the scattered radiation 

<?---l.;;...._....::..,"""',;Q---'J'~nk has a shifted wavelength. With an increase-
/ in the atomic number, agreaterandgrea-

p 

_/"_,/ ter part of the radiation is scattered with-
- out a change in the wavelength. 

/ All the features of the Compton effect 

Fig. 2.10 
can be explained by considering scatter­
ing as a process of elastic collision of 
the X-ray photons with practically free­

electrons. Those electrons may be considered free that are bound 
weakest to their atoms and whose binding energy is appreciably 
smaller than the energy which a photon can transmit to an elec­
tron when they collide**. 

Assume that a photon having the energy liw and the momentum 
lik falls on a free electron initially at rest (Fig. 2.10). The energy of 
the electron before the collision was mc2 (here m is the rest mass of 
an electron), and its momentum was zero. After the collision, the­
electron will have the momentum p and an energy equal to 
cV p 2 + m2c2 [see Eq. (8.42) of Vol. I, p. 2421. The energy and 
momentum of the photon will also change and become equal to 
liw' and lik'. Two equations follow from the laws of energy and 
momentum conservation, namely, 

• See Sec. 5.H • 

nw + mc2 = nw, + c v p 2 + m2c2 

nk = p + nk' 

(2.19) 

(2.20) 

.,.. In an elastic collision, a photon cannot transmit all its energy to an 
electron (or another particle). Such a process would violate the laws of conserva­
tion of energy and momentum. 
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Let us divide the first equation by c and write it in the form 

V p2+m2c2 = h(k-k') +me 

(role == k). Squaring yields 

p2= ;,z (k2+k'2-2kk') +2hmc (k-k') (2.21) 

It can be seen from Eq. (2.20) that 

p2 = ;,z (k- k')2 == ;,z (k2 + k'2- 2kk' cos a) (2.22) 

(e is the angle between the vectors k and k'; see Fig. 2.10). 
We find from a comparison of Eqs. (2.21) and (2.22) that 

me (k- k') = hkk' (1 -cos a) 

Multiplication of this equation by 2n and division by mckk' yield 
2n 2n 2nli 

7 -T=m;-(1-cosa) 

Finally, taking into account that 2nlk = A., we arrive at the formula 

where 
LlA. =A.'-· A.= A.c (1- cos 9) 

Ac = 2nli 
me 

(2.23) 

(2.24) 

The quantity Ac determined by Eq. (2.24) is called the Comp­
ton wavelength* of the particle whose mass m we have in mind. 
In the case we are considering, Ac is the Compton wavelength of 
an electron. Substituting for h, m, and c in Eq. (2.24) their val­
ues, we get the following value for A.c of an electron: 

A.c = 0.0243 A (2.25) 
(~c = 0.003 86 A). 

The results of measurements by Compton and of subsequent mea­
surements are in complete agreement with Eq. (2.23) if we use in it 
the value of A.c given by Eq. (2.25). 

When photons are scattered on electrons whose bond to the atom 
is strong, the energy and momentum are exchanged with the atom 
as a whole. Since the mass of an atom is much greater than that of 
an electron, the Compton shift in this case is negligible, and A,' 
practically coincides with A.. An increase in the atomic number is 
attended by a growth in the relative number of electrons with a 
strong bond, and this is why the shifted line is weaker (see Fig. 2.9). 

• The quantity 
li 

lc=­mc 

is also known as the Compton wavelength. 



PART II 

CHAPTER 3 

A'f()MIC PHYSICS 

TilE BOHR THEORY 
OF THE ATOM 

3.1. Regularities in Atomic Spectra 

The radiation of atoms that do not interact with one another con­
sists of separate spectral lines. The emission spectrum of atoms is 
accordingly called a line spectrum. Figure 3.1 shows an emission 
spectrum of mercury vapour. The spectra of other atoms have the 
same nature. 

The studying of atomic spectra served as a key to cognition of the 
structure of atoms. It was noted first of all that the lines in the spec­
tra of atoms are arranged not chaotically, but are combined into 
groups/or, as they are called, series of lines. This is revealed most 
clearly in the spectrum of the simplest atom--hydrogen. Figure 3.2 
shows a part of the spectrum of atomic hydrogen in the visible and 
near ultraviolet region. The symbols Ha., H 131 H.,, and H 6 desig­
nate the visible lines, and H oo shows the limit of the series (see be­
low). The lines are evidently arranged in a definite order. The distance 
between the lines regularly diminishes upon passing from longer 
waves to shorter ones. 

In 1885, the Swiss physicist Johann Balmer (1825-1898) discovered 
that the wavelengths of this series of hydrogen lines can be accurately 
represented by the formula 

nl 
'-=A.o n2 _ 4 (3.1) 

where A.0 = constant 
n = integer taking on values of 3, 4, 5, etc. 

If we pass ovet· from the wavelength to the frequency in Eq. (3.1), 
we get the formula 

ro= R ( -~-- ;, ) (n=3, 4, 5, ••• ) (3.2) 

where R is a constant called the Rydberg constant in honour of the 
Swedish spectroscopist Johannes Rydberg (1854-1919). It equals 

R ==· 2.07 x 1016 rad/s (3.3) 
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Formula (3.2) is known as the Balmer for­
mula*, and the corresponding series of spectral 
lines of the hydrogen atom is known as the 
Balmer series. Further investigations showed 
that there are some other series in the hydrogen 
spectrum. The extreme ultraviolet part of the 
spectrum contains the Lyman series. The re­
maining series are in the infrared region. The 
lines of these series can be represented in the 
form of formulas similar to formula (3.2): 

Lyman series w = R ( 112 - 1~2 ) 

(n = 2, 3, 4, ... ) 

Paschen series w = R ( ;a - :. ) 
(n = 4, 5, 6, .•• ) 

Brackett series w = R ( 4~ - n11 ) 

(n=5, 6, 7, ... ) 

Pfund series w = R ( 5~ - :a ) 
(n = 6, 7, 8, .•• ) 

The frequencies of all the hydrogen atom 
spectrum lines can be represented by a single 
formula: 

w=R (-1 ___ 1 \ 
m 2 na I (3.4) 

* It is customary practice in spectroscopy to char­
acterize spectrum lines not by the frequency, but by 
the quantity 

, 1 (J) 

v =x= 2nc 

that is the reciprocal of the wavelength and is 
called the wave number (do not confuse it with the 
wave number k = 2rr.ll. = ro/c). The Balmer formula 
written for the wave number has the same form as 
Ea. (3.2): 

v' = R (-1---1 ) (n=3, 4, 5, •• ,) 21 n2 

The Rydberg constant in this case has tile value 

R = 109 737.309 ± 0.012 cm-1 

The number of authentic significant digits character­
izes the accuracy of measurements achieved in spec­
troscopy. The value of the constant in Eq. (3.3) has 
been rounded off to the third digit. 

49 

{
57.90. 71 

.....,_.....,- 5'16.9.8 

......... _ .7480.7 

-1/Jl/10 

.......,_ 4858.J 

/ 1!777.!! 

-- 4!7456' 
::::;:;: - .J!/!75, 4 

, .Joti2..9 

--~{.1654,/J 
.1850.2 

Fig. 3.1 



50 Atomic Physics 

where m has the value of 1 for the Lyman series, of 2 for the Balmer 
series, etc. At a given m, the number n takes on all integral values 
beginning from m + 1. Equation (3.4) is called the generalized Bal .. 
mer formula. 

When n grows, the frequency of the lines in each series tends to a 
limit value Rlm2 called the series limit (in Fig. 3.2 the symbol H.,.. 
indicates the limit of the Balmer series). 

Let us take a number of values of the expression T (n) = R/n2 : 

R R R 
(3.5) 

The frequency of any hydrogen spectrum line can he represented in 
the form of the difference between two numbers of series (3.5). These 

0-q;: 

~ ~ "':, t--,. 
S\i ., .. s:::; "' ~ "' ""' ~ 
'<'; ~ ~ ~ 
I I I 

I I II· 
~I I. 
lt;. 

... I< 
I I ':·. : 

' 
h'a Hp Hl' flo f/<o 

Fig. 3.2 

numbers are called spectral terms or simply terms. For example, the 
frequency of the first line 'of the Balmer series is T (2) - T (3), 
and of the second line of the Pfund series is T (5) - T (7). 

Studying of the spectra of other atoms showed that the frequencies 
of the lines in this case too can be represented as the differences be­
tween two terms: 

oo = T 1 (m) - T 2 (n) (3.6) 

But the term T (n) usually has a more complicated form than for the 
hydrogen atom. In addition, the first and second terms of formula 
(3.6) are taken from different series of spectral terms. 

3.2. The Thomson Model of the Atom 

According to classical notions, an atom could emit a monochroma­
tic wave (i.e. a spectral line) when an electron in the emitting atom 
performs harmonic oscillations, and, consequently, is retained near 
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its equilibrium position by a quasi-elastic force of the kind F = -kr, 
where r is the deviation of the electron from its equilibrium position. 
In 1903, J. J. Thomson suggested a model of an atom according to 
which an atom is a sphere uniformly filled with positive electricity, 
and there is an electron inside the sphere (Fig. 3.3). 
The total positive charge of the sphere equals the 
charge of an electron, so that the atom as a whole 
is neutral. 

The strength of the field inside a uniformly 
charged sphere is determined by the expression* 

E (r) = ~a r (O~r~R) 

where e is the charge of the sphere and R is its radius 
[see Eq. (1.125) of Vol. II, p. 60]. Hence, the fol-

Fig. 3.3 

lowing force will be exerted on an electron at the distance r from its 
equilibrium position (from the centre of the sphere): 

e2 
F=(-e) E= -Ra r= -kr 

In such conditions, the electron, brought out of its equilibrium 
position in some way or other, will oscillate with the frequency 

/ T v--;r <il=l -= -m mRS (3.7) 

(e is the charge of an electron, m is the mass of an electron, and R 
is the radius of the. atom). This equation can be used to assess the 
size of an atom. By Eq. (3. 7) 

R= (~)1/3 
mw2 

A frequency ,of <il :::::::: 3 X 1015 rad/s corresponds to a wavelength 
of ')... = 6000 A (the visible part of the spectrum). Therefore, 

( 4.82 X 1Q-20 ) 1/3 3 Q-8 
R = 0.91 x fQ-27 x 32 x toao :::::. X 1 em 

The value obtained coincides in the order of its magnitude with the 
gas-kinetic dimensioqs of atoms, which could have been considered 
as a confirmation of the Thomson model. Later, however, the un­
foundedness of this model was established, and at present it is 
only of historical interest as one of the links in the chain of develop­
ment of our notions on the structure of atoms. 

• We shall use the Gaussian system of units here and further in this vol­
ume. 
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3.3., Experiments in Scattering Alpha-Particles. 
The Nuclear Model of the Atom 

The distribution of positive and negative charges in an atom can 
be revealed by direct experimental "sounding" of its internal regions. 
Such sounding was performed by the British physicist Ernest Ruther­
ford (1871-1937) and his collaborators with the aid of alpha-particles 
by watching the change in the direction of their flight (scattering) 
when passing through thin metal foils. 

We remind our reader that alpha-particles are particles emitted 
by some substances in radioactive decay. The speeds of these par­

Fig. 3.4 

ticles are of the order of 109 cm/s. 
When Rutherford began to run his 
experiments, it was known that 
alpha-particles have a positive 
charge equal to twice the elemen­
tary charge, and that upon losing 
this charge (with the attachment 
of two electrons) an alpha-particle 
transforms into a helium atom. 

The experiments were conduct­
ed as follows (Fig. 3.4). A narrow 
beam of alpha-particles emitted 
by radioactive substance R and 

separated by an aperture fell on thin metal foil F. In passing through 
the foil, the particles were deflected from their initial direction of 
motion through various angles e. The scattered particles struck screen 
Sc coated with zinc sulphide, and the scintillations* they produced 
were observed in microscope M. The microscope and the screen could 
be rotated about an axis passing through the centre of the scattering 
foil and could thus be positioned at any angle e. The entire apparatus 
was placed in an evacuated housing to exclude scattering of the 
alpha-particles due to collisions with air molecules. 

Some of the alpha-particles were found to become scattered through 
very great angles (almost up to 180 degrees). Upon analysing the 
results of the experiments, Rutherford arrived at the conclusion that 
such a large deflection of the alpha-particles is possible only if there 
is·an exceedingly strong electric field inside the atom that is produced 
by a charge associated with a large mass and concentrated in a very 
small volume. On the basis of this conclusion, Rutherford in 1911 
proposed a nuclear model of the atom. According to Rutherford, 
an atom is a system of charges at whose centre there is a heavy posi­
tive nucleus of charge Ze having dimensions not exceeding 10-12 em, 

* By a scintillation is meant a flash of light produced by charged particles 
when they collide with a substance capable of luminescence. 
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while around the nucleus there are Z electrons distributed through­
out the entire volume occupied by the atom. Almost the entire mass 
of the atom is concentrated in its nucleus. 

On the basis of these assumptions, Rutherford developed a quanti­
tative theory of alpha-particle scattering and derived a formula for 
the distribution of the scattered particles by the values of the angle e. 
In deriving this formula, he reasoned as follows. The deflections of 
the alpha-particles are due to the action of the atomic nuclei on 
them. There cannot be a noticeable deflection because of interaction 

(a) 

Fig. 3.5 

with electrons since the mass of an electron is four orders of magni­
tude smaller than that of an alpha-particle. When a particle flies 
near a nucleus, it experiences the Coulomb force of repulsion 

2Ze' 
F=-2-r (3.8) 

In this case, the trajectory of the particle is a hyperbola (see Vol. I, 
pp. 116-7). Let e stand for the angle between the asymptotes of the 
hyperbola (Fig. 3.5). This angle characterizes the deflection of the 
particle from its initial direction. The distance b from the nucleus 
to the initial direction of flight of an alpha-particle is called the 
impact parameter. The closer the trajectory of a particle approaches 
the nucleus (the smaller is b), the more, naturally, it is deflected 
(the greater is 8). There is a simple relation between b and 0 which 
we shall now establish. 

It follows from the law of energy conservation that at a consider­
able distance from a nueleus the magnitude of the momentum p 
of a scattered particle will be the same as the magnitude of the 
momentum p0 before scattering: p = p 0 • Consequently (see Fig. 3.5b), 
we can write tlle following expression for the magnitude of the incre­
ment of a particle's momentum vector produced as a result of scatter-
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ing: 

I f1p I= 2po sin ~ = 2ma.v sin ~ 
where ma. = mass of an alpha-particle 

v = its initial velocity. 

(3.9) 

At tne same time according to Newton's second law, we have 

f1p = ~ F dt 

Projecting the vectors in this equation onto the direction of ~p, 
we get 

I t1p/ = ~ Ft.p dt (3.10) 

A glance at Fig. 3.5a shows that the projection of the force F onto 
the direction of the vector ~pis F cos 'P· The angle 'P can be replaced 
by the polar angle cp and the angle of deflection e: 

Hence, 

n e 
'P=2-2-cp 

F t.p = F cos 'i' = F sin ( cp + ~ ) = 2~2e1 sin ( cp + ~ ) 
Using this expression in Eq. (3.10) and simultaneously substituting 

dcpl~ for dt, we obtain 
a-e 

I~P/=2Ze2 r sin(rp+~/2)drp (3.11) 
~ r2q> 

The expression r2~ equals Mlma, where M is the magnitude of 
the angular momentum of the alpha-particle taken relative to the 
scattering nucleus [see Eq. (3.123) of Vol. I, p. 114; in the present 
volume we have denoted the angular momentum by M instead of L 
for convenience]. The force experienced by the alpha-particle is a 
central one. The angular momentum M therefore remains constant 
all the time and equal to its initial value M 0 = mavb. After re-. 
placing r2cp with vb, the integral in Eq. (3.11) is calculated quite 
easily: 

n-9 
2Ze2 f . ( e ) 2Ze~ e I ~pI= ----vb J sm cp + 2 dcp = ---;r;- 2 cos 2 (3.12) 

0 

A comparison of Eqs. (3.9) and (3.12) shows that 
. e 2Ze2 e 

2ma.v sm 2 =Iii) 2 cos 2 
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Hence* 
e mav2 

cot2 = 2Ze' b (3.13) 

Let us consider a thin layer of the scattering substance such that 
each particle when passing through it would fly near only one nucleus, 
i.e. that each particle will be scattered only once. To experience 
scattering through an angle within the limits from e toe + de, a par­
ticle must fly near a nucleus along 
a trajectory whose impact para­
meter is within the limits from b 
to b + db (Fig. 3.6), de and db, 
as can be seen from Eq. (3.13), 
being related by the expression 

~di/~\ ,.,, ,, 
_, tl I ....-: ...,._ I \ 

~ "\ ., ,I 
_/I ,, :\ 

If II 
I II 

1 dB mav2 
sin' (B/2) T = 2Ze' db 

I 11 
'"'-..,_ II II 

-......... I I II 

(3.14) 
,-...,._ I I II 

....,,..._,I I II 

The minus sign in this equation is 
due to the fact that the angle of 
deflection diminishes (de < 0) 

Fig. 3.6 

.... ,4"''' ''\.j 

with increasing b (i.e. at db> 0). In the following, we shall be 
interested only in the absolute value of db as a function of e and de, 

Fig. 3.7 

and we shall therefore omit the minus sign. 
Let us denote the cross-sectional area of a 

beam of alpha-particles by S. Hence, the 
number of atoms of the scattering foil in the 
path of the beam can be represented in the 
form nSa, where n is the number of atoms in 
unit volume, and a is the thickness of the 
foil. If the alpha-particles are distributed 
uniformly over the cross section of the beam 
and their number is very great (which is 
actually the case), then the relative number 
of alpha-particles flying near one of the 
nuclei along a trajectory with an impact pa­

rameter from b to b +db (and, consequently, deflected within the 
limits of angles from e to e + dEl) will be (see Fig. 3. 7): 

dN 9 nSa·2nb db 
-r= s na2nbdb (3.15) 

In this expression, dN9 is the flux of particles scattered within the 
limits of angles from e to 6 + de, and N is the total flux of particles 
in the beam. 

• The derivation of formula (3.13) given above belongs to I. E. Irodov. 
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Using 0 and de in Eq. (3.15) instead of band db in accordance with 
Eqs. (3.13) and (3.14), we get 

dNa ( 2Ze1 ) 2 9 t d9 
~ = na mav' 2n cot 2 sin2 (9/2) 2 

We transform the multipliers containing the angle e: 
cot (9/2) cos (9/2) sin (8/2) sin 8 
sin2 (8/2) sin4 (8/2) = 2 sin' (lj/2) 

With account of this transformation 

dN o ( 2Ze2 ) 2 2rt sin 8 d8 --=na --
N mav2 4 sin4 (8/2) 

The expression 2n sin e de gives the solid angle dQ confining the 
directions corresponding to scattering angles from 0 to 0 + dO. We 
can therefore write: 

dNa ( Ze2 )2 dQ 
~ = na mav2 sin4 (8/2) (3.16) 

We have obtained the Rutherford formula for the scattering of. 
alpha-particles. In 1913, Rutherford's collaborators verified this 
formula by counting the scintillations observed at different angles 6 
during identical time intervals. In the conditions of the experiment 
(see Fig. 3.4), the alpha-particles confined within the same solid 
angle were counted (this angle was determined by the area of screen 
Sc and its distance from the foil). Hence, the number of scintillations 
observed at different angles should be, according to the Rutherford 
formula, proportional to 1/[sin4 (0/2)]. This result of theory was 
confirmed quite well experimentally. The dependence of the scatter­
ing on the thickness of the foil and the speed of the alpha-particles 
was also found to agree with formula (3.16). 

The truth of the theory proceeding from the Coulomb interaction 
between an alpha-particle and the nucleus of an atom indicates that 
even an alpha-particle thrown back in the opposite direction does 
not penetrate into the region occupied by the positive charge of the 
atom. At the same time, an alpha-particle flying exactly in the 
direction of a nucleus would approach its centre up to a distance that 
can be determined by equating the kinetic energy of the alpha­
particle to the potential energy of interaction of the particle with 
the nucleus at the moment when the particle comes to a full stop: 

mavl 2Ze2 
-2 - = -;:;:;;t; 

(rm1n is the mm1mum distance between the centres of the alpha­
particle and of the nucleus). Assuming that Z = 47, v = 109 cm/s. 
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and me = 4 X 1.66 X 10-24 = 6.6 X 10-14 g, we get 
4Ze' 4X47x4.81 x1o-ao 

rmtn ~ mava = 6.6x1o-ux1ou ~ 6 X 10-12 em 

Thus, the results of experiments involving the scattering of alpha­
particles are witnesses in favour of the 
nuclear model of the atom presented by 
Rutherford. But the nuclear model contra­
dicted the laws of classical mechanics and 
electrodynamics. Since a system of station­
ary charges c.annoi. be in a stable state, 
Rutherford had to renounce the static model 
of the atom and assume that the electrons 
travel about the nucleus along curved tra­
jectories. In this case, however, an electron 
would travel with acceleration. ConsequE\nt- Fig. 3.8 
ly, according to classical electrodynamics, 
it must continuously emit electromagnetic (light) waves. The process 
of emission is attended by the loss of energy, so that the electron in 
hte long run should fall onto the nucleus (Fig. 3.8). 

3.4. Bohr's Postulates. 
The Franck-Hertz Experiment 

We found in the preceding section that the nuclear model of the 
atom in combination with classical mechanics and electrodynamics 
was incapable of explaining the stability of an atom and the nature 
of an atomic spectrum. A way out of this impasse was found in 1913 
by the Danish physicist Niels Bohr (1885-1962), true, at the price 
of introducing assumptions that contradicted the classical notions. 
The assumptions made by Bohr are contained in his following two 
postulates. 

1. Among the infinite multitude of electron orbits possible from 
the viewpoint of classical mechanics, only several discrete orbits 
satisfying definite quantum conditions are actually encountered. An 
electron in one of these orbits does not emit electromagnetic waves 
(light) although it travels with acceleration. 

2. Radiation is emitted or absorbed in the form of a quantum of 
light energy liw when an electron transfers from one stationary (stable) 
state to another. The magnitude of a light quantum equals the differ­
ence between the energies of the stationary states between which the 
quantum jump of the electron is performed: 

li<ll = En - Em (~.17) 

The existence of discrete energy levels of an atom was confirmed 
by experiments run in 1914 by the German physicists James Franck 
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(1882-1964) and Gustav Hertz (born 1887). A schematic view of their 
apparatus is shown in Fig. 3.9a. A tube filled with mercury vapour 
at a low pressure (about 1 mmHg) contained three electrodes, name-

Cr A 

(a) (/;) 
Fig. 3.9 

ly, cathode C, grid Gr and anode A. The electrons flying out of the 
cathode owing to thermionic emission were accelerated by the poten­
tial difference U applied between the cathode and the grid. The poten-

tial difference could be smoothly varied 
I with the aid of potentiometer P. A weak 

electric field (a potential difference of the 
order of 0.5 V) was set up between the 
grid and the anode that retarded the mo­
tion of the electrons to the anode. Fig­
ure 3.9b shows the change in the potential 
energy of an electron EP = -ecp in the 
space between the electrodes at different 
values of the voltage U between the cath­
ode and the grid (<p is the potential at 
the corresponding point of the field) . 

.0 4.9 !!.8 14.7 tl, V The relation between the current I in 
the anode circuit and the voltage U be-

Fig. 3.10 tween the cathode and the grid was studied. 
The current and the voltage were mea­

sured by galvanometer G and voltmeter V, respectively. The results 
obtained are shown in Fig. 3.10. It can be seen that the current first 
monotonously increased, reaching a maximum at U = 4.9 V, after 
which it sharply dropped with a further growth in U, reaching a 
minimum, and then again began to increase. Maxima of the current 
repeated at U equal to 9.8, 14.7 V, etc.*. 

• Maxima were actually obtained at voltages of 4.1, 9.0, 13.9 V, etc., 
which is explained by the presence of a contact potential difference of the order 
of 0.8 V between the electrodes. 
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Such a shape of the curve is explained by the fact that owing to 
the discrete nature of their energy levels, atoms can absorb energy 
-Qnly in portions of 

!1E1 = K~.- EI> or !1E2 = E 8 - EI> etc. 

where E1 , E 2 , Ea, •.. are the energies of the 1st, 2nd, 3rd, etc. 
stationary states. 

As long as the energy of an electron is smaller than !1E1, the colli­
sions between an electron and a mercury atom are of an elastic 
nature; since the mass of an electron is many times smaller than 
that of a mercury atom, the energy of an electron does not virtually 
ehange in the collisions. A part of the electrons get caught on the 
grid, while the remaining ones pass through the grid and reach the 
anode, producing a current in the circuit of galvanometer G. The 
-greater the velocity with which the electrons reach the grid (the higher 
is U), the larger will be the fraction of the electrons passing through 
the grid and, consequently, the higher will be the current I. 

When the energy accumulated by an electron in the space between 
the cathode and the grid reaches the value !1E1 , the collisions stop 
heing elastic-the electrons when they collide with the atoms trans­
fer the energy !1E1 to them and then continue their motion with a 
lower velocity. Therefore, the number of electrons reaching the anode 
diminishes. For example, at U = 5.3 V, an electron transfers to an 
atom an energy corresponding to 4.9 V (the first excitation potential 
of a mercury atom) and continues to travel with an energy of 0.4 eV. 
Even if such an electron does get between the grid and the anode, 
it will not be able to overcome the retarding voltage of 0.5 V and 
will be returned to the grid. 

The atoms that upon colliding with electrons receive an energy of 
!1E1 pass over into .an excited state, from which after a time of the 
order of 10-8 s elapses they return to their ground state, emitting a 
photon having the frequency ffi = !1E11n. 

At a voltage exceeding 9.8 V, an electron along its path from the 
(:athode to the anode may undergo an elastic collision with mercury 
atoms twice, losing an energy of 9.8 eV. As a result, the current I 
will again begin to fall. At a still higher voltage, three inelastic 
collisions of an electron with atoms are possible, which leads to the 
appearance of a maximum at U = 14.7 V, and so on. 

At a sufficiently high rarefaction of the mercury vapour and the 
corresponding magnitude of the accelerating voltage, the electrons 
during the time before they collide with atoms may acquire a velocity 
high enough to transfer an atom to a state with the energy Ea. In 
this case, maxima are observed on the curve I = f (U) at voltages 
that are multiples of the second excitation potential of an atom (this 
potential is 6. 7 V for mercury), or at voltages equal to the sum of 
the first and second excitation potentials, etc. 
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Thus, the Franck-Hertz experiments directly detect the existence 
of discrete energy levels in atoms. 

In spectroscopy, the frequencies of spectral lines are customarily 
represented in the form of the difference between positive numbers 
T (n) called terms (see the next to last paragraph of Sec. 3.1). For 
example, for hydrogen, T (n) = Rln2• Accordingly, the frequency of 
the photon emitted in a transition from state n to state m is deter­
mined by the formula 

R R 
(J)nm=T(m)-T(n)=-2 --2 (n>m) m n 

[see formula (3.4)). 
According to Bohr's second postulate 

(J)nm= En-;Em = { _ E;) _ { _ E1t) 

(3.18) 

(we remind our reader that the energies of bound states of an electron 
are negative, so that the expressions in parentheses are greater than 
zero). Comparison with formula (3.18) shows that 

T(n)=-~n (3.19) 

Thus, the term is closely associated with the energy of a stationary 
state of an atom, differing from it only in the factor ( -1/li). 

3.5. Rule for Quantization of Circular Orbits 

Bohr obtained the condition for stationary orbits proceeding from 
Planck's postulate according to which only such states of a harmonic 
oscillator are possible whose energy is 

En = n/i(J) (n is an integer) (3.20) 

Let us denote the coordinate of the oscillator by q and its momen­
tum by p. The total energy of an oscillator is determined by the ex­
pression 

Pz mw2q2 
E =-+--=nliro n 2m 2 

Hence, 
q2 pt 1 

2nh/mo> + 2mnlio> 
(3.21) 

The coordinate plane q, p is called a phase plane, and a curve in 
this plane determining p as a function of q for a given motion is 
called a phase trajectory. It can be seen from Eq. (3.21) that the 
phase trajectory of a harmonic oscillator is an ellipse (Fig. 3.11). 
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The semiaxes of the ellipse are 

a= .. / 2nli 
V mw' b = V 2mnliw 
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The area of the ellipse equals the product of the semiaxes multiplied 
by :rt: 

s n = nab = 2nlin 

The area can also be represented in the form 

Sn = ~ p dq 

(3.22) 

(3.23) 

(in integration, the entire ellipse is circumvented; see Fig. 3.11). 
The rule for quantization follows from a comparison of Eqs. (3.22) 

and (3.23): 1/ )• ~· 
~ p dq = 2nlin 11 ·~ 'lJ r ~·· (3.24) 

Bohr extended rule (3.24) obtained for a harmonic oscillator to 
• 

other mechanical systems. For an oscillator, q = x, p = mx. For 

Fig. 3.H Fig. 3.12 

other systems, q is meant to be a generalized coordinate*, and p 
the generalized momentum. 

For an electron travelling around a nucleus in a circular orbit, it 
is natural to take the azimuthal angle <p (Fig. 3.12) as the generalized . 
coordinate. Here, the generalized velocity will be <p. We know 
that in rotation the part of the linear velocity passes over to the . 
angular velocity <p, and the part of the mass to the moment of inertia 
m 6r 2 (where m6 is the mass of an electron). The generalized momentum 
is accordingly m6r2~ = mevr. The latter expression determines the 
conventional angular momentum M taken relative to the nucleus. 
Thus, for an electron travelling in a circular orbit, condition (3.24) 

• By generalized coordinates are meant any quantities with whose aid it 
is possible to set the position of a system in space. 
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has the form 

~ M dcp = 2nlin (3.25) 

The force which ·the nucleus exerts on the electron is a central 
one. Consequently, M = const, and the left-hand side of Eq. (3.25) 
is 2nM. We therefore arrive at the condition 

M = nli (3.26) 

Thus, according to Bohr's condition, of all the orbits of an electron 
possible from the viewpoint of classical mechanics, only those are 
actually encountered for which the angular momentum equals an 
integral multiple of Planck's constant li. 

3.6. The Elementary Bohr Theory 
of the Hydrogen Atom 

According to Eq. (3.26}, only such orbits are possible for which 
the angular momentum of an electron mevr satisfies the condition 

mevr = nli (n = 1, 2, 3, ••. ) (3.27) 

The number n is called the principal quantum number. 
Let us consider an electron moving in the field of an atomic nucleus 

with the charge Ze. When Z = 1, such a system correspond~ to 
a hydrogen atom, at other values of Z, to a hydrogen-like ion, i.e. 
to an atom with the atomic number Z from whiah all the electrons 
except one have been removed. The equation of motion of the elec­
tron has the form 

(3.28) 

Deleting v from Eqs. (3.27) and (3.28), we get an expression for 
the radii of the allowed orbits: 

ftl rn=-z 2 nz (n=1, 2, 3, ... ) (3.29) 
me e 

The radius of the first orbit of the hydrogen atom is known as the 
Bohr radius (it is customarily designated by the symbol r 0 or a0 

instead of r1). Its value is 
ftB o 

r0 = - 1 = 0.529 A (3.30) 
mee 

We shall note that the Bohr radius has a value of the order of the 
gas-kinetic dimensions of an atom. 

The internal energy of an atom consists of the kinetic energy of 
the electron (the nucleus is stationary) and of the energy of inter-
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action of the electron with the nucleus 

E= mev2- Ze2 
2 r 

It follows from Eq. (3.28) that 

Hence, 

mev2 Ze2 

-2-=Tr 

Ze2 Ze2 Ze2 
E=---=--2r r 2r 
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Using Eq. (3.29) for r in this expression, we shall find ·the allowed 
values of the internal energy of an atom: 

(n = 1, 2, 3, ... ) (3.31) ----------£ = 0 

The energy levels determined by formula (3.31) 
are shown schematically in Fig. 3.13. 

When a hydrogen atom (Z = 1) pasS{)§..fu!ll 
the stat~ n to the state rn:. a photon is emitted 

liw=E -E = --- ---mee 4 ( 1 1 ) 
n m 2/i2 n2 m2 

The frequency of the emitted light is 

mee 4 ( 1 1 ) 
w = "2/i3 ~ - na 

We have arrived at the generalized Balmer for­
mula [see Eq. (3.4)], the following value being 
obtained for the Rydberg constant: 

(3.32) 

When we introduce the numerical values of 
me, e, and 1i into Eq. (3.32), we get a quantity 
that strikingly well agrees with the experimental 
value of the Rydberg constant. 

----£.] 

-----£?. 

----Et 
Fig. 3.13 

Bohr's theory was a major step in the development of the theory 
of the atom. It showed very clearly the impossibility of applying 
classical physics to intra-atomic phenomena and the predominate 
significance of the quantum laws in the microworld. 

The elementary theory which we have treated was subjected to· 
further development and clarifications with which we shall not 
acquaint our reader because at present Bohr's theory has mainly 
a historical significance. After the first successes of the theory, its 
shortcomings began to stand out more and more. Especially distress-
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ing was the failure of all attempts to construct a theory of the helium 
atom-one of the simplest atoms directly following the hydrogen 
atom in Mendeleev's periodic table of elements. 

The weakest aspect of the Bohr theory underlying its subsequent 
failures was its internal logical contradiction: it was neither a con­
sistent classical theory nor a consistent quantum one. After the dis­
covery of the wave properties of matter, it became absolutely clear 
that the Bohr theory, based on classical mechanics, could be only 
a transition step on the path to the creation of a consistent theory of 
atomic phenomena. 



CHAPTER 4 ELEMENTS OF 
QUANTUM MECHANICS 

4.1. De Broglie's Hypothesis. 
Wave Properties of Matter 

The inadequacy of Bohr's theory pointed to the necessity of revis­
ing the fundamentals of the quantum theory and the notions on 
the nature of microparticles (electrons, protons, etc.). The question 
arose as to how exhaustive is our notion of an electron as of a tiny 
mechanical particle characterized by definite coordinates and a defi­
nite velocity. 

As a result of the broadening of our notions on the nature of light, 
it was found that a peculiar dual nature was detected in optical 
phenomena. In addition to such properties of light that in the most 
direct way point to its wave nature (interference, diffraction), there 
are other properties that just as directly reveal its corpuscular nature 
(the photoelectric effect, the Compton effect). 

In 1924, the French physicist Louis de Broglie (born 1892) put 
forth a bold hypothesis that duality is not a feature of only optical 
phenomena, but has a universal significance. "In optics", he wrote, 
"the corpuscular way of treatment was neglected too much during 
a whole century; wasn't the opposite error made in the theory of 
matter?" Assuming that particles of matter have wave properties 
in addition to corpuscular ones, de Broglie transferred to the case 
of matter particles the same rules of transition from one picture 
to another that hold for light. A photon has the energy 

and the momentum 
E = liw 

2n1i 
p=~ 

De Broglie assumed that the motion of an electron or some other 
particle is associated with a wave process whose wavelength is 

A.=~= 2n1i (4.1) 
p mv 

and whose frequency is 

(4.2) 

De Broglie's hypothesis was soon confirmed experimentally. 
In 1927, the American physicists Clinton Davisson (1881-1958) 
and Lester Germer (born 1896) studied the reflection of electrons 
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from a monocrystal of nickel belonging to the cubic system. A narrow 
beam of monoenergetic electrons was directed onto the surface of 
the monocrystal polished at right angles to the major diagonal of 
a crystal cell [the crystal planes parallel to this surface are designated 
by the indices (111) in crystallography; see Sec. 6.11. The reflected 

electrons were trapped by a cylindrical elec­
trode connected to a galvanometer (Fig. 4.1). 
The intensity of the reflected beam was as­
sessed according to the current flowing through 
the galvanometer. The velocity of the electrons 
and the angle cp were varied. Figure 4.2 shows 
how the current measured by the galvanome­
ter depends on the angle q:> at different ener-

Fig. 4.1 gies of the electrons. The vertical axis in the 
graphs determines the direction of the incident 

beam. The current in a given direction is represented by the length of 
a line drawn from the origin of coordinates to its intersection with the 
curve. A glance at the figure shows that scattering is especiaHy 

'IBV 5"1V !!BY 

Fig. 4.2 

intensive at a definite value of the angle (jl. This angle corresponds 
to reflection from the atomic planes whose spacing d was known from 
X-ray investigations. At a given value of q>, the current was espe­
cially strong at an accelerating voltage of 54 V. The wavelength 
corresponding to this voltage and calculated by Eq. (4.1) is 1.67 A. 
The Bragg wavelength corresponding to the condition* 

2d sine = n"A 
was 1.65 A. The coincidence is so striking that the Davisson-Germer 
experiments must be acknowledged as a brilliant confirmation of 
de Broglie's idea. 

• The slip angle e is related to the angle <p by the expression 
n q> 

0=2-2 
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In 1927, the British physicist George Thomson (born 1892) and 
independently of him the Soviet physicist Pyotr Tartakovsky 
obtained a diffraction pattern when an electron beam was passed 
through a metal foil. The experiment was run as follows (Fig. 4.3), 
A beam of electrons accelerated by a potential difference of the 

FoiL 
Photographlc 

... -:::~plate 
--..... -~:-­

''::::"~-Electron 
beam 

Fig. 4.3 

.... 

order of several scores of kilovolts was 
passed through a thin metal foil and 
impinged on a photographic plate. An 
electron colliding with the photograph­
ic plate has the same action on it as 
a photon. The electron-diffraction pat­
tern of gold obtained in this way 
(Fig. 4.4a) is compared with an X-ray 
diffraction pattern of aluminium (Fig. 
4.4b) obtained in similar conditions. 
The similarity of the two patterns is 
staggering. The German physicist Otto Stern (1888-1969) and his 
collaborators showed that diffraction phenomena areal~ det6C'Wd in 
atomic and molecular beams. In all the cases listed above, the diffrHC­
tion pattern corresponds to the wavelength determined by Eq. (4.1). 

Fig.4.4 

In the Davisson-Germer experiments, and also in G. Thomson's 
experiments, the intensity of the electron beams was so high that 
a large number of electrons passed through the crystal simultaneous­
ly. It was therefore possible to assume that the diffraction pattern 
observed was due to the simultaneous participation of a large number 
of electrons in the process, while a single electron passing through . 



68 A tomtc Phystcs 

the crystal does not display diffraction. To clarify this circumstance, 
the Soviet physicists Leon Biberman, Nikolai Sushkin, and Valen­
tin Fahrikant in 1949 ran an experiment in which the intensity of 
the electron beam was so low that the electrons certainly passed 
through the instrument one at a time. The interval between the 
passage of two consecutive electrons through the crystal was about 
30 000 times greater than the time needed for an electron to pass 
through the entire apparatus. With a sufficient exposure, a diffraction 
pattern was obtained that differed in no way from the one observed 
at the ordinary intensity of the beam. It was thus proved that a 
single electron has wave properties. 

4.2. The Unusual Properties of Micro particles 

Microparticles are defined as elementary particles (electrons, 
protons, neutrons, photons, &nd other simple particles), and also 
as complex particles formed from a comparatively small number ol 
elementary particles (molecules, atoms, atomic nuclei, etc.). 

The· term "microparticle" reflects only one aspect of the object 
it is applied to. Any microobject (a molecule, atom, electron, photon, 
etc.) is a special kind of formation combining in itself the properties 
of both a particle and a wave. Perhaps it would be more correct 
to call it a "particle-wave". 

A microobject is not capable of acting directly on our organs of 
sense-it can neither be seen nor felt. Nothing like microobjects 
exists in the world we perceive. Microbodies "do not behave like 
anything you have ever seen".* 

"Because atomic behaviour is so unlike ordinary experience, it is 
very difficult to get used to and it appears peculiar and mysterious 
to everyone, both to the novice and to the experienced physicist. 
Even the experts do not understand it the way they would like to, 
and it is perfectly reasonable that they should not, because all of. 
direct human experience and of human intuition applies to large 
objects. We know how large objects will act, but things on a small 
scale just do not act that way. So we have to learn about them in 
a sort of abstract or imaginary fashion, and not by connection with 
our direct experience". 

In prequantum physics, to "understand" meant to form a visual 
image of an object or process. Quantum physics cannot he understood 
in this meaning of the word. Any visual model will inevitably 
function according to classical laws and will therefore not be suitable 
for representing quantum processes. Therefore, the best that we can 

• This and the following passages in the given ~ectwn in quotation marks 
have been taken from Feynman, R. P., Leighton, R. B., Sands, M . .The Feyn­
man Lectures on Physics. Reading, Mass., Addison-Vvesley (1963), Chap. 37. 
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do is to discard all attempts to construct visual models of the behav­
iour of quantum objects. The absence of visualization may first 
give rise to a feeling of dissatisfaction, but this feeling passes with 
time, and everything takes its usual place .. 

Combining the properties. of a particle and a wave, microbodies 
"do not behave like waves, they do not behave like particles". A 
microparticle differs from a wave in that it is always detected as an 
indivisible whole. Nobody ever observed, for example, a half of an 
electron. At the same time, a wave can be split into parts (for ex­
ample, by directing a light wave onto a half-silvered mirror) and 
each part then perceived sepa­
rately. A difference of a micropar­
ticle from a macroparticle which 
we are accustomed to is that it 
does not have definite values of 
a coordinate and momentum si­
multaneously, owing to which the 
concept of trajectory as applied 
to a microparticle loses its 
meaning. 

(a) 

p 

(b) 

Fig. 4.5. 

' 
2 

(C} 
The peculiar nature of the prop­

erties of microparticles reveals 
itself with the greatest clarity in 
the following mental experi-
ment•. Let us direct a parallel beam of monoenergetic (i.e. having the 
same kinetic energy) electrons onto a barrier with two narrow slits 
(Fig. 4.5). We shall place photographic plate P after the barrier. 
We shall first close the second slit and make an exposure during 
the time 't'. Blackening on the processed plate will be characterized by 
curve 1 in Fig. 4.5b. We shall expose a second plate during the same 
time 't' with the first slit closed. The nature of blackening of the 
plate is shown in this case by curve 2 in Fig. 4.5b. Finally, we shall 
open both slits and expose a third plate during the time -r. The 
pattern of the blackening obtained in the last case is shown in 
Fig. 4.5c. This pattern is not at all equivalent to the superposition 
of the first two patterns. It is similar to the pattern obtained upon 
the interference of two coherent light waves. The nature of the pattern 
shows that the motion of each electron is affected by both slits. 
This conclusion is incompatjb}e with our notion of trajectories. 
If an electron at each moment of time were at a definite point in 
space and travelled along a trajectory, it would pass through a defi-

• In a mental (thought) experiment, the aspect of a phenomenon being 
studied is revealed in the simplest and clearest form. The authenticity of the 
effect observed in a mental experiment follows from observations obtained in a 
number of real experiments. In the given case, the experiments involving the 
diffraction of electrons described in the preceding section are such experiments. 
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nite slit-either the first or the second one. The phenomenon of diffrac• 
tion proves, however, that both slits- the first and the second­
participate in the passage of each electron. 

Matters, however, should not be represented as if a part of an 
electron passes through one slit and its other part through the second 
one. We have already noted that an electron, like other micropar­
ticles, is always detected as an entirety, with its inherent mass, 
charge, and other characteristic quantities. Thus, an electron, pro­
ton, atomic nucleus are particles with very peculiar properties. 
A conventional sphere, even a very tiny one (a macroscopic particle) 
cannot be the prototype of a microparticle. A reduction in size is 
attended by the gradual appearance of qualitatively new properties 
not found in macroparticles. 

In a number of cases, the statement that mieroparticles have no 
trajectories would seem to contradict experimental facts. For 
example, the path along which a microparticle travels in a Wilson 
chamber is detected in the form of narrow traeks produced by drop­
lets of mist; the motion of electrons in a cathode-ray tube is calculat­
ed excellently according to classical laws, etc. This seeming contra­
diction is explained by the fact that in known conditions the concept 
of a trajectory may be applied to microparticles, but only with 
a certain degree of accuracy. Matters are exactly the same as in 
optics. If the dimensions of barriers or holes are great in comparison 
with the wavelength, the propagation of light takes place, as it were, 
along definite rays (trajectories). In definite conditions, the concept · 
of a trajectory can also be approximately applied to the motion . 
of microparticles, in the same way as the law of the rectilinear pro­
pagation of light is true. 

4.3. The Uncertainty Principle 

In classical mechanics, the state of a point particle (a classical 
particle) is set by giving the values of its coordinates, momentum, 
energy, etc. These quantities are known as dynamic variables. Strict­
ly speaking, the above dynamic variables cannot be ascribed to a 
microobject. We obtain information on microparticles, however, 
by observing their interaction with instruments that are macroscop­
ic bodies. Therefore, the results of such measurements are \Y}.lly­
nilly expressed in terms developed to characterize macrobodies, 
i.e. through the values of the dynamic variables. Accordingly, the 
measured values of the dynamic variables are ascribed to micropar­
ticles. For example, we speak of the state of an electron in which it 
has a certain value of the energy, and so on. 

The peculiar nature of the properties of m icroparticles manifests 
itself in ·that measurements do not always give definite values for 
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all the variables. For example, an electron (and any other micro­
particle) cannot simultaneously have accurate values of its coordi­
nate x and its momentum component Px· The uncertainties in the 
values of x and Px satisfy the expression 

(4.3) 

(/i is Planck's constant). It can be seen from expression (4.3) that 
the smaller the uncertainty of one of the variables (x or Px), the 
greater is the uncertainty of the other one. A state is possible in 
which one of the variables has an accurate value, while the other 
one is absolutely uncertain (its uncer­
tainty equals infinity). 

A relation similar to expression (4.3) 
holds for y and Py. for z and Pzo and 
also for a number of other pairs of 
quantities (in classical mechanics such 
pairs of quantities are called canoni­
cally conjugate). Using the symbols A 
and B to denote canonically conjugate 
quantities, we can write 

(4.4) Fig. 4.6 

Expression (4.4) is known as the uncertainty relation for the quanti·· 
ties A and B. This relation was discovered by the German physicist 
Werner Heisenberg (1901-1976) in 1927. 

The statement that the product of the uncertainties in the values 
of two conjugate variables cannot be less than Planck's constant 1i 
in the order of magnitude is called the Heisenberg uncertainty prin­
ciple. 

Energy and time are canonically conjugate quantities. Therefore, 
the uncertainty relation also holds for them: 

~E. C\t;;:, ~ (4.5) 

This relation signifies that the determination of the energy with 
an accuracy of C\E must occupy an interval of time equal at least 
to C\t """' n! C\E. 

The uncertainty relation was established when considering, in 
particular, the following example. Let us attempt to find the value 
of the coordinate x of a freely flying microparticle by placing in its 
path a slit of width C\x at right angles to the direction of motion 
of the particle (Fig. 4.6). Before the particle passes through the slit, 
its momentum component P= has an accurate value equal to zero 
(the slit in accordance with our conditions is perpendicular to the 
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mo·mentum), so that flpx = 0, but to make up for it the coordinate x 
of the particle is absolutely uncertain. At the moment when the 
particle passes through the slit, matters change. Instead of complete 
uncertainty in the coordinate x, the uncertainty tlx appears, but this 
is achieved at the price of a loss in the certainty in the value of Px· 
Indeed, owing to diffraction, there is a certain probability of the 
fact that the particle will move within the limits of the angle 2qJ, 
where <p is the angle corresponding to the first diffraction minimum 
(the higher order maxima may be ignored because their intensity 
is low in comparison with that of the central maximum). Thus,. 
the following uncertainty appears: 

ll.Px = p sin <p 

The angle qJ fQr which 
. ').. 

s lll {jJ = '""6% 

corresponds to the edge of the central diffraction maximum (the 
first minimum) obtained from a slit of width tlx [see Eq. (18.25) 
of Vol. II, p. 406]. ConsAquently, 

').. 
flpx"""" P Tz" 

Hence with account taken of Eq. (4.1), we get the expression 

tlx· tlp:r. """ pf.v = 2n1i 

that agrees with expression (4.3). 
The uncertainty relation is sometimes interpreted as follows: 

a micr'oparticle actually does have accurate values of its coordinates 
and momenta, but the action of the measuring instrument perceptible 
for such a particle does not make exact determination of these values 
possible. Such an interpretation is absolutely wrong. It contradicts 
the phenomena of microparticle diffraction observed experimentally. 

The uncertainty relation indicates to what extent we can apply 
the concepts of classical mechanics to microparticles, in particular 
to what degree of accuracy we can speak of the trajectories of micro­
particles. Motion along a trajectory is characterized by quite definite 
values of the coordinates and velocity at each moment of time. 
Substituting mvx for Px in expression (4.3), we get the relation 

flx· flv:r. ;;:;;;:: 1i/2m 

We see that the greater the mass of a particle, the smaller is the· 
uncertainty of its coordinate and velocity and, consequently, the 
greater is the accuracy with which we can apply the concept of 
trajectory. Already for a macro particle only one micrometre in size, 
the uncertainties in the values of x and V:r. are beyond the limits 
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of the accuracy of measuring these quantities so that its motion will 
virtually ~e indi~ti.nguishable from motion along a trajectory. 

In d~fimte condition~, even the motion of a microparticle may 
approximately be considered as occurring along a trajectory. We 
shall take as an example the mo-
tion of an electron in a cathode.- .:r: 
ray tube. Let us assess the uncer­
tainty in the coordinate and mo­
mentum of an electron for this 
case. Assume that the trace of the 
electron beam on the screen has 
a radi\,ls r of the order of 10-3 em, 
and the length l of the tube is of 

Fig. 4.7 

the order of 10 em (Fig. 4.7). Hence ApxiPx,..., 10-4 • The momen­
tum of an electron is related to the accelerating voltage U by 
the expression 

pi 
-=eU 
2m 

Hence p = V 'l.meU. At a voltage of U'"""' 104 V, the energy of an 
electron is 104 eV = 1.6 X 10-8 erg. Let us assess the magnitude 
of the momentum: 

p= V 2 X 0.91 X 10-27 X 1.6 X 10-8 ~ 5 X 10-18 

Consequently, Ap 1 ~ 5 x 10-18 x 10-4 = 5 x 10-22 • And. finally, 
according to expression (4.3): 

Ax = ft/2 ~ 1.05 ~ 1 o-27/2 """' 10_6 em 
f:.px 5>, 1Q-U 

The result obtained indicates that the motion of an electron in 
a cathode-ray tube is virtually indistinguishable from motion along 
a trajectory. 

The uncertainty relation is one of the fundamental principles of 
quantum mechanics. This relation alone is sufficient to obtain 
a number of important results. In particular, it allows us to explain 
why an electron does not fall onto the nucleus of an atom, and also 
to assess the dimensions of the simplest atom and the minimum pos­
sible energy of an electron in such an atom. 

If an electron were to fall onto a point nucleus, its coordin~tes 
and momentum would take oil definite (zero) values, which is 
incompatible with the uncertainty principle. This principle requires 
that the uncertainty in the coordinate of the fllectron tJ.r and the 
uncertainty in the momentum Ap be related by condition (4.3). 
The energy would formally be minimum at r = 0 and p = 0. There· 
fore, in assessing the smallest possible energy, we must assume that 
Ar ~ r and !J.p ~ p. Using these values in expression (4.3), we get 

rp = fi (4.6) 
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(since our calculations can only claim to give the orders of magnitude 
of the quantities being calculated, we have omitted the one-half 
in the right-hand side). 

The energy of the electron in a hydrogen atom is 

E=~-!!.._ 
2m r 

Substituting n/r for p in accordance with Eq. (4.6), we find t~at 

Ji2 e• E=----2mr' r (4.7) 

Let us find the value of r at which E is minimum. Differentiating 
Eq. (4.7) with respect to r and equating the derivative to zero, we 
arrive at the equation 

111 e2 

-mrs +-,:s=O 

from which it follows that 

"' r=--me2 

The value we have obtained coincides with the radius of the first 
Bohr orbit of the hydrogen atom [see Eq. (3.30)1. 

Introduction of Eq. (4.8) into Eq. (4. 7) gives the energy of the 
ground sta_t.e: 

~- . Jil ( mea ) 2 a me• me' 
E rn'n = 2m """'Ji2 - e Ji3 = - 2/i' 

The found value also coincides with the energy of the first B.Q...hr 
level for Z = 1 [see Eq. (3.31)1. - . 

The circumstance that we have obtained accurate values of rand E 
is naturally simply good fortune. The calculations we have given 
above can only claim to givean assessment ot the order of the quanti­
ties rand E. 

4.4. The Schrodinger Equation 
In 1926, the Austrian physicist Erwin Schrodinger (1887-1961) 

presented his famous equation as a development of de Broglie's 
ideas of the wave properties of matter. He associated with the motion 
of a microparticle a complex function of the coordinates and time 
which he called the wave function and designated by the Greek letter 
"psi" (¢ or '¥). We shall call it the psi-function. 

The psi-function characterizes the state of a microparticle. The 
form of the function is obtained from a solution of the Schrodinger 
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equation that appears as follows: 

- ~ V'2'l' + U'l' = in o'Y 
2m ot 

Here m = mass of the particle 
U = potential energy of the particle 
i = imaginary unity 

'\72 = Laplacian operator. 

75 

(4.9) 

The result of the action of this operator on a function is the sum 
of the second partial derivatives of this function with respect to 
the coordinates: 

(4.10) 

Inspection of Eq. (4.9) reveals that the form of the psi-function 
is determined by the function U, i.e. in the long run by the nature 
of the forces exerted on a particle. 

The Schrodinger equation is a fundamental equation of non­
relativistic quantum mechanics. It cannot be derived from other 
relations. It must be considered as a starting basic assumption whose 
truth is proved by the fact that all its corollaries agree with experi­
mental data in the most accurate way. 

Schrodinger derived his equation on the basis of an opticomechan­
ical analogy. The latter consists in the similarity of the equations 
describing the path of light rays with the equations determining 
the trajectories of particles in analytical mechanics. In optics, the 
path of rays satisfies de Fermat's principle (see Sec. 16.6 of Vol.II, 
p. 334), in mechanics the form of a trajectory satisfies the so-called 
principle of least action. 

If the force fie) d in which a particle is tra veiling is stationary, 
then tho function U does not depend explicitly on the time. In this 
case, the solution of the Schrodinger equation breaks up into two 
multipliers, one of which depends only on the coordinates, and the 
other only on the time: 

'l'(x, y, z, t)='ljl(x, y, z)exp ( -i ~ t) (4.11) 

Here E is the total energy of a particle which in the case of a sta­
tionary field remains constant. To convince ourselves that Eq. (4.11) 
is true, let us introduce it into Eq. (4.9). As a result, we get the 
relation 

- ;~ exp ( - i ! t) '\72 \jl + U'ljl exp ( -- i ~ t) = 

=in ( - i ~) \jl exp (- i ! t) 
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_Cancelling the common factor exp ( -i ~ t) , we arrive at a diffe­

rential equation determining the function 'IJ: 
Iii 

- 2m V2lJ' + UlJ' = E'IJ (4.12) 

Equation (4.12) is known as the Schrooinger equation for station­
ary states. In the following, we shall have to do only with this 
equation and for brevity's sake we shall call it simply the Schrodin­
ger equation. Equation ( 4.12) is often written in the form 

V 2'1J+ ~~ (E-U) ljl=O (4.13) 

Let us explain how we can arrive at the Schrodinger equation. 
We shall limit ourselves to a one-dimensional case for simplicity. 
We shall consider a freely moving particle. According to de Broglie's 
idea, a plane wave must be compared with it: 

'¥ = a exp [-i (wt - k.x)l 

(in quantum mechanics, it is customary practice to take the exponent 
with the minus sign). Replacing w and k = 2n/'A with E and p in 
accordance with Eqs. (4.1) and (4.2), we arrive at the expression 

'¥=a exp [! (p.x -Et)] (4.14) 

Differentiating this expression once with respect to t, and the second 
time twice with respect to .x, we get 

811' = _ ~ Eqt 8'11' = ( !_) 2 zqr at 1i , 8z2 11 p 

Hence, 

E= ~in~~, pz=- ~ ttz ::; (4.15) 

In non-relativistic mechanics, the energy E and momentum p 
of a free particle are related by the expression 

P' E=-2m 

Using in this expression Eqs. (4.15) forE and p 2 and then cancelling 
'¥, we get the equation --· · 

-~ asqr = tli av 
2m 8zl at 

that coincides with Eq. (4.9) if we assume that U = 0 in the latter. 
For a particle moving in a force field characterized by the poten­

tial energy U, the following relation exists between the energy E 
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and the momentum p: 
P' 
2m =.E-U 

Extending Eqs. (4.15) forE and p 2 to this ease too, we obtain 

- __!_ ~ ~ = J.. iii~-u 
'l' 2>n a.z• 'l' at 
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Multiplying this equation by 'I' and transferring the term U'¥ to the 
left-hand side, we arrive at the equation 

- ~ asq.r + U'¥ =iii o'l' 
2m o.z1 ot 

that coincides w:ith Eq. (4.9). 
The above reasoning does not have the validity of a proof and 

may not be considered as a derivation of the Schrodinger equation. 
Its object is to show how one could arrive at the establishing of 
this equation. 

A great part is played in quantum mechanics by the concept of an 
()perator. An operator is defined as a rule by means of which one 
function (we shall designate it by f) is correlated with another func­
tion (we shall designate it by q>). This is written symbolically as 
follows: 

(4.16) 

Here Q is the symbol of the operator (we could use any other letter 
with a 'Jcap" over it, for example, A, U, or M, with the same 
success). -In Eq. (4.10), the part of Q is played by V'2 , the part of q> 
by the function 'I', and that off by the right-hand side of the equa­
tion. 

The symbol of an operator hides a complex of operations by means 
of which the initial function (cp) is transformed into another func­
tion (/). For example, the symbol V'2 hides double differentiation 
with respect to all three coordinates x, y, and z with the following 
summation of the expressions obtained. An operator may, in particu­
lar, represent the multiplication of the initial function q> by a cer-
tain function U. Thus, f = Ucp = UqJ, and, consequently, rJ = U. 

If we consider the function U in Eq. (4.12) as an operator whose 
action on the psi-function consists in multiplying 'P by U, then 
Eq. (4.12) can be given the form 

Hljl = Eljl ( 4.17) 

In this equation, the symbol H stands for an operator equal to the 
sum of the operators -(li2/2m) V'2 and U: 

H=- :: vz+U (4.18) 

The operator A: is called a Hamiltonian. 
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The Hamiltonian is an operator of the energy E. In quantum 
mechanics, operators are also correlated with the other dynamic 
variables. Accordingly, operators of the coordinates, momentum, 
angular momentum, etc. are considered. An equation similar to 
Eq. (4.17) is compiled for each dynamic variable q. It has the form 

(4.19) 
where {) is the operator being correlated with the dynamic variable q. 
The meaning of such equations will be revealed in Sec. 4. 7. 

4.5. The Meaning of the Psi-Function 

A correct interpretation of the psi-function was given by the 
German physicist Max Born (1882-1970) in 1926. He postulated 

1 that the square of the magnitude of the psi-function determines 
the probability dP of the fact that a particle will he detected within 
the limits of the volume dV: 

dP = A I 'I' 12 dV = A '¥*'1' dV (4.20) 

(A is a constant of proportionality). 
The integral of Eq. (4.20) taken over the entire volume must equal 

unity: 

J dP = A J '1'*'1' dV = 1 (4.21) 

Indeed, this integral gives the probability of the fact that a particle 
is at some point in space, i.e. the probability of an authentic event, 
which is unity. 

It is assumed in quantum mechanics that the psi-function allows 
multiplication by an arbitrary complex number C other than zero, 
'I' and C'l' describing the same state of a particle. This circumstance 
makes it possible to select the psi-function so that it complies with 
the condition 

\ '1'*'1' dV = 1 (4.22) 

Condition (4.22) is known as the normalization condition. Functions 
satisfying this condition are called normalized. We shall always 
assume in the following that the psi-functions we are considering 
are normalized. 

Equation (4.20) has the following form for a normalized function: 

dP = I 'I' 12 dV = '1'*'1' dV (4.23-) 

[this follows from a comparison of Eqs. (4.21) and (4.22)1. We con.: 
elude from Eq. (4.23) that the square of the magnitude of the psi­
function gives the density of the probability (the probability related 
to unit volume) of a particle being in the relevant place in space. 
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The psi-function for a stationary force field has the form of Eq. 
(4.11). Accordingly, 

E ) E' 'Y*'Y = exp ( i 7i t 'IJ* exp ( - i ,f t) lJJ = 'IJ*'i' 

so that the probability density is 'IJ*'i' and, consequently, is inde­
pendent of time. This is why states described by psi-functions of 
the form given by Eq. (4.11) were called stationary ones. 

It can be seen from the meaning of the psi-function that quantum 
mechanics has a statistical nature. It does not allow us to determine 
the whereabouts of a particle in space or the trajectory along which 
a particle is travelling. The psi-function only helps us to predict 
the probability. of finding a particle in different points of space. 
It may-seem at first sight that quantum mechanics provides a consid­
erably less accurate and exhaustive description of the motion of a 
particle than classical mechanics, which determines the "exact" 
location and velocity of a particle at every moment of time. Actually, 
however, this is not true. Quantum mechanics reveals the true 
behaviour of microparticles to a much deeper extent. It only fails 
to determine what actually does not occur. As applied to micro­
particles, the concepts of a definite location and trajectory, as we 
have already noted, lose their meaning in general. 

4.6. Quantization of Energy 

The Schrodinger equation allows us to find the psi-function of 
a given state and-, _consequently, determine the probability of a 
particle being at different points in space. But this far from e~hausts 
the significance of the equation. The rules for the quantization of 
energy directly follow from Eq. (4.17) and from the conditions 
imposed on the psi-function. 

In accordance with its meaning, the psi-function must be single­
valued, continuous, and finite (except, perhaps, for special points). 
In addition, it must have a continuous and finite derivative. The 
collection of the above requirements is called the standard condi· 
lions. 

The Schrodinger equation includes the total energy E of a par­
ticle ~s a param~ter. It is proved in the theory of differential equa­
tions that equations of the form of (4.17) have ~olutions satisfying 
the standard conditions not at any values of the parameter (i.e. of 
the energy E), but only at certain selected values. These selected 
values are known as the eigenvalues of the relevant quantity (in our 
case of the energy). The solutions corresponding to the eigenvalues 
of E are called the eigenfunctions of the problem. 
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A collection of eigenvalues is called a spectrum of a quantity. If 
this collection forms a discrete succession, the spectrum is called 
discrete. If the eigenvalues form a continuous succession, the spec­
trum is called continuous. In the following, we. shall only consider 
problems in which the spectrum of the eigenvalues is discrete. 

With a discrete spectrum, the eigenvalues and eigenfunctions can 
be numbered: 

E1, E 1, ••• , E,u ..• ; 
Wt• W2• • • ., Wn• • • • 

(4.24) 

The qulJ,ntization of energy is thus obtained from the fundamental 
tenets of quantum mechanics without any additional assumptions. 

u n=4 
E, 

U=oo U=oo n=J 
£.1 

n=2 Ez 
n=f E, 

0 t 0 
(a} rbJ 

Fig. 4.8 

The finding of the eigenvalues and eigenfunctions, as a rule, is 
a very difficult mathematical task. We shall consider an example 
that is simple enough to permit us to solve the Schrodinger equation 
without any appreciable difficulty. 

Let us find the eigenvalues of the energy and the eigenfunctions 
corresponding to them for a particle in an infinitely deep one-di­
mensional potential well. We shall assume that the particle can move 
only along the x-axis. Let ULe motion be restricted by the walls 
x = 0 and x = l that are impenetrable for the particle. The potential 
energy lJ has the following form in this case (Fig. 4.8a): it is zero at 
0 ::;;; x ~ l and becomes equal to infmity at x < 0 and x > l. 

Let us take the Schrodinger equation in its form (4.13). Since the 
psi-function depends only on the coordinate x, the equation is 
simplified as follows: 

~:~ + ~~ (E-U) w=O (4.25) 

Th9 particle cannot get beyond the limits of the potential well. 
Therefore, the probability of detecting the particle and, consequent­
ly, the function 1p beyond the limits of the well are zero. It follows 
from the condition of continuity that 1p must also be zero at the 
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boundaries of the well, i.e. that 

'ljJ (0) = 'ljJ (l) = 0 (4.26) 

This is exactly the condition which the solutions of Eq. (4.25) must 
satisfy. 

In the region where 'ljJ does not identically equal zero, Eq. (4.25) 
has the form 

(in this region, U = 0). Introducing the notation 

2-2m E 
(J) -"' 

(4.27) 

(4.28) 

we shall arrive at an equation that is well known from the theory 
of oscillations: 

'ljJ" + (J)~ = 0 

The solution of such an equation has the form* 
'ljJ (x) = a sin (wx + a) (4.29) 

Conditions (4.26) can be satisfied by the corresponding choice of 
the constants w and a. First of all from the condition 'ljJ (0) = 0, 
we get 

'ljJ (0) = a sin a = 0 

whence we can see that a must equal zero. Further, the condition 
'ljJ (l) = a sin wl = 0 

must be observed, which is possible only when 
wl = + nn (n = 1, 2, 3, ... ) (4.30) 

(n = 0 drops out because it yields 'ljJ == 0-the particle is nowhere). 
Excluding w from Eqs. (4.28) and (4.30), we find the eigenvalues 

of the energy of a' particle: 

(n = 1, 2, 3, ... ) (4.31) 

The energy spectrum was found to be discrete. Figure 4.8b shows an 
energy level diagram. 

Let us assess the spacings between two adjacent levels for different 
values of the mass of a particle m and the width of the well l. The 
difference between the energies of two adjacent levels is 

n~~· nzna 
!:lEn= En+t -En= 2ml• (2n + 1):;:::;: --;nzr- n 

• See Eq. (7.55) of Vol. I, p. 195. In the present case, it is more convenient 
to take the sine instead of the cosine. , 2. 2- . • 
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If we take m of the order of the mass of a molecule ( --t0-23 g), 
and l of the order of 10 em (the molecules of a gas in a vessel), 
we get 

3.142Xf.052X10-&4 32 ~En~ 10 23 x 102 n ~to- n erg 

Such densely arranged energy levels will practically be perceived 
like a continuous energy spectrum so that although energy quanti­
zation indeed occurs in principle, it will not affect the nature of 
motion of the molecules. 

A similar result is obtained if we take m of the order of the mass 
of an electron ( --10-27 g) at the same dimensions of the well (free 
electrons in a metal). In this case 

~En~ 1Q-28n erg~ 10-16 n eV 

An absolutely different result is obtained for an electron, however, 
if the region within which it is moving will be of the order of atomic 
dimensions ( --to-s em). In this case, 

AE 3.142x1.os2x1o-&• to-10 toz ,. 
u -' n ~ 10_27 X 10_16 n ~ n erg ~ n e v 

so that the discreteness of the energy levels will be quite appreciable. 
Introducing in Eq. (4.29) the value of w obtained from condition 

(4.30), we shall find the eigenfunctions of the problem: 

•" ( ) . nnx 't'n x =asln -l-

(we remind our reader that a = 0). To find the coefficient a, let us 
use normalization condition (4.22), which in the given case will 
be written as follows: 

l 

a2 J sin2 n;x dx = 1 
0 

At the ends of the integration interval, the integrand vanishes. 
Hence, the value of the integral can be obtained by multiplying 

the average value of sin2 (mr.xll) (which, as is known, equals } ) 

by the length of the interval l. The result is a2 ( ; } l = 1, whence 

a = V 2/ l. Thus, the eigenfunctions have the form 

) .. / 2 . nnx 3 4 3 'i'n(.'t = V Tsm -l- (n=i, 2, , ... ) ( . 2) 

Graphs of the eigenfunctions are shown in Fig. 4.9a. Figure 4.9b 
gives the density of the probability of finding the particle at different 
distances from the walls of the well; it equals 'ljl*¢. Inspection of. 
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the graphs reveals, for example, that in the state with n = 2 the 
particle cannot be found at the middle of the well. At the same time, 
it will be detected either in the left-hand or in the right-hand half 
of the well with equal frequency. This behaviour of the particle is 

n=l 

:c /l 
(0) 

I z 

Fig. 4.9 

evidently incompatible with our notion of trajectories. We must 
note that in accordance with classical notions, all the positions of 
the particle in the well are equally probable. 

4 .. 7. Quantization of Angular Momentum 

We indicated in Sec. 4.4 that in quantum mechanics an operator fJ 
is correlated with every physical quantity q (the operator has a differ-
ent symbol for each quantity: ii for energy, p for momentum, etc.) 
By solving the equation 

Qtv=C['jl 
we find the eigenvalues q1, q2 , ••• of the operator Q. One of the 
postulates of quantum mechanics states that in measurements of 
the physical quantity q represented by the operator Q, we can 
obtain only results coinciding with the eigenvalues of this operator. 

States are possible for which measurements of a quantity q always 
give the same value qn. Such states are said to be ones in which 
the quantity q has a definite value. States are also possible, however,. 
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for which measurements give different eigenvalues of the operator Q 
with a different probability. Such states are said to be ones in which 
the quantity q does not have a definite value. 

Four operators are introduced in quantum mechanics conformably 
to the angular momentum, namely, the operator of the square of 
the angular momentum :&!2 and three operators of the projections 
of the angular momentum onto the coordinate axes: M "'MY' and M z· 
It was found that only the square of the angular momentum and 
one of the projections of the angular momel}.tum onto the coordinate 
axes can simultaneously have definite values. The other two projec­
tions are absolutely indefinite*. This signifies that the "vector" 
of the angular momentum has no definite direction and, consequent­
ly, cannot be depicted with the aid of a directed length of a straight 
line as in classical mechanics. 

The solution of the equation 

M2l!J=M21jJ 

is very difficult. We shall therefore only give the final results: the 
eigenvalues of the operator of the square of the angular momentum 
are 

M 2 = l (l + 1) 1i2 (l = 0, 1, 2, ... ) (4.33) 

Here l is a quantum number called the azimuthal (or orbital) one. 
Consequently, the magnitude of the angular momentum can have 
only discrete values determined by the formula 

M = nVz (l + t) (Z = o, 1, 2, ... ) (4.34) 

The operator M z has a quite simple form. We can therefore consider 
the solution of the equation 

(4.35) 

as another example of finding eigenvalues (the first example was 
treated in the preceding section, where we determined the eigenvalues 
of the energy for a particle in a potential well). 

In spherical coordinates (r, 8, <p), the operator of the projection 
of the angular momentum onto the polar axis z (from which the 
polar angle a is measured) has the form 

- i} 
M = -ili-z i}<p 

Hence, Eq. (4.35) appears as follows: 

-in!!=Mz'iJ (4.36) 

* An exception is the case M = 0, when all three projections of the angular 
momentum onto the axes x, y, z have a definite value equal to zero. 
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The introduction of 'IJ>· = exp (a<p), after cancellation of the common 
factor exp (a<p), leads to the algebraic equation 

-ina= Mz 

from which we get the value iM zl1i for a. The solution of Eq. (4.36) 
thus has the form 

¢=Cexp ( i ~z cp) 

For this function to be single-valued, it is necessary to satisfy the 
condition 'lj> (cp + 2n) = 'lj> (cp) or 

exp[i ~z (q>+2n)l· exp(i ~zcp) 

This condition will be satisfied if we assume that M z = mn, where m 
is a positive or negative integer or zero. Hence, the operator M z 
has a discrete spectrum: 

M z = mn (m = 0, ±1, ±2, ... ) (4.37) 

For reasons which will be revealed on a later page, m is called the 
magnetic quantum number. We remind Ol:{r reader that quantization 
of the projection of the angular momentum was discovered experi­
mentally by 0. Stern and W. Gerlach (see Sec. 7.6 of Vol. II, p. 170). 

Since the projection of a vector cannot exceed the magnitude 
of this vector, the following condition must be observed:-- ·· · 

1 mn 1:;:;;;; n Vl(l+1) 

Hence, it follows that the maximum possible value of I m I is l. 
For convenience of reviewing, let us write the results obtained­

together: 

M=nVZ(Z+1) 
Mz=mli 

(l=0,1,2, ... ) } 
(m=O, ±1, +2, ... , + l) 

(4.38) 

Inspection of these formulas shows that I M z I is always smaller 
than M. Consequently, the direction of the angular momentum 
cannot coincide with a direction earmarked in space. This agrees 
with the circumstance that the direction of the angular momentum 
in space is indefinite. 

We must underline the fact that values of M and M z differing 
from Eqs. (4.38) cannot be observed in any circumstances. Hence, 
the angular momenta of macroscopic bodies also obey rules (4.38). 
True, owing to the smallness of !i, the discreteness of the angular mo­
menta of macroscopic bodies is virtually not detected, like the 
discreteness of macroscopic electric charges is not detected owing 
to the smallness of the elementary charge e. 
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We must note that it can be seen from the rules for the quantiza­
tion of the angular momentum that the Planck constant 1i can be 
considered as a natural unit of angular momentum. 

The angular momentum of a system consisting of several micro­
particles equals the sum of the momenta of the individual particles. 
The net angular momentum, like any angular momentum in general, 
is determined by the expression 

M = 1i V L (L + 1) (4.39) 

where L is the azimuthal (orbital) quantum number of the resultant 
angular momentum. For a system consisting of two particles, the 
number L can have the values 

(4.40) 

where l1 and l2 are numbers determining the magnitudes of the 
angular momenta being summated according to the formula M i = 
= 1i v li (li + 1). . 

It is a simple matter to see that the resultant angular momentum 
can have 2l2 + 1 or 2l1 + 1 different values (the smaller of the two 
l's must be taken). 

For a system consisting of more than two particles, we must 
first add the angular momenta of any two particles. Next, we must 
add the result obtained to the angular momentum of a third particle, 
and so on. It is evident that the maximum value of the quantum 
number L equals the sum of the numbers li for the individual par-· 
ticles. The minimum value of L, for instance, for three particles is 
I (I l1 - l2 I - l3) I· If all tho li 's are the same and equal l, then 
the minimum value of L is zero with an even number of particles 
and l with an odd number of them. 

The projection of the resultant angular momentum onto a certain 
direction z is determined, as for any angular momentum in general, 
by the expression 

(mL=O, ±1, ±2, ... , ±L) (4.41) 

[see Eqs. (4.38)1. 
The mechanical angular momentum of a charged particle is inse­

parably associated with its magnetic moment (see Sec. 7.6 of Vol. II, 
p. 166 et seq.). The magnetic moments, as we know, interact with 
one .another. A definite value of the interaction energy corresponds 
to each of the possible values of the resultant moment. When a 
system experiences a weak magnetic field, the coupling between the 
moments is not violated, and the resultant moment is projected onto 
the direction of B. When the magnetic field is strong enough, the 
moments no longer remain coupled, and each of these moments is 
projected onto the direction of B independently of the others. 
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4.8. The Superposition Principle 

One of the main tenets of quantum mechanics is the principle of 
superposition of states. The essence of this principle consists in the 
following. Assume that a certain quantum-mechanical system can 
be both in state 'ljJ' and in state 'ljJ". There is consequentlv a state of 
the system described by the function 

'¢ = c''¢' + c"'¢" 

(c' and c" are arbitrary complex numbers). 
Very important corollaries follow from the superposition prin­

ciple. Let us consider the collection of eigenvalues of a physical 
quantity q and the eigenfunctions corresponding to them: 

qlt q'J., • • ., qn, • • .; 
'¢1, '¢2, • • ., '¢n, • • • 

In each of the states described by these functions, the quantity q 
has a definite value: the value q1 in the state 'ljJ1, the value q2 in 
the state '¢2, etc. According tQ the superposition principle, a state 
described by the function 

'¢ = c1'¢1 + C2'¢2 

is possible. In this state, the quantity q no longer has a definite 
value-measurements will give either the value q1 or the value q2• 

The probabilities of the appearance of these values equal the squares 
of the magnitudes of the coefficients c1 and c2 , i.e. the probability 
of obtaining the result q1 in measurements is I c1 12 , and the probabil­
ity of obtaining the result q2 is I c2 12 (as we agreed on in Sec. 4.5, 
the functions '¢1 and '¢ 2 are assumed to be normalized). 

It is assumed in quantum mechanics that a collection of eigen­
functions of any physical quantity q forms a complete set. This 
signifies that the psi-function of any state can be expanded by the 
eigenfunctions of this quantity, i.e. can be _written in the form 

'ljJ = 2} Cn '¢n ( 4.42) 
n 

where Cn are in the general case complex numbers not depending 
on the coordinates (for a time-varying state, the coefficients en 
do depend on t). The number of addends in the sum equals the number 
of different eigenfunctions of the quantity q (for different quantities, 
this number varies from 2 to oo ). 

The squares of the magnitudes of the coefficients Cn give the pro­
babilities of obtaining the corresponding values of the quantity q 
in measurements conducted on a system in the state '¢. Since the 
sum of all such probabilities must equal unity, the coefficients en 
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satisfy the condition 

This condition is always observed for normalized '¢n 's. 
Knowing the probabilities of different values of the quantity q, 

we can find the average value of this quantity in the state '¢: 

( 4.43) 

For non-stationary states, Cn = Cn (t); hence, Eq. (4.43) shows how 
the average value of the quantity q varies with time. 

4.9. Penetration of Particles Through 
a Potential Barrier 

Assume that a particle moving from left to right encounters a 
potential barrier of height U 0 and of width l on its path (Fig. 4.10). 
According to classical notions, the particle will behave as follows. 
If the energy of the particle is higher than the height of the barrier 
(E > U 0), the particle passes over the latter without hindrance (on 

U(.r} 

Uut---, 

E---
1 II 

0 
Fig. 4.10 

Ill 

the section 0 ~ x ~ l only the speed 
of the particle diminishes, but then 
when x > l it again acquires its ini­
tial ·1alue). If E is lower than U 0 

(as is shown in the figure), then the par­
ticle is reflected from the barrier and 
flies in the reverse direction; the par­
ticle cannot penetrate through the 
barrier. 

:C The behaviour of the particle is abso-
lutely different according to quantum 
mechanics. First, even when E > U 0 , 

there is a probability other than zero 
that the particle will be reflected from the barrier and fly in the re­
verse direction. Second, when E < U 0 , there is a probability other 
than zero that the particle will penetrate "through" the barrier and 
will be in the region where x > l. Such a behaviour of the particle, 
absolutely impossible from the classical viewpoint, follows directly 
from the Schrodinger equation. 

Let us consider the case E < U 0• In this case, Eq. (4.13) has the 
form 

(4.44) 
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for regions I and I I I, and 
d21jl 2m , 
dx 2 + --;:;2 ( E- U oJ ljl = 0 (4.45) 

for region I/: as indicated above, E - U 0 < 0. 
We shall seek the solution of Eq. (4.44) in the form \j1 = exp (A.x) 

(see Sec. 7 .4. of Vol. I, p. 192 et seq.). Introduction of this function 
into Eq. (4.44) leads to the characteristic equation 

i-2 + ~~ E=O 

Hence, i. = ± ia, where 
1 -­

a=-,; V2mE ( 4.46) 

The general solution of Eq. (4.44) thus has the form 

'¢1 = A1eiax + B 1e-iax for region I } 
(4.47) 

'II' a= A3efax + B 3e-iax for region I I I 

Solving Eq. (4.45) by introducing \j1 = exp (A.x), we get a general 
solution of this equation in the form 

'¢2 = A2e1Jx+B1e-llll: for region II (4.48) 
Here 

(4.49) 

We must note that a solution of the form exp (ia.x) corresponds 
to a wave propagating in the positive direction of the x-axis, and 
a solution of the form exp (-iax) to a wave propagating in the­
opposite direction. To .understand this, we shall remember that an 
ordinary (sound, electromagnetic, etc.) plane wave propagating in 
the direction of a growth in x is described by the real part of the­
expression exp [i ((J)t- kx)], while a wave propagating in the­
direction of diminishing of x is described by the real part of the 
expression exp [i ( (J)t + kx)J. The function 'Y = a exp [(i/li) (px -
- Et)] [see Eq. (4.14)1 is compared with a particle moving in the 
positive direction of the x-axis. If we discard the temporal multiplier 
in this function, then we get the expression a exp [i (pili) x] for 'ljl. 
For a particle moving in the opposite direction, we get 'ljl = 
= a exp [ -i (pili) xl. 

In region II I, there is only the wave that has penetrated through 
the barrier and is propagating from the left to the right. Consequent­
ly, in Eq. (4.47) for 1jJ 3 , we must assume that the coefficient Ba is 
zero. To find the other coefficients, we shall use the conditions which 
the function 'IJ' must satisfy. For 'ljl to be continuous through the 
entire region of changes in x from -oo to +oo, the conditions 
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ljl1 (0) = 'ljl 2 (0) and 'ljl2 (Z) = 'ljl 3 (l) must be satisfied. For 'ljl to be 
smooth, i.e. for it to have no breaks, the conditions 'ljl~ (0) = 'ljl; (0) 
and 'P~ (Z) = 'ljJ; (Z) JDUSt be satisfied. From these conditions, we get 
the relations 

At+Bt=Az+Bz } 
Aze!Jl + Bze-IJI = Aaei<ll 

iaA1- iaB1 = ~A2- ~B2 • 

~A2e!Jl_ ~B2e-IJI = iaA3ei01l 

( 4.50) 

Let us divide all the equations by A1 and introduce the notation 

and also 

n=l_= .. / U0-E 
~ V E 

(4.51) 

Equations (4.50) thus acquire the form 

aze!Jl + bze-IJI = aaei<ll (4.52) 
1 + b1 = a2 + bz } 

i - ib 1 =-= na2 - ab2 

na2eiJ1- nbze-IJI = ia3eial 

The ratio between the squares of the magnitudes of the reflected 
and incident wave amplitudes 

R = I Bd 2 = I b 12 
iAlj2 I 

determines the probability of a particle being reflected from the 
potential barrier and can be called the reflection coefficient. 

The ratio between the squares of the magnitudes of the transmitted 
and incident wave amplitudes 

T= IAAsl: = ja3j2 (4.53) 
I 1l 

determines the probability of a particle penetrating through the 
barrier and can be called the transmission coefficient. 

We shall be interested only in the penetration of particles through 
the barrier, and we shall limit ourselves to finding the quantity T. 
True, having found T, it is simple to fmd R because these two coef­
ficients are related by the obvious expression R + T = 1. 

Let us multiply the first of Eqs. (4.52) by i and add it to the 
third. one. The result is 

2i = (n + i) a2 - (n - i) b2 (4.54) 
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Now let us multiply the second of Eqs. (4.52) by i and subtract it 
from the fourth one. We get 

(n-i)eP1 a2-(n+i)e-111 b2 =0 (4.55) 

Solving the simultaneous equations (4.54) and (4.55), we find that 
2t (n+ i) e-lll 

az= " (n+t)2 e 11 1 -(n-i)~ e"1 

b _ 2i (n-i) ell1 

2 - (n+i)2 e-~1 -(n-i)2 ell1 

Finally, introducing the values of a2 and b2 which we have found 
into the second 'of Eqs. (4.52), we get an expression for a 3: 

- 4nt -ial 
a3 - " " e (n+ i) 2 e-.,l_ (n- i) 2 e"'1 

The quantity 

Al- V2m(Uo-E) l 
.... - !i 

is usually much greater than unity. For this reason, we may disregard 
the addend containing the multiplier e-llt in the denominator of 
the expression for a 8 in comparison with the addend containing the 
multiplier elll (the complex numbers n + i and n - i have the 
same magnitude). We can thus assume that 

4nie-ial 
a """' e-llt 
3,...,- (n-i)2 

According to Eq. (4.53), the square of the magnitude of this quantity 
gives the probability of the penetration of a particle through the 
potential barrier. Taking into account that In- i I = Y n2 + 1, 
we get 

where 

lsee Eq. (4.51)1. 
The expression 16n2/(n2 + 1)2 has a magnitude cif the order of 

unity*. We can therefore consider that 

r~exp(-2~l)=exp[-! Y2m(Uo-E)lj (4.56) 

• The function 16x/(x + 1)2 has a maximum equal to 4 at x = 1. When z 
ranges from 0.03 to 30, the values of the function range from 0.5 to 4. 
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It follows from the expression we have obtained that the probability 
of a particle penetrating through the potential barrier depends 
greatly on the width of the barrier land on its superelevation above 
E, i.e. on U0 - E. If at a certain width of the barrier the trans­
mission coefficient T equals, say, 0.01, then when the width is 
doubled, T becomes equal to 0.01 2 = 0.0001, i.~. diminishes to one­
hundredth of its initial value. The same effect in this case would be 
caused by a four-fold growth in the quantity U0 - E. The trans­
mission coefficient decreases sharply when the mass m of a particle 
grows. 

The relevant calculations show that when the potential barrier 
has an arbitrary shape (Fig. 4.11), formula (4.56) must be replaced 
with the more general formula 

l 

T ~ exp [- ; ) V2m (U- E) dx] (4.57) 
0 

where U = U (x). 
When a particle overcomes a potential harrier, it passes, as it 

were, through a "tunnel" in this barrier (see the hatched region in 
Fig. 4.11), and in this connection 
the phenomenon we have consid­
ered is known as the tunnel effect. 

l!(.z:) 

£--

ll a b 
Fig.4.11 

The tunnel effect is absurd from 
the classical ·viewpoint because 
a particle "in the tunnel" ought 
to have a negative kinetic energy 
(in the tunnel E < U). The tun­
nel effect, however, is aspecifical­
ly quantum phenomenon having 
no analogue in classical physics. 
In quantum mechanics, the divi-
sion of the total energy into kinet­

ic and potential energies has no sense because it contradicts the uncer­
tainty principle. Indeed, the fact that a particle has a definite kinetic 
energy Ek would be equivalent to the particle having a definite 
momentum p. Similarly, the fact that a particle has a definite 
potential energy U would signify that the particle is in an exactly 
given place in space. Since the coordinate and the momentum of 
a particle cannot simultaneously have definite values, it is impos­
sible to simultaneously find exact values of Ek and U. Thus, although 
the total energy of a particle E has a quite definite value, it cannot 
be represented in the form of the sum of the exactly determined 
energies Ek and U. It is clear that in this case the conclusion on Ek 
being negative "inside" the tunnel becomes groundless. 
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4.10. Harmonic Oscillator 

A harmonic oscillator is defined as a particle performing one­
dimensional motion under the action of the quasi-elastic force 
F = -kx. The potential energy of such a particle has the form 

U - kx2 
- 2 (4.58) 

The natural frequency of a classical harmonic 
= V kim, where m is the mass of the particle 
Vol. I, p. 21 0). Expressing k through m 

oscillator is ro = 
(see Sec. 7.10 of 

u and ro in Eq. (4.58), we have 
mwZxll 

U=-2J-

In the one-dimensional case, VZ-¢ = 
= d2-¢1dx2 • Therefore, the Schrodinger 
equation [see Eq. (4.13)1 for an oscilla-
tor has the following form: 

( 4.59) 

\------+----t£5 
\----+---IE, 
\-----+--~E.J 

\----i---1£2 

\----1---7£, 

Eo 
0 :c 

(E is the total energy of the oscillator). Fig. 4.12 
It is proved in the theory of differential 
equations that Eq. (4.59) has finite, unambiguous, and continuous 
solutions at values of the parameter E equal to 

En= (n+ ~) Jiro (n=O, 1, 2, ... ) (4.60) 

Figure 4.12 shows schematically the energy levels of a harmonic 
oscillator. For purposes of illustration, the levels have been inscribed 
in the potential energy curve. It must be remembered, however, 
that in quantum mechanics the total energy cannot be represented 
in the form of the sum of exactly determined energies Ek and U 
(see the last paragraph of the preceding section). 

The energy levels of a harmonic oscillator are equidistant, i.e. 
are equal distances apart. The smallest possible value of the energy 

is £ 0 = ; /i(t). This value is called the zero energy. The existence 
of zero energy is confirmed by experiments studying the scattering 
of light by crystals at low temperatures. It was found that the inten­
sity of scattered light with decreasing temperature tends not to zero, 
but to a certain finite value. This indicates that even at absolute 
zero, the oscillations of the atoms in a crystal lattice do not stop. 

Quantum mechanics allows us to calculate the probability of 
various transitions of a quantum system from one state to another. 
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Such calculations show that for a harmonic oscillator only transi­
tions between adjacent levels are possible. In such transitions, the 
quantum number n changes by unity: 

/).n = ±1 (4.61) 

The conditions imposed on the changes in the quantum numbers 
upon transitions of a system from one state to another are known as 
the selection rules. Thus, a selection rule expressed by formula (4.61) 
exists for a harmonic oscillator. 

It follows from rule (4.61) that the energy of a harmonic oscillator 
can change only in portions of liw. This result, which is obtained 
naturally in quantum mechanics, coincides with the very ?lien 
assumption for classical physics which Planck had to make in order 
to calculate the emissivity of a blackbody (see Sec: 1.7). We must 
note that Planck assumed the energy of a harmonic oscillator to be 
only an integral multiplier of liw. Actually, there is also a zero 
energy whose existence was established only after the appearance of 
quantum mechanics. 



CHAPTER 5 THE PHYSICS OF 
ATOMS AND MOLECULES 

5.1. The Hydrogen Atom 

Let us consider a system formed by a stationary nucleus having­
the charge Ze (where Z is an integer) and an electron in motion 
around it. When Z > 1, such a system is known as a hydrogen-like­
ion; when Z = 1, it is a hydrogen atom. 

The potential energy of an electron is 

U= _ Ze' 
r 

(r is the distance to the electron from the nucleus). Hence, the­
Schrodinger equation has the form 

V2'1' + ~~e ( E + z;z ) 1jJ = 0 ( 5.1} 

(me is the mass of an electron). 
The field in which the electron travels is a centrally symmetrical 

one. It is therefore expedient to use a spherical coordinate system: 
r, e, <p. Using the expression for the Laplacian operator in spherical 
coordinates in Eq. (5.1), we arrive at the equation 

- 1 .!_ (rz~) + 1 · .!_ {sinO~) ' 
r2 or or r2 sin 6 o6 \ ae --r 

+ 1 o2¢ -1·· 2me ( E + Ze2 ) ,h = O 
r2 sin 2 6 o<p2 /j2 r 't' 

(5.2} 

It can be shown that Eq. (5.2) has the required (i.e. single-valued, 
finite, and continuous) solutions in the following cases: (1) at any 
positive values of E, and (2) at discrete negative values of the energy 
equal to 

(n=1,2,3, ... ) (5.3} 

The case E > 0 corresponds to an electron flying near the nucleus 
and again travelling away to infinity. The case E < 0 corresponds 
to an electron bound to the nucleus. A comparison with Eq. (3.31) 
shows that quantum mechanics leads to the same values of the 
energy of a hydrogen atom that were obtained in Bohr's theory. 
In quantum mechanics, however, these values are obtained as 
a corollary of the fundamental tenets of this scier.ce. Bohr, on the 
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other hand, had to introduce special additional assumptions to 
obtain such a result. 

The eigenfunctions of Eq. (5.2) contain three integral parameters 
n, l, and m: 

(5.4) 
The parameter n, called the principal quantum number, coincides 
with the number of the energy level [see Eq. (5.3)]. The parameters l 
and m are the azimuthal and magnetic quantum numbers determin­
ing by Eqs. (4.38) the magnitude of the angular momentum and 
the projection of the angular momentum onto a certain direction z. 

Solutions satisfying the standard conditions are obtained only 
for values of l not exceeding n - 1. Hence, at a given n, the quantum 
number l can take on n different values: 

l = 0, 1, 2, ... , n- 1 

At a given l, the quantum number m can take on 2l + 1 different 
values: 

m = -l, -l + 1, ... , -1, 0, +1, ... , l- 1, l 

[see Eqs. (4.38)]. 
According to Eq. (5.3), the energy of an electron depends only 

on the principal quantum number n. Hence, several eigenfunctions 
'Pnz m differing in the values of the quantum numbers l and m corre­
spond to each eigenvalue of the energy En (except for E1). This signi­
fies that a hydrogen atom can have the same value of the energy 
while being in several different states. Table 5.1 gives the states 
corresponding to the first three energy levels. 

Table 5.1 

Pst-func- Value 
Psi·func~ 

Value 
Energy Energy 

level En tlon 

I 
' 

level En tion 

I I ~nlm n I m 1Pn.lm n l m 

'llaoo 3 0 0 
Et 'ljl1oo 1 0 0 'llat-1 3 1 -1 

'll310 3 1 0 

I Ea 
'lla1+1 3 1 +1 

'll20J 2 0 0 'lla2-2 3 2 -2 
Va2-1 3 2 -1 

£2 "'21-1 2 

I 
1 -1 

'lla20 3 2 0 
'll210 2 1 0 

'lla2+1 3 2 +1 
'llu+l 2 1 +1 'lls2+2 3 2 +2 

States having the same energy are called degenerate, and the num­
ber of different states with a certain value of the energy is known as 
the degree of degeneracy of the corresponding energy level. 
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It is simple to calculate the degree of degeneracy of hydrogen 
levels on the basis of the possible values for l and m. For each of 
the n values of the quantum number l there are 2l + 1 values of the 
quantum number m. Hence, the number of different states corres­
ponding to the given n is 

n-t 

~ (2l+1)=nz 
1-0 

Thus, the degree of degeneracy of the energy levels in a hydrogen 
atom is n2 (see Table 5.1), or, in other words, the energy levels of 
a hydrogen atom are n2-fold degenerate. 

States with different values of the azimuthal quantum number l 
differ in the magnitude of the angular momentum. In atomic physics, 
symbols are used for the states of an electron with different magni­
tudes of the angular momentum that have been borrowed from spectro­
scopy. An electron in a state with l = 0 is called an s-electron (the 
corresponding state is the s-state), with l = 1 is called a p-electron, 
with l = 2 a d-electron, with l = 3 an /-electron, then come g, h 
and so on according to the alphabet. The value of the principal 
quantum number is indicated before the symbol of the quantum 
number l. Thus, an electron in a state with n = 3 and l = 1 is 
designated by the symbol 3p, etc. 

Since l is always smaller than n, the following states of an electron 
are possible: 

is, 
2s, 2p 

3s, 3p, 3d 
4s, 4p, 4d, 4/ 

and so on. 
The energy levels could be depicted schematically as was done 

in Sec. 3.6 (see Fig. 3.13). But it is much more convenient to use 
the diagram shown in Fig. 5.1. This diagram reflects (true, only 
partly) the degeneracy of the levels. It also has a number of other 
appreciable advantages that will soon become evident. 

We know that the emission and absorption of light occur upon 
transitions of an electron from one level to another. It is proved 
in quantum mechanics that the following selection rule holds for 
the azimuthal quantum number l: 

!1l = ±1 (5.5) 
This signifies that only such transitions are possible in which l 
changes by unity. Rule (5.5) is due to the fact that a photon has an 
intrinsic angular momentum (spin*) approximately equal to 1i (we 

• Spin will be treated in Sec. 5.4. 
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shall define its value more precisely on a later page). When a photon 
is emitted, it carries this momentum along with it from the atom, 
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Fig. 5.1 
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while when it is absorbed it gives up this momentum, so that selec­
tion rule (5.5) is simply a corollary of the law of angular momentum 
conservation. 
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Figure 5.1 shows the transitions allowed by rule (5.5). Using 
the symbols of the electron states, we can write the transitions result­
ing in the production of the Lyman series in the form 

np-+is (n=2,3, •.. ) 
the transitions 

ns -+ 2p and nd -+ 2p (n = 3, 4, ••. ) 

correspond to the Balmer series, etc. . 
The state 1s is the ground state of the hydrogen atom. The latter 

has the minimum energy in this state. To transfer an atom from its 
ground state to an excited one (i.e. to a state with a greater energy), 
it must be supplied with energy. This can be done at the expense 
of the thermal collision of atoms (this is why heated bodies glow­
the atoms radiate upon returning from an excited state to the ground 
one), or at the expense of a collision of an atom with a sufficiently 
fast electron, or, finally, at the expense of the absorption of a pho­
ton by an atom. 

A photon vanishes when it is absorbed by an atom, giving llp to 
tqe latter all of its energy. An atom cannot absorb only a part of 
a photon because a photon, like an electron, and like other elemen­
tary particles, is indivisible. Consequently, in the absence of multi­
photon processes (see Sec. 5.17), an atom can absorb only the photons 
whose energy corresponds exactly* to the difference between the 
energies of two of its levels. Since the absorbing atom is usually in 
the ground state, the absorption spectrum of the hydrogen atom 
must consist of lines corresponding to the transitions 

1s -+np (n = 2, 3, ... ) 

This result compleiely agrees with experimental data. 
The eigenfunctions of Eq. (5.2) break up into two multipliers, 

one of which depends only on r, and the other only on the angles e 
and cp: 

¢nlm = Rnl (r) Ycm (9, cp) (5.6) 

The multiplier Rn1 (r) is real and depends on the quantum numbers 
n and l, while the multiplier Y lm (9, cp) is complex and depends 

· on the quantum numbers l and m. 
The function Y 1m (0, cp) is the eigenfunction of the operator of 

the square of the angular momentum. This function is constant for 
the s-states of an electron (i.e. for the states with an angular momen­
tum equal to zero), so that a psi-function of the form 'i'noo depends 
only on r. 

An element of volume in a spherical coordinate system equal to 
dV = r2 sin 9 dr d9 dcp can be represented in the form dV = r2 dr dQ, 

• More correctly, with an accuracy up to a small correction that will be 
iatroduced in See. 5.3. 
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where dQ =sin 0 dO d(J' is an element of a solid angle. Therefore, 
the condition of normalization of function (5.6) can be written as 
follows: 

00 I lP~lm 'l>nlm dV = J R~zr" dr ( YtmY lm dQ =a 1 ( 5. 7) 
o dnl 

(the integral with respect to dQ is taken over a complete solid angl~ 
Rlrz equal to 4n). The eigenfunc­

tions of the operator M2 are 
assumed to be normalized; this 
signifies that 

16r 

!l Z 4 ll 8 70 JZ 14 Ttl r 

R'r'l n=.J, l=2 

~-~~~~~· U 2 4 8 8 10 !Z 74 18 r 
Fig. 5.2 

~ YtmYlm dQ =-1 
(4n) 

(5.8) 

Consequently, the condition of 
normalization of the function 
Rnz (r) follows from Eq. (5. 7): 

00 

J R~zr2 dr= 1 
0 

(5.9) 

The probability of an elec­
tron being in the volume ele­
ment dV = r2 sin a dr de d(J)= 
= r2 dr dQ is determined by 
the expression 

dP r, e, cp = R~zr2 dr YfmY lm dQ 

Integrating this expression 
with respect to a complete solid 
angle 4n, we shall find the 

probability dPr of an electron 
radius r and thickness dr: 

being in a thin spherical layer of 

dP r = R~zr2 dr J Yt~'Yzm dO 
(~n) 

:faking into account condition (5.8), we obtain 

dP r = R~rr2 dr (5.10) 

"Examination of formula (5.10) shows that the expression R~1r2 is 
the density of the probability of an electron being at a distance r 
from the nucleus. Figure 5.2 gives graphs of the probability density 
for the hydrogen atom (Z = 1) for the states (1) n = 1, l = 0, 
(~) n = 2, l = 1., and (3) n = 3, l = 2. The scale unit for the 
r-axis is the Bohr radius r 0 [see Eq. (3.30)1. The long vertical strokes 
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on the r-axes of the graphs indicate the radii of the relevant Bohr 
orbits. A glance at the figure shows that these radii coincide with 
the most probable distances from the electron to the nucleus. 

f.>t Q Kro'IZe.-'·-J 
5.2. Spectra of the Alkali Metals 

The emission spectra of alkali metal atoms, like the spectrum of 
hydrogen, consist of several series of lines. The most intensive of 
them have been named the principal, sharp, dUYuse, and fundamental 
(or Bergmann} series. These names have the following origin. The 
principal series owes its name to its also being observed in absorp­
tion. Hence, it corresponds to transitions of an atom to its ground 
state. The sharp and diffuse series consist respectively of sharp and 
blurred (diffuse} lines. The Bergmann series was called fundamental 
because of its similarity with the hydrogen series. 

The lines of the series of a sodium (N a) atom can be represented 
as transitions between the energy levels depicted in Fig. 5.3. This 
diagram differs from that of the hydrogen atom levels (see Fig. 5.1) 
in that similar levels in different sets are at different heights. Not­
withstanding this distinction, both diagrams have a great similari­
ty. This similarity gives us grounds to assume that the spectra of 
the alkali metals are emitted upon transitions of the outermost 
(the so-called valence or outer} electron from one level to another. 

Inspection of Fig. 5.3 reveals that the energy of a state depends, 
apart from the quantum number R, also on the set which the given 
term is in, i.e. on the number of the set of terms. In the diagram of 
the hydrogen atom levels, the different sets of terms (with levels 
coinciding in height) differ in the values of the angular momentum 
of an electron. It is natural to assume that the different sets of terms 
of the alkali metals aiso differ in the values of the angular momentum 
of the valence electron. Since the levels of different sets in this case 
are at different heights, it should be assumed that the energy of 
a valence electron in an alkali metal atom depends on the magnitude 
of the angular momentum of the electron (which we did not observe 
for hydrogen). 

The assumption that the energy of a valence electron of alkali 
metal atoms depends on the quantum number l (i.e. on the value 
of M} is confirmed by quantum-mechanical calculations. For atoms 
more complicated than the hydrogen atom, we may consider that 
each of the electrons moves in the averaged field of the nucleus and 
the remaining electrons. This field will no longer be a Coulomb one 
(i.e. be proportional to 1/r2), but has central symmetry (depends 
only on r}. Indeed, depending on the degree of penetration of an 
electron into an atom, the charge of the nucleus will be screened for 
the given electron by the other electrons to some extent or other so 
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that the effective charge which the electron under consideration 
experiences will not be constant. At the same time, since electrons 
travel at tremendous speeds in an atom, the time-averaged field 
can be considered as a centrally symmetrical one. 

0 

-7 

-2 

-5 

s p ]] 
1.= 0 J 2 

Fig. 5.3 

F 
J 

The solution of the Schrodinger equation for an electron travelling 
in a centrally symmetrical non-Coulomb field gives a result similar 
to that for a hydrogen atom. A difference, however, is that the energy 
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levels depend not only on the quantum number n, but also on the 
quantum number l: 

E = Enl 
Thus, in this case, the degeneracy with respect to l is removed. The 
differen{:e in energy between states with different l's and identical 
n's is in general not so great as between states with different n's. 
With an increase in l, the energy of levels with identical n's grows. 

The angular momentum of an atom as a whole is the sum of the 
angular momenta of all the electrons in the atom. The value of the 
resultant momentum is determined by the quantum number L 
(see Sec. 4. 7). A different ·value of L corresponds to each column of 
levels in Fig. 5.3. 

The symbols S, P, D, Fused in the diagram in Fig. 5.3 are the 
initial letters of the series names: sharp, principal, diffuse, funda­
mental. Each of the series is produced at the expense of transitions 
from levels belonging to the corresponding set. After it had been 
established that different sets of levels differ in the value of the 
quantum number L, the symbols S, P, D, F (or s, p, d, f) were 
used to designate states with the corresponding values of]- (or _l). 

Investigations of the optical spectra of alkali metal ions showed 
that the angular momentum of the atomic residue (i.e. of the nucleus 
and the remaining electrons except for the most loosely attached 
valence electron that leaves the atom in ionization) is zero. Hence, 
the angular momentum of an alkali metal atom equals that of its 
valence electron, and L of the atom coincides with l of this electron. 

Thesame selection rule is in force for l of the valence electron of 
alkali metal atoms as for l of the hydrogen atom electron [see for­
mula (5.5)1. 

When an alkali metal atom is excited and when it emits light, 
only the state of the ~nee electron ch~nges. Therefore, the diagram 
of the levels of an alka.li metal atom may be considered identical 
to that of the levels of the valence electron*. 

Let us denote the terms corresponding to the columns of the levels 
labelled S, P, D, F in Fig. 5.3 by the symbols nS, nP, nD, and 
nF. According to Eq. (3.6), the frequency of a spectral line equals 
the difference between the terms of the final and the initial states. 
Hence, the spectral series of sodium can be represented in the fol­
lowing form: 

sharp series: w == 3P- nS 
principal series: w = 38- nP 
diffuse series w == 3P- nD 
fundamental series w == 3D- nF 

(n= 4, 5, •.. ) } 
(n= 3, 4, •.. ) 
(n= 3, 4, ... ) 
(n=4,5, ... ) 

(5.11) 

• The reasons why we ascribed a value of the principal quantum number 
equal to 3 (see Fig. 5.3) to the fundamental state of the valence electron of a 
s~m atom will be revealed on a later page. 
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Back at the end of the last century, Rydberg established that the 
terms of the alkali metals with a high degree of accuracy can be 
represented with the aid of the empirical formula 

R 
TJ:n)= ln+a>' (5.12) 

Here R is the Rydberg constant [see Eq. (3.3)1, n is the principal 
quantum number, and a is a fractional number called the Rydberg 
correction. This correction has a constant value for a given set of 
terms. It is designated by the same letter used to denote the corres­
ponding set of terms-the letter s for the S-terms, the letter p ~or 
the P-terms, etc. The values of the corrections are determined exper­
imentally. They are different for different alkali metals. These val .. 
ues for sodium are 

s = -1.35. p = -0.87, d = -0.01, /= 0.00 (5.13} 

We must note that the term given by Eq. (5.12) differs from the 
term of the hydrogen atom [see Eq. (3.5)1 only in the presence of the 
correction a. For F-terms, this correction is zero. Consequently, 
the fundamental series (appearing in transitions from the F-levels) 
is hydrogen-like. 

Introducing the empirical expressions into Eqs. (5.11), we get 
the following formulas for the frequencies of the spectral series of 
nitrogen: 
sharp series-

R R 
w= (3+p)'- (n+s)' 

principal series-
R R 

(I)= (3+ s)1 - (n+ p)1 

diffuse series-
R 

(I)= (3+ p)l 

fundamental series-
R 

R 

R 

(n= 4, 5, •.• ) 

(n=3, 4, •.. ) 

(n=3, 4, ... ) 

(n = 4, 5, ... ) 

The corrections s, p, d, j in the these formulas have the values 
given by Eqs. (5.13). 

5.3. Breadth of Spectral Lines 
An atom can transfer spontaneously from an excited state to a 

lower energy state. The time 't during which the number of atoms in 
a given excited state diminishes to 1/e-th of its initial value is 
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called the lifetime of the excited state*. The lifetime of the excited 
states of atoms is of the order of 10-8 to 10-11 s. The lifetime of meta­
stable states may reach tenths of a second. 

The possibility of spontaneous transitions indicates that excited 
states cannot be considered as strictly stationary ones. Accordingly, 
the energy of an excited state is not exactly definite, and an excited 

{I) 

Fig. 5.4 · Fig. 5.5 

energy level has the finite breadth r (Fig. 5.4). According to formu· 
la (4.5), the uncertainty of the energy r is associated with the life­
time of a state • by the relation r. -r- 1i. The breadth of a level 
is thus determined by the expression 

r = _!_ (5.14) 
'f 

(we have written the equality sign for definiteness). 
The ground state of an atom is stationary (a spontaneous transi­

tion from it to other states is impossible). Therefore, the energy of 
the ground state is determined quite accurately. 

Owing to the finite. breadth of the excited levels, the energy of 
the photons emitted by atoms is scattered as described by the curve 
depicted in Fig. 5.4. The spectral line (Fig. 5.5) accordingly has 
a finite breadth**: · · · 

r 1 
6roo = -,; = -;- (5.15) 

Taking , ,.., 10-8 s, we obtain a value of the order of 10S rad/s for 6w0• 

The frequency interval 6w0 is related to the wavelength interval 
6i..0 by the expression 

2nc "- "-1 R 6i..0 = -.- 6o>0 = - 6ro0 = -2 uro0 
(I)• (I) nc 

(5.16) 

• The lifetime determined in this way coincides with the average time spent 
by atoms in the excited state. 

•• The breadth of a spectral line 6(1) is determined as the difference between 
the frequencies which an intensity equal to half the intensity at the maximum 
corresponds to. In this connection, 6(1) is sometimes called the half-breadth of 
a spectral line. We shall use the term "breadth of a line". 
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(we have omitted the minus sign). Introducing A. = 5000 A and 
Ow 0 = 108 rad/s, we get a value of the order of 10-' A for oA.0 • · 

Expressions (5.15) and (5.16) determine the so-called natural . 
breadth of a spectral line. The natural breadth is characterized by 
the values 

(5.17) 

The thermal motion of emitting atoms leads to the so-called Dop• 
pler broadening of spectral lines. Assume that at the moment of emis­
sion of a photon an atom has the momentum p0 and, accordingly, 
the energy of translational motion p~/2ma (here m8 is the mass of 
an atom). The photon carries along with it the momentum lik equal 
in magnitude to Jiwlc. Hence, the momentum of the atom changes 
and becomes equal to p = p0 - lik. Consequently, the energy of 
the translational motion of the atom changes too. The atom receives 
the recoil en~rgy equal to 

E . _ (Po -lik) 2 P3 (lik)2 p01ik 
rec - 2ma 2m3 = 2m8 --;;;:-

(5.18) 

Let us replace k with wlc. In addition, we shall take into account 
that p0/m8 is the velocity v0 of the atom prior to emission. 

As a result, Eq. (5.18) acquires the form 
(liw)2 v0 

Erec = --- -Jiw cos a. 2m8c2 c 
(5.19) 

where a. is the angle between the vectors p0 and k, i.e. the angle 
between the direction of motion of the atom and the direction in 
which the photon is emitted. 

Let !J.Enm stand for the decrement of the internal energy of the 
atom, i.e. the difference En - Em, where En and Em are the values 
of the energies of the levels between which the transition occurs. 
On the basis of the law of energy conservation, !J.Enm must equal 
the sum of the energy of the photon and the recoil energy acquired 
by the atom upon emission: 

D.Enm = liw + Erec (5.20) 

If atoms upon emission did not experience recoil, they would 
emit photons of the frequency w0 • The value of this frequency is 
obtained from the condition 

(5.21) 

We must note that in the preceding sections by (J) we meant (J)o· 

The recoil energy for visible light is about 10-11 of the energy of 
an emitted photon. For gamma-quanta with /i(J) = 100 keY, the 
recoil energy is 10-6 of the energy of a photon. Therefore, we may 
substitute w0 for (J) in Eq. (5.19). We assume that the velocity v0 
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equals the average velocity v of the thermal motion of molecules. 
As a result, we get 

E (licoo)1 v 
rec = -2--1 -- liwo cos a. m8 c c (5.22) 

The average value of this expression equals the first addend (cos a. 
takes on all the values from -1 to +1 with equal probability, 
owing to which the second addend is zero on an average). 

Thus, denoting the average recoil energy acquired by an atom 
upon the emission of a photon by the symbol R, we can write: 

(5.23) 

With account taken of Eq. (5.23), we can represent Eq. (5.22) 
as follows: 

Erec = R - ~ liwo cos a. 
c 

It follows from Eqs. (5.20) and (5.21) that 

liw = 1iw0 - E reo 

(5.2~) 

Using Eq. (5.24) for Erec in this expression and dividing the relation 
obtainedJ.bY li, we arrive at the formula 

R v 
w = W0 - T + c w0 cos a. 

Let us introduce the notation 
Ll R lico~ nco• 

Wn = T= 2m8c11 ~ 2mac1 

(5.25) 

(5.26) 

(5.27) 

Using this notation, we can represent formula (5.25) in the form 

1 w = w0 - Llw 8 + 2 6wo cos a. ( 5. 28) 

In a source of radiation in which all the directions of thermal mo­
tion of the atoms are equally probable, the frequencies of the· emit­
ted photons will be confined within the limits of the interval 6wo. 
Consequently, Eq. (5.27) gives the Doppler breadth of a spectral line. 
A glance at Eq. (5.27) shows that the relative Doppler broaden­
ing of the lines {jwnf (u does not depend on the frequency and equals 
2 (v/c) [compare with Eq. (21.15) of Vol. II, p. 483, taking into 
account that Llw in this equation corresponds to a half of owo]. 

According to Eq. (5.16), oA./A. = 8wlw. The average velocity of 
the atoms (with a relative atomic mass of about 100) at a temperature 
of the order of several thousand kelvins is approximately 103 m/s. 
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In these ~onditions, the Doppler breadth of a spectral line for ].. -:­
= 5000 A will be 

6/..n = 2 ; J.. = 2 x 3 ~~os x 5000 ~ 3 x to-z A. 

[compare with expression (5.17)1. 
The actual breadth of a spectral line cSc.o is the sum of the natural 

breadth given by Eq. (5.15) and the Doppler breadth given by (5.27): 

6c.o = 6c.oo + 6c.on 

The middle of the line corresponds to the frequency c.o 0 - /).c.o R 

[see Eq. (5.28)1. The quantity c.o 0 is the frequency which a photon 
would have provided that the energy f).Enm were completely used 
for radiation. The receiving by an atom of the recoil energy R in 
the emission of energy leads to shifting of the spectral line toward 
lower frequencies (i.e. larger wavelengths) by the amount /).c.o R 

determined by Eq. (5.26). It can be seen from this equation that 
the relative shift of the frequency /). c.o R/ c.o is proportional to the 
frequency c.o. 

Let us assess /).c.oR for visible light (c.o rov 3 X 101:; rad/s). We shall 
assume that the mass of an atom is 10-22 g (an atomic mass of the 
order of 100). By Eq. (5.26) 

A _ 1..05 X fQ-17 X 9 X f()SO ,...._ 5 fO~ d 
uC.OR- 2 X iQ-22 X 9 X f()lo "' X ra /S 

whence for f).').,R we get a value of the order of 10-' A, which we may 
disregard. 

We must note that when an atom absorbs a photon lic.o, the mo­
mentum of the photon lik is communicated to the atom. As a result, 
the latter acquires translational motion. The average additional 
energy received by an atom when it absorbs a photon coincides with 
the average value of the recoil energy R. Consequently, to produce 
the transition Em -En in an atom, a photon must have the energy 

lic.o' = f).Enm + R 
while the frequency of the photon must be c.o' = c.o 0 + /).c.o R• where 
/).(l)R is determined by Eq. (5.26). 

Thus, a spectr1.1l line whose middle is in the emission spectrum of 
the given atom at the frequency w0 - /).c.oR will have the frequency 
c.o 0 + /).c.o R in the absorption spectrum of the same atom. For visible 
light, the shift of the emission ilnd absorption lines relative to each 
other (which is 2()./...R ~ 10-7 A) is five orders of magnitude le.ss 
than the Doppler breadth of the line (equal to about 3 X 10-z A) 
and three orders of magnit'!de less than the natural breadth of the 
line (equal to about 10-• A). Consequently, for visible light, we 
may consider that the emission and absorption lines exactly coincide 
with one another. 
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5.4. Multiplicity of Spectra and Spin 
of an Electron 

109 

The investigation of alkali metal spectra with the aid of instru­
ments having a high resolving power has shown that each line of 
these spectra is a double one (dQ.11blet). For example, the yellow line 
3P -38 characteristic of sodium (s~e Fig. 5.3) consists of two lines 
with wavelengths of 5890 and 5896 A. The same relates to the other 
lines of the principal series, and also to lines of other series. 

The structure of a spectrum reflecting the splitting of the lines 
into their components is called fine structure. The complex lines 
consisting of several components are known as multiplets. A fine 
structure is a property of other elements in addition to the alkali 
metals. The number of components in a multiplet may be two (doub­
lets), three (triplets}, four (quartets), five (quintets}, and so on. 
In a particular case, the spectral lines even with account of the fine 
structure may be single (singlets). 

The splitting of spectral lines is evidently due to splitting of the 
energy levels. To explain the splitting of these levels, the Dutch 
physicists SamueliGoudsmit and George Uhlenbeck in 1925 advanced 
the hypothesis that an electron has an intrinsic angular momentum 
M, not associated with the motion of the electron in space. This 
intrinsic angular momentum was called spin. 

It was initially assumed that spin is due to rotation of an electron 
about its axis. According to these notions, an electron was consid­
ered similar to a top or spindle. This explains the origin of the 
term "spin". Very soon, however, it became necessary to reject such 
model ideas, in particular for the following reason. A spinning 
charged sphere must have a magnetic moment, and the ratio of the 
magnetic moment to the mechanical angular momentum must be 
- ~. j L- ~ -' • . !, 

o -, ~f) L~IJ t = - ~eC f/ -~ f' _l,j _<5·29>,, 
c \ 

(see Eq. (7.41) of Vol. II, p. 167; we have used the symbol fl. here 
instead of Pro for convenience]. 

Indeed, it was established that an electron in addition to its 
intrinsic mechanical angular momentum has an intrinsic magnetic 
moment fl.,. A number of experimental facts, however, in particular 
the complicated Zeeman effect, witness that the ratio between the 
intrinsic magnetic moment and intrinsic mechanical angular mo­
mentum is i.ouble that between the orbital magnetic moment 1 and 
orbital mechal!_ical a_Agular momentu~: 

\ .. !, . 

f.La e 
M, =- m8c (5.30) 

,1 _:) . . r 
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Thus, the notion of an: electron as of a spinning sphere was unfound­
ed. Spin must be considered as an intrinsic property characterizing 
an electron in the same way as its charge and mass do. 

The assumption on the spin of an electron was confirmed by a great 
number of experimental facts and should be considered as absolutely 
proved. It was also found that the presence of spin and all its prop­
erties automatically follow from the equation of quantum mechanics 
satisfying the requirements of the theory of relativity that was 
proposed by Paul Dirac. It was thus found that the spin of an electro~ 
is simultaneously a quantum and a relativistic property. Protons, 
neutrons, and other elementary particles (except mesons) also have 
a spin. · : 

The magnitude of the 'intrinsic angular momentum of an elec­
tron is determined according to the general laws of quantum me­
chanics [see Eq. (4.34)1 by the so-called spin quantum number s 
equal to 1;2•, 

- .. /13" t 1r 
M 8 =nVs(s+1)=n v 2 x 2 = 2 n r 3 (5.31) 

The projection of the spin onto a given direction can take on 
quantized values differing from one another by n: 

Ms. z= msn ( m.= + S= +!) (5.32) 

To ftnd the value of the intrinsic magnetic moment of an electront 
we shall multiply Ms by the ratio of lls to M. [see Eq. (5.30)]: 

!ls= __ e_ M 8 = -~ Vs(s+1) = 
mec mec 

~ ~ ~J = -2~-tB V s (s+ 1) =- !lB V3 (5.33) 

l~-tB is the Bo_h!._magneton; see Eq. (7.45) of Vol. II, p. 169]. The 
minus sign indicates that the mechanical angular momentum lvf, 
and the magnetic moment !ls of an electron are directed oppositely. 

The projection of the intrinsic magnetic moment of an electron 
onto a given direction can have the following values: 

e e eh 1 2) !la.z=--M8,z=--1im,=--(± / ==FjlB (5.34) 
mec mec mec 

(the minus sign is obtained if m8 = + ! t and the plus sign if m. = 

=- ~). 
Thust the projection of the intrinsic angular momentum of a:a 

electron can taken on values of + ; 1i and - ~ li.t and of the intrinsic 

• For a proton and a neutron,·s also equals O!le-half, for a photon, s equals 
unity. 
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magnetic moment-values of +J.LB and -J.LB· A number of formu­
las, in particular the expression for energy, include not the angular 
momentum and magnetic moment themselves, but their projections. 
The intrinsic mechanical angular momentum (spin) of an electron 
is therefore customarily said to equal one-half (naturally, in units 
of li), and the intrinsic magnetic moment to equal one Bohr magneton. 

Let us now use the example of the sodium atom to show how the 
existence of the spin of an electron can explain the multiplet struc­
ture of its spectrum. Since the angular momentum of the atom residue 
is zero, the angular momentum of the sodium atom equals that of 
its valence electron. The angular momentum of the electron will 
consist, on the other hand, of two momenta: the orbital angular 
momentum M 1 due to the motion of the electron in the atom and the 
spin angular momentum Ms not associated with the motion of the 
electron in space. The resultant of these two momenta gives the 
total angular momentum of the valence electron. Summation of the 
orbital and spin angular momenta to obtain the total momentum 
is performed according to the same quantum laws used to summate 
the orbital angular momenta of different electrons [see Eqs. (4.39) 
and (4.40)]. The magnitude of the total angular momentum M 1 is 
determined by the quantum number j: 

M1 = 1i V j (j + 1) 

Here I can have the values 

i = l + s, I l - s I 
where l and s are the azimuthal and spin quantum numbers, respec­
tively. When l = 0, the quantum number j has only one value, name-

ly, 1 = s = ~ . When l differs from zero, two values are possible: 

J = l + ! and I = l - ~ that correspond to two possible mutual 
orientations of the angular momenta M 1 and M8-"parallel" and 
"anti parallel"*. 

We shall now take into consideration that magnetic moments are 
associated with the mechanical angular momenta. The magnetic 
moments interact with each other like two currents or two magnetic 
pointers do. The energy of this interaction (called spin-orbit inter· 
action) depends on the mutual orientation of the orbital and intrinsiC 
angular momenta. Hence, states with different j's must have dif­
ferent energy. 

Thus, each term of the set P (l = 1) splits into two terms corres­
ponding to j = 1/2 and 1 = 3/2; each term of the set D (l = 2) 

• The words "parallel" and "antiparallel" have been taken in quotation 
marks since two angular momenta being added are never directed along a single 
straight line. 
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splits into terms with j = 3/2 and f = 5/2, etc. Only one value of 
f = 1/2 corresponds to each term of the set S; therefore, the terms 
of the set S do not split. 

-2 4 

-4 

-5 

Fig. 5.6 

Thus, each set of terms except for S splits into two sets -the 
terms have a doublet structure. It is customary practice to denote 
the terms by the symbols 

2Sttz, 2P3tz, 2Pttz, 2D512, 2Dat2• 2F7t2• 2Fstz, •. · 
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The right-hand subscript gives the value of f. The left-hand super­
script indicates the multiplicity of the terms. Although the set S 
is a single one, the superscript 2 is also used with its symbol to show 
that this set belongs to a system of terms that is a doublet one as 
a whole. 

When the fine structure is taken into account, the diagram of the 
terms. is more complicated, which is illustrated by the diagrams 

{j 
zs~ l..q.,/2 'Pr;.., Psa ~k 2~.5/t 

== -- = = = ~ 

!{!::::=:. /{!== .9- .9-- 7--
Ill-- .9-- .9-- 8-- 8- 8--
g.-

7-- 7-
5-

8-- 8-

8-- .f·-
-1 o- 8-7- 7--

~ 7--
~ 

::;, 
~-2 
~ 

~ 

(!) 
-.1 

-4 
Fig. 5.7 

of the levels of sodium (Fig. 5.6) and cesium (Fig. 5.7). The diagram 
for sodium should be compared with the one shown in Fig. 5.3. 
Since the multiplet splitting of the terms D and F for sodium is very 
small, the sublevels of D and F differing in their values of f are 
shown by single lines in the diagram. 

The following selection rule exists for the quantum number of 
the total angular momentum of an atom: 

!J.J .... o, ±1 (5.35) 
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· Th~ multiple~ splitting of the cesium atom is considerably greater 
than m the sodmm one. It can be seen from the diagram for cesium 
in Fig. 5. 7 that the fine structure of the diffuse series consists of 
three lines instead of two: 

52Ds/2- 62P3/2- 36127 A 
52Ds/2- 62Pa/2,..., 34 892 A 
52D3/2-+62Pi/2- 30100 A 

The appearance of these lines is explained additionally in Fig. 5.8. 
The transition 52D512 -+ 62P 112 depicted by the dash line is forbidden 

II I 
Fig. 5.8 

by selection rule (5.35). The lower part of the 
diagram shows what the multiplet itself looks 
like. The thickness of the lines in the diagram 
corresponds approximately to the intensity of the 
spectral lines. The collection of the lines obtained 
looks like a doublet in which one of the com­
ponents, in turn, is double. Such a group of lip.es 
is called not a triplet, hut a complex doublet be­
cause it is produced as a result of the combina­
tion of doublet terms. 

We must note that in connection with an elec­
tron having a spin it is quite natural to presume 
that the levels with l > 0 must be double in the 
hydrogen atom too, and the spectral lines must 
be doublets. The fine structure of the hydrogen 
spectrum was really detected experimentally. 

The splitting of the energy levels due to spin 
is a relativistic effect. The relativistic quantum theory gives the 
following value for the distance between the levels of the fine struc­
ture of the hydrogen atom: 

ex; I 
llE= 16 Et (5.36) 

Here E1 is the ionization energy of the hydrogen atom (calculated 
on the assumption that the mass of the nucleus is infinitely great), 
and a is a dimensionless quantity called the fine structure constant. 
It is determined by the expression 

(5.37) 

We can use Eq. (5.36) to assess the magnitude of the multiplet 
splitting of levels. The distances between levels differing in the 
values of the principal quantum number have a magnitude of the 
order of E 1; the expression a~/16 has a value of the order of 10-5• 

Consequently, the distance between the levels of the fine structure 
is about 1/105 of the distance hetwe~:~n the main levels. 
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The fine structure constant is one of the fundamental constants of 
nature. Its meaning becomes obvious when we pass over to the so­
called natural system of units used in quantum electrodynamics. In 
this system, the unit of mass is the mass of an electron me, the unit 
of length is the Compton wavelength of an electron );.c = lilmee (see 
Sec. 2.4), the unit of energy is the rest energy of an electron mee", 
etc. Let us calculate in these units the electric energy of interaction 
of two electrons at the distance of lilmee from each other. For this 
purpose, we must divide the expression e2/(1i/mec) by mee2• As a re­
sult, we get a dimensionless quantity equal to 

(5.38) 

(see Eq. (5.37)1. If we expressed the charge of an electron q in natu­
ral units, then the formula for the interaction energy would have 
the form · 

q (nat. un.) q (nat. un.) t f 
1 nat. un. of length =a. na · un. 0 energy 

It thus follows that a. is the square of the elementary charge expressed 
in natural units. 

According to Eq. (5.38), the fine structure constant characterizes 
the energy of interaction of two electrons. We can say in other words 
that a. determines how strong an electron is bound to an electromag­
netic field. For this reason, the constant a. is known as the constant 
of electron coupling with an electromagnetic field. 

The mass of an electron is absent in Eq. (5.38) for a.. Hence, fZ 

is a constant of coupling with an electromagnetic field for any ele­
mentary particle having the charge e. 

5.5. Resultant Mechanical Angular Momentum 
of an Atom with Many Electrons 

Every electron in an atom has an orbital angular momentum M z 
and an intrinsic momentum M,. The mechanical angular momenta 
are related to the relevant magnetic moments, owing to which there 
is interaction between all the M 1's and M.'s. 

The angular momenta M 1 and M, add up to form the resultant 
angular momentum of the atom MJ. Here two cases are possible. 

1. The angular momenta M 1 have a stronger interaction with one 
another than with the M, 's which, in turn, are coupled more strongly 
to one another than to the M 1's. Consequently, all the M 1'sadd up to 
form the resultant M L• the angular momenta M, add up to form Ms, 
and only now do M L and M 8 give the total angular momentmn of 
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the atom M 1 . Such a kind of coupling is encountered most frequently 
and is known as the Russell-Saunders or LS coupling. 

2. Each pair of the M.fls and M;s displays a stronger interaction 
between the partners of fhe pair than between an individual partner 
and the other .lldt's and M ,'s. Consequently, resultant M/s a1e 
formed for each electron separately, and they then combine into 
the M 1 of the atom. This kind of coupling, called jj coupling, is ob­
served in heavy atoms. 

The angular momenta are summated with observance of the quan­
tum laws (see Sec. 4. 7). Let us consider in greater detail the sum-1 

mation of the angular momenta for a Russell-Saunders coupling. 
The orbital quantum numbers li are always integers. Accordingly, 

the quantum number L of the total orbital angular momentum is 
also a·n integer (or zero). 

The quantum number S of the resultant spin* angular momentum' 
of an atom M s may be an integer or half-integer depending on whether 
the number of electrons in the atom is even or odd. With an even 
number of electrons N, the quantum number S takes on all the 
integral values from N X 1/2 (all the Ms's are "parallel" to one 
another) to zero (all the Ms 's compensate one another in pairs). 
For example, when N = 4, the quantum number S can have values 
of 2, 1, 0. When N is an odd number, S takes on all the half-integral 
values from N X 1/2 (all the Ms 's are "parallel" to one another) 
to 1/2 (all the M 8 's except one compensate one another in pairs). 
For example, when N = 5, the possible values of S are 5/2, 3/2, 112 .. 

At given values of M L and M 8 , the quantum number J of the 
resultant anguiar momentum M 1 can have one of the following_ 
vaJues: 

J = L + S, L + S- 1, ... , I L- S I 

Consequently, J will be an integer if S is an integer (i.e. with an 
even number of electrons in an atom), and a half-integer if S i~ 
a half-integer (i.e. with an odd number of electrons). For exampL'3, 

(1) when L = 2 and S = 1, the possible values of J are 3, 2, 1; 
{2) when L = 2 and S = 3/2, the possible values of J are 7/2, 

5/2, 3/2, 112. 
The energy of an atom depends on the mutual orientation of the 

angular momenta M 1 (i.e. on the quantum number L), on the mutual 
orientation of the angular momenta Ms (i.e. on the quantum number 
S}, and on the mutual orientation of M L and M 8 (on the quantum 
number J}. The term of an atom is conventionally written as follows: 

(5.39) 

• Do not confuse the quantum numberS with the symbol of a term S. 
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where L stands for one of the letters S, P, D, F, etc~, 
on the value of the number L. For example, the terms 

Hi 

depend in~ 

3Po, 3p" 3Pz (5.40; 

relate to states with identical L = 1, identical S = 1, but differen1 
J equal to 0, 1, 2. 

Symbol (5.39) contains information on the values of the threE 
quantum numbers L, S, and J. When S < L, the left-hand super· 
script 2S + 1 gives the multiplicity of the term, i.e. the number ol 
sublevels differing in the value of the number J [see symbols (5.40)1. 
When S > L, the actual multiplicity is 2L + 1. But the symbol 
of the term is written all the same in form (5.39) because otherwisE 
it would contain no information on the value of the quantum num. 
her S. 

We have already used symbols of type (5.39) in Sec. 5.2 for alkali 
metal atoms. It is characteristic of these elements, however, that .S 
of an atom, coinciding with s of its valence electron, equals 112. 
Now we have acquainted ourselves with the symbols of terms for 
any cases. 

5.6. The Magnetic Moment of an Atom 

We have noted more than once that the magnetic moment r.t is 
associated with the mechanical angular momentum of an atom M. 
The ratio r-tf M is called the gyromagnetic ratio. 

Although our notion of orbits, as in general our notion of the tra­
jectories of microparticles, is illegitimate, the angular momentum 
due to the motion of the electrons in an atom is called orbital. The 
experimentally determined ratio of the orbital magnetic moment 
JlL and the mechanical orbital angular momentum M L coincides 
with the gyromagnetic ratio ensuing from the classical notions (see 
Sec. 7.6 of Vol. II, p. 167). This ratio is -e/2mec; accordingly, 

~LL = --2 e Jl,f L =- -2en V L (L + 1) = - JlB V L (L + 1) (5.41} 
171ec mec . • 

The quantity 

!lB = -2~ = 0. 927 X 10-zo erg/Gs 
mec 

(5.42) 

is called the Bohr magneton and is the natural unit of the magnetic 
moment. The minus sign in Eq. (5.41) indicates that the directions 
of the magnetic moment and the mechanical angular momentum are 
opposite (this is due to the fact that the charge of an electron is 
negative). The presence of the minus sign permits us to obtain the 
projection of p. L oqto the direction z by simply substituting the 
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quantum number mL for V L (L + 1) in Eq. (5.41): 

!AL, z =- f.lBmL (5.43) 

When mL > 0, the projection of ML is positive, while the projection 
of J!L is negative; when m1J < 0, the projection of ML is negative, 
and that of I-lL is positive. 

A number of experimental facts indicate that the gyromagnetic 
ratio of the intrinsic (spin) magqetic moment and angular momentum 
is double the gyromagnetic ratio of the orbital magnetic moment 
and angular momentum. Thus, 

~-ts= __ e_ Ms= -2f.lB VS (S + 1) 
mec 

(5.44) 

In this connection, the spin is said to have a double magnetism. 
The double magnetism of spin follows from the experim~nt of 

A. Einstein and W. de Haas, and from S. Barnett's experiment 
(see Sec. 7.6 of Vol. II, p. 167 et seq.). In addition, the notion of 
the double magnetism of spin makes it possible to give an ~tive 
explanation of the complicated Zeeman effect (see the following 
section). ' ·· ·. 

Owing to the double magnetism of spin, the gyromagnetic ratio 
of the total magnetic moment !A-J and total angular momentum MJ 
is a function of the quantum numbers L, S, and J. We must note 
that the numbers L and S characterize the ratio of the values of 
M L and M 8 , while the number J determines the mutual orientation 
of the orbital and spin angular momenta. The relevant quantum 
mechanical calculations give the following formula for the magnetic 
moment of an atom 

(.5.45) 

where 
= 1 + J (J +tl+S (S+i)-L (£+1) 

g 2/ (J + 1) 
(5.46) 

Expression (5.4o) is called the Lande g factor. When the total spin 
angular momentum of an atom is zero (S = 0), the total angular 
momentum coincides with the orbital one (.J = L). Introducing 
S = 0 and .J = L into Eq. (;J.4o) yields g = 1, and we arrive at 
the value of the magnetic moment determined by Eq. (5.41 ). When 
the total orbital angular momentum of an atom is zero (L = 0), 
the total angular momentum coincides with the spin one (J = S). 
Introduction of these values of the quantum numbers into Eq. (5.46) 
yields g = 2, and we orrive at the value of the magnetic moment 
determined by Eq. (5.44). We must note that the Lande g factor 
can have values less than unity, and can even be zero (this is ob­
tained, for example, when L = 3, S = 2, and .T = 1 ), In the last 
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case, the magnetic moment of an atom is zero, although the me­
chanical angular momentum differs from zero. 

We remind our reader that the presence of a minus sign in 
Eq. (5.45) makes it possible to ~obtain the projection of f.LJ onto 
the z-axis by simply substituting mJ for Y J (J + 1). Hence, 

f.LJ, z =- f.tBgmJ (mJ = 0, + 1, ... , ± J) (5.47) 

A number of questions of the physics of the atom can be treated 
with the aid of the so-called vector model of an atom. In the con­
struction of such a model, the mechanical angular momenta and 
magnetic moments are depicted in the form of z 
directed lengths of lines. Strictly speaking, 
owing to the uncertainty in the directions of , ... ---­
the vectors M in space, such a procedure is ~ ..... 
not substantiated. Therefore, when working \--­
with a vector model, we must remember the \ 
conditional nature of the relevant construe- \ 
tions. A vector model must not be understood \ Mz 
literally. It should be considered as a collec- \ 
tion of rules permitting us to obtain results \ 
whose truth is confirmed by strict quantum \ 
mechanical calculations. 

A vector model is constructed according to 
the following rules. Let M and M z have definite 
values (here M x and M u have not been deter- Fig. 5.9 
mined). Consequently, the vector M can have 
the direction of one of the generatrices of the cone depicted in Fig. 
5.9. We can imagine matters as if the vector M is uniformly rotating 
(precessing) about the direction z coinciding with the axis of the cone. 

Assume that the magnetic field B has been set up in the direction z. 
The magnetic moment 1-1. is associated with the mechanical angular 
momentum M. Therefore, the field is exerted on M (through ll)· 
We assume that the velocity of precession of the momentum M 
about B is the higher, the stronger is the field acting on the angular 
momentum, i.e. the greater is B. 

According to the rules for constructing a vector model, the angular 
momenta M1 and M2 being added precess about the direction of the 
resultant angular momentum M (Fig. 5.10). The angular moment;~. 
interact with each other (through the magnetic moments 1-1. 1 and 1-1. 2). 

The velocity of precession is assumed to be proportional to the 
intensity of interaction. In the state in which M and M z have been 
determined, the vector M precesses in turn about the direction z. 
If we set up a magnetic field B along the z-axis, different phenomena 
will be observed depending on the relation between the interaction 
of the angular momenta with each other and with the magnetic 
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field. Let us consider two cases: (1) a weak field-the interaction 
of the angular momenta with each other is greater than the action 
of the magnetic field on each of them; (2) a strong field-the action 
of the field on each of the angular momenta exceeds their interaction 
with each other. 

In the first case (Fig. 5.11a), the angular momenta add up to form 
the resultant angular momentum M that is projected onto the direc-

,' 
I 

', 

M 

,---
.... __ _ 

Fig. 5.10 

(a) (b) 

Fig. 5.11 

tion of the field. Here two kinds of precession occur: precession of 
the angular momenta M1 and M2 about the direction of M and preces­
sion of the resultant vector M about the direction of B. The velocity 

Fig.5.12 .0 ... 

of the first precession will be much 
f1s l1igher because the interaction of 

the angular momenta with each 
other exceeds the action of the 
magnetic field on each of them. 

In the second case (Fig. 5.11b), 
the field breaks the coupling be­
tween the angular momenta M1 
and M2, and each of them precesses 
about the direction of the field 
independently of the other one. 
Each of the vectors M1 and M2 will 
also be projected separately onto 
the direction of the field. 

Let us obtain formula (5.45) 
with the aid of a vector model. 

Figure 5.12 depicts the vectors ML, Ms. M1 and the vectors F-'L• 
Fts. F-'J corresponding to them. The scales have been selected so 
that the vectors ML and F-'L are depicted by arrows of the same length. 
In this condition, the vector Fts will be depicted by an arrow that 
is twice as long as the one depicting the vector Ms. 
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Owing to the double magnetism of the spin, the vector ,... J is 
non-collinear with the vector MJ. The vectors ML and M8 precess 
about the direction of M 1 , also involving in this precession the 
resultant vector of the magnetic moment Jl J· During a sufficient!~ 
long observation time, the average value of the vector Jl 1 will be 
registered. It is designated in Fig. 5.12 by the symbol (f.LJ). Let us 
find the projection of this vector onto the direction oTMJ, which 
we shall denote simply by !-1-J· A glance at the figure shows that 

ll1 = - I f.LL I cos a - I f.Ls I cos ~ (5.48) 

where I f.LL I and I Jls I are the magnitudes of the relevant vectors. 
According to Eqs. (5.41) and (5.44) 

I !-'L I= ~B VL (L + 1); I 1-ls I = 2f.lB V S (S + 1) (5.49) 

To find the value of cos a, let us square the relation M8 = MJ -
- ML: 

M~ = M~ + Mt- 2M J M L cos Q; 

whence 
M~+Mt -M~ J (J+1)+L (L+1)-S (S+i) 

cos Q; = = (5.50) 
2M;ML 2 y JIJ+1) YL(L+1) 

To find the value of cos p, let us square the relation ML = M1 -

-Ms: 
Mt = M~ + M~- 2M 1 M s cos p 

whence 

cos~= M~.+M~-Mt = J (J +t)+S (S+i)-L (L+i) (5.51) 
2M;Ms 2VJ(J+1)YS(S+1) 

Introducing Eqs. (5.49), (5.50), and (5.51) into Eq. (5.48), we 
have 

=- V L(L+ 1) J(J+1)+L(L+1)-S(S+il _ 
~~ !lB 2YJ(J+1JYL(L+1l 

_ 2 1 rS(S.+j) /(J+1)+S(S+1)-L(L+1) 
j.tBr 2YJ<J+1)YS(S+1) 

Let us perform cancellations, combine both addends and, in addi­
tion, multiply the numerator and the denominator by Y J (J + 1) 
The result is the expression 

_ _ 1! J (J ·t 1) 3/ (J +1)+S (S+ i)-L (L+1) 
j.tJ- j.tB V 2/(1+1) 

coinciding with Eq. (5.45). 
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5. 7. The Zeeman Effect 

The Zeeman effect is the name given to the splitting of the energy 
levels when a magnetic field acts on atoms*. Splitting of the levels 
leads to splitting of the spectral lines into several components. 
The splitting of the spectral lines when emitting atoms experience 
the action of a magnetic field is also known as the Zeeman effeet. 

The splitting of the lines was discovered in 1896 by the Dutch 
physicist Pieter Zeeman (1865-1943). The splitting is very slight­
at B of the order of 104 Gs it is only several tenths of an angstrom. 

The Zeeman splitting of the levels is explained by the fact that 
an atom having the magnetic moment Ill acquires in the magnetic 
field the additional energy 

tJ.E = -!.I.J, 8 8 (5.52) 

where 1.1. J• B is the projection of the magnetic moment onto the 
direction of the field [see Eq. (6.76) of Vol. II, p. 136]. In accordance 
with Eq. (5.47), we have 

!J.J, B = - ~BgmJ 

Introduction of this expression into Eq. (5.52) yields 

tJ.E = 11sgBmJ (mJ = 0, +1, ... , ±J) (5.53) 

It can be seen from this formula that the energy level corresponding 
to the term zs +1L J splits into 2J + 1 equally spaced sublevels, 
the amount of spHtting depending on the Lande g factor, i.e. on the 
quantum numbers L, S, and J of the given level. Before the switch­
ing on of a field, the states differing in the values of the quantum 
number m 1 had an identical energy, i.e. degeneracy was observed 
with respect to the quantum number mJ. The magnetic field removes 
the degeneracy with respect to mJ. 

Let us first consider the Zeeman splitting of spectral lines having 
no fine structure (singlets). These lines appear in transitions between 
the levels corresponding to S = 0. For such levels, g = 1. Conse­
quently, Eq. (5.53) has the form 

tlE = 'f1»8mJ (m 1 = 0, ±1, ••. , +L) - (5.54) 

(J = L, m 1 = mL)· 
-Figure 5.13 shows the splitting of the levels and spectral lines 
for the transition between the states with L = 1 and L = 0 (for 
the P-+ S-transition). In the absence of a field, one line is observed. 
whose frequency is designated by ro 0 • When a field is switched on, 

• Splitting of the energy levels also occurs when an electric field acts on 
atoms. This phe11omenon is called the Stark effect. 
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in addition to the line w0 , two lines symmetrical relative to it 
appear having the frequencies w0 + tlw 0 and w0 - tlw 0 • 

Figure 5.14 gives a similar diagram for a more complicated case­
for the transition D -+ P. It may seem at first sight that in this 
case the initial line ought to split into seven components. Actually, 
however, only three components are obtained as in the preceding 
case: a line with the frequency w0 and two lines with the frequencies 

Fig. 5.13 
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w0 + ~(ilo and w0 - ~w 0 arranged symmetrically relative to it. 
The explanation is that there is a selection rule for the magnetic 
quantum number mJ according to which only those transitions are 
possible when m J ·either remains constant or changes by unity: 

~mJ = 0, ±1 (5.55) 
Because of this rule, only the transitions indicated in Fig. 5.14 
are possible. As a result, three components are obtained having the 
same frequencies as in the case depicted in Fig. 5.13. 

The shift of the components tlw0 obtained in the cases treated 
above is called the normal or the Lorentz* shift·. According to Eq. 
(5.54), this shift is 

~-taB eli B e tlw0=-=-2--=--B (5.56) 
li. mec 1i 2mec 

The splitting into three lines considered above, with two of these 
lines at a distance equal to the normal shifting tlw0 from the undis­
placed line, is called the simple (or normal) Zeeman effect. Let us 
assess the magnitude of the simple Zeeman splitting for a field of 

* H. Lorentz gave a classical explanation of the simple Zeeman effect and 
calculated the value of the normal shift. Give attention to the fact that L\w0 
coincides with the Larmor frequency [see Eq. (7.46) of Vol. II, p. 172]. 
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the order of 10~ Gs. Since ).. = 2nc/ro, 

I fj.). I ·- 2nc fj. neB 
- (Or roo = mew' 

The frequency w for visible light is about 3 x 1015 rad/s. Hence, 
A~ _ 3.14 X 4.8 X ifl•lO X 1(,4 ,_ _8 _ O • 
u~~o- 11.91 x fl,·s1 x 9 x tvau ,_ 0.2 X 10 em- .2 A 

We have already noted that the simple Zeeman effect is observed 
when the initial lines have no fine structure, i.e. are singlets. For 
lines having a fine structure, the number of components may be 
greater than three, while the magnitude of the splitting is a rational 

, 1 . 1 fraction of the normal shifting 
589tlll 589/i/1 Awo: 

(5.57) 
(ZP,I.?- Zs/Z) 

where r and q are small integers. 

Fig. 5.15 

For example, the splitting of the 
yellow doublet of sodium appears 
as shown in Fig. 5.15. Such split-

. ting of spectral lines is called the 
eomplicated (or anomalous) Zee­
man effect. 

·The complicated Zeeman effect 
is explained by the dependence 

of the magnitude of splitting of levels on the Lande g factor, i.e. 
in the long run by the existence of spin of an electiOn and the double 
magnetism of spin. We shall explain this using the following example. 

Let us consider the splitting of the sodium doublet formed by the 
transitions 32P 112 - 32S1, 2 and 32P 3t2 - 328 1, 2 (see Fig. 5.6). 
The Lande g factor has the values: · 

for the term 2S112 (L = 0, S = 1/2, J = 1/2) 

= 1 + l/2X3!2+1/2X3/2-0X1 = 1 , 1_ = 2 
g 2 X 1i2 X 3/2 T 

for the term 2P 112 (L = 1, S = 1/2, J = 1/2) 
=i+ t/2X312+tl2x3/2-tx2 =, 1_ 1/3= 2/3 

g · 2X1/2X3/2 

for the term 2P 312 (L = 1, S = 1/2, J = 3/2) 

__ 1 + 3/2X 5!2+1/2 X 3/2-1 X 2 = 1. -t-1/3 = 4/3 
g - 2 X 3/2 X 5/2 

Figure 5.16a shows the splitting of the levels and the trans~tions 
allowed by rule (5.55) for the line 2P 112 - 2S1, 2• For the level 81ft• 

the energy· increment is 
!J.E' = JlsBg'mj 
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where g' == 2 = 6/3 [see Eq. (5.53)1. For the level 2P112 

where g" = 2/3. 
llE• = JJ.oBg"mj 

The shifting of the lines relative to the initial line is determined 
by the expression 

A t.E"- t.E' ~sB ( , , , , ) A ( • • , , ) 
~ro li = -li- g m1-1 m1 =~roo 1 m1- g m1 
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The values of (g"mj-g'mj) for the relevant spectral lines are 
given in Fig. 5.16 in parentheses in gaps of the lines depicting the 
transitions between the levels. 

Inspection of Fig. 5.16a reveals that when a field is switched on, 
the initial line is absent. Four lines appear instead of it .• Their 
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shifts, expressed in units of normal shift, are -4/3, ;_2/3, +2/3; 
and +4/3, which can be written as follows: 

Llro = L'1ro0 [ ± ~ , ± ; J 
The splitting of the levels and the allowed transitions for the line 

2P 3t2 .- 2S 1t2 are shown in Fig. 5.16b. It can be seen from the diagram 

(q+2q,) ""- ms {m+2 +1 +fz 

Jp.Jk 2p +! !l +fz 

~~T (j:kJ =! +1;-J - f?; +}'j 
0 -'lz 

-! -1,7 

I' II II 

" II II II 
II " II I I 

's*l ~ {ID+! !l +~ 
(/=o; - -- -- -S='lz -1 !l -~ 

I I I I 
UJg (llJ0 -.dUJ0) UJ0 (UJ0 +L1UJu) 

Without field With fiefd 
Fig. 5.17 

that for such a transition the initial line is also absent when the 
field is switched on. The shifts of the six lines obtained are 

L'1ro = Llro0 [ ± ! , + ~ , ± ~ J 
Everything said above holds for a weak magnetic field. A ~eld 

is considered weak with respect to the Zeeman effect if the Zeeman 
splitting of the levels is less than the multiplet splitting. 

The coupling between ML and Ms is broken in a strong magnetic 
field, and these angular momenta are projected unto the direction 
of the field independently of each other. In this case · 

ilE = fJ-BBmL + 2fl-BBms = f!BB (mL + 2ms) 
i.e. the splitting becomes an integral multiple of norma] splitting. 
The following selection rules hold for the transitions: 

LlmL = 0, ± 1, !1m8 = 0 
As a result, we get a normal Zeeman triplet (Fig. 5.17). This pheno­
menon is known as the Paschen-Back effect. It is observed when the 
magnetic splitting of the lines becomes greater than the multiplet 
splitting. 
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5.8, Electron Paramagnetic Resonance 

We established in the preceding section that when an atom having 
a magnetic moment other than zero is in a magnetic field, each level 
of the atom splits into 2J + 1 Zeeman sublevels*. According to 
Eq. (5.53), the distance between the sublevels is 

{)E = !lBgB 

Let us assume that an electromagnetic wave is incident on an 
atolli in a constant magnetic field B, and that the frequency of the 
wave satisfies the condition 

(5.58) 

where Awo is the normal shift [see Eq. (5.56)]. We could expect that 
the action of the magnetic field of the incident wave would cause 
transitions of the atom between adjacent sublevels [rule (5.55) allows 
only transitions at which mJ changes by not more than unity]. Such 
a phenomenon is indeed ooserved. It was discovered by the Soviet 
physicist Yevgeni Zavoisky (1907-1976) in 1944 and was named elec­
tron paramagnetic resonance. This name is explained by- the follow­
ing circumstances. The phenomenon is of a resonance nature-tran­
sitions appear at a strictly definite frequency of the incident wave. 
The magnetic moment of the atom set up by the orbital and spin 
moments of the electrons is responsible for splitting of the levels 
(we must note that nuclear magnetic resonance due to the magnetic 
moment of the nucleus is observed in addition to electron paramagnet­
ic resonance). The phenomenon occurs only in paramagnetic sub­
stances (in diamagnetics the magnetic moments of the atoms are 
zero). 

It can be seen from Eq. (5.58) that the resonance frequencies are 
of the order of the normal shift .-1w 0 (the factor g has a value of the 
order of unity). At B = 101 Gs 

A - J!BB - 0.927 X 1Q-IO X 10' ,..., 1011 d/ 
(I),..., uwo- li. - 1.05 X 10-27 ra s 

[see Eq. (5.42)]. A wavelength of the order of a few centimetres 
corresponds to such a frequency. Consequently, the resonance fre­
quencies are in the radio range. 

An electromagnetic wave can cause an atom to pass over either 
to a higher energy state or to a lower one with equal probability 
(this will be discussed in detail in Sec. 5.15). In the first case, the 
wave will be weakened, and in the second amplified. If a paramagnet-

* If the magnetic moment of the atom is produced by an outer electron 
in the s-state, the number of sublevels is two-spin of the electron "with the 
field" and spin "against the field". 
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ic is in thermal equilibrium, the atoms are distributed by sublevels. 
in accordance with the Boltzmann law [see Eq. (11.81) of Vol. I. 
p. 328). Consequently, the number of atoms in a state with a lower' 
energy exceeds their number in a state with a higher energy. There-· 
fore, transitions occurring with an increase in energ-y will predomin­
.ate over the transitions with a decrease in energy. As a result, 
the intensity of the wave will diminish-the paramagnetic absorbs 
electromagnetic radiation, and gets heated as a result. 

CR m 
(a) (b) 

Fig. 5.18 

It follows from the above that electron paramagnetic resonance 
is the selective absorption of the energy of a radio-frequency field 
in paramagnetic substances that are in a constant magnetic field. 

We tacitly assumed in our reasoning that the atoms of a paramag­
netic do not interact with one another. In practice, electron para­
magnetic resonance is observed in crystalline or liquid paramagnet­
ics (it was also observed in some gases). In condensed media, indi­
-vidual atoms, apart from the external magnetic field, also experience 
the action of chaotically oriented internal fields. For this reason, 
the resonance frequencies are slightly different for different atoms, 
.and as a result the electron paramagnetic resonance lines have 
a finite breadth. 

The instrument used to study electron paramagnetic resonance is 
called a microwave spectroscope. It consists (Fig. 5.18a) of electro­
magnetic wave generator G, wave guides WG, cavity resonator CR* 
-suspended between the poles of an electromag~et, receiver R, and 
registering device RD. The receiver is tuned to the frequency of 
the generator. An oscillograph or automatic· recorder is used as the 
registering device. Paramagnetic specimen S p is placed inside the 
~avity resonator. In the course of an experiment, the magnetic 
field produced by the electromagnet is smoothly changed. At a value 
of B corresponding to condition (5.58), intensive absorption of the 
wave by the specimen is observed. An absorption curve is shown in 
Fig. 5.18b. As noted above, it has a finite breadth. 

• Wave guides are defined as tubes with conducting walls. A cavity resonator 
is a cavity with conducting walls. 
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Electron paramagnetic resonance is used to study the structure 
of crystals, the magnetic properties of atomic nuclei, and in a num­
ber of other cases. 

5.9. The Pauli Principle. Distribution of Electrons 
by Energy Levels of an Atom 

Every electron in au atom travels in a first approximation in 
a centrally symmetrical non-Coulomb field. The state of an electron 
in this case is determined by the three quantum numbers n, l, 
and m whose physical meaning was established in Sec. 5.1. In con­
nection with the existence of spin of an electron, it is necessary 
to add to these quantum numbers the quantum number m8 that 
can take on values of ±112 and determines the projection of the spin 
onto the given direction. In the following, we shall use the symbol 
m1 instead of m for the magnetic quantum number to stress the 
circ-umstance that this number determines the projection of the 
orbital angular momentum whose value is given by the quantum 
number l. 

Thus, the state of every electron in an atom is characterized by 
four quantum numbers: 

principal 
azimuthal 
magnetic 
spin 

n (n = 1, 2, 3, ... ) 
l (l = 0, 1, 2, ... , n- 1) 

m~ (m 1 = -l, ... , -1, 0, +1, 
m8 (m 8 = +112, -1/2) 

... , +l) 

The energy of a state mainly depends on the numbers n and l. In 
addition, there is a slight dependence of the energy on the numbers 
m 1 and m8 because their values are associated with the mutual 
orientation of the angular momenta M1 and M8 on which the mag­
nitude of the interaction between the orbital and intrinsic magnetic 
moments of an electron depends. The energy of a state grows at 
a greater rate with an increase in the number n than in the number l. 
Therefore, as a rule, a state with a greater value of n has a greater 
energy regardless of the value of l. 

In the ground (unexcited) state of an atom, the electrons should 
be at the lowest energy levels available for them. It should therefore 
seem that in any atom in the ground state all the electrons ought 
to be in the state 1s (n = 1, l = 0), and the fundamental terms 
of all the atoms ought to be of the type of S-terms (L = 0). Experi-
ments show, however, that this is not the case. · 

The explanation of the observed types of terms is as follows. Accord­
ing to one of the laws of quantum mechanics called the Pauli prin· 
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ciple* (named in honour of its discoverer, the Austrian physicist 
Wolfgang Pauli, 1900-1958), the same atom (or any other quantum 
system) cannot contain two electrons having the same set of the 
four quantum numbers, n, l, mz, and m 8 • In other words, two elec­
trons cannot simultaneously be in the same state. 

It was shown in Sec. 5.1 that n2 states differing in the values of l 
and m 1 correspond to a given n. The quantum number m8 can take 
on two values: +1/2. Consequently, not more than 2n2 electrons 
can be in states with a given value of n in an atom: 

Quantum number n • . . • • • • . . • 1 2 3 4 5 
Maximum possible number of electrons 

in state • . . . • • . . • • • • . • • 2 8 18 32 50 • :·,I .< h 

The set of electrons having identical values of the quantum num· 
her n forms a shell. The shells are further divided into subshells differ­
ing in the value of the quantum number l. In accordanpe with the 

,!. ~.....> ~/.._,J,,·j . ('- I 

'";Jvj(} Table 5.2 

Shell I n jz I ml I m8 I Subshell II Shell I n I l I ml I ms I Subshell 

K 
1

1 
I 

0 I 0 I t+ I K (is) 0 I 0 I H I Nr(4s) 

0 I 0 I u I L1 (2s) -1 H 
1 0 H N 2 (4p) 

L 2 +1 H 
-1 H 

1 0 tt £2 (2p) 
+1 H -2 H 

-1 H 
0 I 0 I H I M 1 (3s) 

2 0 H N3 (4d) 
N 4 +1 H 

+2 H 
-1 H 

1 0 H M 2 (3p) 
+1 H -3 H 

M 3 -2 H 
-2 tt -1 H 

3 0 H Nd4/) -1 H +1 H 2 () H M 3 (3d) +2 H +1 u . +3 H +2 H 

• This principle is also known as the Pauli exclusion principle or simpl.Y 
the exclusion principle. It holds not only for electrons, but also for other parti­
cles with a half-integral spin. 
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value of n, the shells are given symbols taken from X-ray spectro­
scopy: 

Quantum number n • • • • • • • • . 1 2 3 4 5 6 7 ... 
Symbol of shell • . . . • . . . . . K L M N 0 P Q •.. 

The division of the possible states of an electron in an atom into 
shells and subshells is shown in Table 3.2, in which the symbols t~ 
have been used instead of the designations m .• = +1/2 for visualiza­
tion. The subshells, as indicated in the table, can be designated 
in two ways (for example, £ 1 or 2s). 

A completely filled subshell is characterized by the equality 
to_Mlro of the_1Q_ial orbital and total spin angular momenta (L ;= 0, 
S = 0). Hence, the angular momentum of such a subshell equals 
zero (J = 0). Let us convince ourselves that this is true taking the 
3d-subshell as an example. The spins of all ten electrons in this 
subshell compensate one another in pairs, and as a result S = 0. 
The quantum number of the projection of the resultant orbital 
angular momentum M L of this subshell onto the z-axis has the 
single value mL = ~m 1 = 0. Consequently, L also equals zero. 

Thus, when determining L and S of an atom, no attention may 
be given to filled subshells. - -

5.10. Mendeleev's Periodic System of Elements 

The Pauli principle provides an explanation of the periodic repe­
tition of the properties of atoms. Let us see how the periodic system 
of elements discovered by the Russian chemist Dmitri Mendeleev 
(1834-1907) is constructed. We shall begin with the hydrogen atom 
having one electron. Each following atom is obtained by increasing 
the charge of the preceding atom's nucleus by unity and adding one 
electron, whieh we shall place in the state with the smallest energy 
accessible for it in accordance with the Pauli principle. 

The hydrogen atom has one is-electron in the ground state with 
an arbitrary orientation of its spin. The quantum numbers of the 
atom have the values L = 0, S = 1/2, J = 1/2. Accordingly, the 
fundamental term of the hydrogen atom has the form 2S 112 • 

If we increase the charge of the hydrogen atom nucleus by unity 
and add another electron, we get the helium atom. Both electrons 
in this atom can be in the K-shell, but with an antiparallel orienta­
tion of their spins. The so-called electron configuration of the atom 
can be written as 1s2 (two is-electrons). The fundamental term will 
be 1S0 (L = 0, S = 0, J = 0). 

Filling of the K-shell terminates in the helium atom. The third 
electron of the lithium atom can occupy only the level 2s (Fig. 5.19). 
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The electron configuration 1s22s is obtained. The ground state is 
characterized by L = 0, S = 1/2, J = 1/2. Therefore, 2S 112 will 
be the fundamental term as in the hydrogen atom. The third electron 
of the lithium atom, occupying a higher energy level than the remain­
ing two electrons, is bound to the nucleus of the atom more weakly 
than they are. As a result, it determines t~e o~cal and c~mical 
properties of the atom. · 

In the fourth element, beryllium, the subshell 2s is completely 
filled. In the following six elements (B, C, N, 0, F, and Ne), 'the 

subshell 2p is filled with electrons. As a 
2p result, the neon atom ha~plet~ly__fi!Jed 

shells K (with two electrons) and L (with 
f?s eight electrons) forming a stable system 

like that of helium. Thj§ e.xJ!lains the 
Is specific properties of the inerC(noble) 

H He Li Be B gases. 
· The process of building up the electron 

2S~ 'So 2S11; 'So 2Pr;z shells of the first 36 elements of the pe­
riodic system is shown in Table 5.3. The 

Fig. 5.19 eleventh element, sodium, in addition 
to the filled shells K and L, has one 

electron in the subshell 3s. The electron configuration has the form 
is22s22p63s. Here, 2S 112 is the fundamental term. The electron 3s 
is bound to the nucleus most weakly of all the electrons a!}d is the 
valence or optical _jtlectron. In this connection, the chemical and 
optical properties of sodium are similar to those of lithium. The 
ground state of the optical electron in the sodium atom is character­
ized by the value of lJ-=_3. This is exactly what explains the circum­
stance that in the diagram of the sodium atom levels (Fig. 5.6) 
the ground level is indicated ~Y the n.umJ>er ~. We shall note in 
passing that the cesium atom has the following electron configuration 
in the ground state 

~;J) 1s22s22p63s23p63d104s24p64d105s25p66s 

Consequently, its optical electron in the ground state has n = 6. · 
The levels in Fig. 5. 7 are marked accordingly. . 

In the elements following sodium, the subshells 3s and 3p are 
filled normally. The subshell 3d with the given general configuration 
is higher than the subshell 4s from the energy viewpoint. In this 
connection, with filling of the M shell not completed as a whole, 
tilling of the N shell begins. The subshell 4p is already higher than 
3d, so that after 4s the subshell 3d is filled. 

The electron levels of all the atoms are built up with similar 
deviations from the ordinary sequence repeating from time to time. 
Similar electron configurations (for example; 1s, 2s, and 3s) periodi­
cally repca t above the completely filled subshells. This underlies 
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Element 

tH 
2He 

3Li 
4Be 
5B 
6C 
7N 
80 
9F 
tONe 

UNa 
12Mg 
13Al 
t4Si 
15P 
168 
17Cl 
tSAr 

19K 
20Ca 
21Sc 
221'i 
23V 
24Cr 
25MD 
26Fe 
27Co 
28Ni 

29Cu 
30Zn 
31Ga 
32Ge 
33As 
34Se 
35Br 
36Kr 

K 

1• 

1 
2 

2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
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L M N 
Fundamental 

I I 1 3d I term 
2• 2p 3• 3p h 4p 

I 

1 - - - - - - I 
'S 1/2 

2 - - - - - - 1So 
2 1 - - - - - tp 1/2 
2 2 - - - -- - apo 
2 3 ·- - - - - '83/3 
2 4 - - - ·- - ap2 

2 5 - -· - - - tp3/2 
2 6 - -- - - - lSo 

8 1 - - - - 'S 1/2 
8 2 - -- - - I So 
8 2 t - - - 2 p1/2 
8- 2 2 - - - spo 

8 2 3 - - - 'S 3/2 
8 2 4 - - ap2 

8 2 5 - - - tp3/2 
8 2 6 - - - 1So 

8 8 - 1 - 'S 1/2 
8 8 - 2 - lSo 

8 8 t 2 - 2D3/2 
8 8 2 2 - sp2 
8 8 3 2 - 'F 3/2 
8 8 5 1 - ?Sa 

8 8 5 2 - •s otz 
8 8 6 2 - ID, 
8 8 7 2 - 'F 9/Z 
8 8 8 2 - ap, 

8 8 10 1 - "St/2 
8 8 10 2 + ISo 

8 8 10 2 11 sp1/2 
8 8 10 2 2 spo 

8 8 10 2 3 'S 3/Z 
8 8 10 2 4 ap• 
8 8 10 2 5 lp3/2 
8 8 10 2 6 ISo 
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the periodic repetition of the chemical and optical properties of 
atoms. 

In establishing the kind of terms possible with a given electron 
configuration, we must bear in mind that the Pauli principle does 
not allow all the combinations of the values of L and S that follow 
from the configuration. For example, with the configuration np 2 

(two electrons with the principal quantum number n and l = 1), 
the possible values of L are 0, 1, 2, while S can have the values 
0 and 1. Accordingly, the following terms would seem to be possible: 

ts, tp, tn, as, ap, an (5.59) 

According to the Pauli principle, however, only such terms are pos­
sible for which the values of at least one of the quantum numbers 
m, and m. for equivalent electrons (i.e. electrons with the same 
nand l) do not coincide*. The term an, for instance, does not comply 
with this requirement. Indeed, L = 2 signifies that the orbital 
angular momenta of the electrons are "parallel", consequently, the 
values of m 1 for these electrons will coincide. Similarly, S = 1 
signifies that the spins of the electrons are also "parallel", therefore, 
the values ofms also coincide. As a result, all four quantum numbers 
(n, l, m, and m8 ) are the same for both electrons, which contradicts 
the Pauli principle. Thus, the term 3D in the system of two equivalent 
electrons cannot be realized. 

Table 5.4 

ml 

I I 
mL= ~ ml ms = ~ ms 

+1 0 -1 

I 
I 

+2 I 0 A ~~ 
t t +1 . +1 B 
t ~ I +1 0 A 
+ t +1 0 B 
+ + +1 -1 B 
t t 0 +1 B 
t + () () A 
+ t 0 0 B 

• ~ 0 -1 B 
H 0 0 c 
t t -1 +1 B 
t + -1 0 A 
+ 

I 
t -1 0 B 

~ + -1 -1 B 
n -2 () A 

I 

• This requirement vanishes for non-equivalent electrons, i.e. electrons 
diftering either in n. or in l, or in both of them. 
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The following procedure is employed to establish the terms of 
equivalent electrons all-owed by the Pauli principle: the values 
of m 8 are indicated in the form of arrows (an arrow pointing upward 
signifies m. = +1/2, and one pointing downward signifies m8 = 
= --1/2) in the columns of a table headed by the values of m 1 for 
an individually taken electron (see Table 5.4 compiled for two equi­
valent p-electrons). The table contains all the combinations of the 
values of m 1 and m. for both electrons allowed by the Pauli principle. 
When both arrows get into one column (this signifies that m 1 is the 
same for both electrons), they are directed oppositely (m 8 must be 
different). In the next two columns of the table, we enter the values 
of the quantum numbers mL and m8 equal to the algebraic sum of 
the numbers m 1 and m. and corresponding to the given combination. 
The set of allowable values of mL and m 8 permits us to establish 
the allowable combinations of the values of L and S. One of such 
sets, marked by the letter A in the last column of the table, cor­
responds to the combination L = 2, S = 0, i.e. to the term 1D; 
the second set, marked by the letter B, corresponds to L = 1, S = 
= 1, i.e. to the term 3P, and, finally, the set marked by the letter C 
corresponds to L = 0, S = 0, i.e. to the term 1S. Thus, of the six 
formally possible terms indicated in expression (5.59), only three 
do not contradict the Pauli principle, namely, 1S, 3P, 1D, the 
term 3P being a triplet-it splits up into the components 3P 2, 3P 1, 

apo· 
Now the question arises as to which of the terms 

1So, apz, aptt apo, 1Dz (5.60) 

corresponds to the ground state, i.e. to the state with the lowest ener­
gy. The answer to this question is given by two empirical Hund's 
rules: 

1. Of the terms belonging to a given electron configuration, the 
term with the greatest possible value of S and with the greatest 
possible value of L at this S will have the lowest energy. 

2. The multiplets formed by equivalent electrons are normal (this 
signifies that the energy of the state grows with an increase in J) 
if not more than half of the subshell is filled, and are inverted (the 
energy diminishes with an increase in J) if more than half of the 
subshell is filled. 

It follows from Hund's second rule that when not more than half 
of a subshell is filled, the component of the multiplet with J = 
= 1 L - S I has the lowest energy, otherwise the component with 
J = L + S has such an energy. 

According to Hund 's first rule, one of the P-terms of those given 
in (5.60) must have the least energy (S is the greatest for these 
terms). With the configuration np?., the subshell p is filled only by 
one-third, i.e. less than· half. Consequently, according to Hund 's 
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s(lcond rule, the term with the smallest value of J, i.e. the term 
8P 0, has the lowest energy. It is exactly this term that is the funda­
mental one for the configuration np2 (see 6C, 14Si, and 32Ge in 
Table 5.3). 

5.11. X-Ray Spectra 
We already noted in Sec. 2.1 that there are two kinds of X-ray 

radiation-bremsstrahlung (braking) and characteristic radiation. At 
not too high energies of the electrons bombarding the anticathode, 
only bremsstrahlung is observed, which has a continuous spectrum 
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and does not depend on the material of the anticathode. When the 
energy of the bombarding electron becomes sufficient to knock 
electrons out of the inner shells of an atom, sharp lines of character­
istic radiation appear on the background of the bremsstrahlung. 
The frequencies of these lines depend on the nature of the substance 
which the anticathode is made of (this is exactly why the radiation 
is called characteristic). 

X-ray spectra are distinguished by an appreciable simplicity. 
They consist of several series denoted by the letters K, L, M, 
N, and 0. Each series contains a small number of lines designated 
in the order of growth of the frequency by the subscripts ex, ~. i', ... 
. . . (Ka., Kth K..,, •.. ; La., L13, L..,, ... , etc.). The spectra of 
different elements have a similar nature. With an increase in the 
atomi"c number Z, the entire X-ray spectrum only shifts to the short-
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wave part without changing its structure (Fig. 5.20). The explanation 
is that the X-ray spectra are produced in transitions of electrons 
in the inner parts of atoms, and these parts have a similar structure. 

A diagram showing how X-ray spectra are produced is given in 
Fig. 5.21. Excitation of an atom consists in removing one of the 
inner electrons. If one of the 
two electrons of the K-shell is nd," 
knocked out, then the freed site (rad/s)112 

can be occupied by an electron 
froin an outer shell (L, M, N, 
etc.). Here a K-series is pro-
duced. Other series appear in 
a similar manner. The K-series 
is attended without fail by 
other series because when its 
lines are emitted, levels are 
freed in shells L, M, etc., 
which in turn will be filled by 
electrons from the higher 
layers. 

The British physicist Henry 
Moseley (1887-1915) estab-
lished a law in 1913 that relates 
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the frequencies of the X-ray spectrum lines to the atomic number Z 
of the element emitting them. According to this .law, the frequencies 
of the line K a. can be represented by the formula 

roxa.=R(Z-1)"2 ( 1
1
1 - 2~) 

(R is the Rydberg constant), of the line Kr. by the formula 

rox~=R(Z-1)2 ( 1~- 3~) 
of the line La. by the formula 

roLa. = R (Z-7.5)2 ( 2~ - aia ) 

and so on. All these formulas have the form 

ro=R(Z-a)z ( :, - :~) 
Moseley's law is usually expressed by the formula 

Voo = c (Z- a) (5.62) 

(C and a are constants) and is formulated as follows: the square root 
of the frequency is a linear function of the atomic number Z. 

Figure 5.22 shows graphs of Vro against Z constructed according 
to experimental points for the lines Ka. and La.. These graphs allow 
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us to assess the accuracy with which Moseley's law is obeyed. An 
attentive examination will show that the graph for the line Ka 
is not completely linear. 

Moseley's law makes it possible to exactly establish the atomic 
number of a given element according to the measured wavelength 
of the X-ray lines; it played a great part in arranging the elem~nts 
in the periodic table. 

Moseley gave a simple theoretical explanation of the law he dis­
covered. He noted that lines with frequencies determined by for­
mula (5.61) coincide with the lines emitted upon the transition of 
an electron in the field of the charge (Z - a) e from the level num­
bered n2 to the one numbered n1• 1 tis easy to understand the meaning 
of the constant a: the electrons performing transitions upon the 
emission of X-rays are under the action of the nucleus whose attrac­
tion is weakened somewhat by the action of the other electrons 
surrounding it. It is exactly this so-called shielding (or screening) 
action that is expressed in the need to subtract a certain quantity 
a, called the shielding factor, from Z. 

We must note that Eq. (5.61) is based on the assumption that 
the shielding factor a has the same value for both terms. Actually, 
however, the shielding, for example, for the K-term will be weaker 
than for the £-term because an electron in the £-shell is shielded 
by both electrons of the K-shell. In addition, the other electrons 
of the £-shell play a certain part in shielding, whereas an electron 
of the K-shell is shielded only by the second K-electron. Formu­
la (5.61) ought to be written more strictly in the form 

- R { (Z-at)2- (Z-a2)B} 
(1)- 2 2 

nl n2 

5.12. Energy of a Molecule 

Experiments show that the X-ray spectra of the heavy elements 
do not depend on what chemical compound the given element is in. 
It thus follows that the forces retaining atoms in a molecule are 
due to interaction of the outer electrons. The electrons of the inner 
shells remain in their previous states when atoms combine into 
molecules. 

In the following, we shall limit ourselves to a consideration of only 
diatomic molecules. Two kinds of bond between the atoms in a mole­
cule are distinguished. One of them is en<:ountered when the elec­
trons in a molecule can be divided into two groups each of which 
is constantly near one of the nuclei. The eiectrons are distributed so 
that a surplus of electrons is formed near one of the nuclei, and a 
shortage of them near the other one. Thus, the molecule, as it were, 
consists of two ions of opposite signs attracting each other. A bond 
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of this kind is called heteropolar (or ionic). Examples of molecules 
with a heteropolar bond arfl NaCl, KBr, and HCl. 

The second kind of bond is observed in molecules in which part of 
the electrons travel about both nuclei. Such a bond is called homo· 
polar (or covalent, or atomic). It is formed by pairs of electrons hav­
ing oppositely directed spins. Among molecules of this kind, we 
must distinguish ones with iden­
tical nuclei (I-I 2, N 2, 0 2) and ones 
with different nuclei (for example, 
CN). In the former molecules, the 
electrons are distributed symmet­
rically. In the latter ones, there 
is a certain asymmetry in the 
distribution of the electrons owing 
to which the molecules acquire 
an electric dipole moment. 

The simplest molecule with a 
homopolar bond is the hydrogen 
molecule. Soon after the creation 
<>f quantum mechaniCs, W. Heit­

Fig. 5.23 

ler and F. London (1927) successfully tried to perform a quantum­
mechanical calculation of the ground state of the H 2 molecule. 
They succeeded in solving the Schrodinger equation for a system 
consisting of two protons (hydrogen atom nuclei} and two electrons 
(Fig. 5.23). The potential energy of such a system is 

e2 e2 el el e:l e1 
U=--------+-+-

rla Tza Txb Tsb ru R 

The nuclei have a mass that is about 2000 times that of an electron. 
This is why they move much more slowly than electrons, and in 
a first approximation, they can be considered stationary. Hence, 
the Schrodinger equation has the form 

V'•"+Vz,.,+ 2me Lr E-e2 ( _1_+.!.-
l't' a't' f12 r 12 R 

1 1 1 1 )] -------- \jl=O 
r1a Taa Txb Tzb 

(5.63) 

Here V~ is the Laplacian operator containing the coordinates of one 
electron, and v: is the Laplacian operator containing the coordinates 
of the other electron. 

The eigenvalues of the energy obtained from Eq. (5.63) are found 
to depend on the distance R between thP. nuclei, i.e. E = E (R). 
The nature of this relation appreciably di1Ters for parallel and anti-: 
parallel orientation of the spins of the electrons (Fig. 5.24). The 
formation of a molecule is possible only when atoms with antiparallel 
spins approach each other. The asymptotic value E 0 which the 
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energy of a molecule tends to at R - oo for both curves shown in 
the figure is the same and equals the sum of the energies of the iso­
lated atoms. 

Matters are similar for other diatomic molecules. The energy 
due to the electron configuration (the electron energy) has a minimum 
at a certain value of R and is depicted by a curve of the same kind 
as that for the hydrogen molecule (see curve 1 in Fig. 5.25). 

A change in the electron configuration of a molecule leads to 
a change in the curve showing how the electron energy depends 
on the distance R between the nuclei. The asymptotic value of the 

R 

Fig. 5.24 Fig. 5.25 

energy also becomes different-equal to the total energy of the isolat­
ed atoms in the new quantum state (see curve 2 in Fig. 5.25). 

The store of energy in a molecule mainly changes, as in an atom, 
as a result of changes in the electron configuration forming the 
peripheral part of the molecule. At a given electron configuration, 
however, the nuclei of the molecule may vibrate and rotate diffe.,. 
rently relative to the common centre of inertia. The stores of vibra­
tional and rotational energy are associated with these kinds of 
motion, and they must be taken into consideration in the total 
balance. Let us introduce the following notation: 

E 8 = energy due to the electron configuration (electron energy) 
Ev = energy corresponding to the vibrations of a molecule (vibra­

tional energy) 
Er = energy associated with the rotation of a molecule (rotational 

energy). 
In a first approximation, the separate kinds of molecular mo­

tions-motion of the electrons, vibration and rotation of a mole­
cule-can be considered to be independent of one another. Hence, 
the total energy of a molecule can he represented in the form 

E = Ee + Ev + Er 
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According to Eq. (4.60), the energy of a harmonic oscillator is 
determined by the expression 

Ev = (v + 112) /i(J)v (u = 0, 1, 2, ... ) (5.64) 

where v is the vibrational quantum number, and (J)v is the classical 
frequency of the oscillator [in Eq. (4.60) these quantities were 
designated by the symbols n and (J)]. We remind our reader that 
the following selection rule holds for the 
vibrational quantum number: E 

!w = ±1 (5.65) 

[see Eq. (4.61)1. 
The curve of the potential energy of £0 - ------------­

a molecule (see Fig. 5.25) coincides with 
a parabola only at small vibrations. The 
anharmonicity (deviations from harmoni-
city) that sets in when the intensity of 
the vibrations grows results in the fact 
that an increase in the quantum number .Q R 
v is attended by crowding of the levels, Fig. 5.26 
their limit being the energy E 0 of a dis-
sociated molecule (Fig. 5.26). At small values of v, however, we 
may consider with a sufficient degree of accuracy that the vibrational 
energy of a molecule is determined by Eq. (5.64). 

Now let us turn to the rotational energy of a molecule. The energy 
of a system having the moment of inertia I and rotating with the 
angular velocity (J)r is 

· E Iw: (lwr)l Ml 
r=-2-=2/=u 

where M = [(J)r is the angular momentum of the system. According 
to Eq. (4.34), the angular momentum can take on only discrete 
values: 

M = 1i V J (J + 1) (J = 0, 1, 2, .•. ) 

(J is the quantum number of the angular momentum). Hence, the 
rotational energy of a molecule can have only quantized values: 

E - f.IJ (J +1> 
r- 21 (5.66) 

where I is the moment of inertia of a molecule relative to the axis 
passing through its centre of inertia, and J is the rotational quantum 
number taking on values of 0, 1, 2, etc. 

The following selection rule holds for the rotational quantum 
number: 

!lJ = ±1 (.').67) 
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Thus, according to Eqs. (5.64) and (5.66), the total energy of 
a molecule is 

(5.68) 

Experiments and theory show that the distance between the rota­
tional levels b..Er is considerably smaller than the distance between 
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---J=.J 
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Fig. 5.27 

the vibrational levels !:!.Ev. 
The latter distance, in turn, 
is considerably smaller than 
that between the electron 
levels !:!.E e· Consequently, 
the diagram of the e~ergy 
levels of a diatomic molecule 
has the appearance shown in 
Fig. 5.27 (only two electron 
levels are given). The collec­
tion of levels is contained in 
the right-hand column. The 
first two columns only ex­
plain the appearance of the 
levels. 

5.13. Molecular Spectra 

Whereas atomic spectra 
consist of separate lines, 
molecular spectra when ob­
served in an instrument of 
medium resolving power are 
seen to consist of bands (see 
Fig. 5.28, which depicts a 
portion of the spectrum ob­

tained for a glow discharge in air). When instruments having a high 
resolving power are used, the bands are found to consist of a great 
number of closely arranged lines (see Fig. 5.29, which depicts the fine 
structure offone of the bands of the nitrogen molecule spectrum). 

In accordance with their nature, the spectra of molecules are 
known as hand spectra. Three kinds of bands are distinguished 
depending on the kind of energy (electron, vibrational, or rotational) 
whose change results in a molecule emitting a photon. They are 
(1) rotational, (2) vibrational-rotational, anJ. (3) electron-vibrational 
ones. The bands in Fig. 5.28 belong to the electron-vibrational type. 
Bands of this type are characterized by the presence of a sharp band 
edge. The other end of such a band is blurred. The edge is due to the 
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crowding of the lines forming the hand. Rotational and vibrational­
rotational hands have no edge. 

We shall limit ourselves to a treatment of the rotational and 
vibrational-rotational spectra of diatomic molecules. The energy 
of such molecules consists of electron, vibrational, and rotational 
energies [see Eq. (5.68)1. All three kinds of energy have a minimum 
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value in the ground state of a molecule. When a molecule receives 
a sufficient amount· of energy, it transfers to an excited state, and 
then, performing a transition to one of the lower energy states 
allowed by the selection rules, it emits a photon: 
1iro = I!!Ee + I!!Ev + I!!Er = 

= E~- E; + (v' + 1/2) 1iro~- (v" + 1/2) lim~+ 
n'~J' (J' + i) n.sr (J" + 1) + 21' - 2/" 

(it must be borne in mind that both rov and I differ for different 
electron configurations of a molecule). 

It was indicated in the preceding section that 
I!!Ee ~ I!!Ev ~ I!!Er 

Therefore, with weak excitations, only Er changes, with stronger 
ones, Ev, and only with still stronger excitations does the electron 
configuration of the molecule, i.e. Ee, change. 

Rotational Bands. Photons corresponding to transitions of a mole­
cule from one rotational state to another have the smallest energy 
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(the electron configuration and the vibrational energy do not change 
in this case): 

fi2J' (J' + 1) ftiJ" (J" + 1) 
liw = !!.Er = 21 - 21 

The possible changes in the quantum number J are restricted 
by selection rule (5.67). Hence, the frequencies of the lines emitted 

J' J'(J'+!} 
J J(J+!) J 72 
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J 1Z 1 2 

v' 0 0 

2 $ nf.tJu J" J''(.l''t-7) 
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in transitions between the rotational levels can have the values 

w = f'l:r =B [(J + 1) (J +2)-J (J + 1)] = 2B (J + 1) =wdJ +1) 

where J is the quantum number of the level to which the transition 
occurs (it can have the values 0, 1, 2, ... ), and · 

!i B= 21 (5.69) 

Figure 5.30 shows schematically the appearance of a rotational 
band. A rotational spectrum consists of a number of equispaced 
lines in the very far infrared region. By measuring the distance 
between the lines Lloo = oo1, we can find the constant B of Eq. (5.69) 
and calculate the moment of inertia of a molecule. Next, knowing 
the masses of the nuclei, we can calculate the equilibrium distance 
R 0 between them in a diatomic molecule. 

The line spacing !!.w is of the order of 1013 rad/s, so that we get 
values of the order of 10-40 g. cm 2 for the moments of inertia of 
molecules. For example, for the molecule HCl, we have I = 2. 71 X 

x 10-4" g·cm 2 , which corresponds to R 0 = 1.~9 A. 
Vibrational-Rotational Bands. When both the vibrational and the 

rotational states of a molecule change in a transition (Fig. 5.31), 
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the energy of the emitted photon will be 

liw = LlEv+ LlEr = liwv (v' + 1/2) -liwv (v" + 1/2) + 
n2J' (I' +1) n2J" (I"+ t) 

+ 21 21 

The quantum number v obeys selection rule (5.65), and J obeys 
rule (5.67). 

Since LlEv ~ LlEr, the emission of a photon can be observed not 
only when J' > J", but also when J' < J". If J' > J", the frequen­
cies of the photons are determined by the formula 

w = Wv -j- B [(J -j- 1) (J -j- 2) - J (J -j- 1)) = 
= Wv + 2B (J + 1) = Wv + 2Bk (k = 1, 2, 3, ... ) 

where J is the rotational quantum number of the lower level that 
can take on the values 0, 1, 2, ... , and B is the quantity given 
by Eq. (5.69). If J' < J", the formula for the frequency of the 
photons has the form 

(I) = Wy + B [(J - 1) J- J (J + 1)1 = 
= Wv - 2BJ = Wv - 2Bk (k = 1, 2, 3, ... ) 

where J is the rotational quantum number of the lower level that 
can take on values of 1, 2, ... (in this case J" = J cannot have 
the value of 0 because J' would be -1). 

Both cases can be covered by the single formula 

(k=1, 2, 3, ... ) 

The collection of lines with frequencies determined by this formula 
is called the vibrational-rotational band. The vibrational part of the 
frequency Wv determines the spectral region in which the band is; 
the rotational part +w1k determines the fine structure of the band, 
i.e. the splitting of th€ individual lines. The region in which the 
vibrational-rotational bands are extends approximately from 8000 
to 50 000 A. A glance at Fig. 5.31 shows that the vibrational-rotation­
al band consists of a collection of lines symmetrical relative to 
Wv and spaced at a distance of Llw =i' w1• Only at the middle of 
the band is the distance twice as great because no line having the 
frequency wv is produced. 

The distance between the components of the vibrational-rotational 
band is related to the moment of inertia of a molecule by the same 
expression as holds for a rotational band. We can thus find the 
moment of inertia of a molecule by measuring this distance. 

We must note that rotational and vibrational-rotational spectra 
completely corresponding to the conclusions of theory are observed 
experimentally only for non-symmetrical diatomic molecules (i.e. 
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for molecules formed by two different atoms). In symmetrical mole­
cules, the dipole moment equals zero, which leads to the forbidding 
of rotational and vibrational-rotational transitions. Electron-vibra­
tional spectra are observed both for non-symmetrical and for sym­
metrical molecules. 

5.14. Combination Scattering of Light 
In 1928, the Soviet scientists Grigori Landsberg (1890-1957) and 

Leonid Mandelshtam (1879-1944), and simultaneously the Indian 
physicist Chandrasekhara Raman (1888-1970) discovered a pheno­
menon consisting in that the scattered light spectrum produced when 

I 
I I 

I I 

Fig. 5.32 

light passes through gases, liquids, or transparent crystalline bodies 
apart from the unshifted line contains new lines whose frequencies ro 
are a combination of the frequency of the incident light ro 0 and the 
frequencies w; of the vibrational or rotational transitions of the 
molecules scattering the light: 

ro = roo + ro; (5.70) 

This phenomenon was named the combination scattering of light.* 
Figure 5.32 shows a spectrum of the combination scattering of 

oxygen excited by the line Hg 2536.5 A. Onto the line of combination 
scattering to the right of the line of the source there was superposed 

• This phenomenon is usually called the Raman effect in foreign publica­
tions. 
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the line Hg 2534.8 A (less intensive than Hg 2536.5 A) owing to 
which the intensity of this line obtained was greater than that of 
the others. Inspection of the figure shows that the combination 
scattering spectrum consists of the unshifted line (1) 0 and a number 
of satellites arranged symmetrically relative to it. To each "red" 
satellite (i.e. a satellite shifted toward greater wavelengths) with 
the frequency (1) 0 - (t)i there corresponds a "violet" satellite* with 
the frequency (1) 0 + wi. At ordinary temperatures, the intensity of 
the violet satellites is considerably lower than that of the red ones. 
The intensity of the violet satellites rapidly grows with elevation 
of the temperature. 

According to the quantum theory, the process of light scattering 
can be considered as the inelastic collision of photons with moie­
cules. In a collision, a photon can give up to a molecule or receive 
from it only such amounts of energy that equal the differences 
between two of its energy levels. If upon colliding with a photon, 
a molecule passes from a state with the energy E' to a state with 
the energy E" (E" > E'}, then the energy of the photon after scatter­
ing will become equal to /i(t) 0 - !1E, where !1E = E" - E'. Accord­
ingly, the frequency of the photon will diminish by (1)1 = !1EIIi­
a red satellite appears. If a molecule was initially in a state with 
the energy E", it may pass over into a state with the energy E' 
because of colliding with a photon and give up its surplus energy 
!1E = E" - E' to the photon. As a result, the energy of the photon 
will become equal to liw 0 + !1E, and the frequency will grow by w1• 

The scattering of the photon liw 0 may be attended by transitions 
of a molecule between different rotational or vibrational levels 
E', E", E"', etc. The result is the appearance of a number of sym­
metrically arranged satellites. 

At ordinary temperatures, the number of molecules in the ground 
state greatly exceeds the number of molecules in excited states. 
Hence, collisions attended by diminishing of the energy of a mole­
cule occur much more rarely than collisions attended by an increase 
in the energy. This explains the low intensity of violet satellites in 
comparison with red ones. The number of excited molecules rapidly 
grows with elevation of the temperature, and the result is an increase­
in the intensity of the violet satellites. 

The investigation of combination scattering gives a lot of infor­
mation on the structure of molecules. The natural frequencies of 
vibrations of molecules are determined with the aid of this method. 
It also allows us to assess the nature of symmetry of a molecule. 
In crystals, the combination scattering of light is usually associated 
with the so-called optical branch of oscillations of a crystal lattice-

* The red satellites are also called Stokes lines, and the violet ones, anti­
Stokes lines. 

10" 
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(see Sec. 6.4). The spectra of combination scattering are so character­
istic of molecules that they are used in the analysis of complicated 
molecular mixtures, especially of organic molecules whose analysis 
by chemical methods is very difficult or even impossible. 

We shall note that combination scattering relates to the so-called 
non-linear effects (see Sec. 5.17) • 

.5.15. Stimulated Emission 

J Up to now, we have considered only two kinds of transitions of 
atoms between energy levels-spontaneous ones from higher to 
lower levels, and transitions from lower to higher levels occurring 
under the action of radiation (stimulated transitions). Transitions 
of the first kind result in the spontaneous emission of photons by 
atoms, while transitions of the second kind result in the aJ>sQr~tion 
of radiation by a substance. 

In 1918, Albert Einstein gave attention to the circumstance that 
the two kinds of radiation indicated above are not sufficient for 
explaining the existence of states of equilibrium between radiation 
and a substance. Indeed, the probability of spontaneous transitions 
is determined only by the internal properties of atoms and, conse­
quently, cannot depend on the intensity of the incident radiation, 
'whereas the probability of "absorbing" transitions depends both on 
the properties of atoms and on the intensity of the incident radia­
tion. To permit equilibrium to set in at an arbitrary intensity of the 
incident radiation, the existence of "emission" transitions is needed 
whose probability would grow with an increasing intensity of ra­
diation, i.e. of "emission" transitions produced by radiation. The 
-emission produced as a result of such transitions is called stimulated 
-or induced emission. 

Einstein proved on the basis of thermodynamic considerations 
that the probability of stimulated transitions attended by radiation 
must equal the probability of stimulated transitions attended by 
the absorption of light. Thus, stimulated transitions may occur with 
ilqual probability in either direction. 

Stimulated emission has very important properties. The direction 
of its propagation exactly coincides with the direction of propagation 
of the stimulating radiation, i.e. of the external radiation producing 
a transition. The same relates to the frequency, phase, and pola:r;i­
zation of the stimulated emission and stimulating radiation. Consf)­
quently, the stimulated emission and the radiation stimulating it 
are strictly coherent. This feature of stimulated emission underlies 
the action of light amplifiers and generators known as lasers (see 
the following section). 
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Assume that Pnm is the probability of a stimulated transition 
of an atom il!_jlnit time from the energy level En to the level Em, 
and P mn is the probability of the reverse transition. It was indicated 
above that at an identical intensity of radiation, Pnm = Pmn· 
The probability of stimulated transitions is proportional to the 
density of the energy u(l) of the electromagnetic field inducing the 
transition* falling to the frequency ro corresponding to the given 
transition [(I) = (En - Em)lli]. Letting B stand for the coefficient 
of proportionality, we get ,..--

(5.71) 

The quantities Bnm and Bmn are known as Einstein's coefficients 
According to what has been said above, Bnm = Bmn· 

Einstein gave a very simple derivation of Planck's formula on 
the basis of the equal probability of the stimulated transitions 
n -+ m and m -+ n. Equilibrium between a substance and radiation 
will be achieved provided that the number of atoms Nnm performing 
the transition from the state n to the state m in unit time will equal 
the number of atoms N mn performing the transition in the opposite 
direction. Assume that En> Em. Hence, the transitions m - n 
will be able to occur only under the action of radiation, whereas 
the transitions n -+ m will occur both under stimulation and sponta­
neously. Consequently, 

N _ N(stim) 
mn- mn ' 

N __ N(stlm) + N(spont)-
nm- nm nm 

The equilibrium condition has the form 
N (stlm) _ N(stlm) + N(spont) 

mn - nm nm 

According to Eq. (5, 71) 

N <sttm> p N B N 
mn = mn m = mnUfll m 

N <sum> p N B N 
nm = nm n = nmUfll n 

(5. 72) 

(5.73) 

(5.74) 

(N m and Nn are the numbers of atoms in the states m and n). 
Let us denote the probability of a spontaneous transition of an 

atom from the state n to the state m in unit time by Anm· Hence, 
the number of atoms performing a spontaneous transition n - m 
in unit time is determined by the expression 

N (spont) _A N 
nm - nm n (5. 75) 

The introduction 6f Eqs. (5.73), (5.74), and (5.75) into Eq. (5.72) 
yields 

• In Sec. 1. 7, we denoted the equilibrium value of ufll by u (w, T). 
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The value of u"' determined by this equation is the equilibrium 
value of this quantity, i.e. u ((!), T). Thus, 

U((l), T)= AnmNn = Anm 1 
BmnNm-BnmNn Bnm Nm/Nn-1 

(we have taken into account that Bmn = Bnm)· 
The equilibrium distribution of atoms among states with a dif­

ferent energy is determined by Boltzmann's law, according to which 

N m ( En-Em ) ( 1iw ) 
Nn =exp kT =exp W 

Consequently, we arrive at the formula 

U ((I) T) = Anm 1 
' Bnm exp (1iw/ KT) -1 (5. 76) 

To determine the coefficient Anml Bnm• Einstein took advantage 
of the fact that at low frequencies, Eq. (5. 76) must transform into 
the Rayleigh-Jeans formula. When n(l) ~ kT, the substitution 
exp (li(l)/kT) ~ 1 + n(l)/kT can be made, as a result of which Eq. (5. 76) 
acquires the form 

U ((I), T) = Anm }!!_ 
Bnm liw 

A comparison with Eq. (1.52) gives for Anm1Bnm the value 
Anm liw3 

Bnm = n2c3 

Introduction of this value into Eq. (5. 76) leads to Planck's formula 
(see Eq. (1.61)1. 

5.16. Lasers 

In 1939, the Soviet physicist V. Fabrikant first indicated the 
possibility of obtaining media in which light will be amplified at 
the expense of stimulated emission (see the preceding section). In 
1953, the first molecular generators operating in the range of centi­
metre waves.. and named masers were developed independently hy 
the Soviet scientists N. Basov and A. Prokhorov and the American 
scientists C. Townes and J. Weber*. The word maser is an acronym 
for microwave amplification by stimulated emission of radiation. 
ln 1960, 1'. Meiman (USA) developed the first similar device oper­
ating in the optical range-the laser (light amplification by stimu­
lated emission of radiation). Lasers are sometimes known as optical 
quantum generators. 

* In 1964, Basov, Prokhorov, and Townes were awardl!d the Nobel prize 
for this work. 
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We found out in the preceding section that when light of frequency 
w acts on a substance and its frequency coincides with one of the 
frequencies (En - Em)lli of the atoms of the substance (En > Em), 
it will set up two processes: (1) a stimulated transition m -+ n, 
and (2) a stimulated transition n -+ m. The first process leads to 
the absorption of light and attenuation of the incident beam, while 
the second one leads to an increase in the intensity of the incident 
beam. The resultant change in the intensity of the light beam depends 
on which of the two processes predominates. 

For thermodynamic equilibrium, the distribution of the atoms 
by different energy states is determined by Boltzmann's law: 

Nt = N exp (-EtlkT) = C exp( _ ~) (5.77} 
. ~ exp (-E1/kT) kT 

j 

where IN is th€ total number of atoms, and Nt is the number of 
atoms at the temperature T in a state with the energy E; (we have 
assumed for simplicity thatall the energy levels are not degenerate). 
It can be seen from this formula that the population of a level, 
i.e. the number of atoms in a given state, diminishes with an increase 
in the energy of the state. The number of transitions between two 
levels is proportional to the population of the initial level. Conse­
quently, in a system of atoms in thermodynamic equilibrium, the 
absorption of the incident light wave will predominate over stimu­
lated emission, so that the incident wave is attenuated when passing 
through the substance. 

To obtain amplification of the incident wave, we must invert the 
population yf the energy levels, i.e. ensure that there are more atoms 
in the state with the higher energy En than in the state with the 
lower energy Em. In this case, the given collection of atoms is said 
to have an inverse population. According to Eq. (5. 77) 

Nn =exp (_En-Em) 
Nm kT 

For an inverse population, (Nn!N m) > 1 at (En- Em) > 0. For­
mally extending distribution (5. 77) to this case, we get a negative 
value for T. Therefore, states with an inverse population are some­
times called states with a negative temperature. 

The change in the intensity of light when it passes through an 
absorbing medium is described by the formula 

(5. 78) 
In a substance with inverse population of the energy levels, the 
stimulated emission may exceed the absorption of light by the atoms, 
and as a result the incident beam of light will be amplified when 
passing through the substance. The phenomenon of amplification of 
the incident beam proceeds as if the absorption coefficient x in 
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formula (5.78) became negative. Accordingly, a collection of atoms 
with inverse population may be treated as a medium with a negative 
absorption coefficient. 

The creation of the laser became possible after ways were found 
for inverting the population of the levels in certain substances. 
In the first laser constructed by Meiman, the working substance 
was a pink ruby cyHndrical rod. The diameter of the rod was about 
1 em, and its length about 5 em. The ends of the ruby rod were 
thoroughly polished to form mirrors strictly parallel to each other. 

Cooler Power sovrce Cooter 

Fig. 5.33 

One end was coated with a dense opaque layer of silver, and the other 
end was coated with a layer of silver that transmitted about eight 
per cent of the energy falling on it. 

A ruby is aluminium oxide (Al 10 8) in which some of the alumin­
ium atoins are substituted by chromium atoms. When light is 
absorbed, the chromium ions Cr3+ (the chromium is in the ruby 
crystal in this form) become excited. The reverse transition to the 
ground state occurs in two stages. In the first of them, the excited 
ions give up part of their energy to the crystal lattice and pass into 
a metastable state. The transition from the metastable state to the 
ground one is forbidden by the selection rules. Therefore, the average 
lifetime of an ion in the metastable state (,....,10-3 s) is about 105 times 
greater than the lifetime in the ordinary excited state. In the second 
stage, the ions pass from the metastable state to the ground one• 
emitting a photon with ').. = 6943 A. Under the action of photons 
of the same wavelength, i.e. in stimulated emission, the chromium 
ions pass from the metastable state to the ground one much more 
rapidly than in spontaneous emission. 

The ruby in a laser is illuminated by a flash-discharge xenon tube 
(Fig. 5.33) that produces light with a broad band of frequencies. 

* The selection rules are not absolutely strict. The probability of the for­
bidden transitions is considerably smaller than of the allowed ones, but neve~'" 
theless differs from zero. 
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When the power of the tube is adequate, most of the chromium ions 
pass into the excited state. The process of imparting energy to the 1 

working substance of a laser to transfer the atoms into the excited 
state is called pumping. Figure 5.34 gives a diagram of the levels 
of the chromium ion Cr3+ (level 3 is a band formed by a collection of 
closely arranged levels). 

The excitation of the ions as a result of pumping is depicted by 
arrow W13• The lifetime of level 3 is very small (.......,iQ-8 s). During 
this time, some ions pass spon-
taneously from band 3 to ground 
level1. Such transitions are de-
picted by arrow A 31• Most of the ~.follllA 
ions, however, will pass to meta- Pumping 
stable level 2 (the probability 
of the transition depicted by arrow 
S32 is much greater than that of 
transition A31 ). When the pump-
ing power is adequate, the num-

1 

8.Jz 

UI.J A.11 

Fig.5.34 

Az, Wzt 
ofl4Jl 

ber of chromium ions at level 2 becomes greater than their number 
at level 1. Consequently, levels 1 and 2 become inverted. 

Arrow A 11 depicts a spontaneous transition from the metastable 
level to the ground one. The emitted photon may produce stimulated 
emission of additional photons (transition W 21) which, in turn, will 
produce stimulated emission, etc. A cascade of photons is formed 
as a result. We remind our reader that the photons produced in 
stimulated emission fly in the same direction as the incident photons. 
The photons whose directions of motion form small angles with 
the axis of the crystal rod experience multifold reflection from its 
ends. Therefore, their path in the crystal will he very long, so that 
the cascades of photons in the direction of the axis will receive spe­
cial development. The photons emitted spontaneously in other direc­
tions emerge from the crystal through its side surface. 

The process of formation of a cascade is shown schematically 
in Fig. 5.35. Before the beginning of a pulse, the chromium ions 
are in the ground state (the black circles in Fig. 5.35a). The pumping 
light (the solid arrows in Fig. 5.35b) transfers most of the ions to the 
excited state (white circles). A cascade begins to develop when the 
excited ions spontaneously emit photons (the dash arrows in Fig. 
5.35c) in a direction parallel to the axis of the crystal (the photons 
emitted in other directions emerge from the crystal). The photons 
multiply at the expense of the stimulated emission. This process 
develops (Fig. 5.35d and e) because the photons repeatedly pass 
along the crystal, being reflected from its ends. When the beam 
becomes sufficiently intense, part of it emerges through the half­
silvered end of the crystal (Fig. 5.35/). 
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Ruby lasers are pulsed Q!!es (with a frequency of the order of sever­
al pulses a minute). A large amount of heat is liberated inside the 
c.~;ystal. It therefore has to,be intensivelycooled, which is done with 
the aid of liquid air. - -- . 

In 1961, A. J a van developed the first gas laser operating on a mix­
ture of helium and neon. In 1963, the--nrst" semiconductor lasers 
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were designed. At present, the list of laser materials includes m"llny 
scores of solid and gaseous substances. 

Laser radiation is distinguished by a number of remarkable fea­
tures. It is characterized by (1) a strictly monochromatic nature 
(LlA. ""0.1 A), (2) a high temporal and space coherence, (3) a high 
intensity, and (4) narrowness of the beam. The angular width of the 
light beam generated by a laser is so small that by using telescopic 
focussing, it is possible to obtain a spot of light with a diameter 
of only three kilometres on the Moon's surface. The high power and 
narrowness of the beam make it possible, when focussing with the 
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aid of a lens, to obtain a density of the energy fiux that is 1000 times 
greater than the density of the energy flux that can be obtained by 
focussing sunlight. Light beams with such a high density of their 
power can he employed for mechanical processing and welding, for 
acting on the course of chemical reactions, etc. 

The high coherence of the radiation opens up broad prospects for 
the use of lasers for radio CQmmunication, in particular for directed 
radio communication in outer space. If a method of modulation and 
demodulation of light is found, one laser will he able to replace with 
respect to the volume of transmitted information the entire system 
of communication between the east and west coasts of the USA. 

The high coherence of a laser beam made it possible to bring to 
life such a remarkable phenomenon as holography. 

What has been said above far from exhausts all the possibilities 
of the laser. It is an absolutely new type of light source, and it is 
meanwhile difficult to: imagine all the possible fields of its application. 

5.17. Non-Linear Optics 
In a light wave produced with the aid. of conventional (non-laser) 

light sources, the electric field strength E is negligibly small in com­
parison with the strength of the internal microscopic field acting 
on the electrons in a substance. For this reason, the optical properties 
of the medium (in particular, the refractive index) and the nature 
of the overwhelming majority of optical phenomena do not depend 
on the intensity of light. In this case, the propagation of light waves 
is described by linear differential equations. Therefore, prelaser 
optics can be called linear. We must note that the principle of light 
wave superposition (expressed in geometrical optics by the law 
of the independence of light rays) holds only in the region of linear 
optics. True, non-linear phenomena were also known in optics 
before the development of lasers. They include, for example, the 
combination scattering of light (the Raman effect). In combination 
scattering, the transformation of the frequency of a monochromatic 
light wave is observed, which is a feature of the non-linear nature 
of the process. In the predominating majority of cases, however, 
the optical processes were linear. 

After the appearance of lasers, matters in optics changed quite 
appreciably. Quantum generators (lasers) make it possible to pro­
duce light waves with a field strength of almost the same magnitude 
as the strength of the microscopic field in a toms. For such fields, 
the refractive index depends on the strength E. In this case, the 
superposition principle is violated, the different waves propagating 
in a medium affect one another, and a number of non-linear optical 
phenomena appear. We shall briefly describe some of them. 
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Non-Linear Reflection of Light. At high intensities, radiation on 
the second harmonic of the incident radiation appears in the reflected 
light. In other words, in addition to the reflected ray having th& 
frequency w equal to the frequency of the incident light, a reflected 
ray of intensity 2w is observed. This ray does not obey the conven.., 
tional law of reflection, and as a consequence the direction of the 
reflected ray of frequency 2w does not coincide with the direction 
of the reflected ray of frequency w. 

Self-Focussing of Light. At conventional intensities, an initially 
parallel narrow beam of light when propagating in a vacuum or 
in a medium undergoes so-called diffraction spreading, as a result. 
of which diffraction divergence of the beam appears. It was found 
that when light beams propagate in liquids and in certain crystals. 
an increase in the power of a beam is attended by diminishing of 
its divergence. At a certain power called the critical one, the beam 
propagates without any divergence. Finally, at a power higher than 
the critical one, the beam contracts-self-focussing of the beam 
takes place in the medium. This phenomenon is due to the fact that 
the refractive index increases with a growth in the strength E. 
Therefore, the medium becomes optically denser in the region occu­
pied by the beam, and this leads to bending of the rays toward the 
beam axis, i.e. to contraction of the beam. 

Optical Harmonics. In the scattering of a laser beam in liquids 
and crystals, in addition to the light with the frequency of the 
incident radiation oo, scattered light is observed having frequencies 
that are multiples of the initial frequency (i.e. the frequencies 2oo, 
3w, etc.). These components of the scattered light are known as 
optical harmonics. The intensity of the optical harmonics may 
be quite considerable; in some crystals up to 50% of the power 
of the scattered radiation may transform into radiation of the har­
monics. 

Multiple-Photon Processes. At conventional intensities, only one 
photon is absorbed in an elementary event of interaction of light 
with a substance. The energy nw of the photon coincides with the 
difference between the energy levels E 2 - E1 of the relevant atom 
or molecule. At high intensities, two or more photons may be absor­
bed in an elementary event of interaction. In this case, light not 
only of the frequency w = (E2 - E1)/1i, but also of the frequencies 
·w/2, w/3, etc. may be absorbed. Such absorptionis called multiple­
photon (in particular, two-photon, three-photon, etc.). 

In one elementary event of interaction of light with a substance, 
two photons of different frequencies may be absorbed. This occurs 
when the light field is set up by two independent monochromatic 
sources. If the sum of the frequencies of these sources satisfies the 
condition w1 + w2 = (E2 - E1)/1i, an appreciable absorption of 
the radiation of both frequencies is observed. For this to occur, the 
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two radiations do not necessarily have to be of a high power. It is 
sufficient that their total intensity will be high. Therefore, multiple­
photon absorption can be observed when light from a laser and a non­
laser source with a continuous spectrum is superposed. 

Multiple-photon processes also include the multiple-photon photo· 
electric effect (the multiple-photon ionization of atoms). Whereas 
the conventional (single-photon) photo-electric effect is observed 
at frequencies at which the energy of a photon is greater than the 
energy of ionization of an atom, the multiple-photon photo-electric 
effect can occur at frequencies that are 1/n-th of these frequencies 
(n is the number of photons participating in an elementary event 
of interaction). The seven-photon ionization of inert gases has been 
reliably registered. 

We have given a far from complete list of already discovered non­
linear phenomena. It is sufficient, however, to form an idea of how 
rapidly the new branch of optics-non-linear optics-is developing. 



PART III 

CHAPTER 6 

SOLID STATE 
PHYSICS* 

OSCILLATIONS· OF 
A CRYSTAL LATTICE 

6 .. 1. Crystal Lattice. Miller Indices 

An ideal crystal lattice is formed of identical unit cells. Each 
of them in the general case is an oblique parallelepiped constructed 
on the three vectors a, b, c. The latter can be taken as the t;nit 
vectors of the coordinate ;)Xes. The magnitudes of the vectors are 
the periods of identity in the directions of the relevant axes. 

The choice of the coordinate axes, generally speaking, is not 
unique. The same crystal can be represented as consisting of different 
unit parallelepipeds. It is customary practice to choose the axes 
in the simplest way with account taken of thesymmetryofthecrystal. 

Special symbols are used for an analytical description of the 
geometrical elements of a crystal, i.e. of its points, straight lines 
(directions) and planes. 

Let us take a point with the coordinates x, y, z**. We shall adopt 

the combination of the quantities !.. , .J!....b , ...:_, which are confmed 
a c 

in double brackets, as the indices of a point: [ [: ~ 7 J J. Usually, 
we have in mind points within the limits of a cell adjoining the origin 
of ~oordinates. In this case, the indices will be numbers not exceed-

ing 1. For example, the indices [ r! ~ ~]] correspond to the centre 

* In the present part of the course, by solids we mean crystalline substances. 
Some information on crystals was given in Chapter 13 of Vol. I. There we set 
out information on the classification of crystals, the physical kinds of' crystal 
lattices, and defects in crystals. In Vol. II we treated the classical theory of 
the electrical conductance of metals (Chapter 11), and also gave some informa­
tion on the magnetic properties of bodies (Chapter 7). Naturally, we shall not 
repeat all this information here and shall limit ourselves to settling ol1t the 
material that was not dealt with in the preceding volumes of the course. · 

** In the general case, these coordinates are oblique, and not Cartesian ones. 
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of the crystal cell, and the indices [ [ 0 ~ i J J to the centre of the 
face in plane yz. 

A direction in a crystal can be set with the aid of a straight line 
passing through the origin of coordinates. The direction of such 
a straight line is determined by the smallest integers m, n, p that 
are proportional to the indices of any point through which the line 
passes*. 

m ·n·p- x. Y.: .. -a-·-r·c-
The numbers m, n, p are called direction indices and are confined 
in single brackets: [m, n, pl. Thus, the direction of a straight line 

passing through the origin of coordinates and the point [ [! ~ 1 J J 
is designated by the symbol [2 3 6]. 

If one of the numbers m, n, p is negative, the minus sign is 
put not in front of, but on top of the relevant number. For example, 
the direction opposite to the y-axis is designated by the symbol 
[0 I OJ. 

The position of a plane in a crystal can be determined by setting 
the intercepts u, v, w formed by the plane on the coordinate axes. 
For planes passing through the lattice points, ho\vever, it is more 
convenient to set the position of a plane with the aid of the smallest 
integers h, k, l that are the reciprocals of the intercepts u, v, w: 

1 1 1 
h:k:l=u:=--v=w-

The numbers, h, k, l are known as the Miller indices. When writing 
the symbol of a plane, we confine the Miller indices in parentheses: 
(h k l). Assume, for instance, that the intercepts formed by a plane 

on the coordinate axes are ~ , ; , and 1. Their reciprocals will be 

2, ~, and 1. Multiplying these numbers by 2, we get the Miller 
indices: (4 3 2). 

When an intercept formed by a plane on a coordinate axis is nega­
tive, the minus sign is put not in front, but on top of the correspond­
ing Miller index. If a plane is parallel to a coordinate axis, the inter­
cept on this axis is infinitely great, so that the relevant index is zero. 

We must note that for cubic crystals the plane (h k l) is perpen­
dicular to the straight line [h k l]. This does not occur, generally 
speaking, for crystals of other systems. 

* The directions passing through the crystal lattice points are usually of 
interest. This is why the indices form an integral proportion. 
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Figure 6.1 gives the Miller indices for the basic. planes of a cubic 
crystal (the x-axis is directed toward us, the y-axis to the right, 
and the z-axis upward). 

(!00) (110) (111) 

Fig. 6.1 

6.2. Heat Capacity of Crystals. Einstein's Theory 

According to classical notions, a crystal consisting of N atoms is 
a system with 3N vibrational degrees of freedom, to each of which 

there falls on an average the energy kT ( ~ kT in the form of kinetic 

and ~ kT in the form of potential energy). These notions lead to the 
Dulong and Petit law, which states that the molar heat capacity of 
all chemically simple bodies in the crystalline state is the same and 
equals 3R (see Sec. 13.5 of Vol. I, p. 375). This law is obeyed suffi­
ciently well only at comparatively high temperatures. At low 
temperatures, the heat capacity of crystals diminishes and tends to 
.zero upon approaching 0 K. 

The value of kT for the average energy of vibrational motion is 
obtained assuming that the energy of a harmonic oscillator can take 
on a continuous series of values. We established in Sec. 4.10 that 
vibrational energy is quantized. The result is that the average energy 
of vibration differs from kT. According to Eq. (4.60), the energy 
of a harmonic oscillator can have the values 

(n=0,1,2, ... ) 

Assuming that the distribution of the oscillators by states with 
different energies obeys the Boltzmann law, we can find the average 
value of the energy of a harmonic oscillator (e). Performing calcu­
lations similar to those that led us to formula (1.60), we shall get an 
expression for (e) which differs from Eq. (1.60) only in having the 

additional addend ; liro. Thus, 

) 1 ft . liw 
(e = 2 (I) -r exp (liw/kT)- 1 (6.1) 
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The theory of the heat capacity of crystalline bodies taking into 
account the quantization of the vibrational energy was created by 
Einstein (1907) and was later improved by Debye (1912). 

Einstein considered that a crystal lattice consisting of N atoms 
is identical to a system of 3N independent harmonic oscillators 
with an identical natural frequency (J). The existence of the zero 
energy of oscillations was established much later, only after the 
appearance of quantum mechanics. Therefore, Einstein proeeeded 
from Planck's value of the energy of a harmonic oscillator en = n/i(J), 
Accordingly, in the expression for (e) used by Einstein, the addend 
1 
2 n(J) was absent. 

Multiplying the second addend of Eq. (6.1) by 3N, Einstein ob­
tained the following formula for the internal energy of a crystal: 

U _ 3Niiw (6 2) 
- exp (liw/kT)- 1 · 

Differentiating Eq. (6.2) with respect to the temperature, Einstein 
found the heat capacity of a crystal: 

C au 3N!iw . liw 
= ar = (exp (liw/kT)-1]• exp (liw/kT) kT' 

Let us consider two extreme cases. 

(6.3) 

1. High temperatures (kT » Tiro). In this case, we may assume 
that exp (liwlkT) ~ 1 + liw/kT in the denominator and exp (JiwlkT)~ 
~ 1 in the numerator of Eq. (6.3). As a result we get the fol­
lowing value of the heat capacity: 

C = 3Nk 

We have thus arrived at the Dulong and Petit law. 
2. Low temperatures (kT « liw). For this condition, we may 

disregard unity in the denominator of Eq. (6.3). The formula for 
the heat capacity thus becomes 

C _ 3N (liw)l ( liw } 
- kT• exp -w (6.4) 

The exponential multiplier varies much more rapidly than T2• 

Therefore when approaching absolute zero, Eq. (6.4) will tend to 
zero practically according to an exponential law. Experiments show 
that the heat capacity of crystals varies near absolute zero not expo­
nentially, but according to the law T3 • Hence, Einstein's theory gives 
only a qualitatively correct course of the heat capacity at low tem­
peratures. P. Dehye succeeded in achieving quantitative agreement 
with experimental results. 
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6.3. Oscillations of Systems with a Large Number 
of Degrees of Freedom 

To gain an understanding of Debye's theory, we must know the 
solution of the problem on small-amplitude oscillations of a system 
with a large number of degrees of freedom. In the present section, 
we shall consider the results of solving this problem without touching 
on the ways of solving it. 

The position of a system with s degrees of freedom can be set with 
the aid of s quantities q1 called the generalized coordinates of the 
system. The part of the generalized coordinates can be played by 
lengths, angles, areas, etc. The generalized coordinates for the same 
system can be chosen in different ways. It can be shown that such 
a system has s natural frequencies wet (c.: is the number of the natural 
frequency running through the values 1, 2, ... , s). With an arbitrary 
choice of the generalized coordinates qh the gem~ral solution of the 
equations of motion has the form 

s 

q; = '6 A Ia cos (u)at +.Set) 
a=l 

(i = 1, 2, ... , s) 

Hence, each of the functions q; is, generally speaking, a superposi­
tion of s harmonic oscillations with the frequencies wet. 

The energy of a system is determined by the expression 

where the first sum gives the kinetic and the second the potential 
energy of the system; aik and b tm are dimension coefficients. Thus, 
the expression for the energy includes, in general, not only the squares 

of the generalized coordinates qi or the generalized velocities qi> 
but also the products of the coordinates or velocities corresponding 

· to different degrees of freedom of the system. 
It was found that we can choose the generalized coordina tr_,.s of 

a sy.'item so that the change in each of them is a simple harmonic 
oscillation occurring with one of the natural frequencies Wo:· 

Denoting these coordinates by £a, we can write that 

Ga = Ba cos (wa t + Oa) (a = 1, 2, •.. , s) 

The generalized coordinates ~a perform a harmonic oscillation 
independently of one another, and each with its own frequency (l)et. 

The generalized coordinates chosen in this way are called normal (or 
principal), while the harmonic oscillations they perform are known 
as the normal osciUations of the system. 
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We must note that the changes in time of the arbitrarily chosen 
generalized coordinates qi ean be represented in the form of the 
superposition of the normal oscillations ~~ 

(i=1.,.2, ... ,s) 
o·.=i 

The expression for the energy in normal coordinates has the form 

Consequently, the energy of a system equals the sum of the energies 
falling to each of the normal oscillations separately. 

Let us consider as an example a system consisting of two identieal 
mathematieal pendulums joined by a weightless spring (Fig. 6.2}. 
Let us assume that the pendulums can 
oscillate only in the plane of the drawing, 
so that the system has two degrees of 
freedom. The position of the system can 
be set by the angles of deviation of both 
pendulums from the vertical position, or 
by the angle of deviation of one of the 
pendulums and the length of the spring, 
and so on. The solution of the equations 

(a} (b) 

Fig. 6.2 

of motion gives the following expressions for the angles ({J1 and ({J 2 

of deviation of the pendulums from their equilibrium position: 

~P1 = Ai cos ((J),t + 61) + A 11 cos ((J) 2t + ol!> 
cp 11 = A1 cos ('.o1t + 61) - A 2 cos ((J) 2t + <\) 

Here A1, A 2 , 61, and 62 are constants determined from the initial 
,~.onditions, and w1 and (J)lll are the natural frequencies of the system 
equal to 

... /7 (J)2 = .. /-g _.1_ 2-kb2 
<O 1 = V l ' " V l 1 ml2 

(m is the mass, l is the length of the pendulums, k is the spring con­
st.an1;, and b is the distance from the point of suspension to the point 
of fastening of the spring). 

It is a simple matter to represent the osciliations €p1 and <p 2 in 
the form 

where 
rpt = St + S2• IP2 = S1 - St 

S, ~ -•' }'!>- = A, cos ( "'• t -t-6,) } 

£2 = <p1-; 'P1- = A 2 cos ( CJl2t + 62) 

(6.5) 
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These two functions represent the normal oscillations of the given 
system. If the pendulums are deflected to the same side through 
the same angle q>10 = q>20 and released without a push, then only 
the first normal oscillation will be completed (A 1 =1= 0, A 2 = 0), 
and q>1 = tp2 = ; 1 (Fig. 6.2a). If we deflect the pendulums through 
the same angle in opposite directions (q>10 = -q>20), then only 
the second normal oscillation will be completed (A 1 = 0, A 2 =1= 0), 

2 J 

(a)A~B 
1 

ib!A~B 
J 

1 3 

(C)A~B 
2 

Fig. 6.3 

and .:Pt = -q-2 = ; 2 (Fig. 6.2b). In 
the first case, the pendulums oscil­
late with the frequency rolf in the 
second with the frequency ro2 that 
is greater than ro1. In other initial 
condition's, both normal oscillations 
will be performed simultaneously. 

Let us consider as a second exam­
ple a system of three identical spheres 
joined by identical weightless 
springs (Fig. 6.3). Spring ends A and 
Bare rigidly fixed. It is assumed that 
the spheres can move only in the 
plane of the drawing in directions 
at right angles to line AB. The sys­
tem has three degrees of freedom in 
these conditions. The normal oscil­
lations are shown in Fig. 6.3. In case 

a, all the spheres move in the same phase; in case b, spheres 1 and 
3 oscillate in counterphase, and sphere 2 is stationary; in case c, 
spheres 1 and 3 oscillate in the same phase, and sphere 2 moves in 
counterphase with respect to them. 

6.4. Debye's Theory 

Debys took into account that the oscillations of the atoms in 
a crystal lattice are not independent. Displacement of one of the 
atoms from its equilibrium position results in the displacement 
of other atoms neighbouring with it. Thus, a crystal is a system of N 
elastically joined atoms with s = 3N degrees of freedom. 

In Sec. 14.8 of Vol. II, p. 293 et seq., we found out that the arbit­
rary oscillation of a string is the superposition of harmonic standing 
waves. Consequently, every normal oseillation of a string is a stand­
ing wave. Similarly, a standiug wave that sets in within a crystalline 
body corresponds to every normal oscillation of the crystal lattice. 
Indeed, owing to the bond between the atoms, an oscillation appear­
ing at one place in a crystal is transmitted from one atom to another, 
as a result of which an elastic wave is produced. Upon reac.hing the 
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boundary of the crystal, the wave is reflected. When the direct and 
reflected waves are superposed, a standing wave is formed. Standing 
waves can be produced only for frequencies (or wavelengths) satisfy­
ing definite conditions. If we take a crystalline body in the form 
of a parallelepiped with sides of a, b, and c, then these conditions 
are expressed by Eqs. (1.46). 

The number of standing waves, i.e. normal oscillations, whose 
frequencies are confined within the interval from (I) to (I) + dw 
is determined by Eq. (1.49). The volume of the crystal V enters 
this expression in the form of a separate multiplier. We can there­
fore speak of the number of normal oscillations per unit volume 
of a crystal. In accordance with Eq. (1.50), this number is 

(6.6) 

where v is the phase velocity of the wave in the crystal. We shall 
stress that now by dN II) we understand the number of standing waves 
per unit volume; in Sec. 1.5 this number was designated by the 
symbol dnll). In connection with the fact that we shall need the 
letter n to denote the number of atoms in unit volume, however, 
it is expendient to write dN ro instead of dnro. 

Equation (6.6) takes no account of the possible kinds of polari­
zation of a wave. Three different waves with the same value of (l) 

can propagate in a solid medium along a certein direction. These 
waves differ in the direction of polarization: one is long·itudinal and 
two are transverse with mutually perpendicular directions of oscil~ 
lations. Accordingly, Eq. (6.6) must he modified as follows: 

d wa dw ( 1 2 ) Nw=-2 2 -a-+-3-n v11 v .L 

Here v11 is the phase velocity of the longitudinal and V.t of the trans­
verse elastic waves. Let us assume for simplicity that v11 = v .L = v. 
Hence, 

3w2dw 
dNII)=-2 2 s (6.7) 

1t v 

We can find the maximum frequency Wm of the normal oscilla­
tions of a lattice by equating the total number of oscillations to the 
number of degrees of freedom equal to 3n (n is the number of atoms 
in unit volume of the crystal; we remind our reader that the calcu­
lation is being performed for unit volume): 

Hence 

rom s r r 3w2dw Wm 
3n = J dN ro = J 2n'';3 = 2n2u3 

0 

(6.8) 
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We shall note that in. acco'fdance with. Eq. (6.8), the smallest 
length of a wave excited in a crystal is · 

2:~ov 2 
Amtn = -.- ~ ~:~.=.- ~~ 2d 

00m .,1 n 
where d is the distance between neighbouring atoms in a. lattice, 
This result agrees with the faet that waves whose length i.s less than 
the double interatomic distance have no physical meaning. 

Deleting tho velocity v from Eqs. (6.'/) and (6.8), we obtain 
the following expression for th0 number of normal oscillations dN01 

in the frequency interval dw per unit volume of u crystnl: 
'"w~ dro 

dN,J) = 9n - 3 - (6.9) 
rom 

The internal energy of unit volume of a (~rystal can be represented 
in. the form 

U = J (e ((I))} dN'h 

where (e (ro)) is the average vuluo of the energy of normal oscil­
i.ation at the frequency Ul. introducing Eq. (6.i) for (o (ro)} and 
(6.9) for dN uu we arrive at the formula 

rom 

U = _9n 1 ( i 1i i'im 1 2d 
ro3 J 2 <•) + e:"Cp ("iro7kr)----t-J (I) ro = 

m 0 

rom 
9nli r (03dro 

:=Do+ ro;h- .I expTfiro/lcT)-··1 (6•10) 
0 

Here U 0 = 3n ( -} liwm) is the energy of zero oscillations of a. crystal. 

The derivative of U with respect to 1' gives the hear. cap~dty 
of unit volume of a crystal 

rom 
C = .?...f..!...= ~ii i ~xp _(J!(J)/k1') nC!J4d<u . .. , . 

iJT win J [exp (hm/kT)-iP k7.'•1 

0 

The~ quantity e determined by the condition 1i(•>rn = ke is 
called the Debye characteristic temperature. By definition, 

lirom .a 11) 8=-k-· (u. 

The Debye temperature indicates for each substance the region where 
the quantization of tho energy of oscillations becomes appreciable. 

Let us introduce the variable x = 'liwlk1'. Hence., the expression 
for the heat capacity becomes 

"'m 
C = 9nk (·aT ) 3 .r exx• d.'!: l (eX-f)l 

0 

(6.12) 
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where Xm = hromlkT = 6/T. When T « 6, the upper limit of the 
integral will be very great, so that it can be assumed approximately 
equal to infinity (xm ~ oo). Therefore, the integral will be a certain 
number, and the heat capacity C will be proportional to the cube of 
the temperature: C oc T3 • This approximation is known as the 
Debye T 3 1aw. At sufficiently low 
temperatures, this law is obeyed 
very well in many cases. 

When T ~ e, i.e. when 
hromlkT « 1, Eq. (6.10) can be 
simplified by assuming that 
exp (nrolkT) ~ 1 + nrolkT. Hence 
for the internal energy, we get 
the expression 

rom 
9nli. J kT U = Uo+ - 3- -- w3 dro = rom liro 

0 

=U0 +3nkT 
while for the heat capacity we get 
the value C = 3nk figuring in the 
Dulong and Petit law. 

That De bye's theory agrees with 
experimental data can he seen 
in Fig. 6.4 which gives data for 
the heat capacity of aluminium 
(6 = 396 K) and copper (<9 = 
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= 309 K); C.,., is the classical value of the heat capacity obtained 
from quantum formulas for T ._ oo. The curves have been plotted 
according to Eq. (6.12), the circles show the experimental points. 

Debye's formula gives the change in the heat capacity with the 
temperature quite well only for bodies with simple crystal lattices, 
i.e. for chemical elements and some simple compounds. The formula 
may not be applied for bodies with a more intricate structure. This 
is due to the spectrum of oscillations in such bodies being extremely 
complicated. For the simple crystal lattice considered above (in 
which a unit cell contains only one atom) three values of the natural 
frequency of oscillations of the lattice (one for the longitudinal wave 
and two values coinciding with each other* for the transverse waves) 
corresponded to each value of the wave vector k. If the number of 
atoms in a unit cell of a crystal is r, then in the general case 3r 
different values of w correspond to each value of k. Consequently, 
the frequency is a multiple-valued function of the wave vector and 
has 3r branches. For example, for a unidimensional chain construct-

• In a greatly anisotropic crystal, all three frequencies will be different. 



168 Solid State Phystcs , _____ _ 
ed of alternating atoms of two species (r = 2), the dependence of (Ll 

on k has the form shown in Fig. 6.5. One of the branches is called the 
acoustic, and the other the optical one. These branches are distin­
guished by their dispersion, i.e. the nature of the dependence of 

Optical /Jronr/1 w on k. The acoustic branch tends to zero when 
k diminishes, while the optical branch has the 
terminal value of w10 as its limit. 

'r0 In the three-dimensional case, of 3r branches, 
1 ru, 
1 three are acoustic, and the remainder (3r - 3) 

Acoushc /J~anc/1 are optical. Sound frequencies correspond to the 
: acoustic branches, and frequencies in the in-

!"------1.-T frared region of the spectrum, to the optical ones. 
In normal oscillations of an acoustic frequency, 
similar atoms in different unit cells oscillate Fig. 6.5! 

relative to one another. In normal oscillations 
of an optical frequency, different atoms within each of the unit cells 
oscillate relative to one another; similar atoms of different cells are 
at constant distances from one another. 

6.5. Phonons 

We established in the precedmg section that the eJ1ergy of a crystal 
can be represented as the sum of the energies of normal oscillations 
of a lattice: 

3Nr 

U= ~ (n 1+!) liw1 

i=1 

(N is the number of unit cells in a crystal, and r is the number of 
atoms in a cell). 

With deduction of the energy of zero oscillations, the energy of 
a normal oscillation of frequency w1 consists of portions of the mag~ 
nitude 

e1 = 1iw 1 (6.13) 

This portion (quantum) of energy is called a phonon. Many processes 
in a crystal (for example, the scattering of X-rays or neutrons) pro­
ceed as if a phonon had the quasimomentum 

p = lik (6.14) 

where k is the wave vector of the corresponding normal Ofcillation. 
A phonon in many respects behaves as if it were a particle having 

the energy determined by E q. (6.13) and the momentum determined 
by Eq. (6.1.4). Unlike ordinary particles (electrons, protons, pho­
tons, etc.), however, a phonon cannot appear in a vacuum-it needs 
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a medium to appear and to exist. Particles like this are known as 
quasiparticles. Thus, a phonon is a quasiparticle. Accordingly, the 
quantity p [Eq. (6.14)] for a phonon is called the quasimomentum. 

For conditions of thermal equilibrium, the average number of 
phonons (ni) of frequency co 1 is determined by the expression 

( ( n, + ~) licot) = ; licot + exp (li~j~T)-t 
[see Eq. (6.1)1. Hence, 

(6.15) 

It can be seen from Eq. (6.15) that an unlimited number ofidenti­
cal phonons can be excited in a crystal simultaneously. Hence, 
the Pauli principle does not extend to phonons. 

We must note that the quanta of an electromagnetic field-photons 
in a state of equilibrium with the walls of a cavity (see Chap. 1), 
also obey distribution (6.15). 

Thus, the oscillations of a crystal lattice can be represented as 
a phonon gas confined within the limits of a crystal specimen like 
electromagnetic radiation can he represented as a photon gas filling 
a cavity. Formally, both notions are very similar-both photon& 
and phonons obey the same statistics. But there is a significant dis­
tinction between photons and phonons: whereas photons are true 
particles, phonons are quasiparticles. 

The combination (Raman) scattering of light by crystals (see 
Sec. 5.14) can be interpreted as a process of interaction of a photon 
with phonons. A photon flying through a crystal lattice may excite 
in it a phonon of on·e of the frequencies of the optical branch of the 
crystal. The photon uses part of its energy to do this. Consequently, 
its frequency decreases-a red satellite appears. If a phonon had 
already been excited in a crystal, a photon flying through the lattice 
may absorb it and increase its energy as a consequence-a violet 
satellite appears. 

Distribution (6.15) is a particular case of the Bose-Einstein distri· 
bution that is obeyed by particles having an integral (in particular, 
a zero) spin. The general expression of this distribution has the form 

1 
(nt} = ~xp [(Et-!1)/kT]-1 (6.16) 

where (ni) = average number of particles in the state numbered t 
E i = energy of a particle in this state 

f..l. = so· called chemical potential determined from the con­
dition that the sum of all the (n1 )'s equals the total 
.tum her of particles N in the system: ~ (n1 ) = N. 
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The values of f.L in distribution (6.16) cannot be positive because 
if it were, at E 1 < p. the average number (n 1 ) would be negative, 
whichis deprived of a physic~al meaning. Thus, ~ ~ 0. For systems 
with a varying number of particles (among which are both a system 
of photons and a system of phonons), fJ. = 0, and Eq. (6.16) trans­
forms into Eq. (6.15). 

Distribution (6.16) is the cornerstone of the Bose-Einstein statis­
tics. Particles obeying this statistics are known as bosons. Thus, 
both photons and phonons are bosons. Bos.ons include all particles 
having a zero or integral spin. 

Bosons are characterized by the fact' that the probability P of 
the appeamnce ("birth") of a boson in a state in which there aro al­
ready n particles is proportional to the square wot of n: 

(6.17) 

Thus, bosons "like" to accumulate in one state-they are "collec­
tivist.s". 

6.6. The Mossbauer Effect 

Atoms absorb light of a frequency corresponding to the transition 
from the ground state to the nearest excited state especially inten­
sively. This phenomenon is called resonance absorption. Returning 
later to the ground state, the atoms emit photons of the resonance 
frequency. The corresponding radiation is known as resonance emis· 
sion or resonance fluorescence. The phenomenon of resonance fluo­
rescence was discovered by the American physicist Robert Wood 
{1868-1955) in 1904. He found that sodium vapour when irradiated 
with light corresponding to the yellow line of sodium begins to glow, 
emitting radiation of the same wavelength. Later, similar glowing 
was observed in mercury vapour and in many other cases. Owing to 
resonance absorption, the light passing through the fluorescing sub­
stance weakens. 

Like atoms, atomic nuclei have discrete energy levels. The lowest 
of them is called the ground (or normal) level, and the others are 
excited levels. Transitions between these levels lead to the produc­
tion of short-wave electromagnetic radiation that has been called 
gamma~rays (see Sec. 10.5). The existence of the phenomenon of 
nuclear resonance fluorescence similar to the atomic resonance 
fluorescence observed in visible light could be expected for gamma­
rays. For a long time, however, no investigators succeeded in observ­
ing resonance fluorescence with these rays. The explanation of this 
is as follows. It was shown in Sec. 5.3 that the emission line and 
the absorption line corresponding to a transition of a quantum system 



OscUlations of a Crystal Lattfce 

between Lwo states are shifted relative to each other by 2.6.(1)R = 
= 2.Utn, where R is t~ recoil energy determined by Eq. (5 .. 2:j). 
For visible light, the shift 2A<ilR is many orders of magnitude .small.N 
than the breadth of a spectral line 6<0 so that the emission and absorp­
tion lines are virtually superimposed. Matters are different with 
gamma-rays. The energy and momentum of a gamma-photon are 
many times greater than those of a photon of visible light. Therefore, 
the recoil energy R is considerably greater too, and in this case 
must he written as follows 

(6.18) 

where m. 11 uc is the mass of a nucleus" 
It is customary practice in the spectroscopy of gamma-rays to 

a:3e energies instead of frequencies. We shall therefore express the 
breadth of a spectral line, the shift of the lines, and the likein energy 
units, multiplying the relevant frequencies by Planck's constant n 
for this purpose. In these units, the natural bl'eadth of a spectral 
line will be characterized by the quantity I' [see Eq. (5.15)l, the 
shift of the emission and absorption lines by the quantity 2R, and 
the Doppler broadening of thB line by the quantity 

2D=2 ~&Enm ~ 2 .:!__ /iw c c (6.1.9) 

{see Eq. (5.27)]. 
The energy of gamma-quanta usually ranges from about 10 keV 

to about 5 MeV (which corresponds to frequencies ranging from 
10111 to ·102?. rad/s anq wavelengths from about 1 A to about 10-3 A). 
Let us calculate the recoil energy R for the case liro = 100 keV and 
mnuc = :1.7 X 10-22 g (an atomic mass of the order of 1.00). The 
value of m"ucC2 is 1.7 X 10-22 X 9 X 1.020 = 0.15 erg, i.e. 0.15/1.6 X 
X 10-12 ~ 10n eV. Consequently, in accordance with Eq. (6.18), 

(105)2 -
R= 2 x HJll =0.5 X 10 1 eV 

and the shift of the lines 2R is 10-1 eV .. 
The natural breadth of spectral lines r is determined by formula 

(6.14). The typical lifetime of the excited states of nuclei is t0-12 s. 
A value of 

r 11 1.05 X to-s7 1 OS 1Q-t6 10-3 V = 7 = to-n = . X erg ~ e 

corresponds to this lifetime. 
For nuclei with a mass of --10-22 g, the average velocity of thermal 

motion at room temperature is about 300 m/s. At such a velocity, 
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the Doppler breadth of a line with 1i(tl = 100 ke·v has the value 

2D = 2 X ~ ·~ ~~: X 105 "'= 2 x 1 0'"' eV 

[see Eq. (6.19)1. 
A comparison of the obtained values of r and 2D leads to the 

conclusion that the breadth of the spectral lines emitted by nuclei 
at room temperatme is mainly determined by the Doppler breadth 
and is about 0.2 eV. For a shift of the emission and absorption lines 
of 2R, we obtained a value of,....,O:l eV. Thus, fl'liNI {m~ {~omparatively 

Emission 
Line 

Eo 
Fig. 6.6 Fig. 6.7 

soft gamma-rays with an energy of iOO keV, the shift of the emission 
and absorption lines is of the same order as the breadth of a spectral 
line. With an increase in the energy of a pbotoD, R grows more 
rapidly [in proportion to ffi 2 , see expression. (6.18}] than .D [which 
is proportional to ffi, see expression (6.19)]. ~Figure 6.6 contains 
a typical picture for gamma-photons sbowii1g the m1Jtual arnmgement 
of the emission and absorption lines. It is quite obvious that only 
a small part of the emitted photons (their re]ativ~ number is deter­
mined by the corresponding ordinates of the emission line) can experi­
ence resonance absorption, the probability of tl11* absorption being 
low (this probability is determined by the ordinates of the absorp­
tion line). 

Prior to 1958, investigators succeeded in observing the resonance 
absorption of gamma-rays with the aid of devices in which a source 
of gamma-radiation travelled with the velocity v toward the absorb­
ing substance. This was achieved by placing a radioactive substance 
on the rim of a rotating disk (Fig. 6.7). The disk was inside a massive 
lead shield absorbing gamma-rays. The irrndiated beam emerged 
through a narrow channel and impinged on the absorbing substance. 
A counter of gamma-quanta insta1led after the absorber registered 
the intensity of radiation that had passed through the latter. Owing 
to the Doppler effect, the frequeney of the gamma-rays emitted hy 
the source increased by l1w = ffi (v/c), where 1J is the velocity of the 
source relative to the absorber. By properly choosing the speed of 
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rotation of the disk, it was possible to observe resonance absorption. 
The latter was detected according to the reduction in the intensity 
of the gamma-rays measured by the counter. 

In 1958, the German physicist Rudolf Mossbauer (born 1929) 
studied the nuclear resonance absorption of gamma-rays from lr191 

(the iridium isotope with a mass number of 191, see Sec. 10.1). 
The energ-y llEnm of the relevant transition is 129 ke V, the recoil 
energy is 0.05 oV, and the Doppler broadening at room temperature 
is about 0.1 eV. Thus, the emission and absorption lines partly 
overlap, and resonance absorption could be observed. To reduce the 
absorption, Mosshauer deeided to cool the source and the absorber, 
thus expecting to reduce the Doppler breadth and, consequently, 
the overlapping of the lines. Instead of the expected reduction, 
however, he det<.,cted amplification of the resonance absorption. 

Mossbauer devised an arrangement in which the source and the 
absorber were placed inside a vertical tube cooled by liquid helium. 
The source was fastened to the end of a long rod performing recipro­
cating motion. Vvorking with this arrangement, Miissbauer observed 
that the .resonance absorption vanished at linear velocities of the 
source of tho order of several centimetres a second. The results of 
the experiment indicated that in cooled Ir191 the gamma-ray absorp­
tion and emission lines coincide and have a very small breadth equal 
to the natural breadth r. This phenomenon of the elastic (i.e. not 
attended by a change in tho internal energy of a body) emission or 
absorption of gamma--quanta was called the MOs8bauer effect. 

The .Mossbauer effeet, was soon discovered in Fe57 and for a number 
of other substances. The nucleus of Fe57 is remarkable in the respect 
that the effect is observed for it at temperatures up to 1000 °C, 
so that uo cooling is· needed. In addition, Fe57 is distinguished by 
the exceedingly small natural breadth of a line. 

Let us now uncover the physical essence of the Mossbauer effect. 
When a nucleus at a crysLal point emits a gamma-quantum, the 
transition ene1•gy AEnm in principle may be distributed between 
the gamma-quantum, thu nucleus that emitted the quantum, the 
solid as a whole, and, finally, between the oscillations of the lattice. 
In the latter case, phonons will be produced in addition to the gamma­
quantum. Let us analyse th0se possibilities. The energy needed for 
a nucleus to leave its site in a lattice is at least about 10 eV, whereas 
the recoil energy R does not exceed several tenths of an electron­
volt. Therefore, an atom whose nucleus has emitted a gamma-quan­
tum cannot change its position in the lattice. The recoil energy which 
a solid body can receive as a whole is exceedingly small, so that it 
may be disregarded [this energy can be assessed by substituting 
the mass of a horly for the mass of a nucleus in Eq. (6.18)]. Thus, 
the transition e:aergy can be distributed only between the gamma­

. quantum and phouons. A Mossbauer transition occurs if the vibra-
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tional state of the lattice does not change, and the gamma-quantum 
receives the entire energy of transition. 

Thus, when a nucleus at a crystal lattice point emits or absorbs 
a gamma-quantum, two processes may occm: (1) a change in the 
vibrational state of the 1attic(J, i.e. phonon excitation, and (2} 
the transition of the:momentum of the gamma-quantum to the lattice 
as a whole without a change in its vibrational state, i.e. the elastic 

1 

I 
Absorption 
spectrum 

Fig. 6.8 

emission and absorption of -'l 

gamma-quantum. Each of these 
processes has a definite proba­
bility whose value depends on 
the particular properties of th~ 
crystal, the energy of the gam­
ma-quantum, and tho temper­
ature; The relative probabil­
ity of the elastic processes 
grows with lowering of tho 
temperature. 

It is easy to show that in 
inelastic processes, phonons 
with an energy of the order of 
hwm = k8 should be mainly 
excited (wm is the maximum 
frequency of oscillations of the e lattice, and E> is the Debye 
temperature; see Sec. 6A). The 
wavelength Amin ~ 2d corre­
sponds to oscillation of th•3 fre-
quency (llm [see the paragraph 

following Eq. (G.8)J. J.n this case, neighbouring atoms move in eounter­
phase, which can occur when the atom emitting a gamma-quantum 
receives the entire recoil energy R and then collides with the neigh­
bouring atom. To produce longer wavelengths (lower frequencies), 
several atoms must be brought into motion simultaneously, which 
has a low probability. Thus, the probability of producing oscillations 
of the lattice will be great provided that the recoil energy R received 
in radio"ctive decay by an individual atom is equal to or greater 
than the energy of a. phonon of the maximum frequency: R-;;dicum '=k0. 

For lr191, the recoil energy R is of the order of fr€)_ Consequently, 
to obtain a measurable resonance absorption, it is necessary to 
reduce the probability of exciting oscillations of the lattice. ·For 
Fe"7, the recoil energy R «:: k8. Owing to this circumstance, already 
at room temperature, an appreciable fraction of the nuclear transi­
tions occurs elastically. 

Figure 6.8 shows ty})ical emission and absorption spectra of gamma­
quanta (E is the energy of a gamma··quantum, J is the intensity, 
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and R is the average recoil enel·gy). The two spectra contain prac­
tically coinciding very narrow lines corresponding to elastic processes. 
These lines are on the background of broad shifted ones due to proces­
ses attended by a change in the vibrational state of the lattice. 
The background becomes weaker with lowering of the temperature, 
and the fraction of the elastic processes grows, but it never reaches 
unity. 

The Mossbauer effect found numerous applications. In nuclear 
physics, it is used to find the lifetime of excited states of nuclei 
(through I'), and also to determine the spin, magnetic moment, and 
electric quadrupole moment of nuclei. In solid state physies, the 
Mossbauer effect is used to study the dynamics of a crystal lattice 
and to study the intrinsic electric and magnetic fields in crystals. 

Owing to the extremely small breadth of the Mossbauer lines, the 
method of a moving source makes it possible to measure the energy 
of gamma-quanta with an enormous relative accuracy (up to the 
15-th significant digit). The U.S. physicists R. Pound and G. Rebka, 
Jr. took advantage of this circumstance to detect the gravitational 
red shift of the frequency of photons predicted by the general theory 
of relativity*. It follows from the general theory of relativity that 
the frequency of a photon should change with a change in the gravi­
tational potential. According to the equivalence principle (see Sec. 6.3 
of Vol. I, p. 181), a photon has a gravitational mass equal to its 
inert mass mr ::-= hw/c2 [see Eq. (8.54) of Vol. I, p. 254]. When a pho­
ton travels the path l in a direction opposite to that of the force mrg 
in a homogeneous gravitational field eharacterized by the strength 
g, the energy of ·the photon must diminish by mrgl = hrogl/c2. 
Consequently, the energy of the photon will become equal to 

/iro = liro - -- = /i(J) 1. -- --, hwgl ( gl ) 
c2 c2 

Hence, 

where ~cp is the change in the gravitational potential. The formula 
we have obtained also holds for a photon travelling in an inhomoge-

neous gravitational field (in thi~ case ~<r = J g1dl). 

The light reaching the Earth from stars overcomes their strong 
attracting field. Near the Earth, on the other hand, it experiences 
the action of only a very weak accelerating field. Consequently, all 
the spectral lines of stars must be slightly shifted toward the red 
end of the spectrum. Such a shift, called the gravitational red shift, 
was confirmed qualitatively by astronomical observations. 

• We mentioned these experiments in Sec. 8.i0 of Vol. I, p. 248. 
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Pound and Rebka undertook an attempt to detect this phenomenon 
in the conditions of the Earth. They put a source of gamma-radiation 

Sovrce (Fe57) and an absorber in a high tower at a· dis-
.-:---__..........,..__..- tance of 21 metres apart (Fig. 6.9). The relative 

"' change in the energy of a gamma-photon when it 
covers this distance is only 

21m 

~- ~w = gr __ 9.81x21 ~ 2 x 10_ 1a 
8 - w cZ - 9 X 1()16 , 

This change* gives rise to a relative shift in the 
absorption and emission lines and 'should mani­
fest itself in a slight weakening of resonance 
absorption. Notwithstanding the extreme small­
ness of the effect (the shift was about 10-2 of the 

---::::+- breadth of a line), Pound and Rebka succeeded 
Absorber in detecting and measuring it with sufficient ac­

Fig. 6.9 
curacy. The result they obtained was 0. 99 ± 0.05 
of what was predicted by theory. Thus, they gave 
a convincing proof of the existence of a gravita­

tional shift in the frequency of photons in the conditions of a 
laboratory on the Earth. 

• If the source is placed on top and the receiver below it, the energy of 
a photon grows, so that a violet frequency shift occurs. 



CHAPTER 7 THE BAND THEORY 
OF SOLIDS 

7.1. The Quantum Theory of Free Electrons 
in a Metal 

In Sec. 11.2 of Vol. II, p. 230 et seq., we set out the elementary 
classical theory of free electrons in a metal. Now let us acquaint 
ourselves with the fundamentals of the quantum theory. 

According to the free-electron model, the valence electrons of the 
atoms of a metal can almost freely travel within the confines of a spec­
imen. It is exactly the valence electrons that give rise to the electri­
cal conduction of metals, and this is why they are called conduction 
electrons. 

Let us consider a spec.imen of a metal which for simplicity we 
shall consider to have the shape of a cube with the side L. Assume 
that the conduction electrons travel absolutely freely within the 
confines of the specimen. Assuming in Eq. (4.12) that U = 0, we 
get the Schrodinger equation for ~ree electron 

li" 
- 2m V21p=ElJ> (7.1) 

(m is the mass of an electron). 
It is a simple matter to verify by substitution that the solution 

of Eq. (7.1) has the form 

(7.2) 

where k = p/n is the wave vector of an electron associated with 
the energy by the relation 

pi li'k2 
E=-=-

2m 2m (7.3) 

The condition of normalization of the psi-function will be written 
as follows (integration is performed over the volume V of the speci­
men equal to £3): 

)'¢*'~ dV = C*C) dV = C*CLa = 1 

Assuming C to be real, we get the value 1/£3/2 for it. Substitution 
in Eq. (7.2) yields 

f . 
'"=--e' kr 't' £312 (7.4) 
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The psi-function must satisfy the boundary conditions consisting 
in the requirement that it be periodic with respect to x, y, z with 
the pe~. We can see that function (7.4) will satisfy these condi­
tions at values of the wave vect,or components equal to 

(7.5) 

where n1 , n~, and n 3 are integers taking on the values 0, ±1, +2, 
etc. independent!)' of one another. Indeed, introduction of the values 
(7.5) into Eq. (7.4) yields 

'i' = £;,2 exp ( i ~ (n 1x + n2y + n3z)] 

Substitution of x + L for x andy + L for y, etc. leaves the function 
unchanged (only a multiplier equal to 1 appears). 

Thus, the values of the wave vector are quantized. Accordingly, 
the energy of a conduction electron in a metal is quantized too. 
Introduction of the values (7.5) into Eq. (7.3) leads to the following 
expresSion for the energy: 

(7.6) 

The state of a conduction electron is determined by the value of 
the wave vector k (i.e. by the values of kx, ky, kz) and by the spin 
quantum number m8 = + ; . Hence, the state can be set by th~four 
quantu~umbers n~> n2 , n3 , m.. The energy of an electron is 
determined by the sum of the squares of the quantum numbers n1• 

Table 7.1 

nl 112 n3 ms 

t 0 0 +! -2 

0 1 0 ~ 2 

0 0 1 +! -2 

-1 0 0 +! -2 

0 -1 0 +! -2 

0 0 -1 +! -z 
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Several different combinations of the numbers n 1 (except for the 
case n1 = n2 = n 3 = 0) correspond to the same sum of the squares. 
Consequently, the energy levels are degenerate. The level E 0 (nl 

= n 2 = n 3 = 0) has a degree of degeneracy equal to two ( m8 = ±-z). 
The next level E 1 is realized at 12 different combinations of the quan­
tum numbers (see Table 7.1 L the level E 2-at 24 combinations, etc. 
Thus, a growth in the energy is attended by an increase in the num­
ber of different states corresponding to a given value of E. 

Let us introduce an imaginary space along whose axes we shall 
lay off the values of the quantum numbers n1, n2 , n3 • In this space, 
a point corresponds to each pair of states (differing in the values 
of m.). A surface of equal energy values has the shape of a sphere of 
radius n* = V n~ + n! + n~. The number of states ve whose energy 
does not exceed the value E = (li2/2m) (2n/L)2n*2 [see Eq. (7 .6)1 
equals the double number of points contained within a sphere of 
radius n*. Since the points are arranged with a density equal to 
unity, VE is determined by the double volume of th~ sphere: 

4 8 . 
v = 2 X - nn*3 =- J1 (n2 + n2 ...L n2)3'2 

E 3 3 1 ~~ 3 (7.7) 

Deleting the sum of the squares of the numbers n1 from Eqs. (7.6) 
and (7. 7), we get 

=~ ( 2m_)3/2 (~)3 E3/2=~ V (2m)3/B E3/Z (7.8} 
vE 3 J1 n2 2n 3 n (2nn)3 

(V is the volume of the metal specimen). The formula we have ob­
tained determines the number of states whose energy does not exceed , 
the value E. - --

It follows from ·Eq. (7 .8) that 

d - 4 V (2m)3i2 Elf2 dE. 
vE- n (2nn)a 

Here dvE is the number of states with an energy within the interval 
from E to E + dE. Consequently, the density of the .states g (E) = 
= dv/dE, i.e. the number of states per unit interv~Lof energy, is 

g(E)=4rtV (2m)3 12 E 1/Z (7.9) 
(2nn)3 

Let the number of free electrons in unit volu111e of the metal be n. 
Hence, the metal specimen will contain nV free electrons. Owing 
to the Pauli principle, at absolute zero there will be one of these 
electrons in each state at the lowest energy levels. Therefore, all the\ 
states with an energy E less than a certain value EF (0) will be 
filled with electrons, whereas the states with E > EF (0) will be. 
vacant. The energy EF (0) is known as the Fermi level at absolute 
zero. We shall show in the following section that the Fermi level 
plays the part of the parameter EF in the distribution of the elec-
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trons by states with different energies. This parameter depends 
slightly on the temperature. The quantity EF (0) is the value of the 
parameter EF at T = 0 K. 

An isoenergetic surface* in k-space (or, which is the same, in 
p-space; p = nk) corresponding to the value of the energy equal to 
EF is called a Fermi surface. For free electrons, this surface is de-
scribed by the equation · 

p2 fi2k2 

2m = ---zm- = Ep 

{see Eq. (7.3)1 and, consequently, has the form of a sphere. At abso­
lute zero of temperatures, the Fermi surface separates states filled 
with electrons from the unfilled states. 

The value of E F (0) can be found by assuming in Eq. (7 .8) that 
vE = nV: 

whence 

8 (2m)312 
nV= 3 nv (2nli)3 [Ep(0))3/2 

1i2 
EF (0) =- (3n2n)2/3 

2m 
(7.10) 

Let us assess the value of EF (0). The concentration of conduction 
electrons in metals ranges from 1022 to 1023 em -a. Taking the average 
value of 5 X 1022 em -a for n, we get 

Ep (0) = (LOS x !0- 27 )2 (3 X 3 142 X 5 X 1022) 213 = 8 X 1Q-tz erg= 5 eV 
-' 2 X 0.91 X 10-27 • 

Let us find the average energy of the electrons at absolute zero. 
The total energy of the electrons filling states with energies from E 
.to E + dE is determined by the expression 

E dv E = E g (E) dE 

The total energy of all the conduction electrons is 
EI<.(O) 

J E d-..·E = .\ Eg (E) dE 
0 

Dividing this energy by the total number of electrons equal to 
j g (E) dE, we get the average energy of one electron: 

EF(O) 

S Eg (E) dE 

(E) = __ E,.:;~:..,.·< 0::7) __ _ 

~ g (E) dE 
0 

• I.e., a surface of constant energy 
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Introduction of Eq. (7.9) for g (E) yields 
EF(O) 

r E3/2 dE 
J 3 

(E)= EF(O) = 5 EF (0) 
.\ El/2 dE 
0 
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(7.11) 

We obtained a value of the order of 5 eV for EF (0). Consequently, 
the average energy of the conduction electrons at absolute zero is 
about 3 eV. This is a tremendous value. To impart such an energy 
to a cla~sical electron gas, it 
must be heated to a tempera- g(EJ 1 

ture of about 25 000 kelvins. 
Now we can explain why an 

electron gas contributes very 
little to the heat capacity of 
metals. The average thermal 
energy equal in its order of 
magnitude to kT is 0.025 eV 
at room temperature. Such an 
energy can excite only elec­
trons at the highest levels 
adjoining the Fermi level. The 

Fig. 7.1 

main body of electrons at the deeper levels will retain their previous 
states and absorb no energy in heating. Thus, only an insignificant 
portion of the conduction electrons participate in the process of heating 
of a metal, and this is exactly what explains the low heat capacity 
of the electron gas in metals. 

Figure 7.1 shows a ,graph of function (7. 9). The hatched area gives 
the number of states f1lled with electrons at absolute zero. Heating 
of a metal is attended by the transition of electrons from levels 
adjoining the Fermi level to ones above Ep (0). As a result, the sharp 
edge of the hatched figure will be blurred. The curve of filling of the 
levels by electrons will acquire the form in this region shown by 
the dash line. The area under this curve remains the same as it was 
at. absolute zero (the area equals n V). The blurred region has a width 
of the order of kT. Hence, the fraction of the electrons participating 
in the process of heating of the metal is approximately T/Tp, where 

TF = E~(O) (7.12) 

is a quantity called the Fermi temperature. As a result, the heat 
capacity of the electrons will be 

T 
Cei = Cclass TF 

At room temperature, C el is about one-hundredth of the classical 
value (T ~ 300 K, T F ~ 25 000 K). 
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7.2. The Fermi-Dirac Distribution 

At absolute zero, there is one electron in each of the states whose 
energy does not exceed Ep (0); there are no electrons in states with 
E > EF (0). Consequently, the function of the distribution of elec­
trons by states with different energies has the form shown in Fig. 7.2 
for absolute zero. Let us fmd the distribution function for a tempera­
ture other than absolute zero. 

Following C. Kittel*, let us consider inelastic collisions of an 
equilibrium electron gas with an impurity atom implanted into 

the crystal lattice of a metal. Assume 
f(~~ that the impurity atom can only be in 

two states whose energy we shall take 
equal to 0 and e. 

'--------=-":-~ .. ~ Of the multitude of collision process-
0 E,o.(O) E es, we shall consider the one as a result 

Fig. 7.2 of which an eleetron passes from state k 
with the energy E to state k' with the 
energy E + e. The impurity atom here 

passes from the level with the energy e to the level with an energy equal 
to zero. The pro~a · 'ty Pkk' of the transition k (E)--+- k' (E + e) 
is pro.portional to• 1) the PF~ability I (E). o.f the state k (E) being 
occupied by an e .ron, ;(2)1 the probabll1ty [1 - f (E + e)] of 
the state k' (E + e) being~free, and !~J the probability p (e) of 
the impurity atom being in the state with the energy e. Thus, 

Pkk'ocf(E)[1--I(E+e)]p(e) (7.13) 

The probability Pk'k of the reverse process is proportional to the 
expression 

Pk'k oc f (E +e) (1- I (E)J p (0) (7.14) 

where p (0) is the probability of the impurity atom being in the 
state with the energy equal to zero. . 

The coefficient of proportionality in expressions (7 .13) and (7 .14) 
is the same owing to the detailed bahincing principle**. 

In the equilibrium state, the probabilities of the transitions 
k--+- k' and k' --+- k must be the same. Hence, 

t (E) [1 -I (E + e)J p (e) =I (E + e) [1 - t (E)J p (0) 
Thus, 

f(E+e) 1-f(E) p(e) _ ( e \ 
1- f (E + e)· f (E); = p (0) = exp - W 1 

(7.15) 

* See C. Kittel. Elementary Solid State Physics. New York, Wiley (1962). 
** The principle of detailed balancing is the name given. to the statement 

that in a state of statistical equilibrium the number of transitions of a system 
from state 1 to state 2 equals the number of reverse transitions from state 2 to 
state 1. 



The Band Theory of Solids 183 

(we have taken into account that the probabilities of the impurity 
atom being at the levels 0 and e obey the Boltzmann distribution 
law). 

Functional equation (7.15) must be obeyed at any temperature T. 
This will occur if we assume that 

1-f(E) (E-tJ.) 
/(E) =exp ~ (7.16) 

where f.l. is a quantity not depending on E. Accordingly, 

f(E+e) _ [ (E+e)-!11 
1- f (E + e) - exp - kT (7 .17) 

The product of expressions (7 .16) and (7 .17) for any temperature is 
exp ( -e/kT). 

Having solved Eq. (7.16) with respect to f (E), we shall obtain 
the following expression for the functiQn of the distribution of the 
electrons by states with different energies: 

f (E)= exp l(E - 11!)/kT] + 1 (7 ·18) 

This expression is called the Fermi-Dirac distribution function. The 
parameter f.1. is known as the chemical potential. 

In accordance with the meaning of function (7 .18), the quantity 
I (E;) is the average number (n;) of electrons in the state with the 
energy E 1• Therefore, Eq. (7 .18) can be written in the form 

1 
(n,)= exp[(Et-ft)/kTJ+1 <7·19) 

[compare with Eq. (6.16)]. Unlike Eq. (6.16), the parameter f.1. 
in distribution (7.19) has positive values (in the given case this does 
not lead to negative values of the numbers {n; )). 

Distribution (7 .19) underlies the Fermi-Dirac statistics. Particles 
obeying this statistics are called fermions. They include all parti­
cles with a half-integral spin. 

A characteristic of fermions is that they nev~r occupy st~ in 
which there is a particle already. Thus, fermions are "indiy_idt!alists". 
We remind our reader that bosons, on the contrary, are "collec-
tivi§1§" (see the end of Sec. 6.5). -- -

The parameter f.l. having the dimension of energy is frequently 
designated by the symbol EF and is called the Ferro! level or the 
Fermi energy. When this symbol is used, function (7.18) has the 
form-

I (E)= exp [(E-~p)/kTJ+1 (7.20) 
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Let us st:u.dy the properties of function (7.20). For absolute zero, 
we ha,ve 

I (E) = 1 if E < E., 
and; 

I (E) = 0 if E > E• 

I Thu, at 0 K, the Fermi level fu coincides with the !!_Qper Jevel 
1 E., (0) filled by electrons (see the preceding section). 

Regardless of the value of the temperature, when E = Ep, the 
function I (E) equals 1/2. Consequently, the Fermi level coincides 
with the energy level whose probability of being filled is one-half. 

The value of EF can be found from the condition that the total 
number of electrons filling the levels must equal the number nV 
of free electrons in a crystal (n is the density of the electrons and 
Vis the volume of the crystal). The number of states falling within 
the interval of energies dE is g (E) dE, where g (E) is the density 
of the states. The average number of electrons in these states with 
thermal equilibrium prevailing is determined by the expression 
I (E) g (E) dE. The integral of this expression gives the total number 
of free electrons in a crystal 

00 J j(E)g(E)dE= nV (7 .21) 
0 

This expression is in essence the condition of normalization of the 
function I (E). 

Introduction of Eqs. (7.9) and (7.20) ibto Eq. (7.21) yields 

(2m)3/2 )"" E t/2 dE 
4nV---- · =nV 

(2n~)a exp ((E- Ep)/kTJ + 1 
(7.22) 

0 

This relation makes it possible in principle to find Ep as a function 
of T and n. The integral in Eq. (7 .22) cannot be taken. Provided 
that kT ~ Ep, an approximate value of the integral can be found. 
As a result, the following expression for the Fermi level is obtained: 

[ nll ( kT ) 2] Ep~Ep(O) t-rr EF<o> (7.23) 

[we remind our reader that EF (0) depends on n; see Eq. (7.10)1. 
It follows from expression (7 .23) that at low temperatures (and 

these are the only ones for which this expression is true), the temper­
ature dependence of the Fermi level, although it does exist, is very 
slight. We can therefore often assume that EF = EF (0). To under­
stand, for example, thermoelectric phenomena (see Sec. 9.4), how­
ever, the dependence of Ep on T is of a fundamental significance. 
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For temperatures other than absolute zero, the graph of function 
(7 .20) has the form shown in Fig. 7 .3. When the energies are high 
(i.e. when E- EF ~ kT, which is observed in the region of the 
"tail" of the distribution curve), we may disregard unity in the denom­
inator of the function. Hence, the distribution of the electrons by 
states with different energies acquires the form 

f (E)=exp { -- E-;;/F) =const·exp {- k~) (7.24) 

i.e. transforms into the Boltzmann distribution function. 
We must note that an appreciable difference of the curve in 

Fig. 7.3 from the graph depicted in Fig. 7.2 is observed only in 
the region of the order of kT. The 
higher the temperature, the more f(Df ~ 
gentle is the slope of the descending 1 !------
portion of the curve. ~ 

The behaviour of an electron gas 1/z --------
depends to a great extent on the re- _ - ... 
lation between the temperature of 0 & t 
the crystal and the Fermi tempera­
ture equal to E plk. Two extreme 
cases are distinguished: 

Fig. 7.3 

1. kT « EF. ln this case, the electron gas is called degenerate. 
2. kT ~ Ey. In this case, the electron gas is called non-de­

generate. 
We established in the preceding section that the Fermi temperature 

for metals is several tens of thousands of kelvins. Therefore even 
at a temperature close to the melting point of a metal (about 103 K), 
the electron gas in ·it is degenerate. In semiconductors, the density 
of the free electrons is much smaller than in metals. Accordingly, 
Ey is small [Ey is approximately propol'tional to n213 ; see expres­
sions (7 .23) and (7 .1 0)1. Hence already at room temperature, the 
electron gas in many semiconductors is non-degenerate and obeys 
c) assical statistics. 

7 .3. Energy Bands in Crystals 

We established in Sec. 7.1 that in the approximation of free elee­
trons, the energy of the valence electrons in a crystal changes 
quasicontinuously. This signifies that the spectrum of the allowed 
values of the energy consists of a multitude of closely arranged dis­
crete levels. Actually, the valence electrons in a crystal do not have 
entirely free motion--the periodic field of the lattice acts on them. 
The result of this circumstance is that the spectrum of possible 
values of the energy of the valence electrons breaks up into a number 
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of allowed and forbidden bands (Fig. 7 .4). The energy changes quasi­
continuously withinthe limits of the allowed bands. The energy 
values belonging to the forbidden bands cannot be realized. 

To understand the origin of the bands, let us consider an imagi­
nary process of the combination of atoms into a crystal. Suppose we 
originally have N isolated atoms of a substance. As long as the atoms 
are isolated from one another, they have completely coinciding 
schemes of their energy levels. Electrons f1ll the levels in each atom 
independently of how similar levels are fi.lled in the other atoms. As 

E 

Fig. 7.4 

t;>---'----
r1 r 1 

Fig. 7.5 

r 

the atoms approach one angther, a constantly increasing interaction 
appears between them that results in a change in the position of the 

/levels. Instead of a single level id_entical fot· all the N atoms, there 
appear N very close, but not coinciding, levels. Thus, each level of 
an isolated atom breaks up in a crystal into N densely arranged 
levels forming a band. 

The amount of splitting is not the same for different levels. The 
levels filled by the outer or valence electrons in an atom are disturbed 
to a greater extent. The levels filled by the inner electrons are dis­
turbed only slightly. Figure 7.5 shows the splitting of the levels as 
a function of the distance r between the atoms. Examination of the 
diagram reveals that the splitting of the levels occupied by the 
inner electrons is very small in a crystal. Only the levels occupied 
by the valence electrons split noticeably. The higher levels not 
occupied by electrons in the ground state of an atom are also sub­
jected to similar splitting. 

Depending on the particular properties of the atoms, the equilib­
rium state between neighbouring atoms in a crystal may be either 
of type r1 or of type r2 (see Fig. 7 .5). With a distance of type r1 
between the allowed bands set up from adjacent levels of an atom, 
there is a forbidden band. With a distance of type r2 , the adjacent 
bands overlap. The number of levels in such a merged band equals 
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the sum of the numbers of levels into which both levels of the atom 
split up. 

The band structure of the energy levels is obtained directly from 
the solution of the Schrodinger equatiQQ for an electron moving 
in a periodic force field. The latter is produced by the crystal lattice. 
The Schrodinger equation taking the lattice field into consideration 
has the form 

,, 2 

- 2m vz'i'+ U'ljl == E¢ 

where U is a function having the properties 

U (x + a, y, z) = U (x, y, z) 

U (x, y + b, z) = U (x, y, z) 

U (x, y, z + c) = U (x, y, z) 

(a, b, c are the lattice constants along the axes x, y, z). 
The American physicist Felix Bloch (born 1905) proved that the 

solution of the Schrodinger equation with a periodic potential has 
the form 

lJ.'k = uk (r) eikr (7.25) 

where uk (r) is a function having the periodicity of the potential, 
i.e. the periodicity of the lattice. The solutions (7.25) are called 
Bloch functions. They differ from Eq. (7.2) in the presence of the 
periodic multiplier uk (r). 

In the approximation of free electrons, the dependence of the energy 
of an electron on the wave number (the magnitude of the wave vector) 
is described by the graph depicted in Fig. 7.6 [see Eq. (7.3)1. The 
values of the energy form a quasicontinuous sequence. Consequently, 
the graph E (k) consists of discrete points. These points are so clense, 
however, that they visually merge into a continuous curve. 

When the field is periodic, the dependence of E on k. has the form 
shown in Fig. 7. 7. A glance at the figure shows that the bands of quasi­
continuously changing energy (allowed bands) depicted by solid lines 
alternate with the forbidden hands. Each allowed band consists 
Qf closely arranged discrete levels whose number equals the number of 
atoms in the crystals specimen. 

The region of k-space in which the energy of an electron in a crys­
tal changes quasicontinuously is called a Brillouin zone. There is 
.an interruption in the energy at the boundaries of the zones. Figure 7. 7 
depicts the Brillouin zones for a one-dimensional crystal. For three­
dimensional crystals, the boundaries of the Brillouin zones are closed 
polyhedral surfaces contained one within another. . 

W8remind our reader that a Fermi surfaec is defined as an Isocner­
getic surface ink-space (or in p-space) corresponding to a value of 
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E equal toE F (see Sec. 7.1 ). For free electrons, this surface is a sphere. 
The shape of the surface for the conduetion electrons of a metal 
depends on the properties of the crystal lattice and is intricate, 
sometimes being quite odd. The shape of the Fermi surface for anum­
ber of metals has been established experimentally with a high ac• 
curacy 

The Fermi surface is an important characteristic of a metal. Th& 
.shape of this surface determines the nature of motion of the electrons 

k 

Fig. 7.6 

E 

-tria +tria·· k 
2nd zo~ 1st Brilloui~ 1 E 2nd zone 

zone 

Fig. 7.7 

with an energy close to EF· The nature of motion of the electroas, 
in turn, determines the physics of the various phenomena observed 
when a magnetic field acts on a metal. 

Thus, the spectrum of the possible values of the energy of the val­
ence electrons in a crystal is divided into a number of allowed and 
forbidden bands. The width of the bands does not depend on th& 
dimensions of the crystal. Hence, the greater the number of atoms 
in a cryst.lll, the closer are the levels in a band. The width of the 
allowed bands has a value of the order of several electron-volts. 
Consequently, if a crystal contains ·J023 atoms, then the distance 
between adjacent levels in a hand is about 10-23 eV. 

Each energy level eorresponds to a definite value of k. Since 
the quantum number m, can take on two values, at 11ny allowed level 
there can be two electrons having opposite spins. 

The existence of the energy bands makes it possible to explain 
the existence of metals, semiconductors, and dielectrics from a single 
viewpoint. 

The allowed band appearing from the level at which the valence 
electrons are in the ground state of an atom is called the valenc~ 
band. At absolute zero, the valence electrons fill the lower levels of 
the valence band in pairs. The higher allowed bands will be free of 
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electrons. The three cases shown in Fig. 7.8 are possible depending 
on the degree of filling of the valence band by electrons and on the 
width of the forbidden band. In case a, the electrons fill the valence 
band only partly. It is therefore sufficient to impart t.o the electrons 
at the upper levels a very small energy (of the order of 10-23 to 10-22 eV) 
to transfer them to higher levels. The energy of thermal motion 
{kT) is about 10-4 eV at 1 K. Hence, at temperatures other than abso­
lute zero, some of the electrons are . transferred to higher levels. 

Forbidden band 

(a} metat 

Fig. 7.8 

Free band _ 

I.I.J Forbidden band 
"q 

(c) dielectric 

The additional energy due to the action of an electric field on an 
electron is also sufficient to transfer the electron to higher levels. 
Consequently, the electrons can be accelerated by an electric field 
and acquire an additional velocity in a direction opposite to that 
of the field. Thus, a ·crystal with such an arrangement of its energy 
levels will be a metal. 

Partial filling of the valence band (for a metal it is also called 
the conduction band) is observed when there is only one electron on 
the last occupied level in an atom, or when overlapping of the bands 
occurs (see Fig. 7 .5, the distance r 2). In the first case, N conduction 
electrons fill in pairs only half of the valence band levels. In the 
second case, thenumber of levels in the conduction band will be 
greater than N so that even if the number of conduction electrons 
is 2N, they will not be able to occupy all the levels of the band. 

In cases b and c (see Fig. 7 .8), the levels of the valence band are 
completely occupied by electrons-the band is filled. To increase 
the energy of an electron, it is necessary to impart to it an amount 
of energy not less than the width of the forbidden band /lE. An 
electric fteld (at any rate of a strength such that no electric break­
down of the crystal occurs) is unable to impart such an energy to an 
electron. In these conditions, the electrical properties of a crystal 
are determined by the width of the forbidden band !'lE. If this width 
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is not great (of the order of several tenths of an electron-volt), the 
energy of the thermal motion will be sufficient to transfer part of the 
electrons to the upper free band. These electrons will be in conditions 
similar to those in which the valence electrons in a metal are. The 
free band will be a conduction band for them. Simultaneously, th~ 
transition of the valence band electrons to its freed upper levels will 
become possible. Such a substance is called an electronic semicon· 
ductor. 

If the width of the forbidden band ~E is great (of the order of 
several electron-volts), then thermal motion cannot feed an· appre­
ciable number of electrons into the free band. In this case, the crystal 
is a dielectric. · 

7.4. Dynamics of Electrons in a Crystal Lattice 

The wave number k is associated with the momentum of an electron 
p by the equation p = Ilk; Substituting the wave number for the 
momentum in the uncertainty relation ~p · llx ,..., n, we get an uncer­
tainty relation for k and ;z;: 

(7 .26) 

It follows from this relation that at a strictly definite k, the position 
of an electron in a crystal will be absolutely indeterminate. To be 
in a position to study the dynamics of an electron in a crystal, w& 
must have expressions for its velocity and acceleration at our dis­
posal. We can only speak about the velocity, however, if the electron 
will be at least approximately localized in space. 

Let us assume that l':lk is other than zero. Con~•·•1uently, the elec­
tron will be localized within the region /).;z;'"'"" 1 I l':lk. According 
to the superposition prineiple (see Sec. 4.8), the psi-function of an 
electron can be represented in the form of the sum of plane waves 
of the kind eikr, the values of whose wave numbers are within the 
limits of !:lk. If l':lk is not great, the superposition of the plane waves 
forms a wave packet. The maximum of the resultant wave amplitude 
travels with the group velocity 

dro 
Vgr=dk (7 .27) 

[see Eq. (20.15) of Vol. II. p. 461]. The most probable location of the 
electron coincides with the centre of the wave packet. Consequently, 
Vgr is the velocity of an electron in a crystal. 

Taking advantage of the equation E = nw, we shall substitute 
the energy for the frequency in Eq. (7 .27). As a result, we find that. 

1 dE Vrr--x dk (7.28) 
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Let us see how an electron will behave under the action of the 
external electric field ~ imposed on a crystal. In this case, apart 
from the forces F cost produced by the field of the lattice, the electron 
will experience the force F whose magnitude is e~. During the time 
dt, this force does the work dA = Fvgr dt on the electron. The 
introduction of Eq. (7.28) for Vgr yields 

dA =.!:_ dE dt 
li dk (7.29) 

This work provides an increment of the energy of the electron in 
the crystal: dA = dE. Using dE instead of dA in Eq. (7.29) and 
taking into account that dE = (dE/dk) dk, we arrive at the expres­
sion 

dE dk .!:. dE dt 
dk == li dk 

whence it follows that 
dk F -=-dt /j 

(7.30) 

Time differentiation of Eq. (7 .28) gives the acceleration of the 
electron in the crystal: 

dl.?gr _!_ ..!:.._ ( dE )'= _!_ d2E !!_.k 
dt li dt dk h dk2 dt 

Taking Eq. (7.30) into consideration, we obtain 
dvgr 1 d2E F 
dt==h dk2 h 

Let us write this formula as follows: 

( 11• ) dvgr 
a•E!dk2 --;;;-=F (7.31) 

Inspection of Eq. (7 .31) shows that the acceleration of an electron 
in a crystal is proportional to the external force e~. This result 
is non-trivial because the acceleration should be proportional to 
the sum of the forces e~ and Fcryst, and onl~ the peculiar nature 
of the force Fcryst leads to the fact that with proportionality of the 
acceleration to the sum of the forces e~ and Fcryst it is also propor­
tional to the addend e~. 

Comparing Eq. (7.31) with Newton's second law 

m 3.!!.. = F 
dt 

we arrive at the conclusion that the expression 

* ljl 
m = d2E/dk2 

(7 .32) 
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formally plays the part of the mass with respect to the external 
force F=eo. In this connection, the quantity given by Eq. (7.32) is 
called the effective mass of an electron in a crystal. 

The effective mass m* may differ greatly from the actual mass of 
an electron m, in particular it may take on negative values. 
This is due to the fact that the equation of Newton's second law 
actually has the form 

dv 
m dt= F + Fcryst (7.33) 

where Fcryst is the force due to the action of the lattice field on an 
electron. A comparison of Eq. (7 .33) with 

E the equation 

~, 
l clearly shows that m* may noticeably differ 

from m. Notwithstanding this circumstance, 
it is exactly the value of m* that deter­
mines the nature of the motion of an electron 
in a lattice under the action of the force e~. 
The introduction of the effective mass 

~,~~!~--_.:..--~ makes it possible to determine the nature of 
0 k the motion of an electron under the action 

Fig. 7.9 
of the external field, disengaging ourselves 
from the interaction ,of the electrons~with the 
lattice Ascribing the mass m* to an electron1 

we can study its behaviour under thE. action of the force e't!, cons.ider­
ing the electron to be free. It follows from what has been said above 
that the relations obtained for the approximation of free electrons 
also hold for an electron tra veiling in a periodic field if we replace 
the true mass m in them with the efiecti ve mass m *. · 

In particular, Eq. (7 .3) for a periodic field has the form 

E = _..!!!__~ z 
2m* ' 

{7 .34) 

Indeed, double differentiation with respect to k yields 
d2E !i2 

dk 2 = --m* 
that agrees with the definition of m* [see Eq. (7 .32)]. 

Thus, the action of the lattice on the motion of an electron can 
be taken into account by replacing in the equation of motion includ­
ing only the external force e~ the true mass m with the effective 
mass m*. 

Let us see how the eflettive mass m* depends on the "location" 
of an electron inside the allowed energy band. Near the bottom of 
the band (see points A and A 1 in Fig. 7 .9), the course of the curve 
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E (k) differs only slightly from the course of the curve for free elec­
trons (see Fig. 7.6). Accordingly, m* ~ m. 

At the point of inflection (point B in Fig. 7.9), the quantity 
d2E/dk2 is zero. Consequently, m* becomes infinite. This signifies 
that an external field can exert no action on the motion of an electron 
in a state with the energy EB. 

Near the ceiling of the allowed band (point C in Fig. 7.9), the 
derivative tFE/dk2 < 0 (the quantity dE/dk diminishes with increas­
ing k). Accordingly, the effective masli m* of the electrons occupying 
levels near the ceiling of the band is negative. Actually, this signi­
fies that undel' the joint action of the forces e~ and Fcryst an electron 
in the state with the energy Ec receives an acceleration opposite in 
direction to the external force e~. 



CHAPTER 8 THE ELECTRICAL 
CONDUCTANCE OF METALS 
AND SEl\1ICONDUCTORS 

8.1. The Electrical Conductance of Metals 

The relevant quantum mechanical calculations show that with 
a perfect crystal lattice, the conduction electrons would not exper­
ience anv resistance in their motion, and the electrical condur.tance 
of metal~ would be infinitely great. A crystal lattice is never perfect, 
however. Violations of the strict periodicity of a lattice may be 
due to the presence of impurities or vacancies (i.e. the absence of 
atoms at a point), and also to thermal oscillations of the lattice. 
Scattering of the electrons on the impurity atoms and on phonons 
leads to the appearance of electrical resistance of metals. The purer 
the metal and the lower its temperature, the smaller is this resistance. 

The resistivity of metals can he represented in the form 

P =Pose +Pimp 

where Pose is the resistivity due to thermal oscillations of the J.at­
tice, and PtmP is the resistlvity due to scattering of the electrons on 
the impurity atoms. The addend Pose diminishes with lowering of 
the temperature and vanishes at T = 0 K. The addend PtmP at a 
low concentration of the impurities does not depend on the tempera­
ture and forms the so-called residual resistivity of a metal* (i.e. the 
resistivity which a metal has at 0 K; see Fig. 5.5 of Vol. II, p. 105). 

Assume that a unit volume of a metal contains n free electrons. 
We shall call the average velocity of these electrons the drift velo­
city Vdr· By definition 

(8.1) 

In the absence of an external field, the drift velocity is zero, and 
there is no electric current in the metal. When an external elect ric 
field E is imposed on the metal, the drift velocity becomes other 
than zero-an electric current appears in the met.al. According 
to Ohm's law, the drift velocity is finite and is proportional 
to the force -eE. 

It is known from mechanics that the velocity of steady motion 
is proportional to the external force F applied to a body when in 

• We are speaking of metals that do not pass over into the superconduct.ing 
tate (see the following section). 
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addition to the force F the body experiences the force of resistance 
of the medium proportional to the velocity of the body (an example 
is the falling of a small sphere in a viscous medium). Hence, we 
conclude that in addition to the force -eE, the conduction electrons 
in a metal experience a force of "friction" whose average value is 

F1 = -rvd.r (8.2) 

(r is a proportionality constant). 
The equation of motion for an "average" electron has the form 

* dVdr E m --= -e -rvd dt r (8.3) 

where m* is the effective mass of an electron (see Sec. 7.4). This 
equation allows us to find the steady value of v dr· 

If the external field E is switched off after a steady state sets in, 
the drift velocity begins to diminish, and completely vanishes when 
a state of equilibrium between the electrons and the lattice is achieved. 
Let us find the law of diminishing of the drift velocity after the exter­
nal field is switched off. Assuming in Eq. (8.3) that E = 0, we get 

* dvdr + O m -;re rvdr = 

We are well acquainted with an equation of this kind. Its solution 
has the form 

Vdr(t)=Vdr(O) exp (- ~. t) (8.4) 

where v dr (0) is the value of the drift velocity at the moment when 
the field is switched off. 

Equation (8.4) shows that during the time 
m* 

't=-­
r (8.5) 

the value of the drift velocity drops to 1/e-th of its initial value. 
Thus, the quantity 't' given by Eq. (8.5) is the relaxation time (see 
Sec. 10.3 of Vol. I, p. 270) characterizing the process of the establish­
ment of equilibrium between the electrons and the lattice violated 
by the action of the external field E. 

With a view to Eq. (8.5), formul11 (8.2) can be written as follows: 
m* 

Frr= --Vdr 
T. 

(8.6) 

The steady value of the drift velocity can be found by equating 
to zero the sum of the force -eE and the friction force given by 
Eq. (8.6): 

m• -eE--vdr=O 
't 
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whence 
eE,; 

Vdr=- m* 

We get the stead.Y value of the current density by multiplying the 
value of v dr by lrie charge of an electron -e and the density of the 
electrons n: 

• eE't ( ne~'t 
J=' --- -e)n=-E m* m* 

The proportionality constant between E and j is the conductivity o. 
Hence, 

nell't 
(] = --m* (8. 7) 

In Sec. 11.2 of Vol. II, p. 232, we obtained the following classical 
expression for the conductivity of metals: 

ne~'t' 0=----zm (8.8) 

where T' is the average time of flight of an electron between collisions, 
and m is the conventional (not effective) mass of an electron [sel 
Eq. (11.9) of Vol. II, p. 232,--wellave substituted the average 
time -c' between collisions for l/v in this equation] . 

. A comparison of Eqs. (8. 7)- and (8.8) reveals that the relaxa­
tion time coincides in the order of its magnitude with the average 
time of flight of electrons in a metal between collisions. 

On the basis of physical considerations, it is possible to assess 
the quantities in E.q. (8.7) and thus calculate the conductivity a 
with respect to its order of magnitude. The values obtained by this 
method are in good agreement with experimental data. The fact 
that o varies with the temperature according to the law 1/T also 
agrees with experimental results. We remind our reader th~;~t accord­
ing to the classical theory, a is inversely proportional to T 112 (see 
Sec. 11.2 of Vol. II, p. 234). 

We must note that the calculations which led us to Eq. (8.7) 
are equally suitable both in the classical interpretation of the motion 
of conduction electrons in a metal and in the quantum mechanical 
interpretation. The distinction between these two interpretations· is 
as follows. In the classical treatment, it is assumed that all the elec­
trons are disturbed by the external electric field, and in this connec: 
tion each addend in Eq. (8.1) receives an addition in the direction 
opposite to E. In the quantum mechanical interpretation, it is neces. 
sary to take into account that only the electrons occupying states 
near the Fermi level are disturbed by the field and change their 
velocity. The electrons at lower levels are not disturbed by the field, 
and their contribution to the sum in Eq. (8.1) does not change. Apart 
from the above, in the classical interpretation, the denominator of 
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Eq. (8.7) must contain the conventional mass of an electron m, 
whereas in the quantum mechanical interpretation it must contain 
the effective mass of an electron m* instead of the conventional one. 
This is a manifestation of the general rule noted in Sec. 7.4 according 
to which relations obtained for the approximation of free electrons 
are also correct for electrons travelling in the periodic field of a lat· 
tice if we substitute the effective mass of an electron m* for its true 
mass m. 

8.2. Superconductivity 
At a temperature of the order of several kelvins, the electrical 

resistance of a number of metals and alloys vanishes in a jump-the 
substance passes into a superconducting state (see Sec. 5.4 of Vol. II, 
p. 106). The temperature at which this transition occurs is known as 
the critical or transition temperature and is designated by the sym· 
bol Tc. The highest observed value of Tc is of the order of 20 K. 

Superconductivity can be observed experimentally in two ways: 
1. By connecting a section of a superconductor to a general electric 

circuit. At the moment of transition to the superconducting state, 
the potential difference across the ends of this section vanishes. 

2. By placing a loop of a superconductor into a magnetic field 
perpendicular to it. After the loop has been cooled to below Tc, 
the field is switched off. As a result, a non-attenuating electric 
current is induced in the loop. The current circulates in such a loop 
an unlimitedly long time. The Dutch scientist Heike Kamerlingh 
Onnes who discovered this phenomenon demonstrated this by taking 
a superconducting loop with a current flowing through it from Ley­
den to Cambridge. Xn a number of experiments, no current attenua­
tion in a superconducting loop was observed for about a year. In 
1959, G. Collins reported that he had observed no current attenua­
tion during two and a half years. 

In addition to the absence of electrical resistance, the supercon· 
ducting state is characterized by no magnetic field penetrating into· 
the body of a superconductor. This phenomenon was discovered by 
W. Meissner and R. Ochsenfeld in 1933 and is kn.own as the Meissner 
effect. If a superconducting sample is cooled when placed in a mag· 
netic field, at the moment of transition to the superconducting state 
the field is ejected from the sample, and the magnetic induction in 
the latter vanishes. We can say formally that a superconductor has 
a zero permeability (r-t = 0). Substances with f! < 1 are called dia· 
magnetics. Thus, a superconductor is a perfect diamagnetic. 

A sufficiently strong external magnetic field destroys the supercon· 
ducting state. The value of the magnetic induction at which this 
occurs is called the critical or threshold field and is designated by the 
symbol Be. The value of Be depends on the temperature of a sample. 
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At the transition temperature, Be= 0. With lowering of the temper­
ature, the value of Be grows, tendmg to Be. 0-the value of the criti­
cal field at the zero temperature. An approximate plot of this rela­
tion is shown in Fig. 8.1, 

If we increase the current flowing through a superconductor con­
nected to a conventional circuit, then at a value of the current of lc 
the superconducting state is destroyed. This value of the current is 

Be a 
' 

0 

Fig. 8.1 

called the critical current. The value 
of Ic depends on the temperature. The 
form of this relation is similar to that 
of Be against T (see Fig. 8.1). 

Superconductivity is a phenomenon 
in which quantum mechanical effects 
are detected not on microscopic, but 
on large macroscopic scales*. The 
theory of superconductivity was de­
veloped in 1957 by the American 

'T T physicists John Bardeen, Leon Cooper 
'c and J. Robert Schrieffer. It is called 

briefly the BCS theory (an acronym). 
This lheory is very complicated. We 

are therefore forced to treat it at the level of popular science books 
which apparently will not completely satisfy our exacting readers. 

The clue to superconductivity is that the electrons in a metal, 
apart from Coulomb repulsion, experience a special kind of mutual 
attra.Q!ion which in the superconducting state predominates over 
the _!3)Ulsion. As a result, the conduction electrons combineto fo.fm 
the so-called Cooper pairs. The electrons forming such a pair have 
oppositely directed spins. Consequently, the spin of a pair is zero, 
and it is a bo~on. Bosons are inclined to accumulatE) j_n _the_ grou'nd 
energy sfate, from which it is comparatively dif&cult to transfer them 
to an excited state. Hence, the Cooper pairs, after coming into 
eoordinatecLmotion, stay in this state for an unlimitedly long time. 
It is exactly this coordinated motion that is the superconduction 
current. 

Let us explain the above in greater detail. An electron moving 
in a metal deforms (polarizes) the crystal lattice consisting of posi­
tive ions. As a result of this deformation, the electron is surrounded 
by a "cloud" of a positive charge moving along the lattice together 
with the electron. The electron and the cloud surrounding it are a 
positively charged system which another electron will be attracted 
to. The ionic lattice thus plays the part of an intermediate medium 
whose presence results in attraction between the electrons. 

• Arwther phenotnenon of this kind is the supertluidity of liquid helium II. 
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In the language of quantum mechanics, the attraction between 
electrons is explained as a result of their exchanging quanta of lat­
tice excitation-phonons. An electron moving in a metal violates 
the conditions of lattice vibrations-it produces phonons. The exci­
tation energy is transmitted to another electron that absorbs a phonon. 
Owing to this exchange of phonoris, additional interaction appears 
between the electrons that has the nature of attraction. At low tem­
peratures, this attraction exceeds the Coulomb repulsion in substances 
that are superconductors. 

The interaction due to the exchange of phonons manifests itself 
to the greatest extent in electrons having opposite momenta and 
spins. As a result, two such electrons combine into a Cooper pair. 
This pair must not be imagined as two electrons adhering to each 
other. On the contrary, the distance between the electrons in a pair 

·is quite great and is about 10-4 em, i.e. it is greater by four orders 
of magnitude than the interatomic distances in a crystal. Approxi­
mately 106 Cooper pairs appreciably overlap, i.e. occupy a common 
volume. 

Not all conduction electrons combine into Cooper pairs. At a tem­
perature T other than absolute zero, there is a probability of a pair 
being destroyed. Consequently, in addition to the pairs, there are 
always "normal" electrons moving in a usual way through a crystal. 
The closer T is to T0 , the greater is the fraction of normal electrons, 
which becomes equal to unity when T = T 0 • 

The formation of Cooper pairs leads to reconstruction of the energy 
spectrum of a metal. To excite an electron system in the superconduct­
ing state, it is necessary to dissociate at least one pair. This needs 
an energy equal to the binding energy Eb of the pair. This energy is 
the minimum amount of energy that the system of electrons in a 
superconductor can pick up. Hence, the energy spectrum of the elec­
trons in the superconducting state has a gap whose width is Eb in 
the region of the Fermi level. The values of the energy belonging to 
this gap are forbidden. The existence of the gap was proved experi­
mentally. 

Thus, the excited state of an electron system in the superconducting 
state is separated from the ground state by an energy gap of width Eb. 
Therefore, quantum transitions of this system will not always be 
possible. At low velocities of its motion (corresponding to a current 
less than / 0 ), the electron system will not be excited, and this is 
exactly what signifies motion without friction, i.e. without electrical 
resistance. 

The width of the energy gap Eb diminishes with increasing tem­
perature and vanishes at the transition temperature T0 • Accordingly, 
all the Cooper pairs dissociate, and the substance passes over to its 
normal (non-superconducting) state. 
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It follows from the theory of superconductivity that the magnetic 
Dux <1> associated with a superconducting loop (or cylinder) in which 
a current is circulating must be an integral multiple of the quantity 
2n1ilq, where q is the charge of a current carrier: 

The quantity 

<D=n~ 
q 

is a quantum of magnetic ftux. 

(8.9) 

The quantization of the magnetic flux was detected experimentally 
in 1961 by B. Deaver and W. Fairbank, and independently of them 
by R. Doll and M. Niibauer. In the experiments run by Deaver and 
Fairbank, the sample was a belt of tin applied onto a copper wire 
about 10-3 em in diameter. The wire played the part of a framework 
and did not pass over to the superconducting state. The measured 
values of the magnetic flux in these experiments, a.s in the oues con­
ducted by Doll and Niihauer, were found to be integral multiples of 
quantity (8.9) in which the double charge of an electron must be 
substituted for q (q = -2e). This is an additional confirmation of 
the correctness of the BCS theory according to which the Cooper 
pairs having a charge of -2e are the current carriers in a supercon­
ductor. 

8.3. Semiconductors 

Semiconductors rre crystalline substances in which the valence 
band is completely filled with electrons (see Fig. 7 .8b), and the width 
of the forbidden hand is not great (not over 1 eV in intrinsic semi­
conductors). Semiconductors owe their name to the circumstance 
that with respect to the value of their electrical conductance they 
occupy an intermediate position between metals and dielectrics. 
Their feature, however, is not the magnitude of the conductance, 
but the fact that their conductance grows with increasing tempera­
ture (we remind our reader that in metals it diminishes). 

Intrinsic and impurity (or extrinsic) semiconductors are distin­
guished. The intrinsic semiconductors include chemically pure ones. 
The electrical properties of the impurity semiconductors are deter­
mined by the impurities they have artificially been doped with. 

In considering the electrical properties of semiconductors, a great 
part is played by the concept of "holes". Let us stop to deal with the 
physical meaning of this concept. 

In an intrinsic semiconductor at absolute zero, all the levels of 
the valence band are completely filled with electrons, while the 
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latter are absent in the conduction band (Fig. 8.2a). An electric 
field cannot transfer electrons from the valence band to the conduction 
one. Therefore, intrinsic semiconductors behave at absolute zero 
like dielectrics. At temperatures other than 0 K, a part of the elec­
trons from the upper levels of the valence band transfer to the lower 
levels of the conduction band as a result of thermal excitation 
(Fig. 8.2b). In these conditions, an electric field obtains the possi­
bility of changing the state of the electrons in the conduction band. 
In addition, owing to the formation of vacant levels in the valence-

(a) (6) 
Fig. 8.2 

band, the electrons of this band can also change their velocity under 
the action of the external field. As a result, the electrical conductance 
of the semiconductor becomes other than zero. 

It was found that when vacant levels ar~ _ _present, the behaviour 
of the valence band electrons can be represented as the motion of posi­
tively charged quasiparticles that have been named "holes". It fol­
lows from the equality to zero of the conductance of a completely 
filled valence band that the sum of the velocities of all the electrons 
of such a band equals zero: 

Let us separate from this sum the velocity of the k-th electron: 

~v1 +v~t=0 

whence 
i=l=h 

Lj v 1 = -v 11 
i4=h 

This relation shows that if the k-th electron is absent in the valence 
band, then the sum of the veloc.ities of the remaining electrons iS. 
-vh. Hence, all these electrons will set up a current equal to (-e)· 
• ( -vh) = evk. Thus, the produced current is found to be equivalent 
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to the current that would be set up by a particle with the charge +e 
having the velocity of the absent electron. It is exactly this imaginary 
particle that is a hole. 

We can also arrive at the concept of holes as follows. Vacant lsvels 
are formed at the top of the valence band. In Sec. 7 .4, we established 
that the effective mass of an electron at the ceiling of an energy band 
is negative. The absence of a particle ha.ving a negative charge -e 
and a negative mass m* is equivalent to the presence of a particle 
having a positive charge +e and a positive mass I m* 1, i.e. of a hole. 

Thus, a valence band having a small number of vacant states is 
(lquivalent in its electrical properties to a vacant band containing 
a small number of positively charged quasiparticles called holes. 

We must stress the fact that the motion of a hole is not the motion 
of a real positively charged particle. The notion of holes reflects the 
nature of motion of the entire multiple-electron system in a semi­
conductor. 

8.4. Intrinsic Conductance of Semiconductors 

Intrinsic conductance appears as a result of the transition of elec­
trons from the upper levels of the valence band to the conduction 
band. A certain number of current carriers-electrons appear in the 
conduction band that occupy levels near the bottom of the band; 
simultaneously, the same nuw.ber of sites are freed in the valence 
hancC"at its upper levels, the result being the appearance of. holes 
(see the preceding section). --

The distribution of the electrons among the levels of the valence 
band and the conduction band is described by the Fermi-Dirac func­
tion [see Eq. (7.20)1. This distribution can be made very illustrative 
by depleting, as has been done in Fig. 8.3, a graph of the distribution 
function combined with a diagram of the energy bands. 

The relevant. calculations indicate that for intrinsic semiconduc­
tors the value of the Fermi level measured from the ceiling of the 
valence band is · 

1 3 mb. EF=-tlE+-kT ln--2 4 l m: 
where tlE is the width of the forbidden band, and m~ and m: are 
t.he effective masse~ole and an electron in the conduction band. 
The second addend is usually negligibly small, and we may assume 

that EF = ~ tlE. This signifies that the Fermi level is at th.e middle 

of the forbidden band (see Fig. 8.3). Consequently, for the electrons 
that have passed into the conduction band, the quantity E - Ep 
differs only slightly from half the width of the forbidden band. The 
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levels of the conduction band are on the tail of the distribution curve. 
Therefore, the probability of, their being filled can be found by 
Eq. (7.24). Assuming in this equation that E- EF ~ !!.E/.2, we 
find that 

f (E) ex: exp ( - ~ ) (8.10) 

The number of electrons that have passed into the conduction band 
and, consequently, the number of holes formed too, will be propor­
tional to the probability given by expres..r;ion (8. 10). These electrons 
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and holes are current carriers. Since the conductance is proportional 
to the number of carriers, it must also be proportional to expression 
(8.10). Hence, the electrical conductance of intrinsic semiconductors 
rapidly grows with the temperature, varying according to the law 

(8.11) 

where llE is the width of the forbidden band, and cr is a constant. 
If we plot ln a against 1/T on a graph, then for intrinsic semicon­

ductors we get the straight line shown in Fig. 8.4. We can determine 
the width of the forbidden band D..E according to the slope of this 
line. 

The elements of group IV of Mendeleev's periodic table germanium 
and silicon are typical semiconductors. They form a cl iamond·-type 
lattice in which each atom is connected by covalent (electron-pair) 
bonds to four neighbouring atoms at equal distances from it (see 
Fig. 13.6a of Vol. I, p. 371). Such a mutual arrangement of the atoms 
can conditionally be represented in the form of the plane structure 
shown in Fig. 8.5. The circles with the sign"+" designate positively 
charged atom cores (i.e. the part of an atom that remains after de-
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p_ature of the valence electrons), the circles with the sign "-" de­
signate the valence electrons, the double I ines show the covalent bonds. 

At a sufficiently high temperature, thermal motion may dissociate­
separate pairs, releasing one electron. Th<~ site left by the electron 
stops being neutral, and a surplus positive charge +e appears in 
its vicinity-a hole is formed (it is depicted by a dash circle in Fig. 8.5). 
An electron from one of the adjacent pairs may jump over to this 
site. As a result, the hole also begins to wander along the crvstal 
like the released electron. " 

When a free electron meets a hole, they recombine. This signif1es 
that the electron neutralizes the surplus positive charge in the vici-

nity of the hole and loses its free­
dom of motion until it again re­
ceives the enerf~Y sufficient fot· its 
release from the crystal lattice. 
Recom bin a tionleads to the simul­
tant)ous vanishing of the free elec­
tron and the hole.] n a level diag­
ram (Fig. 8.3), the transition of 
an electron from the conduction 
hand to one of the free levels of 
the valence hand corresponds to 
the recombination process. 

Thus, two processes occur si­
multaneously in an intrinsic se­
miconductor: the birth of fre~) 
electron-hole pairs and recombi-

Fig. 8.5 nation leading to the vanishing 
of these pairs. The probability 

of the first process grows rapidly with the temperature. The proba­
bility of recombination is proportional both to the number of free 
electrons and to the number of holes. Hence, a definite equilibrium 
concentration of electrons and holes corresponds to each temperature, 
and it varies with the temperature in proportion to expression 
(8.10). 

When an external electric field is absent, the conduction electrons 
and holes move chaotic11lly. When a field is switched on, ordered 
mot ion is imposed onto the chaotic motion: the elcetrons move against 
the field, and the holes in the direction of the field. Both motions­
of the holes and the electrons-result in transferring the charge along 
the crystal. Hence, intrinsic conductance is due, as it were, to charge 
carriers of two signs-negative electrons and positive holes. 

We must note that at a sufficiently high temperature, intrinsic 
conductance is observed in all semieonductors without any exception. 
In semiconductors containing an impurity, however, the conductance 
consists of the intrinsic and impurity conductances. 
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8.5. Impurity Conductance of Semiconductors 

Impurity conductance appears if some atoms of a given semicon­

ductor ar~ replaced a~ the points of a crystal lattice by atoms whose 
valence differs. by un1ty from ~hat of the normal atoms. Figure 8.6 

shows schematically a gerroamum lattice doped with pentavalent 

phosphorus atoms. A phos~us atom needs only four electrons 
to form covalent bonds with its neighbours. Consequently, the fifth 
valence electron is surplus, as it were, and is easily detached from 

the atom at the expense of the energy of thermal motion, forming 

Fig. 8.6 Fig. 8.7 

a wandering free electron. Unlike the case treated in the preceding 

section, the formation of a free electron is not attended by the vio­

lation of the covalent bonds, i.e. by the formation of a hole. Although 
an excess positive char.ge does appear in the vicinity of the impurity 

atom, it is bound to this atom and cannot travel along the lattice. 

Owing to this charge, the impurity atom can capture an electron 

approaching it, but the bond of the captured electron with the atom 
will be weak and can easily be broken again at the expense of the 

thermal oscillations of the lattice. 
Thus, a semiconductor with an impurity whose valence is greater 

by unity than that of the normal atoms has only one kind of current 
carriers--electrons. Accordingly, such a semiconductor is said to 

have electronic conductance or to be a semiconductor of the n-type 

(negative). The impurity atoms supplying the conduction electron,s 

are called donors. 
Now let us consider the case when the valence of the impurity is 

less by unity than that of the normal atoms. Figure 8.7 shows sche­

matically a silicon lattice doped with trivalent boron atoms. The 

three valence electrons of a boron atom are not enough to form bonds 
with all four neighbours. One of the bonds is therefore not completed 
and will be a place capable of capturing an electron. When an elec­
tron from one of the neighbouring pairs passes to this plaee, a hole 
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will be formed that will travel along the crystal. An excess negative 
charge will appear near the impurity atom, but it will be associated 
with the given atom and cannot become a current carrier. Thus, 
current carriers of only one kind-holes-are produced in a semi­
conductor with an impurity whose valence is less by unity than that 
of the normal atoms. Such a semiconductor is said to have hole con­
ductance, and the semiconductor is said to be of the p-type (posi­
tive). The impurity atoms causing holes to appear are caTied accep· 
tors. 

The elec.tronic nature of the conductance of n-type semiconductors 
and the hole nature of the conductance of p-type semiconductors are 
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confirmed experimentally when studying the Hall effect (see Sec. 11.3 
of Vol. II, p. 234 et seq.). The observed sign of the Hall potential 
difference corresponds to negative current carriers in n-type semi­
conductors, and to positive carriers in p-type ones. 

Impurities distort the_field of a lattice. This results in the appear­
ance of impurity levels in the energy scheme. They are in the for­
bidden band of the crystal. The impurity levels of n-type semicon­
ductors are called donor levels (Fig. 8.8a), and of p-type semicon­
ductors acceptor levels (Fig. 8.8b). 

The Fermi level in n-type semiconductors is in the upper half of 
the forbidden band, and in p-type semiconductors, in the lower half 
of this band. With elevation of the temperature, the Fermi level in 
semiconductors of both types is displaced toward the middle of the 
forbidden band. . 

If the donor levels are not far from the ceiling of the valence 
band*, they cannot appreciably affect the electrical properties of 
the crystal. Matters are different when the distance from such levels 

• This signifies that the fifth valence electron is firmly bound to its a'om. 
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to the bottom of the conduction band is mueh smaller than the width 
of the forbidden band. In this case, the energy of theFmal motion even 
at ordinary temperatures is sufficient to transfer an electron from a 
donor level to the conduction band (see Fig. 8.8a). Detachment of 
the fifth valence eleetron from an impurity atom concsponds to 
this process. The transition of an electron from the cond11cl ion band 
to one of the donor levels corresponds in Fig. 8.8a to the ca12_tme of 
a free electron by an impurity atom. 

The acceptor levels noticeably affect the electrical proper! ies of 
a crystal when they are not fnr from the ceiling of the valence zone 
(see Fig. 8.8b). The transition of an electron from the valence zone 
to an acceptor level corresponds to the formation of a hole. The reverse 
transition corresponds to breaking of one of the four covalent bonds 
of an impurity atom with its neighbours and recombination of the 
electron and hole formed. 

Upon elevation of the temperature, the concentration of the impu­
rity current carriers rapidly reaches saturation. This signifH:s that 
practically all the donor levels are freed of electrons or all the accep­
tor levels are filled with them. At the same time with elevntion of 
the temperature, the intrinsic eonduclancc of the semiconductor, 
owing to the transition of elec1 rons directly from the valence band 
to the conduction band, begins to tell more and more. Thus, at 
high temperatures, the conductance of the semiconduetor will con­
sist of impurity and intrinsic conductances. At low tcmpera1ures, 
impurity conductance prevails, ancl at high ones intrinsic conduct­
<~nce. 



CHAPTER 9 CONTACT AND 
THERMOELECTRIC 
PHENOMENA 

9.1. Work Function 

Conduction electrons do not leave a metal arbitrarily in noticeable 
numbers. The explanation is that the metal is a potential well for 
them. Only those electrons succeed in escaping from the metal whose 
energy is sufficient to surmount the potential barrier on its surface. 
The forces giving rise to this barrier have the following origin. The 
chance removal of an electron from the external layer of positive 
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ions of the lattice results in the appearance of an excess positive charge 
at the site left by the electron. The Coulomb interaction with this 
charge causes an electron whose velocity is not very high to return. 
Thus, individual electrons are constantly leaving the surface of the me­
tal, travelling several interatomic distances away from it and then re .. 
turning. As a result, the metal is surrounded by a thin cloud of electrons. 
This cloud together with the external layer of ions forms an electrical 
double layer (Fig. 9.1; the circles depict ions, and the black dots, 
electrons). The forces exerted on an electron in such a layer are direct­
erl into the metal. The work done against these forces in transferring 
lin electron out of the metal goes to increase the potential energy Ep 
of the electron. 
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Thus, the po(.ential energy of the valence electrons* inside a 
metal is great.lJr than r.hat outside the r111-)tal by an amount equal to 
the depth of the potentili.l well Ep. 0 (Fig. 9.2). The energy changes 
over a length of tho or<.h.r o£ :seve1.·al interatomic dist.ances, therefore 
we can C·Jnsider th.a!. t.be wa.Us of the well are vertical. 

The pf>t!lnti.al en(!rgy of an r.Jectron Ep = --e<p and the potential <p 
of the point where the electron is have opposite signs. 1 t thus follows 
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that the potential inside a metal is highor than that in direct prox­
imity to it-s surface (we shall simply s<:~y "on its surface" for brevity) 
by the amount Ep, 0/e. 

The imparting of an excess positive charge to a metal increases 
the potential both 011 the surface and inside the motal. The potential 
energy of an eleetron diminishes aeeord.ingly (Fig. H.Ba). We remind 
our reader that. the va.h1'3S of the po·· 
tential nnd the pot.~ntial energy at ·-~'·]·----· ---·--· ___ _ 
i:nfmity ha;ve hee1~ t;tken a~.t~e, ;.~e.- :.ff..~~fu~ffi.i~~~-
ference po ... nt. Th-.. 1mparthlh •H a .. .. .. ------- --·-

c -------·---~111!-ative charge __ Jy\:e.m _th•3 po~ent.ial J:.F --J- ~=-~-:-.~------
.lll.)Ide and out.:oH'h. du! metaL 1he b:::=:::::= .. -=-==::1 
potont~al enm~~~ ot <U~~ electron grows 1.';naT g;;.-===:::--
aceordJiljrly (1.<1g. 9.DtJ). l 1:::..:::::::::::-.::::.-=----

The total energy o( an eleetron in l..t~:;;:;.----
a metal (~Onsist.<; of its potential :mel 
kinetic energies. ·we m;t::~hLished in 
~~ee. 7 .:l that <:l.t absolu.t.e zero the 

F'ig. 9.4 

Ep,O 

values of the kinetic energy of eonduction doct;rons range irom 
Y.t:>.ro to the enm·g,y 'Bmu c.o{nciding with tlH'l FtH·mi level. ln Fig. 9.4, 
th.!J energy lev{,ls of the c.vnduct'ion. band. are inscribed in the potential 
well (the dash lines depict t.he levels that are not occupied at 0 K). 

·- ~· Tho 1-;-;,cntial wdl for thn ele~,;tl'Ollf-1 lllling tho [ev~ls of the lo_wer. ban~s 
O.o .. ~rmly bound to their atom.:l) has tl fsT'1at.er depth. Ah the reasomng m this 
section l"lllatl:S to v<tlnnca cln1;trona. 
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Different electrons need different energies to escape from a metal. 
For example, an electron on the lowest level of the conduction band 
needs the energy Ep, 0 ; an electron on the Fermi level needs only 
the energy Ep,o- Emax = Ep,o- Ep. 

The smallest energy that must be imparted to an electron in order 
to remove it from a solid or liquid in a vacuum is called the work 
function. The work function is customarily designated by eqJ, where 
qJ is a quantity known as the emission potential. 

In accordance with what has been said above, the work function* 
in the emission of an electron from a metal is determined by the 
expression 

(9.1) 

We have obtained this expression assuming that the temperature 
of the metal is 0 K. For other temperatures, the work function is 
also determined as the difference between the depth of the potential 
well and the Fermi level, i.e. definition (9.1) is extended to other 
temperatures. It is also employed for semiconductors. 

The Fermi level depends on the temperature [see formula (7.23)]. 
Moreover, owing to the change in the average interatomic distances 
due to thermal expansion, the depth of the potential well Ep.o changes 
slightly. The result is that the work function has a slight tem­
perature dependence. 

The work function is very sensitive to the state of a metal surface, 
particularly to its purity. By appropriately choosing the coating of 
a surface, we can greatly diminish the work function. For example, 
the application of a layer of an alkaline-earth metal oxide (CaO, 
SrO, BaO) to the surface of tungsten reduces the work function from 
4.5 eV (for pure tungsten) to 1.5-2 eV. 

9.2. Thermionic Emission. Electronic Tubes 

At temperatures other than absolute zero, there is a certain num­
ber of electrons whose energy is sufficient to surmount the potential 
'barrier on the boundary of a metal. The number of such electrons 
sharply grows with elevation of the temperature and becomes quite 
noticeable. The emission of electrons by a heated metal is known as 
thermionic emission. 

Thermionic emission is studied with the aid of the circuit shown 
in Fig. 9.5. The main element of the circuit is a two-electrode tube, 
also called a vacuum-tube diode. It is a well evacuated metal or glass 
bulb containing two electrodes-cathode C and anode A. The elec­
trodes can be designed in different ways. In the simplest design, 

• The quantity determined by Eq. (9.1) is sometimes called the effective 
work function, while Ep0, is called the total work function. 



Contact and Thermoelectric Phenomena 211 --------
the cathode has the shape of a thin straight filament, and the anode, 
of a cylinder coaxial with it (Fig. 9.6). 

The cathode is heated by the current provided by the filament 
battery Br. The temperature of the cathode can be varied by regulat­
ing the filament current with the aid of rheostat R. Anode battery 8 8 

feeds a voltage to the electrodes. The anode voltage U a can be varied 
with the aid of potentiometer P and measured with voltmeter V 

c 

Fig. 9.5 l•'ig. 9.6 

(the voltage U a is considered to be positive if the anode potential 
is higher than that of the cathode). Galvanometer G is intended for 
measuring the anode current I a· 

At a constant cathode filament current, the curve showing how 
the anode current 1 a depends on the anode voltage Ua has the form 
shown in Fig. 9. 7. This curve is called the volt-ampere characteristic 
of a diode. The different curves in Fig. 9. 7 correspond to different 
cathode temperatures. At low values of Ua, these curves coincide. 

Let us consider the features of the curves I a = f ( U a)· When U 8 = 
= 0, the electrons flying out of the cathode form a negative space 
charge around it, i.e. an electron cloud. The latter repels the electrons 
flying out of the cathode and returns the greater part of them. A small 
number of electrons, nevertheless, succeed in flying up to the anode, 
and as a result a weak current is set up in the anode circuit. To com­
pletely stop the electrons from getting onto the anode, i.e. to make 
I a equal to zero, a certain negative voltage must be applied between 
the cathode and the anode. This is why the volt-ampere characteristic 
of a diode begins not from zero, but somewhat to the left of the origin 
of coordinates. 

A glance at Fig. 9.7 shows that Ohm's law is not obeyed for a 
vacuum diode. The initial portion of the curve follows quite well 
the three-halves power law obtained theoretically by I. Langmuil" 
and S. Boguslavsky. According to this law, the anode current 
changes in proportion to rl/ · 
II 
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With a growth in U8 , a greater and gr:~ater nurn.ber oi electrons 
are drawn ofi by the electric fteld iu the arwde, ;.md, iinally, at a 
definite value of U8 , the electron cloud is complei;cly dispers<>.d and 
all the electrons flying out of the cathoc!tl can reach th<'l <~node. A :fur­
ther growth in U a cannot increase the f!.uodn current·-- it l'e~ches satn­
ration. 

It is obviously exactly the satmatiot;. cur.r.em tn.ai; <:·haractorize.'l 
thermionic emission. If N elf)Ctron.:J J1y out of lmit. ::nrf;lG·'.l ;Jr:~:l nf 
the cathode in unit time, then t11e density of dw s;;~l.uration current 

fa.sa.t 

" / 

,---lj>lj 

/-----!j~·J; 

:,.... __ Tj 

_....,::::.~.-. ___ ......._ ____ ;:,...,. 
{} 1/q. 

(the satun:.tin:n.enn·eni, rn:!a!.Hd to nnit 
::;urfaee area. nf the ca.thnde) •,viiJ. ho 
!sat "'"' Ne. 1Ten.::1:;, h) n:ww3uring the 
aaLnrai:.ion ·cnnent. ·.:.ic!J:;ity !)[. various 
filarm;nt ~~urnmt.s, 'FC •.~an.liod tiw num­
ber o.f eh,etrons Hyiurr, nut f,·olll un i.t 
surfaec arAa at diff~r~>nt temperatu.res. 

Qroe~t•rli.ng :fn:m qmml.um .Hi-·!.ions, 
S. Dashman .in i\)'~~~ nhtained. the foJ .. 
lowing formuL fui' the :;aturation 
cu:Tnnt: 

(:J.?) 

Fig. 9.7 Here eq; is tlw work !unction, and A 
is a constant not dH).Hmd i ng • .m the 

kind of the metal. The theoretical v:)h;e o:f A l3 120 A/(cm2 • K~). 
The experimental values of tlw eonf.:tant A a.r~~ : .msidcrn bly lower 
than the theoretical one and differ grPatly for v::rriotm mcl.al:,,. For ... 
mula (9.2) shows the temp{~rature depf.mdmlGe (Jf the salu.r:>l.ion cui'­
rent quite satisfactorily. A g1·aph nf funetinn (9.2) i~; g·iven iu Fig. 9.8. 

In 1901, J. Richardson derived a claS!>iefli i:m:Jnuh~ for thermionic 
emission. It differs from Eq. (0.2) only in inelud.i.o.g :1''19. instoad of 
T2. Formula (9.2) is known as tho HidTt.l!lrdf;orn· .. n~,Hi'~m.;m Xommia. 

Inspection of Eq. (9.2) reveals that a decrevi>e in eqJ shvrpl.y in('.reases 
the emission (it is easy to see that at H60 K., Le. B.t k.J' = 0.10 P.V, 
a decrease in ecp from 3 to :t t.J'I/ loadR to a growth in .isat of a.lmost 
5 X 108 times). Therefore, i.n mo.nufac.t.uring eloc!.t·onic tubes, special 
coatings and ways of trellting the eal.tw!les arEl tuJi,{l that result .in 
lowering of the work function. The mod•)m ;;o-called oxide r.;;1thode.s 
made of nickel coated with barium m· struntiw:n n"<idn have n work 
function of the order of 1.0-1.2 eV. 

A diode passes a current only when the potentb'i of the anode if; 

higher than that of the c.athorle. At a not~ative ·vn1t~:Jge, tlvwe is no 
current in the anode circuit. This nl"oneY·t:v o:{ ;J di,,fi.=: ·ma:c~B )!.:-; u.c;e 
possible for rectifying an alter'1ati~1g 'eur~elH. /\ ii;.~,.-1(. intenderl. f(n' 

this purpose is also called a ktmo~r::HJ. 'J'he ;;oliit h.-.e ;;; i'ig .. i:l.~l i.:; !::\ 



graph 01'. the ~urrent Howmg thr('ugh a kenotron if an alternating 
'roltagn Uwt ei;noges with time according to a harmonic law is ap­
ph8d to it.. In i11w c:En, tho cmront will flow in the circuit only dur­
ing half a peri1.)d, which is why this way of rectifying cuaent is 
called llaH--wave. 

By U'iing s~muHanPOllsly two kenotrons or a double diode assem­
bled in one Lulh, we r.an obtain full-wave rectification. The corres-

J 
/ 

I I 
\ .. / 

1<::::~---- ... - ·~"· ~· ..... 

11 ,--\ ~ 
1/ .. ---\---1 I I \ 1 I 

\ I \ 
\ I \ 

' \ I ' I --· r 
Fig. 9.9 

pondi111;~ r::r":tii. i:·> ~'~r~pi.cteri tn Fig. 9.10. The primary winding of 
the !.ran:.;f:orrc.N iPc iluppUcr\ '1n·;th n lternating current. There are two 
fi(~CorJrl,lry Fir•thngs. The smaller one is used to heat the cathode. 
Th~:~ htr,er wi;;di;Jg 1w:> a 11lidd1e 
rP-rm ~m>J th.fl !, ifl c:nm·~c V:rl i;n the 
r:.at.hode via Jo~1d /?. 'T!v:: 0•tcb of thn 
'.:vind h1g DrtJ eon ,:ec:i ed. to the· rqv.1des. 
j)nl.'ing ··mf: 1wlf of a [J('fi('d, one 
nnod(' is um!er n highnr pol:cnt.i.::li 
Lh2..n fh~-) eatbot]{~ n.d'.~ dr·xj.ng tJ~<3 
c:econd haif.--th•,1 ,,; b~Cr n1wde. A::; a 
res-edt, tbl r.rr<rer- ~- sllnwu g ,·!)phic'J.lly 
in Fig. 0.11 HoW;'1 tJmmg-h th1:1 1o8rL 
Such a pu.lsnl.ing c:urent c;o~n be 
smoothed. 

R 

Fig. 9.10 Jf we ?!nee :-, third ,<>lHctrodi~ m 
tre fonn ol <J. r.r'd het.\YCPn t.ha 
·~athodfl and th0 'ar,ilrle, we get a three-electrode tube-a triode 
(Fig. 9.12; the lil.arnent c.ircui.t has heen omitted in the diagram). 
Thi; g•,ici mBy JH·' dc:,ip·ned., for example, as a spiral winding around 
th~1 c:Jt}Jodo. WhPn :1 slight positivP. potential relative to the cathode 
is impart.od to the grid (in this <:ase we shall consider the voltage u, 
bctwt:en the grid nn:l the cathode to be positive), the electrons will 
be withdra·wn from the cathode at a higher rate. Some of them will 
g<~t onto tho grid (Rs a result, a smAll grid current I g is produced), 
but tl-te r.O&jor part of the electrons fly through the grid and reach 
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the anode. Owing to the grid being close to. the cathode, slight changes 
in the voltage between the grid and the cathode greatly affect 
the anode current. 

A negative grid voltage U g reduces the anode current, and at a 
sufficiently high negative voltage U g the current stops completely­
the tube is wiped out. 

la Ba 

R 

Bg 

Fig. 9.11 Fig. 9.12 

lf we plot the anode current I a against the grid voltage U g for a 
constant anode voltage Ua, we get the curve shown in Fig. 9.13. 

I a 

t 

Fig. 9.13 

A collection of such curves plotted for different values of U a forms a 
family of the grid characteristics of a triode. The quantity 

S= dla 
dUg 

is known as the slope of the characteristic. 
A considerable portion of the characteristic is straight. This ma~es 

it possible, by supplying a small sinusoidal voltage U g to the gnd, 
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to obtain a large sinusoidal change in the anode current. An alter­
nating voltage with a much greater amplitude than that of U It can 
be taken off resistor R. This underlies the operation of a triode 
as an amplifier. A triode can also be used for the conversion (chang­
ing the shape) and generation of varying currents and voltages. 

Additional electrodes-grids-are introduced into electronic tubes 
to improve their characteristics. A tube with two grids, i.e. a four­
electrode tube, is called a tetrode, a five-electrode one is called a 
pentode, and so on. Tubes in which one bulb accommodates two 
systems of electrodes have also come into great favour. Such a tube 
performs the functions of two conventional ones. 

9.3. Contact Potential Difference 

If we bring two different metals into coQtact, a potential differ­
ence is produced between them that is called a contact potential. 
The result is the appearance of an electric fi.eld in the space surround­
ing the metals. Figure 9.14 shows 
the equipotential surfaces (solid 
lines) and the strength lines (dash) 
of this field; the surface of each of 
the metals is an equipotential one. 

The contact potential difference 
is due to the fact that when metals 
come into contact, part of the elec­
trons pass from one metal into the .. 
other. The upper part of Fig. 9.15 
shows two metals-at the left before 
they are brought into contact, and 
at the right, after contact. The low-
er part of the figure gives graphs 
of the potential energy of an electron. Fig. 9.t4 
It is assumed that the Fermi level 
in the first metal is higher than in the second one. It is natural that 
when the metals come into contact the electrons from the highest levels 
in the first metal will begin to pass over to the lower free levels of the 
second metal. As a result, the potential of the first metal grows, 
and of the second one diminishes. Accordingly, the potential energy 
of an electron in the first metal diminishes, and in the second one 
grows (we remind our reader that the potential of a metal and the 
potential energy of an electron in it have different signs; see Fig. 9.3). 

It is proved in statistical physics that the condition for equilib­
rium between metals in contact (and also between semiconductors 
or a metal and a semiconductor) is the equality of the total energies 
corresponding to the Fermi levels. In this condition, the Fermi 
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levels of both melals ue at the S:HJH:) height ia tho diagraut. Inspec­
tion of Fig. fJ.t5 reveals that in this case th1:l pot()ntb1l ~~nergy of an 
electron in direct pro-,imity t{) tho ~mc(aee of the J-ir.'lt metal will be 
lower by e~p2 -- eql1 than .near the second. md,.:J.L Henl;e, the poten­
tial on the surface of the first met::d .,,·iJJ be higher by 

(9.3} 

than on the surface of the .second om;, ~It is er~cdy the quantity 0 1 ~ 
that is the conta•~t potential differetH'.:; between Lhe first and thJ 
second met;d. 

According to Eq. (<J.i)), i.lJc •AlTI•J:ct. ;:.otontL j dHkrcnc~; bet wuen 
the first and the second metal oq w'll~: :.:": .,I ifkn~'1f;;; het.w~~cn i,hu work 

functions for the second <Htd tlHl lif:1' l1hJLal divic:('d by i)_!,_) B)Pmr:r:­

tary charge, or simply tho rl.iffDn:mce nf the omi~;.,_i,:m ('wnrk func!ion) 
potentials for the seeond 'lnd tlw frrst Jnet::d. 

The potential diffim~nee givnn by Eq. (H.3) i:.; nr>!.ftbli:ohed betwoen 
points outside the metu1s i.n direct proxim~ty i;o tiJ<:>.ir ~mrbces. This 
is why it is kno·wn as 1.hP ~x±e;,'lll<l!i {;ontfld; ~]ot~~;;'lt\Rl dHlenmce. \Vo 
most frequently speak simply of the c<mtact pni,e:ntiai difference, 
having in mind the external. one. Ther1~ is also a potential differ­
ence between tho :ifltcrnnl points o:f the 1ne~als called the internal 
one. Examination of Fig. 9 .1G reveab thai. the potential energy of 
an electron in the ihst metnl is lower tban that in the second one by 
Er, 1 - EF, 2. Aceorrlingly, the potenl.i:ll insirh• l.he f1rst metal i"l 
higher than that in~ide the seecmd one hy the ~mount 

(9.4) 

This expression gives tho internal contact potential dif1'ercncc. 
This is the amount by which th."l potential diminishes when passing 
from the first metal to the second one. 

If we give two diffP.rent metals the shape shown in Fig. 9.16 and 
bring them into contact, then an electric field is set up in gap H-C 
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whose strength lines are shown hy dash lines. The change in the 
potential along the contour nesig-Hated by the dot-and-dash line is 
shown at the right of the figure. 

Figure (U.7 shows the r.hange i.n the potentill.l energy of an electron 
along three different metals .1, 2, 8 in contact with one another. 
A glance at the Hg-ure .shows that the potential difference which 

Tg. !:U.fl 

.li'ig. 9.fi' 

sets in betwer.m rnetp]s I a11d J i~' exactly the same in this case as 
when they are iil direcl contact'-'. 'l'hB same is true fol.' any number 
of intermediate metals: the potential d.iffPrencc auoss the ends of a 
cirr:ui.t is deLe1"mined by the ftifforenee between the work functions 
for the meta b fm·m ing t.he Px i:rnmA f i11ks of the circuit. 

The values of t.he external cont.:Jet potential difference vary for­
different pairs of H1Bi~Jl:1 fn~.m flCV"Td teuths 0f a volt to several 
volts. 

We have considered the cont::-ct .between two .metals. A contact 
potential difference also app0Prs, ·r;,)wcvnr, on the interface between 
a metfll and::_, semiconductor, and t>lsn on the interface between two 
semicondur.to.rs. 

In conclusion, we shall con'3ider a. closed circuit consisting of an 
arbitrary JIUrnh.er of different, mei.nls or semir.onduclors (Fig. 9.18). 

·-·-;;; .Ti·;-;;lnes of the potm•tinl.~ rr11.1Y cbJJ.ngo herP.. In particular, both extreme 
metals may h:we a potenti::1l of t.lw s<>.me sigu. 
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If all the junctions are maintained at the same temperature, the 
sum of the potential jumps will be zero. Therefore, no e.m.f. can 
appear in the circuit. The appearance of a current in such a circuit 
would contradict the second law of thermodynamics. Indeed, since 
the flow of a current in metals and semiconductors is not attended by 
chemical changes, the current would do work at the expense of the heat 

A-

B 
received from the medium surround­
ing the circuit. No auxiliary processes 
(for example, the transmission of part 
of the heat received to other bodies) 
would occur. Consequently, a perpetual 
motion machine of the second kind 
would be achieved here. 

9.4. Thermoelectric Effects 
J There is a relation between thermal 

/J c and electrical processes in metals and 
A-···__r-···~ .!J--A semiconductors that underlies effects 

••• known as thermoelectric ones. Among 
Fig. 9.18 them are the Seebeck effect, the Peltier 

effect, and the Thomson effect. 
The Seebeck Effect. The German physicist Thomas Seebeck ( 1770-

1831) discovered in 1821 that when junctions 1 and 2 of two different 
metals forming a closed circuit (Fig. 9.19) have different temperatures, 

1 

7; (1, .(_ 12) 7i ,......, -~£~-~----~, 
----------------~l - -

J 
Fig. 9.19 Fig. 9.20 

an electric current flows in the circuit. A change in the sign of the 
difference between the junction temperatures is attended by a change 
in the direction of the current. 

The thermal electromotive force (thermal e.m.f.) is due to three 
reasons: (1) the dependence of the Fermi level on the temperature, 
(2) the diffusion of electrons (or holes), and (3) the carrying along of 
·electrons by phonons. 
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The Fermi level depends on the temperature [see formula (7 .23)]. 
Therefore, the jump in the potential when passing from one metal 
to another [i.e. the internal contact potential difference, see Eq. (9.4)1 
is not the same for junctions at different temperatures, and the sum 
of the potential jumps differs from zero. This alone would be enough 
for the appearance of an e.m.f. acting in the direction shown in 
Fig. 9.19 and equal to 

~con.t = UA.a (Td + UeA (T2) = 
1 

=-;{[EF, A (T1)- EF, B (Tt)l + [EF, D (Tz)- EF, A (T2)]} = 
1 

=-;-UEF·, B (Tz)- EF, a(Tt)J- (EF, A (T2)- EF, A (T1)]} 

The last expression can be written as follows: 

T, T, 

re = l (.!... dEF,B) dT- \' (_!_ dEF,A) dT 
Gcont J e dT · , . e dT (9.5) 

T, T, 

To understand the second reason for the appearance of a thermal 
e.m.f., let us consider a homogeneous metal conductor along which 
there is a temperature gradient (Fig. 9.20). In this case, the eoncen­
tration of electrons with E > EF at the warm end will be higher 
than at the cold one; conversely, the concentration of electrons with 
E < Ey will be lower at the warm end. A gradient of concentration 
of electrons with a given value of the energy is set up along the con­
ductor; this results in diffusion of the faster electrons to the cold 
end and of the slower electrons to the warm one. The diffusion flux 
of the fast electrons will be greater than the flux of the slow electrons. 
Therefore, a surplus of electrons will be formed near the cold end, 
and a shortage of them near the warm end. This leads to the setting 
up of a diffusion component of the thermal e.m.f. 

The third reason for the appearance of a thermal e.m.f. is the car­
rying along of electrons by phonons. When there is a temperature 
gradient along a conductor, a drift of phonons is set up. Upon col­
liding with the electrons, the phonons impart to them directed 
motion from the wat·mer end of the conductor to the colder one. The 
result is accumulation of electrons on the cold end and a shortage of 
electrons on the warm end; this leads to the appearance of a "phonon" 
component of the thermal e.m.f. 

Both processes-the diffusion of electrons and the carrying along 
of electrons by phonons-lead to the formation of a surplus of elec­
trons near the cold end of the conductor and a shortage of them near 
the warm end. The result is the setting up of an electric field inside 
the conductor directed toward the temperature gradient. At a defmite 
value of the field, which, generally speaking, is different for each 
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cross section of the conductor, thH sum. of the cliffnHion and pbonon 
fluxes of the electrons becomes equal to UJro and, conse~rt.wntiy, a 
steady state sets in. The strength o.l this ftelr.i r:;)n .be r<.~pn~srnted in 
the form 

(H.o) 
where 

('J."l) 

Expression (9.6) relates thf~ field streng-d1 F"" and the !(·rr~pcrai1.mo, 
gradient dT!dl. The field set up a:nd the temperat.un: gradient have 
opposite directions. Hr.nee, E* and r!.Tidl\J:o··ve npposit<: :1i~.;·r.B. Cni! 
sequently, for metab f\ > 0*. 

The process of the appearnncc of tho ficM /1;"~ ln a non-uniform!y 
heated conductor descrih~ld above rbo \lcnn·s in seLnir;ondne1ors. 
For n-type semicondnetors, we haY{: p >· 0. vVith lw).e c.onducti')n, 
the holes diffusing· in a grout :n1mhAr toward the ~~old end set 11p '''] 
excess positive charge npar it. Cnrr·y!ng ~long of the holes hJ pho­
nons leads to the same ra:mlt. Therd'ore in p type ~;emicendm~.i.ers, 
the potential of the cold e11d will bo highm· than that of the WHrm ou;:;, 
and, consHquently, ~ <: 0. 

The field determi11ed hy Eq. {9.6) is one of ~"-rtmneou:-: :iorccs. 
By integrating the strength of this field ovPr tlu1 section r·f cireuit A 
from junction 2 t.o jnnetion .7, we sh<:1l1 get the.tlwn:nal e.m.f. ac\i;1r; 
on this s0ction'~* in the direction indi' nled hy the VIT'.'\" In f<'ir;. :J ~U: 

(!1.8) 

(we ht~.ve exr.hauged tlw pllcleos of the integration Umits). Sirnil;nly, 
the therm~:~J e.m.f. aciing on sec~t.ion B from junction l to junction 2 i.': 

2 T?, 

1) mF" -· ) f1n-·~F dl c •· ·• J Bn rlT (9.9) 
1 'fl 

The thermal e.m.f. :f.therm consists of the e.m.f.s set up in the 
contacts, and the e.m.i.s acting on f:iectious A an1l B: 

~therm ''-"" ~cont ·I· ~2-A1 + ~ 1B2 

* This holds for the overwhelming majority of metflls. In some metals, 
however (beryllium, zinc, etc.), the conduction is of a hole Itaturc. ThH sign 
of the Hall potential difference for these metal.s corresponds to positive current 
carriers. For such metals B < 0. 

** See formula (5.-15) of Vol. II, p. 103. 
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Inttoducing Eqs. (9.5), (9.8), and (9.9) and performing simple trans­
·formations, we get 

T2 ~l'2 

~t!wrm "=) u~A ···· + -~-E:T !.) d T ··· J ( ~B ,. .. ~- _dE:T 8 )d1' 
Tt T1 

'fhe quantity 

U=~---···L.dEL. 
e dT (9.10) 

is known as the the.~·moel«~chic ct•eHid~~nt. Since both p and dEpld1' 
depnnd on the Le<npcratiJ.re, d1e coefficient a is a function of T. 

w:th a V'i<JW to Eq. (9.10), the expression for the thermal e.m.f. 
can he written in the form 

or 

where 

T2 

~ i;herm "~ \ f,OAB dT 
TJ. 

(9.11) 

(9.12) 

<XAB =" UA - <"-"B (9.13) 

The quantity given by :Eq. (9.13) is called the differential or 
spedfic thermal ch:;ct.romotive:; force of a given pair of metab m· semi .. 
-conduetors. For most pail's of metals, aAB is of the order of 10-5 

to J0-4 V/K; for semiconduetors it lllay be much higher (up to 1.5 X 
>t H)--a V /K). The 'Hxplanation is t!w.i: for semiconductors with 
different kinds of eonduetion a has different signs, owing to which 
I UAB I """ I •XA I.+ I (kB j. . 

In some cases, the speeitlc thermal e.m.f. oniy slightly depends on 
the temperature. Thereiore, fon:.uula (9.1.2) ean be written approxi­
mately in the form 

(9.14) 

As a rul.e, however, with an in•W8ase in the difference between the 
junction tr:,mperatures, Gt.herm varies not aceording to a linear law, 
but in a quite complicated way, and may even change its sign. For 
example, if one junetion of the pair iron-copper is kept at 0 "C, then 
at a temperature of the other junetion of about 540 °C the thermal 
e.m.f. vanishes; at a lower temperature of the second junction ~therm 
has one sign, and at a higher temperature the opposite sign. . 

The Seebeck effeet is taken advantage of to measure temperatures. 
Tite relevant deviee is ealled a thermocouple. One junction of a 
thermocouple is kept at a constant temperature (for example, af; 
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0 °C), and the other is placed in the medium whose temperatme is 
to be measured. The value of the temperature can be assessed accord­
ing to the thermal current produced, which is measured with a gal­
vanometer. A more accurate result is obtained if the vroduced ther­
mal e.m.f. is measured according to the compensation method. A 
thermocouple is first graduated. Thermocouples can be employed 
to measure both low and high temperatures with an accuracy of the 
order of hundredths of a kelvin. 

Thermocouples made from metals and their alloys are not used 
as current sources owing to their very low efficiency (not over 0.5% ). 
Thermocouples made from semiconductor materials have a much 
higher efficiency (of the order of 10~'11). They have already found use 
as small generators for powering radio apparatus. Generators devel­
oping a power of hundreds of kilowatts are on the drawing board at 
present. . 

The Peltier Effect. This effect, discover~d in 1834 by the French 
physicist Jean Peltier (1785-1845), consists in that when a current 
flows through a circuit formed of different metals or semiconductors. 
heat is liberated in some junctions and absorbed in others. Thus, the 
Peltier effect is the reverse of the Seebeck effect. 

It was established experimentally that the amount of heat liber­
ated or absorbed in a junction is proportional to the charge q pas­
sing through the junction: 

QAB = nABq = nnft (9.15} 

(the subscripts indicate that the current flows from side A to side B). 
The proportionality constant nAB is known as the Peltier coefficient. 

Equation (9.15) shows that unlike the J oule-Lenz heat, the Peltier 
heat is proportional to the first power of the current, and not to its 
square. 

When the direction of the current changes, Q changes its sign. 
i.e. instead of liberation (absorption) of heat, the absorption (lib­
eration) of the same amount of heat is observed (at the same q). Hence. 

nAB= -nBA 

It follows from the laws of thermodynamics that the Peltier coef­
ficient and the specific thermal e.m.f. are related by the expression 

nAB = 0-ABT (9.16} 

When two substances with the same kind of current carrier are in 
contact (metal-metal, metal-n-type semiconductor, two n-type semi­
conductors, two p-type semiconductors), the Peltier effect is explained 
as follows. The current carriers (electrons or holes) at different sides 
of a junction have a different average energy (we have in mind the 
total energy-kinetic plus potential). If the carriers when passing 
through a junction get into a region with a lower energy, they give 
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up their excess energy to the crystal lattice, and the resultis heat­
ing of the junction. At another junction, the carriers pass into a 
region with a higher energy; they borrow the lacking energy from 
the lattice, which results in cooling of the junction. 

When two semiconductors with different kinds of conduction are 
in contact, the Peltier effect has a different explanation. In this case, 
the electrons and holes at one junction move toward one another. 
Upon meeting, they recombine: an electron in the conduction band 
of the n-semiconductor after getting into the p-semiconductor occu­
pies the place of a hole in the valence band. When this occurs, the 
energy is released that is needed for the formation of a free electron 
in the n-semiconductor and of a hole in the p-semiconductor; the 
kinetic energy of the electron and the hole is also released. All this 
energy is transferred to the crystal lattice and heats the junction. 
At the other junction, the current flowing through it draws off the 
electronE. and the holes from the boundary between the semiconduc­
tors. The decrease in the number of current carriers in the boundary 
region is replenished as a result of the birth of electron and hole pairs 
(here an electron from the valence band of the p-semiconductor pas­
ses over into the conduction band of then-semiconductor). The energy 
used for the formation of a pair is borrowed from the lattice-the 
junction cools. 

The Soviet physicist Abram Joffe (1880-1960) presented the idea 
of using the Peltier effect for designing refrigerating installations. 
The working element of such arrangements is a battery of alternat· 
ing n- and p-type semiconductors. The junctions of one kind (cor­
responding, for example, to a transition from n top) are introduced 
into the space to be cooled, and of the other kind (corresponding to a 
transition from p ton) are led out. With an appropriate direction of 
the current, the internal junctions absorb heat and lower the tem­
perature of the space surrounding them, while the external junctions 
give up heat to the surroundings. 

The Thomson Effect. In 1856, the British physicist William Thom­
son (Lord Kelvin) predicted on the basis of thermodynamic consid­
erations that a heat similar to the Peltier heat should be liberated 
(or absorbed) when a current flows through a homogeneous conductor­
along which there is a temperature gradient. This effect was later­
discovered experimentally and was called the Thomson effect. 

The amount of heat liberated as a result of the Thomson effect in 
unit time in a conductor element of length dl i~ 

dT ) dQ=r:l dldl (9.17 

Here I = current 
dT!dl = temperature gradient 

't = proportionality constant known as the Thomson coef­
ficient. 
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The Thomson effect J.s explaiued. hy analogy with t!•e Peftier 
effeet. Assume that a cu:tnmt :iJ flowing in thn d.iredion of ine!'easing· 
tempe.rature. If the eununt earrim:~ are nle·~ttnns, they wi.li pass 
during their motion from places .ha vmg a lrigher ':.eDhfl<'l'V turG (and, 
consequently, a higher average t:J.H~tgy) w pi<ll~es having a lower tom 
perature (and a lower average (HlBrgy). 'J'he cieetfons will give up 
their ex:eess energy to tho l;Htiee, whid1 will rt:U1Jir. in the Lherat.Iun 
of he;:tt. If holes are tll(~ cunoi1i, L;Jrrinr.'>, thon tlHl effc·~•· w:i.:U have thi': 
opposite sign. 

Currents can be recti lied. lH1d v oltag·e., and powers ampHfied with 
the aid of semiconductf•l' d.ev .i.t>.e:·; known :Js ~;en:Jicond uetor (or crystal) 
diodes and triodes, Senuconduei.ol' triode:<> are aJsn ealbd transif;tors. 

The main element of Stllnir.ondw·.t.or dev:icGs is i.Jw so .. ni<llul p n, 
junction .. It is a thin layet on t.hu lJOI.<idary l.ul\.WHen two regions of 
the iiame crystal differing iu the kind of impunty !\OUth.tetic•n. Sneh 
a junctiou is manufacLUJ'f:d hy taking, for exampJe, ~~ :uon<l\:ryt·,t.JJ 
of very pure gennaniunt with an t·)lectnmic eOtld!lGtinn mechanism 
(duo Lo negligible re5id.ues <,f .\tnilhtii.ie:·;). A tUn plai.o is cut out of 
the crystal and a sm&.ll pieen of :i.rl•li;;r.t is fg.~(1d in tc; it at oM ~>ide. 
During this opernt.ion, which i:; coudw;tud in a V;Jeuum Ill.' in an ai:JTIO­
sphere of an inert gas, the indi.um Ji.o,.ns dji'fy:;,,, i.nto Ute geananium 
to a certain depth. In the regioll into which tlJe wdium <1tm.Hs j'lf)Jto· 

tr·ate, the conductauee of the germ;;~nim,, beNHnHs of tho it·nle Lyp<:. 
A p-n junction appears ('lj, Uw botmd;.:.·y i:,;' thiJ region. There :=uG 
also other ways of obtaining p·J~ juJwti(,m;. 

Figure 9.21 shows hmv the impw:ity c.oJJceul;lJ\tiou chtwge<J in a 
direction at right angles to i L•n houurh i'Y 1nyer. The r:Ht.ioril.y current 
carriers in the p-region anj tho holes fonnt>d as a resLtH. of the eaptm:e 
of electrons by impurity atoms; tlle i)Ccuptots ·h~Jcome negative .kus 
(Fig. 9.22; the eirr.les are iOJ\~;, !.he bl;l,;k •l(~t3 ar{' e_le,(}_tr_ons, and the 
white dots ~re holes). fn addition, the pl'ugi{)tl cont.ai.m> a ;;;mail nmn­
ber of minority carriers--·-(~·teet:rons appei'lring ow1ng to iho tnutsfer 
of electrons from. the valene~~ ha11d (tit'N'.tly into tl:~e conduetiml bRml 
by thermal motion (tltis proeefii'i ol.'io incrf;a.'JB:i i'.!h'J DU111her of holes 
somewhat). In the n· rt!gino, the II•tlj<Jtity cuo·eHt ~;:,lJ:•:iors drc t.il:~ 
P.]ectrons given up by t.h·~ dtHlm·s iuttl the condud.ion. h1:1nd (i.Iw do­
nors themselvt~s trarwform into positive iowl); i.hn tr<:tJ!;;i·,.ion 1)I elec­
trons hom the valence bawl to the e•:;nd w:tion hand occ-uuing .:..t 
the expense of thermal motion leads in the, formation n.f a sn•a U nmn­
her of holet>, minority carrinr.~; for :J1!F ror~·inn. 

Diffusing in opposit.o dirnctiens thl"iillt;'h tlw hu!IHdaT'Y lByer, the 
holes and electrons wcomhine with o11e ,m,i!.he1·. 'Therefon;, tl>8 p-n 
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junction is greatly depleted of current carriers and acquires a high 
resistance. At the same time, an electrical double layer appears on 
the boundary between the regions. It is formed by the negative ions 
of the acceptor impurity whose charge is now no longer compensated 

Fig. 9.21 

by the holes, and by the positive ions of the donor impurity whose 
charge is now no longer compensated by the electrons (see Fig. 9.22). 
The electric field in this layer is directed so that it counteracts the 
further transition of the majority carriers through the layer. Equi­
librium sets in at such a height of the potential barrier at which the 
Fermi levels of the two re­
gions are at the same height 
(Fig. 9.23). 

The bending of the energy 
bands in the region of the 
junction is due to the fact 
that the potential of the p· 
region in the state of equi­
li br i urn is lower than that of 

~~ Cot;duction bond 
Acceptor 
levels 

--.1-.b....-----::;:p::_ -Fermi 
JJonor level 
~ ForOiddMband 

, J/alence band · 

the n--region; accordingly, F. 9 23 
the potential energy of an lg. · 
electron in the p-region is 
hi()'her thiln in then-region. The bottom boundary of the valence band 
rri~es the change in the potential energy of an electron Ep.e in a 
direction at right angles to the junction (see the solid curve in Fig. 
!).24a). The charge of a hole is opposite to that of an eleetron, there­
fore its potential energy E p. h is higher where Ep, e is lower, and vice 
versa (see the dash curve in Fig. 9.24a). 

In the state of equilibrium, a certain number of majority carriers 
succeed in surmounting the potential harrier, and as a result t~e 
small current ImaJ flows through the juuction (Fig. 9.24a). This 
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current is compensated by the counter current I rntn set up by the 
minority carriers. There are very few minority carriers, but they 
easily penetrate through the boundary of the regions, "rolling down" 
from the potential barrier. The value of I rntn is determined by the 
number of minority carriers given birth to every second and does not 
virtually depend on the height of the potential barrier. The value of 
Imai• on the contrary, depends greatly on the height of the barrier. 
Equilibrium sets in exactly at such a height of the potential barrier 
at which both currents I mnJ and I rntn compensate each other. 

Let us supply to a crystal an external voltage* directed so that. 
the plus is connected to the p-region and the minus to the n-region 

Llxt e. -~-E.po 

-~ 
lmin ::_.lmaj 

.Jr -·:L ~ -- E.p h 
/ . 

I 
I 

I P n / , 
_ 1 1 1 "- iil&L~~~ Ep,e /1 

<D<DC±l'/1 1\.\::iGGE :1 11 
----- I p.e I - ,( I \.-

<t) <D (:£)'.,/ ...._~ - - r t t ----- t Lp,e 
p-n }tinction p-n jt~ndton p-n }tinction 

(a) (b) (c) 

Fig. 9.24 

(such a voltage is called forward). The result is a growth in the poten­
tial (i.e. an increase in Ep,h and a decrease in Ep,e) of the p-region 
and a lowering of the potential (i.e. a decrease in Ep.h and an increase 
in Ep. e) of the n-region (Fig. 9.24b). As a result, the height of the 
potential barrier will diminish, and the current I mal will grow. The 
current I rntn• however, will remain virtually unchanged (we have 
already noted that it is almost independent of the barrier height). 
Hence, the resultant current will become different from zero. The 
lowering of the potential barrier is proportional to the applied volt­
age (it equals eU). With lowering of the barrier height, the current 
of the majority carriers and, consequently, the resultant current, 
rapidly grow. Thus, in the direction from the p-region to then-region, 
a p-n junction passes a current that rapidly grows with an increase 
in the applied voltage. This direction is called the forward one. 

Figure 9.25 gives a volt-ampere characteristic of a p-n junction. 
The electric field set up in a crystal when a forward voltage is applied 

* An external voltage violates equilibrium so that the Fermi levels of both 
regions become displaced relative to each other. With a forward voltage, the 
Fermi level in the p-region is lower than in the n-region. 
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"forces" the majority carriers toward the boundary between the 
regions, owing to which the width of the transition layer depleted of 
carriers (this layer is also known as the depletion layer-see !}.x in 
Fig. 9.24) diminishes. The resistance of the junction falls off accord­
ingly, the greater, the higher is the voltage. Hence, the volt-ampe're 
characteristic in the transition region is not a straight line (see the 
right-hand branch of the curve in Fig. 9.25). 

Now let us apply to a crystal a voltage of a direction such that 
the plus is ~onnected to the n-region and the min:gs to the p-region 
(this voltage is called a re!!..rse one). This will result in elevation 

u 

Fig. 9.25 Fig. 9.26 

of the potential barrier and a corresponding reduction in the current 
of the majority carriers I maJ (Fig. 9.24c). The resultant current set 
up (called the reverse one) rapidly reaches saturation (i.e. stops de­
pending on U) and becomes equal to I mln· Thus, in the direction from 
the n-region to the p-region (called the reverse or cut-off direction), 
a p-n junction passes a weak current completely due to the minority 
carriers. Only at a very high reverse voltage does the current begin 
to grow very sharply, which is the result of electrical breakdown of 
the junction (see the left-hand branch of the curve in Fig. 9.25). 
Every p-n junction is characterized by its extreme value of the re­
verse voltage that it can withstand without breakdown. 

Examination of Fig. 9.25 shows that a p-n junction has a much 
higher resistance in the reverse direction than in the forward one. 
The explanation is that the field produced in ·a crystal when a re­
verse voltage is imposed on it "pulls back" the majority carriers 
from the boundary between the regions, which leads to a growth 
in the width of the depletion layer. The resistance of the junction 
grows accordingly. 

The different resistances in the forward and in the reverse direc­
tion make it possible to use p-n junctions for rectifying an alternat­
ing current. Figure 9.26 shows a graph of the current flowing throug? 
a junction when the applied voltage varies harmonically. In this 
case, the width of the depletion layer and the resistance of the junc­
tion pulsate, changing in step with the changes in the voltage. 
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. A ~emiconducto~ triode or transistor is a crystal with two p-n 
Junctwns. Dependmg on the sequence in which the regions with 
different kinds of conduction alternate, n-p-n and p-n-p transistors 
are distinguished. The middle part of a transistor is called its base. 
The regions adjoining the base at both sides and having a different 
kind of conduction than it form the emitter and the collector. 

Let us consider briefly the principle of operation of an n-p-n type 
transistor. Figure 9.27 shows how such a transistor is connected to. an 
amplifier circuit. A constant forward bias voltage U em is fed to the 
emitter-base junction, and a constant reverse bias voltage U col is 
fed to the base-collector junction. The alternating voltage U In being 

Emitter Base Collector ----x x~-~-· fp.h ee ,a.,_ __ f. 
--.:.- p.e 

(al ..---- fpn 

~· 
- (b~- fp,e 

Fig. 9.27 Fig. 9.28 

amplified is fed to the small input resistor R 1n· The amplified volt­
age Uout is taken off the output resistor Rout· With the signs of the 
bias voltages indicated in the diagram, the resistance of the emitter­
base junction is not high, whereas the resistance of the base-col­
lector junction, on the contrary, is very high. This makes it pos­
sible to use a resistor Rout having a high resistance. 

Figure 9.28a shows the change in the potential energy of the elec­
trons Ep, e (the solid curve) and of the holes Ep.h (the dash curve) 
when the bias voltages and input signal are absent. The connection 
of a forward voltage U em lowers the potential barrier at the first 
junction, while the connection of a reverse voltage Ucol elevates the 
potential barrier at the second junction (Fig. 9.28b). Flowing of a 
current in the emitter circuit is attended by the penetration of elec­
trons into the region of the base. The electrons that have penetrated 
into the base diffuse toward the collector. If the thickness of the 
base is small, almost all the electrons, without managing to recom­
bine, "roll down" the potential hill at the boundary between the base 
and the collector, and enter the collector circuit. 

The change in the current I em in the emitter circuit produced by 
the input voltage leads to a change in the number of electrons pene­
trating into the collector and, consequently, to almost the same 
change in the current leal in the collector circuit. Assume that leal ~ 

~ I em· Expressing these currents through the relevant voltages and 
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resistances, we find that U 1n/ R In ~ U out! Rout· Hence, 

U0ut Rout 
--~--

Uin R1n 

Since Rout ~ R In• the voltage Uout considerably exceeds the input 
voltage U1n. Thus, a transistor amplifies the voltage and power. 
The increased power taken from the device appears at the expense 
of the current source connected to the collector circuit. 

The operating principle of a p-n-p type transistor is similar to 
that described above for a type n-p-n transistor. The only difference 
is that the part of the electrons is played by the holes. 

9.6. The Barrier-Layer Photoelectric Effect 

Apart from the extrinsic photoelectric effect (usually called simply 
the photoelectric effect) treated in Sec. 2.2, there is also an intrinsic 
photoelectric effect observed in dielectrics and semiconductors. It 
consists in the redistribution of the elec-
trons among the energy levels due to the 
action of light. If the energy of a quantum 
tz(,, exceeds the width of the forbidden 
band, an electron that has absorbed a 
quantum passes from the valence band 
to the conduction band. The result is the 
appearance of an additional pair of cur­
rent carriers-an electron and a hole, 
which manifests itself in an increase in the 
electrical conductance of the substance. 

e--... ~-~--
t / + 

nw / 1 nw 
'VV'+- p / n ~ 

f /. t 
<±.> ./ : e 

------- I I 
I 

p-n junctwo 

Fig. 9.29 

If the latter contains impurities, thE- action of light may cause 
electrons to pass from the valence band onto levels of the impurity 
or from the impurity levels to the conduction band. In the first case, 
hole, and in the second, electron photoconduction appears. 

The intrinsic photoelectric effect underlies the functioning of 
photoresistors. The number of current carriers formed is proportional 
to the incident light flux. This is why photoresistors are used for pho­
tometric purposes. Photoresistors made from cadmium sulphide 
(CdS) are used in the visible part of the spectrum. Photoresistors 
made from the semiconductors PbS, PbSe, PbTe, and InSb are used 
as detectors of infrared radiation. 

The barrier-layer photoelectric effect is observed in the region of 
a p-n junction or on the boundary of a metal with a semiconductor. 
It consists in the setting up by light of an electromotive force (pho­
to-e.m.f.). Figure 9.29 shows the change in the potential energy of 
the electrons (solid curve) and holes (dash curve) in the region of 
a p-n junction. The carriers that are the minority ones for the given 
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region (electrons in the p-region and holes in the n-region) produced 
under the action of light penetrate through the junction without 
hindrance. The result is the accumulation of an excess positive 
charge in the p-region and of an excess negative charge in the n­
region. This leads to the appearance of a voltage applied to the 
junction that is exactly -the photoclectromotive force. 

If we connect a crystal with a p-n junction to an external load, 
a photocurrent will flow in it. When the illumination is not very 
great, this current is proportional to the light flux falling on the 
crystal. This underlies the operation of photoelectric photometers, 
in particular of the exposure meters used in photography. Several 
scores of series-connected silicon p-n junctions form a solar bat.tery. 
Such batteries are used for supplying power to radio equipment on 
spaceships and on satellites of the Earth. 



PART IV 

CHAPTER 10 

PHYSICS OF 
THE ATOMIC 
NUCLEUS AND 
ELEMENTARY 
PARTICLES 

THE ATOMIC NUCLEUS 

10.1. Composition and Characteristic 
of the Atomic Nucleus 

The nucleus of the simplest atom-the hydrogen atom-consists 
of a single elementary particle called a proton. The nuclei of all 
the other atoms consist of two kinds of elementary particles-pro­
tons and neutrons. These particles are known as nucleons. 

The Proton. The proton (p) has a charge of + e and a mass of 

mp=938.26 MeV* (10.1) 

We shall indicate for comparison that the mass of an electron is 

me = 0.511 MeV (10.2) 

A comparison of Eqs. (10.1) and (10.2) shows that mp = 1836me. 
A proton has a spin equal to one-half (s = 1/2), and an intrinsic 

magnetic moment 
(10.3) 

where 

~nuc=-2 elt =5.05x10-24 erg/Gs (10.4) 
mpc 

is a unit of magnetic moment called the nuclear magneton. It follows 
from a comparison with Eq. (5.42) that llnuc is 111836-th of the Bohr 
magneton lAB· Hence, the intrinsic magnetic moment of a proton 
is about 11660-th of the magnetic moment of an electron. 

The Neutron. The neutron (n) was discovered in 1932 by the British 
physicist James Chadwick (born 1891). The electric charge of this 

* In nuclear physics, it is customary practice to express masses in units 
of energy, multiplying them by c2 for this purpose. A unit of mass called the 
atomic mass unit is also employed (see Sec. 10.2 of Vol. I, p. 267); 1 amu = 
= 931.44 MeV. 



particle is 1.ero, and its mass 
mn = \:l39.55 MeV (10.5) 

is very close to that of a proton. The difference between the masses 
of a neutron and a proton mn - mp is 1.3 MeV, i.e. 2.5me. 

A neutron has a spin equal to one-half (s = 1/2) and (not.with. 
standing the absence of an electric charge) an intrinsic magnetic 
moment equal to 

!An= -L91f.tnuc (10.6) 

(the minus sign indicates that the directions of the intrinsic mec'han­
ical angular momeutum and oi the magnetic moment are opposit13). 
This astonishing fact will b(l explained in Sec. 10.4. 

We must note that the ratio of the experimental values of ).tp and 

!An with a high degree of accuraey equals ·---}.This was noted oniy 

after such a value had been obtained th!~oretkally. 
In the free state, a neutron is unstable (radioactive)-it sponta­

neously decays transforming into a proton and emitting an electron 
(e-) and another partic.le called an antineutrino (~) (see Sec. 1 1.8). 
The half-life (i.e. the time during which half of the original number 
of neutrons decays) is about 12 minutes. The decay scheme ean be 
written as follows: 

n--rp+e-+-; (10.7) 

The mass of an antineutrino is zero*. The mass of a IJeutron is greater 
than that of a proton by 2 . ."ime. Hencn, the mass of a neutron exceeds 
the total mass of the particles in tlw .right-hand side of Eq. (10.7) 
hy 1.5me, i.e. by 0.77 MeV. This energy is liberated when a neutron 
decays as t.hc kinetic energy of the particles formed. 

Characteristics of an A~omac Nudeus. One of the most important 
characteristics of an atomic nuc.lm1s i:; its charge number (or proton 
number) z. It eqnals the number of protons in the nucleus and de­
termines its charge, which equals -1 Ze. The number Z determines 
the serial number of a chemical element in Mendelcev's periodic 
table. It is therefore also }mown as the at.omic number of a nucleus. 

The number of nucleoJJs (i.e. the total number of protons and 
neutrons) in a nucleus is designated hy the letter A <~.IHl is called the 
mass number of the nuclew;. The number of neutrons in a nucleus 
is N ==A-Z. 

Nuclei are designated by the symbol 
zXA 

where X stands for the chemical symbol of a given element. The 
right-hand superscript is the mass number, and the left-hand sub~ 

• Here and in the following, by mass we understand the invariant quantity, 
i.e. the rest mass. 
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~cript is the atomic number (the latter symbol is often omitted). 
The mass number is sometimes written at the left of the symbol of 
a chemical element (1X) instead of at its right. 

Nuclei having identical values of Z but different ones of A are 
ealled isotopes. .l\'Iost chemical elements have several stable iso­
topes. For example, oxygen has three stable isotopes 80 16 , 80 17 , 80 18 , 

and tin has ten. 
Hydrogen has three isotopes: 
liP-ordinary hydrogen, or protium (Z = 1, N = 0), 
11!2--heavy hydrogen, or deuterium (Z = 1, N = 1), and 
1IP-- tritium (Z = 1, N =-= 2)*. 
Protium and deuterium are stable, and tritium is radioactive. 
Nuclei havi11g the same mass number A are called isobars. We 

can eite 18Ar40 and 20Ca40 as an example. Nuclei having the same 
number of neutrons N = A ---- Z are known as isotones (60 3, 7N14). 

Finl'11ly, there are rBdioactive nuclei having identical Z's and A's, 
but differing in their half-lives. They are called isomers. For exam­
ple, we know of two isomer·s of the nucleus 35Br80 , the half-life of 
one of which is 18 minutes, and of the other, 4.4 hours. 

About 1500 nuclei are known differing either in Z, or in A, or in 
both together. About one-fifth of them are stable, the remaining ones 
are radioactive. Many nuclei were obtained artificially with the 
aid of nucle11r reactions. 

In nature, elements with an atomic number Z from 1 to 92, exclud­
ing technetium (Tc, Z ~= 43) and promethium (Pm, Z = 61) are 
encountered. Plutonium (Pu, Z = 94), after being obtained arti­
ficially, was detected in minute amounts in the natural mineral 
pitchblende. The other transuranium elements (i.e. elements after 
uranium), with Z from 93 to 107, were obtained artificially by means 
of various nnclear reaetions. 

The transuranium elements curium (96 Cm), einsteinium (99 Es), 
fermin1n (100 Fm) and mendelevium (101 Mel) were named in honour 
of the outstanding scientists Pierre rmd Marie Curie, Albert Einstein, 
Enrico Fermi and Dmitri Mendeleev. Lawrencium (103 Lw) was 
ne~med in honour of the inventor of the cyclotron Ernest Lawrence. 
I\nrchatovium (104 Ku) was named in honour ·of the outstanding 
Soviet physieist. Igor K11rchatov. 

Some of the transuranium elements, including kurchatovium and 
the elements 106 and 107, were obtained in the Laboratory of Nuclear· 
Reactions at the Joint Institute for Nuclear Research at Dubna by 
the Soviet scientist Georgi Flerov and his collaborators. 

Dimensions of Nuclei. In a first approximation, a nucleus may be 
considered as a sphere whose radius is determined quite accurately 

* Deuterium is also denoted by the symbol D, and tritium by the symbol T. 
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by the formula 

r = 1.3 x 10-t3A113 em= 1.3A113 Fm (10.8) 

(Fm-fermi-is the name of a length unit employed in nuclear phys­
ics and equal to 10-13 em). It follows from Eq. (10.8) that the volume 
of a nucleus is proportional to the number of nucleons in it. Thus, 
the density of matter in all nuclei is approximately the same. 

Spin of a Nucleus. The spins of the nucleons are summated into 

the resultant spin of the nucleus. The spin of a nucleon is ; . There­

fore, the nuclear spin quantum number I will be a half-integer with 
an odd number of nucleons A and an integer or zero with an even 
number of nucleons A. The spins I of nuclei do not exceed several 
units. This points to the fact that the spins of most of the nucleons 
in a nucleus mutually compensate one another, being antiparallel. 
In all even-even nuclei (i.e. nuclei with an even num.ber of protons 
and an even number of neutrons), the spin is zero. 

The mechanical angular momentum of a nucleus M1 is added to the 
momentum of the electron shell M, to form the total angular mo­
mentum of an atom MF that is determined by the quantum number F. 

The interaction of the magnetic moments of the electrons and the 
nucleus leads to the fact that the states of an atom corresponding to 
·different mutual orientations of M1 and MJ (i.e. to different F's) 
have a slightly differing energy. The interaction of the moments 
p,L and P,s is responsible for the fine structure of spectra (see 
Sec. 5.4). The interaction of p,1 and !J-J determines the hyperfme 
structure of atomic spectra. The splitting of the spectral lines cor­
responding to the hyperfine structure is so small (of the order of 
several hundredths of an angstrom) that it can be observed only with 
the aid of instruments having the highest possible resolving power. 

10.2. Mass and Binding Energy of a Nucleus 

The mass of a nucleus mnuc is always smaller than the sum of the 
masses of the particles it consists of. The reason is that when nu­
cleons combine to form a nucleus, the binding energy of the nucleons 
is liberated. 

The rest energy of a particle is associated with its mass by the 
relatiou £ 0 = mc2 [see Eq. (8.40) of Vol. I, p. 241, and the beginning 
of the first paragraph on p. 242]. Hence, the energy of a nucleus at 
rest is less than the total energy of the non-interacting nucleons at 
rest by the amount 

(10.9) 
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It is exactly this quantity that is the binding energy of the nucleons 
in a nucleus. It equals the work that must be done to separate the 
nucleons forming the nucleus and to remove them from one another 
to distances virtually excluding their interaction. 

Equation (10.9) is practically not violated if we substitute the 
mass of a hydrogen atom mH for the mass of a proton, and the mass 
of an atom ma for that of its nucleus mnuc· Indeed, if we disregard 
the comparatively negligible binding energy of the electrons to the 
nuclei, this su'bstitution will signify the addition to the minuend 
and the subtrahend in braces of an identical quantity equal to Zme. 
Thus, Eq. (10.9) can be written in the form 

Eb = c2 {[ZmH +(A- Z) m0]- ma} (10.10) 

The latter equation is more convenient than Eq. (10.9) because usu­
ally the masses of atoms, and not of nuclei, are tabulated. 

The binding energy per nucleon, i.e. Eb/ A, is sometimes called 
the binding fraction. 

The quantity 
Ll = [Zmp +(A- Z) mnJ- mnuc (10.11) 

is known as the mass defect of a nucleus*. The mass defect is asso­
ciated with the binding energy by the relation Ll = Eb/c2 • 

Let us calculate the binding energy of the nucleons in the nucleus 
2He·1 that includes two protons (Z = 2) and two neutrons (A - Z = 2). 
The mass of the atom 2H~4 is 4.002 60 amu, which 3728.0 MeV cor­
respond to. The mass of a hydrogen atom 1I-P is 1.008 15 amu [938. 7 
MeV; compare with Eq. (10.1)1. The mass of a neutron is 939.55 MeV 
[see Eq. (10.5)1. Using these values in Eq. (10.10), we get 

Eb = (2 X 938.7 + 2 X 939.55) - 3728.0 = 28.5 MeV 

The binding energy of a helium nucleus per nucleon is 7.1 MeV. 
We shall indicate for comparison that the binding energy of the 
valence electrons in atoms has a value that is 1/106 of this one (of the 
order of 10 eV). The binding energy per nucleon (Eb/A) for other 
nuclei has approximately the same value as for helium. 

Figure 10.1 depicts a graph showing how the binding energy per 
nucleon (the binding fraction) Eb/A depends on the mass number A. 
The nucleons are bound most stongly in nuclei having mass numbers 
of the order of 50-60 (i.e. for the elements from Cr to Zn). The binding 
energy for these nuclei reaches 8. 7 MeV /nucleon. A growth in A is 

* The mass defect was originally defined as the difference between the 
numeric~l value of the mass of an atom ma expressed in atomic mass units and 
the mass number A : 

ll = ma -A 
This quantity ·has a less clear physical meaning than that determined by 
Eq. (10.1t). 



attended by gradual tliminishing of the binding energy per nucleon; 
for the heaviest nat11n1l element----uranium--it is 7.5 MeV/nucleon. 
Such a dependence of the binding energy per nucleon on the mass num­
ber makes two prncecJses possible from the energy viewpoint: (1) the 
fission of heavy nuclei into several lighter ones, and (2) the fusion of 
light nuclei into a single nuel1:1us. Both proeesses should be attended 
by t.he liberation of a great amount of energy. For example, the fis­
sioll of (Hle nucleus with the mass number A = 240 (the binding 
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Fig. 10.1 

energy per nnclHon is 7.'D MeV) into two nuclei with mass numbers 
of A "'' 120 (the binding energ-y per nudeon is 8.5 MeV) would re­
sult .in the Jiberption vf enrrgy amounting to 240 MeV. The fusion 
of two nuclei of hPJlVY hydrogen 11-P into R helium nucleus 2He• 
would resn.lt in the liherntion or miergy equal to 24 l\leV. We shall 
ind.ienle for comp;u·ison tlH1t when one atom of c.arbon combines 
with two atoms of oxygen (the c:omlJUstion of coal to C0 2), energy 
of the order of f> c V i~ l iherR ted. 

Nnelei with vahH>.S of the ml'lss number A ranging from 50 to 60 
are the most profitable from 8n Pnergy viewpoint. In this connection, 
the qnesl.ion appenrs: why ;;~nJ r111clPi with other values of A stable? 
The ::~nswer is as follow:'i. To divide into several parts, a heavy nu­
<:.leus m nst TH\SS through a nllrnbcr of intrrmed i ate states whose energy 
exceeds l.hat of the gronnd st.nt.e of the nucleus. l-Ienee, the nucleus 
needs additional energy (the activation ~mergy) for the fission pro­
cess. Thi" el!ergy js thP.n re1.\mled, heing added to the energy liberat­
ed upon ftssion as a res11lt of il clw ngo in the binding energy. In 
ordinary conditions, H nucleus does uot have where to take the acti­
v:,t.i.on energy from, mui as a resu 1 t. heavy nuclei do not undergo 
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spontaneous fission. The activation energy can he eommunicated 
to a heavy nuclens hy an additional neutron I hat it captures. The 
process of fission of uranium or plutonium nuclei under the action 
of the neutrons captured by the nuclei underlies the operation of 
nudear reactors and the conventional atomic bomb. 

As regards light nuclei, for fusion into a single nucleus they Blust 
approach one another to a very close distance (-...,10-·13 em). Such 
approaching of the nuclei is prevented by the Coulomb repulsion 
between them. To overcome this repulsion, the nuclei must travel 
with enormous speeds corresponding to tem veratures of the order 
of several hundred millions of kelvins. For this reason, the process 
of fusion of light nuclei is called a themwnuclear reaeHon. Ther­
monuclear reactions proceed in the interior ot' lhe Sun and stars. 
In the conditions of the Earth, uncontrolled thermonudear reactiouns 
were meanwhile aecomplished in the explosions of hydrogen bombs. 
Scientists of a number of countries <W.l pe1·sistently working on the 
finding of ways of carrying out controllable thermonudear fusion. 
Soviet physicists occupy one of the leading places in this field. 

10.3. Models of the Atomic Nucleus 

Attempts to construct a theory of the nucleus are confronled by 
two serious diffieulties: (t) the inadequacy of ou knowledge of the 
forces acting between nucleons, and (2) the exeeediugly great Cltm­
bersomeness of the quantum problem of many bodies (a nucleus with 
the mass number A is a system of A bodies). These difficulties make 
it necessary to follow the path of creating nudear models. The latter 
permit us to describe ·a delinite collection of propertif)s of a nucleus 
with the aid of eompar·atively simple mathematical means. None of 
such models can g·ive an exhaustive description of a nucleus. There­
fore, several models have to be used, each. of wluch deseribes its own 
collection of the properties of a Jtuci.Hus and its oWil circle of pheno­
mena. Each model contains arbitrary parameters whose values are 
chosen so as to obtain agreement with experimental results. 

It is impossible to describe all the models of a nucleus that exist 
within the scope of a general course of physics. We are foreed to re­
strict ourselves to a brief narration only about two of lhem--·the li­
quid-drop and the shell models. 

The Liquid-Drop Model. This model was pi:oposed by the Soviet 
physicist Yakov Frenkel in 19;39 and was Llwn developed by the 
Danish physicist Niels Bohr and other scientists. Frenkd gave atten­
tion to the similarity between an atomic nucleus and a liquid drop, 
consisting in that in both cases the forees acting between the consti­
tuent particles-moleeules in the liquid and nucleons in the nucleus­
are short-range ones. In addition, the virtually identical density of 
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the matter in various nuclei points to the extremely low compressi­
bility of the nuclear matter. Liquids have a compressibility that 
is just as low. This circumstance gives us grounds to consider a nu­
cleus to be similar to a charged drop of a liquid. 

The liquid-drop model made it possible to derive a semi-empirical 
formula for the binding energy of the particles in a nucleus. This 
model also assisted in explaining many other phenomena, in parti­
cular the process of fission of heavy nuclei. 

The Shell Model. The nuclear shell model was developed _by th& 
German physicist Maria Goeppert-Mayer and other scientists. In 
this model, the nucleons are considered to move independently of 
one another in an averaged centrally symmetrical field. Accordingly~ 
there are discrete energy levels (like the levels of an atom) filled 
with nucleons with account taken of the Pauli principle (we remind 
our reader that the spin of nucleons is 1/2). These levels are grouped 
into shells, each of which can contain a definite number of nucleons. 
A completely filled shell is an especially stable formation. 

In accordance with experimental data, those nuclei are especially 
stable in which the number of protons, or the number of neutron~J 
(or both these numbers) is 

2, 8, 20, 28, 50, 82, 126 
These numbers were named magic. Nuclei in which the number of 
protons Z or the number of neutrons N is magic (i.e. especially stable 
nuclei) are also called magic. Nuclei in which both Z and N are 
magic are called doubly magic. 

Altogether five doubly magic nuclei are known: 
2He' (Z = 2, N = 2), 80 16 (Z = 8, N = 8), 
20Ca40 (Z = 20, N = 20), 20Ca48 (Z = 20, N = 28), 
82Pb208 (Z = 82, N = 126) 

These nuclei are especially stable. In particular, the especial stability 
of the helium nucleus 2He4 manifests itself in that it is the only com­
posite particle emitted by heavy nuclei in radioactive decay (it is 
called an alpha-particle). 

10 .. 4. Nuclear Forces 
The tremendous binding energy of the nucleons in a nucleus indi­

cates that there is very intensive interaction between nucleons. 
This interaction has the nature of attraction. It keeps the nucleons 
at distances of -10-13 em from one another notwithstanding the 
strong Coulomb repulsion between protons. The nuclear interaction 
between nucleons has been named strong interaction. It can be de­
scribed with the aid of a field of nuclear forces. Let us list the di­
stinguishing features of these forces. 
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1. Nuclear forces are short-range ones. Their radius of action is 
of the order of 10-13 em. At distances appreciably smaller than; 
10-13 em, the attraction of nucleons is replaced by repulsion. 

2. Strong interaction does not depend on the charge of nucleons. 
The nuclear forces acting between two protons, between a proton 
and a neutron, or between two neutrons, have the same magnitude. 
This property is called the charge independence of nuclear forces. 

3. Nuclear forces depend on the mutual orientation of the spins 
of the nucleons. For example, a neutron and a proton are kept to­
gether, forming a nucleus of heavy hydrogen-a deuteron (or deuton) 
only if their spins are parallel to each other. 

4. Nuclear forces are not central ones. They cannot he represented 
as directed along the straight line connecting the centres of the inter­
acting nucleons. The non-central nature of nuclear forces follows, 
in particular, from the fact that they depend on the orientation of 
the nucleon spins. 

5. Nuclear forces have the property of saturation (this signifies 
that each nucleon in a nucleus interacts with a limited number of 
nucleons). Saturation manifests itself in that the binding energy per 
nucleon does not grow with an increase in the number of nucleons, 
hut remains approximately constant. In addition, the saturation 
of the nuclear forces is also indicated by the volume of a nucleus 
being proportional to the number of nucleons forming it [see 
Eq. (10.8)]. 

According to modern notions, strong interaction is due to the 
fact that nucleons virtually exchange particles that have been called 
mesons. To understand the essence of this process, let us first con­
sider what electromagnetic interaction looks like from the point 
of view of quantum. electrodynamics. 

Charged particles interact via an electromagnetic field. We know 
that this field can be represented as a collection of photons. As quan- · 
tum electrodynamics indicates, a process of interaction between two 
charged particles, for example, electrons, consists in an exchange 
of photons. Each particle sets up a field around itself that conti­
nuously emits and absorbs photons. The action of the field on the 
other particle manifests itself in its absorbing one of the photons 
emitted by the first partide. Such a description of the interaction 
cannot be understood literally. The photons by means of which the 
interaction is carried out are not ordinary real photons, but virtual 
ones. In quantum mechanics, the name virtual is applied to particles 
that cannot be detected during their lifetime. In this sense, virtual 
particles can be called imaginary ones. 

To better understand the meaning of the term "virtual", let us 
consider an electron at rest. The process of its setting up a field 
in the surrounding space can he represented by the equation 

e- +:!: e- + nffi (10.12) 
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The total energy of a photon and elect\·on is greater than that of an 
electron at rest. Consequently, the t;ansformation described by 
expression (10.12) is attended by violation of the law of energy 
conservation. For a virtual photon, howevel', this violation is 
seeming. According to quantum mechanics, the energy of a state 
existing during the time At is determinate only with the accuracy 
llE satisfying the uncertainty relation 

(10.13) 

[see formula (4.5)]. It follows from this expression that the energy 
of a system can experience the deviations llE whose duration l1t 
must not exceed the value determined by condition (10.13). Con­
sequently, if a virtual photon emitted by an electron is absorbed 
.by this or another electron before the time At = life elapses (e = 
= liw), then no violation of the law of energy conservation can be 
detected. 

When additional energy is imparted to an electron (this may hap­
pen, for instance, if it collides with another electron}, a real photon 
may be emitted instead of a virtual one, and it can exist for an un-· 
limitedly long time. 

During the time At= file determined by eondition (10.13}, 
a virtual photon can transmit interaction between points separated 
by the distance 

1i 
l=cM=c­e 

The energy of a photon e = fiw can be as small as desired (the fre­
quency w varies from 0 to oo). Tnerefore, the radius of action of 
electromagnetic forces is unlimited. If the particles exchanged by 
interacting electrons had a mass m other than zero, then the radius 
of action of the corresponding forces would be limited by the quan­
tity 

r = clltmax = c _li __ =c-.;..=..!!_~=-= 1\c 
emtn me me 

where 1>.c is the Compton wavelength of a given particle [see 
Eq. (2.24)1. We have assumed that the particle which is the carrier 
of the interaction is moving with the speed c. 

In 1934, the Soviet physicist Igor Tamm (1895-1971) advanced 
the assumption that the interaction between nucleons is also trans­
mitted by means of virtual particles. At that time, only the photon, 
electron, positron, and neutrino were known in addition to nucleons. 
The heaviest of these particles-the electron--has a Compton wave­
length 1>.c = 3.86 X 10-11 em [see Eq. (2.25)1 that exceeds the radius 
of action of nuelear forces by two orders of magnitude. 1\:!oreover, 
the magnitude of the forces that could be due to virtual electrons, as 
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calculations have shown, is exceedingly low. Thus, the first attempt 
to explain nuclear forces with the aid of an exchange of virtual 
particles was unsuccessful. 

In 1935, the Japanese physicist Hideki Yukawa (horn 1907) 
advanced the bold hypothesis that particles having a mass from 
200 to 300 times that of an electron exist in nature, although not 
yet detected, and that it is exactly these particles that play the 
part of carriers of nuclear interaction, in the same way as photons 
are carriers of eleetromagnetic interaction. Yukawa called these 
hypothetic particles heavy photons. In connection with the fact 
that as regards the magnitude of their mass these particles occupy 
an intermediate position between electrons and nucleons, they were 
later called mesons (the Greek word "mesos" means middle). 

In 1936 the American physicists C. Anderson and S. Neddermeyer 
detected particles with a mass of 207me in cosmic rays. It was ini­
tially assumed that these particles, called J.t-mesons or muons, are 
the carriers of interaction predicted by Yukawa. It was later estab­
lished, however, that muons interact very weakly with nucleons, so 
that they cannot be responsible for nuclear interactions. Only in 
1947 did C. Lattes, G. Occhialini, and C. Powell discover another 
kind of meson in cosmic radiation--the so-caHed n-mesons, or pions, 
which were found to be the carriers of nuclear forces predicted 12 
years earlier by Yukawa. 

There are positive (n +), negative (n-), and neutral (n°) mesons. 
The charge of n •- and n --mesons equals the elementary charge e. 
The mass of charged pions is the same and equals 273me (140 MeV}, 
the mass of a n°-meson is 264me (135 MeV). The spin of both charged 
and of the neutral n-meson is zero (s ==~ 0). All three particles are 
unstable. The lifctinie of n +_ and n--mesons is 2.60 X 10-s s, and 
of a n°-meson is 0.8 X 10-16 s. 

The overwhelming part of eharged n-mesons decay according to 
the scheme 

n'~!l++v, ( 10.14) 

(J.t + and J.t- are a positive and a negative muon, respectively, v is 
a neutrino, and :,; an antineutrino). On an average, 2.5 decays in 
a million proceed according to other schemes (for example, :n: -
-+ e + v; :n:- n° + e + v, etc.; when n +decays, e+, i.e. a positron, 
is formed, and when n- decays, e-, i.e. an electron, is formed). 

On an average, 08.8 per cent of n°··mesons decay iuto two gamma 
quanta: 

n'-+ y + y (10.15) 

The remaining 1.2 per cent of the decays follow the schemes 

:n:o --+- e+ + e- + -v; :n: 0 _,.. e+ + e- -!- e+ + e-; 
no·~- y + y + y 
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The particles called !-'--mesons or muons belong to the class of 
leptons (see Sec. 11.1), and not mesons. We shall therefore call 
them muons in the following. Muons have a positive (!l +) or a nega­
tive (:nY) charge equal to the elementary charge e (no neutral muons 
exist). The mass of a muon is 207me (106 MeV), its spin is one-half 
(s = 112). Muons, like n-mesons, are not stable. They decay accord­
ing to the scheme 

fl+-+e++v+v, ,...-_.e-+v+v (10.16) 

The lifetime of both muons is the same and equals 2.2 X 10-6 s. 
Let us now consider the exchange interaction between nucleons. 

As a result of the virtual processes 

p =+± n + n+ (10.17) 
n =+± p + n- (10.18) 

p =+± p + n°; n =+± n + n° (10.19) 

a nucleon is surrounded by a cloud of virtual n-mesons forming 
a field of nuclear forces. The absorption of these mesons by another 
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Fig. 10.2 

nucleon leads to strong interaction between nucleons according 
to one of the following schemes: 

(1) p+ n=+±n+n++n~n+p 
A proton emits a virtual n +-meson and transforms into a neutron. 
The meson is absorbed by a neutron that, as a result, transforms 
into a proton. Next, the same process occurs in the reverse direction 
(Fig. 10.2a). Each of the interacting nucleons spends part of its 
time in the charged state and part in the neutral one. 

(2) n + p +± p + n- + p =+± p + n 
A neutron and a proton exchange n--mesons (Fig. 10.2b). 

(3) p + n +% p + n° + n ~ p + n 

P + p +% p + no + p +t: P + p 

n + n +± n + n° + n ~ n + n 
The nucleons exchange n°-mesons (Fig. 10.2c). 



The Atomic Nucleus 243 

The first of the three processes described above is confirmed 
experimentally in the scattering of neutrons on protons. When 
a beam of neutrons passes through hydrogen, protons appear in the 
beam. Many of them have the same energy and direction of motion 
as the incident neutrons. A corresponding number of neutrons 
practically at rest is detected in the target. It is absolutely improb­
able that such a large number of neutrons completely transmitted 
their momentum to the protons previously at rest as a result of head­
on collisions. It therefore becomes necessary to acknowledge that 
part of the neutrons flying near pro­
tons capture one of the virtual n + 
mesons. The result is the conversion 
of a neutron into a proton, while the 
proton that has lost its charge trans­
forms into a neutron (Fig. 10.3). 

If energy equivalent to the mass 
of a n-meson is communicated to 
a nucleon, then the virtual n-meson 

-0--­
;r4, 
® 

----~ 

Fig. 10.3 

can become real. The required energy can be communicated upon the 
collision of sufficiently accelerated nucleons (or nuclei), or when a 
nucleon absorbs a gamma-quantum. At very high energies of the 
colliding particles, several real n-mesons may appear. 

Now we are in a position to explain the existence of a magnetic 
moment of a neutron and the anomalous value of the magnetic 
moment of a proton (see Sec. 10.1). In accordance with process 
(10.18), a neutron spends part of its time in the virtual state (p + n-). 
The orbital motion of the n --meson leads to the setting up of the 
negative magnetic moment observed in the neutron. The anomalous 
magnetic moment of a proton (2. 79fLnuc instead of one nuclear mag­
neton) can also be explained by the orbital motion of a n +-meson 
during the time interval when the proton is in the virtual state 
(n + n+), 

10.5. Radioactivity 

Radioactivity is defined as the spontaneous transformation of 
atomic nuclei into other ones attended by the emission of elementary 
particles. Only unstable nuclei undergo such transformations. 
Radioactive processes include (1) alpha decay, (2) beta decay (includ­
ing the capture of an electron), (3) gamma radiation of nuclei, (4) 
spontaneous fission of heavy nuclei, and (5) proton radioactivity. 

Radioactivity observed in nuclei existing in natural conditions is 
called natural. The radioactivity of nuclei obtained as a result of 
nuclear reactions is called artificial. There is no difference of prin­
ciple between artificial and natural radioactivity. The process of 
radioactive transformation in both cases obeys the same laws. 

16* 



Law of Radioactive 'fran.-,[ormaHon. I ndivi.dua.~. 1·adioae.l.ive nucloi 
transform independently of one another. We tuay therp,for.o consid;;1r 
that the number of nuclei dN deea.ying durit1g th.e smail thm) inter­
val dt is proportional both to the nn.J.aher of avai.Jahle nuclei N 
and to the time interval dt: 

dN = - :CN dt (h\20) 

Here A. is a constant characteristic of a given radioddiva Hobsl.;:mca 
and known as the decay constant The miirus sign hus llBen t;.kea ~'> 
allow us to consider dN as an increment of the nmuber of undecayad 
nuclei N. 

Integration of Eq. (10.20) leads to the e I pression 

(10,21) 

where N 0 is the number of nuclei at the initial mofnBnt 1 ail<'! N 
is the number of undecayed atoms at the moment i. Bquai;icHl (1 0 .. 21) 
expresses the law of radioactive transformation. 'J.'his la·w is very 
simple: the number of undecayed nuclei dirninishes with time e;;;po­
nentially. 

The number of nuclei decaying during the time t is determined by 
the expression 

(10.22) 

The time during which a half of the initial numbex of nuclei de" 
cays is called the half-life T. It is determined by the condition 

whence 

1 N - V ,_, .• ;,·r 2 0 ·--" 0" 

(10.23) 

The half-life for the radioactive nuclei kunwn at, prHsent ·canges f.ro.m 
3 X 10-7 s to 5 X 1015 years. 

Let us fi.nd the average lifetime of <t t'adioad.i•Jc nueieus. The 
number of nuclei dN (t) transformiHg d.udng- the time {l'ntd t ~o 
t + dt is determined by the uwgnitmie of Eq. (10.20): dll (tl = 
= A.N (t) dt. The lifetime of each of thm;o nuclei is i;. HcrH)H, dw 
sum of the lifetimes of all the N 0 initial J•uck;i 10 obtaioet! hy int<) .. 
gration of the expression t dN (t). Dtvidl.ng tb.i~ son1 hy th1j uum.bat 
of nuclei N 0 , we get the av-erage Hfetime ·r; of a radi•>:H:t,v•) nucleu:;; 

~ l~ 

-r=- \ t dN (t) =---~-- t'AN (t) dt t r '1 j' 
N 0 J No 

0 0 
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LGt 1~.:~ l.n i.rod w.:o into this equation expression (10.21) for N (t): 
,;o co 

.: ~" -~i}~- )' O.N 0e-A' dt ~= J O.e-J..t dt ~~ ~ 
() 0 

(it is neeessary to pl'lss nve:r to the variable x = J...t and integrate by 
parts). 'fhus, the 3.vcrage lifetime is a quantity that is the reciprocal 
of the de<~vy r-on_,,,t.ant ;\,: 

1 
't=-r (10.24) 

A comp:ni . .son with Eq. ('10.23) shows that the half-life T differs 
from. T b;~ « HltUHJricaJ !actor nf ln 2. 

It vften happens that the nudei appearing as a result of radio­
<1divP. tl'f:IHC>forma~~on a.re also nHlioaetive and decay at a rate char­
aetoriT.Gd hy fb n decay constant A,'. The new decay products may 
«gain. b0 r;\dio;_,ctivo, and so on. The result is a whole series of radio­
active tran:,f.onnations. 'rhree I"Ddioaetive series (or families) exist 
in natme, whose parents (f1rst members) are U238 (the uranium 
snries), Th'm (the th~Jrium series), and U235 (the actinouranium series). 
Tho final yroducts in aH three series are lead isotopes-in the first 
ono Pb206 , in th0 second Pb208 , and, finally, in the third Pb207 • 

Naturd rarHoar:.ti.vity Yvas discovered in 1896 by the French scien­
i;isL Antoine Hnnri Becqunrel (18:52-1908). A great contribution to 
tho studying- or radioaetive substrmees was made by the French scien­
tists Pierre Curie and l\!Iarie Sklodowska-Curie. Three kinds of ra­
diatiou ··.:vore foe:Hi to exist. The first kind, called alpha rays, deflects 
:mder tho :Jction of a magnetic field in the same direction in which a 
~;tren:m d positively charged particles would. The second kind, 
enrled heta r.ay:J, deflncts under the action of a magnetic f1eld in the 
opposite di:roction, i .o. like a stream of negatively charged parti­
cles Finally, the thinl kind nf radiation, that shows no reaction at 
dll to a magnotie field, was ealled gamma rays. It was later found 
that garnma rays are elecotromagnetic radiation of a very short wave­
hmgtb {fron; '10 s t.o t A). 

Alvha D£:!~11-J'. Alpha rays at"e a flnx of helium 2He4 nuclei. Decay 
proc,oeds :1ceo<lling to the follo>vint~ scheme: 

XA yA---1, 1- I:! 4 z -~ z--2 - 2 e (10.25) 

The letter X otands for the chemical symbol of the decaying (parent) 
nucleus, and the h)tter Y for the ch!lmical symbol of the ne\v (daugh­
ter) imcleus formed. Alpha decay is nsnally attended by the daughter 
nucleus ern itting gamma rays. It cHn he seen from the decay scheme 
Hwt the M.omic number of tlu~ daughtf~r substance is less by 2 and 
tho lJHlRS number less by~~ than the relevant quantities of the parent 
substance. An example is the decay Df the uranium isotope U238 
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proceeding with the formation of thorium: 
92 uzas-+- eoTh za4 + 2He4 

The velocities with which alpha particles (i.e. nuclei of 2He') 
fly out from decaying nuclei are very high (--109 cm/s; the kine.tic 
energy is of the order of several MeV). When flying through a sub­
stance, an alpha particle gradually loses its energy, using it to 
ionize the molecules of a substance, and finally stops. An average 
of 35 eV is needed to form one pair of ions in air. Thus, an alpha 
particle forms about 105 pairs of ions along its path. It is natural 

E. JlkV 111 that the greater the density of 
' a.?tl.J /Ill I I QJBi a substance, the shorter is the 

1 1 1 1 1 1 path of an alpha particle before 
~//;';/~/~/ / it stops. Thus, its path is sev-
v • eral centimetres in air at nor-

/ ~IY'\, mal pressure, and is of the 
/J6'!7 ----"-! ~ ~' order of 10-a em in a solid 

~ (alpha particles are completely 
retained by an ordinary sheet 
of paper). 

The kinetic energy of an 
alpha particle is produced at 
the expense of the excess rest 
energy of the parent nucleus 
in comparison with the total 
rest energy of the daughter nu­
cleus and the alpha particle. 

This excess energy is distributed between the alpha particle and·the 
daughter nucleus in a ratio that is inversely proportional to their 
masses*. The energies (velocities) of the alpha particles emitted by 
a given radioactive substance are strictly definite. In the majority 
of cases, a radioactive substance emits several groups of alpha par­
ticles having close but different energies. This is due to the fact 
that the daughter nucleus may appear not only in the normal, but 
also in the excited state. Figure 10.4 explains schematically the 
appearance of different groups of alpha particles (the appearance 
of the fine structure of an alpha spectrum) emitted upon the decay 
of the nuclei 83Bi212 (bismuth-212). The energy levels of the daughter 
nucleus 81 TP08 (thallium-208) are shown at the 'left of the diagram. 
The energy of the ground state has been taken as zero. The excess 
rest energy of the parent nucleus above the rest energy of an alpha 
particle and the daughter nucleus in the normal state is 6.203 MeV. 
If the daughter nucleus appears in the unexcited state, all this energy 

* The velocities which alpha particles fly out with are of the order of 0.1c. 
We may therefore use the classical expressions for the momentum and kinetic 
energy of a particle. 
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is liberated in the form of kinetic energy, the share of the alpha 
particle being 

208 
Ek = 6.203 X 212 = 6.086 MeV 

(this group of particles is denoted by a 0 in the diagram). If the daugh­
ter nucleus appears in the fifth excited state whose energy exceeds 
that of the normal state by 0.617 MeV, then the liberated kinetic 
energy will be 6.203- 0.617 = 5.586 MeV, and 5.481 MeV will 
fall to the share of the alpha particle (the group of particles a 5}. 

The relative number of particles is about 27% for a 0 , about 70% 
for ct1, and only about 0.01% for ct5• The relative numbers of ct2 , 

a 3 , and a 4 are also very small (of the order of 0.1 to 1% ). 
The average lifetime 't of the excited sta,tes for most nuclei ranges 

from to-s to 10-15 s*. During an average time of -r, the daughter 
nucleus passes over to the normal or to a lower excited state, emit­
ting a gamma photon. Figure 10.4 shows the appearance of gamma 
photons of six different energies. 

The excitation energy of the daughter nucleus can also be separat­
ed in other ways. An excited nucleus may emit a particle: a proton, 
neutron, electron, or an alpha particle. Finally, the excited nucleus 
formed as a result of alpha decay can give up its excess energy di­
rectly (without first emitting a gamma quantum) to one of the elec­
trons of the K-, L-, or even the M-shell of the atom, as a result of 
which an electron flies out of the latter. This process is called inter­
nal conversion. The vacancy appearing as a result of the ejection of 
an electron will be filled by electrons from the higher energy levels. 
Consequently, internal conversion is always attended by the emis­
sion of characteristic X-rays. 

In the same way as a photon "ready for use" does not exist inside 
an atom and appears only at the moment of its emission, an alpha 
particle also appears at the moment of radioactive decay of a nucleus . 
. In leaving a nucleus, an alpha particle has to surmount a potential 
barrier whose height exceeds the total energy of an alpha particle 
equal on an average to 6 MeV (Fig. 10.5). The outer side of the 
barrier falling asymptotically to zero is due to Coulomb repulsion 
of the alpha particle and the daughter nucleus. The inner side of 
the barrier is due to nuclear forces. Experiments involving the 
scattering of alpha particles by heavy alpha-radioactive nuclei 
have shown that the height of the barrier noticeably exceeds the 
energy of the alpha particles flying out in decay. Classical notions 
say that a particle cannot surmount the potential barrier in these 
conditions. According to quantum mechanics, however, there is 
a probability other than zero that the particle will penetrate through 

* It may sometimes be very great (up to several years). Levels with such 
a lifetime are called isomeric, and the excited nucleus, an isomer. 
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the barrier, passing, as it were, through a tunnel in the latter. We 
treated this phenomenon, called the tunnel efiect, in Sec. 4.9. The 
theory of alpha decay based on the notion of the tunnel effect leads 
to results that well agree with experimental data. 

Beta Decay. There are three varieties of beta decay. In one of 
them, the parent nucleus emits an electron, in another, a positron, 
and in the third variety, called electron captur.e (e-capture), the 

till 
dE {/ 

Fig. 10.5 Fig. 10.6 

nueleus absorbs one of the electrons of the K-shell, considerably 
more rarely of the L- or M-shcll (fcceordingly, W8 speak of K-cap­
ture, £-capture, or M-eapture instead of e-capture). 

The f1rst kind of beta decay (p decay or electron decay) follows 
the scheme 

(10.26) 

To underline the conservation of t:he charge and number of nucleons 
in beta decay, we have assigned a charge number of Z = -1 and 
a mass number of A == 0 to a beta electron. 

Inspection of scheme (10.26) reveals that the daughter nucleus 
has an atomic number that is greater by unity than that of the parent 
nucleus, while the mass numbers of both nuclei are the same. An 
antineutrino v- is emitted in addition to an electron. The entire 
process occurs as if one of the neutrons of the nucleus zXA transferred . 
into a proton, changing according to scheme (10. 7). In general, 
process (10.7) is a particular case of process (10.26). A free neutron 
is therefore said to be beta-radioactive. 

Beta decay may be attended by the emission of gamma rays. 
The mechanism of their appearance is the same as in alpha decay­
the daughter nucleus appears not only in the normal state, but also 
in excited ones. Next passing over to a state with a lower energy, 
the nucleus emits a gamma photon. 

An example of ~ ·- decay is the transformation of thorium Th234 

into protactinium Pa234 with the emission of an electron and an 
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antineutrino: 

~oTh23~ -+ 91Pa234 +-leo +-':li 
Unlike alpha particles, which have a strictly definite energy 

within the limits of eaeb. group, beta eleetrons ha-ve the most diverse 
kinetic energy from 0 to Emax· Figure 10.6 shows the energy speetrum 
of electrons emitted by nuclei in beta decay. The area covered by 
the curve gives the total number of electrons emitted in unit time, 
dN is the number of electron:> whose energy is within t.he interval dE. 
The energy Emu corresponds to the difference between the mass of 
the parent nucleus and the masses of an electron and the daughter 
nucleus. Consequently, dec.ays in which the energy of an electron E 
is lower than Ernax occur with an ap-parent violation of the law of 
energy conservation. 

To explain the vanishing of the energy Emax - E, the Swiss 
physiciflt Wolfgang Pauli (1900-Ul5G) advanced the assumption 
in 1932 that in beta decay auotlH>.r particle is emitted apart from 
an electron, and this particle carries with it the Anergy Emax- E. 
Since this partide does not reveal itself in any way, it should he­
acknowledged that it is neutral and has a very small roa:-s (it has 
been established at pre~1ent that the rest mass of this particle is 
ze:ro). According to the proposal of Enrico Fermi, this hypotheUc 
particle was called a neuhiKllo* (which means "tiny neutron"). 

There is another reason i'or the assumption on the existence of 
the neutrino (or antineutdno). The spin of a neutron, proton, and 
electron is thn same and equals 1/2. If we write scheme (10.26) 
without an antiJJentrino, then the total spin of the appearing par­
ticles (which for two particles with s = ·J /2 can be either zero or 
unity) will differ frqm that of the initial particle. Thus,"the partic­
ipation of another particle in heta decay is dictated by the law of 
angular momentum conservation, and a spin of 1/2 (or 3/2) must h 
ascribed to this particle. It has been established that the spin of 
a neutrino (and antincutrino) is 1/2. A direct experimental proof 
of the existence of neutrinos was obtained only in 1956. 

Thus, the energy liberated in ~- decay is distributed between an 
electron and an antineutrino (or )Jetween a positron and a neutrino~ 
see below) in the most diverse proportions. 

The second kind of beta decay (~t decay or positron decay) proceeds. 
according to the scheme 

(10.27} 

An example is the transformation of nitrogen N13 into carbon C13: 

7Nt3-+ 6Ct3+ +teo+ v 

• In accordance with the classification adopted at present, in p- decay an 
antineutrino is emitted, and not 11. neutrino. 
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It can be seen from scheme (10.27) that the atomic number of 
the daughter nucleus is less by unity than that of the parent one. 
The process is attended by the emission of a positron e+ [in formula 
(10.27) it is designated by the symbol +1e0] and a neutrino v. The 
appearance of gamma rays is also possible. A positron is an electron's 
antiparticle. Consequently, both particles emitted in decay (10.27) 
are antiparticles with respect to the particles emitted in decay 
(10.26). 

The process of ~ + decay occurs as if one of the protons of the 
parent nucleus transformed into a neutron, having emitted a posi­
tron and a neutrino: 

p~ n + e+ + v (10.28) 

Such a process is impossible for a free proton from energy considera­
tions because the mass of a proton is less than that of a neutron. 
A proton in a nucleus, however, can borrow the required energy from 
other nucleons in the nucleus. 

The third kind of beta decay (electron capture) consists in that a 
nucleus absorbs one of the K-electrons (less often one of the L­
or M-electrons) of its atom, and as a result one of the protons trans­
forms into a neutron emitting a neutrino: 

p+e-~n+v 

The appearing nucleus may be in the excited state. Passing later 
into lower energy states, it emits gamma photons. The scheme of 
the process is as follows: 

zXA + _1e0 ~ z-t yA + 'V (10.29) 

The site in the electron shell ft·eed by the captured electron is filled 
by electrons from the higher layers. The result is the appearance of· 
X-rays. Electron capture is easily detected by the X-radiation attend­
ing it. It is exactly in this way that the American physicist Luis 
Alvarez (born 1911) discovered K-capture in 1937. 

An example of electron capture is the transformation of pota::;sium 
K ~0 into argon Ar40 : 

t9K 4o +-teo-+ tsAr'o + v 

Spontaneous Fission of Heavy Nuclei. In 1940, the Soviet phys­
ic'ists Georgi Flerov and Konstantin Petrzhak discovered a process 
of the spontaneous fission of uranium nuclei into two approximately 
equal parts. Later, this phenomenon was also observed for many 
other heavy nuclei. Spontaneous fission in its characteristic features 
is close to stimulated fission, which will be treated in Sec. 10.7. 

Proton Radioactivity. As follows from its name, in proton radio­
activity, a nucleus transforms by emitting one or two protons (in 
the latter case we speak of double proton radioactivity). This kind 
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of radioactivity was first observed in 1963 by a group of Soviet 
physicists headed by Flerov. 

Activity of a Radioactive Substance. The activity of a radioactive 
preparation is defined as the number of disintegrations occurring 
in it in unit time. If dN dts nuclei decay during the time dt, then the 
activity is dN dtsldt. According to Eq. (10.20), 

dN dta = I dN I = 'AN dt 

Hence it follows that the activity of a radioactive preparation equals 
'AN, i.e. the product of the decay constant and the number of unde­
cayed nuclei in the preparation. 

The SI unit of activity is the disintegration per second (d/s). 
The use of non-system units such as the disintegration per minute 
(d/min) and the curie (Ci) is permitted. The unit of activity called 
the curie is defined as the activity of any substance in which 
3.700 X 1010 atoms disintegrate per second. Submultiple (millicurie, 
microcurie, etc.) and multiple (kilocurie, megacurie) units are also 
used. 

10.6. Nuclear Reactions 

A nuclear reaction is defined as a process of strong interaction 
of an atomic nucleus with an elementary particle or with another 
nucleus resulting in the transformation of a nucleus (or nuclei). 
The reacting particles interact when they approach each other up 
to distances of the order of 10-13 em owing to the action of nuclear 
forces. 

The most widespread kind of nuclear reaction is the interaction 
of a light particle a with a nucleus X, the result being the formation 
of a light particle b and a nucleus Y: 

X+a-+Y+b 

The equation of such reactions is customarily written in the follow­
ing abbreviated form: 

X (a, b) Y (10.30) 

The light particles participating in the reaction are indicated in· 
parentheses, first the initial particle, then the final one. 

The light particles a and b may be a neutron (n), proton (p), 
deuteron (d), alpha particle (a), and a gamma photon (y). 

Nuclear reactions may be attended either by the liberation or by 
the absorption of energy. The amount of liberated energy is called 
the reaction energy. It is determined by the difference between the 
masses (expressed in energy units) of the initial and final nuclei. If 
the sum of the masses of the nuclei formed exceeds the sum of the 



masses of the illit.i;;ll1Hdni, thn n<~'.('.li.iJn p•:c<:~Jfldf' with the ;~b'3orptiC1n 
of energy, and the rcncti.nn ,:;r;,,.rrry ~Cn.ll h: nop1ti ITO. 

In ·1936, Nieb Boll)' e:;tBbL.;hef! th:rL ,·:~i\i:ti';!J;) L\it.i::.\;ed by r1oi·. 
very fast partickt; procee1; in ;,wr) :-;;t.?iJ.!~"- 'fh.n Fn·st n.nn CCi/J::;ist.s iu 
the capture of thA partich': a HPJ!t·ii1Ching the nuc.l.eu:'\ K and )n th:o 
formation of the e•;mpouml nwd.nns C. 'T'};e euC(f{:\' supp.lied by tk.: 
particle a (it com1i:1ts of Lho; kioetir. energy nf tho pnrtic1e l.liHt t:;~:~ 

b • d" ., ' . .1 I ) ' l. ' .. ' ' 1 . .. energy m tng h V> t..Je JJ1J:::.,.PH~' .iS r0o t:; •. :::'.tnUi;f:'i.•. H\ a Vf'..I:,\T ;>i:nrt 
time between all the nue.lcon:; of t.Jw co.:,rpound <lnr.i0n:1, HS a result 
of which this nucleus is U! the exc;.itol state. (p t.he second si.qgoJ, 
the compound nucleus PmilfJ th\) r·:irticlo i.'. Such 1i tv•·o-.sto>g(~ re<:l.C· .. 
t.iou is written as follows: 

~10.31.) 

If the emitted particle i;; idf;Jlt:teal <.o the r;,tpi.un:Jd A!<) (b '"'·; tLj, 
process ('10.31) is called :?Cl;litf;rit111:. V/hml tb:; ()l).il!:'!!,Y ()~ tho rar.ticlr~ 
b eqm1b tlwt of the pnr\.\nh: a (L,~ f!t, -,, }:':;)), !ho scattering l'' 
elasti.(~, otherwise (i.e. whmJ li.'0 "·/· }','") U. i~' ~~"''~h;1sti.c. ,'\ o:1cl<:>rn· rs· 
action oecrm; iJ the ;;<uticb b b not id!.mtic<tl i:n a. 

Tbo time Tnuc net~d~~d fnr n ;wdeon ltH ving <HI. wncrgy ,,J the ,-., :i w 
of 1 MeV (which w:rn~~,·~Jonds tn a mv:.J;·~o:a vehcity ..--··1.09 cm/s) lP 
eover :,, d.ist.anec equa.t to t.hfJ di.nJ~:Jet~or oi th<: ouel.eu:1 C .·tO-·J.~ c;::: .. ) 
is called the nu.dem· t.Jnw (or UH) lmdear ax~'lnsit liiaw)' Tho ordpr u:C: 
magnitude of this time is 

10 21 3 

The average lifetime of a compouil'i nuclnv:; ;-equnl l!.i Lwm 10 ·lA 

to to·-12 s) is -muny order:~ gret,tr;t; than the 1mch,;;n· -timr., -~,.,uc· Henf~{,, 
the decay of the compound nuclnus (j.t, r.hn emi:;:J;un of the particle 
b by it) is a process that r:lot>.s nc.~t d~J~wnd on the lir;:;t G1<.•.gn uf tiH-l 
reaction mnsisting in tho capt1tn>. of the pal"!.icl,:, •J. {t.he CDUlpunnd 
nucleus '·'forgets", fW it were, the way it, wm: fon11<Jd). The •w.me. 
compound nucleus may decay iJ1 different way~>, the nat1ue of th~'SO 
ways aMl their reia.tiv:;1 pr.o0ahility not dflprmd.ing on bow tiw com· 
pound nucl~us wn::; J\:n·:med. 

Heactious caused by [nst nudeons Bm} deu'Lrnm;; vroe.~cd witho•,n 
the formation of a cumTJOund nucleus. Such rew:til)nfl me Juwwn as 
direct nuciea:r interactions. A t.ypieal d in~ct ini!"nw.tion runction i~~ 
the stripping re:action obsenet1 in n1lll centr,1J Gvlli0ion:; of a 1lrmteron 
with a n uelens. In ~nch collil'iom:;, ono of thn de11teron rmclf1ons 
may get into the zone of nr.tion of tb~) mJclflfH: fmees and will h11 
captmed by the nucleus, wb~,r~ap, tiH~ ()1.her nucleon ~rill r.e:.nain 
outside the zone of actj.;m of the JliJdf!HT forc:;s o.nd •.:viil fly past 
thA nucleus. This renction can he represented ~:ymboli.eall y i:o th!-> 
form (d, p) or (d, n.), 



T'tlo rovenw of a stdppi11g tHachon h; a pickup reaetion---a bombard­
tOR nuc!.;onn {n or p) split~.; oU. a nucleon (p or n) fror.n a nucleus, 
i.nmsfi!rmil•g in~ .• ') a dc1ttm:·on: (n., d) m· (p, d). 

It if; en;;to.O'wry fJfi•C.I.u;,~ .i.n nuclear- :p1t.y:"lics to 0haracterize int.cr­
.;v·.l.fon with i.ho HH ,,f the d~'e.r.t~ ve ,~~.·ost~ ::;<?:rJion. u. 'fh~:~ meaning of 
thi,, CfWHitity iti a::; follown. A:,:-mm.e t!.wt !\flux of particles, for exam-­
ph-:_, rwu~rons" fi,U.:; on " tatgct. s:l th.:in that the nuclei ot the target 
do not overb!~ (l<'ig-. 10 7). U the nvdei ·were rigid 
sphe1·es with a cross soetion. cf (T and the falling 
lH<rti•>!es wm·n rigid .~ptwrDs with a vanishingly 
sr1wJl el'us:.;; sel;tJ.or •. , then C:H1 prolw.bility of a fall-
ing p:.n:tj0lo g-.r(_czi.r-~g onH oi th~:: target. nuclei _ _..:,.... 
wvuid. hi': --
·wlwre 11. is t.lw eon~~<:mi..t:n.Uun of t.he nueloi., i.e. their -­

cf 

':ill.lH<fHlr in unit V'llnm•) of the tM.~(0t, and. 13 is the 
thi<'.kness of th~~ target (cwb detm:T(tlucs the relative 
f1·ac t:icm of the ta.rnet. m:MJ covered h y- th•~ nuclei­ Fig. 10.7 
spheres). 

Assume that a parb.do f!ux N* )'a.Us on a target at right angles to 
itt; surfa(~O. l-JeDCfi, the numJwr of psrtic.!es colliding with the target 
ur,clei in unit time All is d,;r,ern:;,iiled by Hw t<Jrmula 

iVi ''""" .NP = Nan5 (10.33) 

C(mseqmmtly, hwvin.g doterm.iued the relative numbeJ.' of particles 
qxpericncing cri!Jis~ons 1.\N f/lf, it >wml.d h•~ possible to calculate the 
t)ross soetion o· """ nr~ of a nucleus by the formula 

(10.34) 

Actually, nelthtll' the t:u·get <l.m:lcd nor the pa.l't.icles falling on the 
targi~t are rigid 3Jibetw;. By anHloglr with the model of eolliding 
sphm:&s, hnwever, ~hu prohabilit.y of iat.eraction is charac.terized 
by the quantity u d!'Jt.emainud hy Eq. ('10.31,) in which by b.N is 
moant nut tho numbH:a: of co.ili.ding particles, but tho number of par­
ti.:,.!.<JS 1.hat have (nter:.(:t::l;I 1.v.i.th ih.c ta.rgot nncloi. It is exactly this 
t{uantit.y that is ~:ul.locl the efhH;tiV(1 eross section for a given reaction 
{or prGGOKS), 

W.h.cn the target is thick, tho flux of particles will gradually weaken 
il.S it va::;~es throagh it. After dividing the target. into thin layers, 
let us wri.te C.:qo (10o3a) for u h1yer ni thickness dx at the depth x 
Lr-.Jtn th(-l st.a'f,~ce; 

dN '""" --.. l!f (.:1•) on rk 
- --·;·~~~·;:~~lind our rHa.tl~r. tha!. r, fln'lf of particl.es is defined as the number of 
~Jttrtk!.:J~.I l'l.ying th~ouglJ. a sudace in unit Hnw. 
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where N (x) is the particle flux at the depth x. We have written the 
minus sign to permit dN to be considered as an increment (and not 
as a decrement) of the flux along the path dx. Integration of this equa­
tion gives the expression 

N (6) = Noe-anO 

in which N 0 is the initial flux, and N (6) is the flux at the depth 6. 
Thus, by measuring the weakening of the particle flux when it 
passes through a target of thickness 6, we can find the interaction 
cross section by the formula 

1 1 N 0 
a= nlf n N (6) (10.35) 

It is usual practice to expre~s the effective cross sections of nuclear 
processes in units called barns: 

1 barn= 1Q-24 cmZ (10.36) 

A nuclear reaction was carried out for the first time by Ernest 
Rutherford in 1919. In irradiating nitrogen with the alpha particles 
emitted by a radioactive source, some of the nitrogen nuclei trans­
formed into oxygen nuclei, emitting a proton. The equation of this 
reaction has the form 

7Nt4 (a, p) a0t7 

Rutherford used natural projectiles-alpha particles-for disinte­
gration of an atomic nucleus. The first nuclear reaction induced by 
artificially accelerated particles was carried out by the British 
physicist John Cockcroft (1897-1967) ana the Irish physicist Ernest 
Walton (born 1903) in 1932. Using the so-called voltage multiplier, 
they accelerated protons to an energy of the order of 0.8 MeV and 
observed the reaction 

3Li7 (p, a) 2He4 

The development of the equipment and techniques used for accel­
erating charged particles was attended by multiplication of the 
number of nuclear transformations accomplished artificially. 

Of the greatest significance are reactions induced by neutrons. 
Unlike charged particles (p, d, a), neutrons do not experience Cou­
lomb repulsion, owing to which they can penetrate into nuclei while 
having a very low energy. The effective cross sections of reactions 
usually grow with a decrease in the energy of neutrons. This can be 
explained by the fact that the lower the velocity of a neutron, the 
greater is the time it spends in the sphere of action of the nuclear 
forces when flying near a nucleus and, consequently, the greater is 
the probability of its capture. Therefore, many effective cross sec­
tions vary like 1/v oc E- 112 • Cases are often observed, however, when 
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the cross section of neutron capture has a sharply expressed maxi­
mum for neutrons of a definite energy Er. Figure 10.8 shows as an 
example a curve giving the dependence of the cross section of neutron 
capture by a U238 nucleus on the energy of a neutron E. A logarithmic 
scale is used on both axes. In this case, the dependence a oc: E-1/ 2 

is depicted by a straight line described by the equation ln a = 
1 

= canst - 2ln E. A glance at the figure reveals that apart from 

the region of energies near 7 e V, the dependence of ln a on In E is 
indeed close to a linear one. 
When E = Er = 7 eV, the cap- ln6' 
ture cross section sharply grows 
and reaches 23 000 barns. The 
shape of the curve indicates that 
the phenomenon has a resonance 
nature. Such resonance absorp-
tion occurs when the energy 
brought by a neutron into a com-
pound nucleus exactly equals 
the energy needed for transfer-
ring the compound nucleus to 
an excited energy level. Similar-
ly, the probability of the absorp-

1/Jbarns 

~7eV lnE 

Fig. 10.8 

tion of photons whose energy equals the difference between the 
energies of the first excited level and the ground level of an atom 
is especially great (the resonance absorption of light). 

Of interest is the. reaction 
1N~' (n, p) sO~ 

that constantly proceeds in the atmosphere under the action of the 
neutrons formed by cosmic rays. The carbon isotope 6C14 produced 
in this reaction is called radiocarbon because it is ~--radioactive; 
its half-life is 5730 years. Radiocarbon is assimilated by plants in 
photosynthesis and participates in the cycle of substances in nature. 

The number of radiocarbon nuclei 11N + produced in the atmosphere 
in unit time remains constant on an average. The number of decaying 
nuclei /1N_ is proportional to the number of nuclei N present: 

llN_ = kN 
Since the half-life is very great, an equilibrium concentration of the 
nuclei of C14 in ordinary carbon sets in that meets the condition 

!1N. = !1N_ or 11N+ = kN 
Special research has shown that owing to the action of winds and 
ocean currents, the equilibrium concentration of C14 at different 
places on the globe is the same and corresponds to about 14 disinte­
grations a minute per gramme of carbon. 
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In a living org·anism, the diminishing of C14 in it owing to radio­
activity is replenished as a result of its participation in the cycle 
of suhstanees in nature. When an organism dies, the process of 
assimilation immediately skrs, and the coneentration of C14 in 
ordinary carbon bngins to diminish areord.ing to the law of radio­
active decay. Consequently., by measuring the concentration of C14 

in t.he remains of ot·ganisros (in wood., bmws, etc.), we can determine 
the date when they died or, as is said., t1JEdr age. Verification of thi~• 
method usiug ancient specimens whose age was dfltermined exactly 
by historical methods gave quite satisfaetory ro,<·mlts. 

10.7. The Fission of Nudei 

In 1938, the German scientists Otto Hahn (Hl79-Hl63) and Fritz 
Strassmann (born 1902) discovered that the bombardment of urani­
um with neutrons results in the fonna-;i,,n of nlem;mts from the 
middle of the periodic table -barium awl lanthanum. This phenom­
enon was explained by the German seierttists Otto Ffisch (born 
1904) and Lise Meitner (1878-'19!)8). They put krward tho assump­
tion that au uranium nucleus whieh has captured a neutron deC<tYS 

into two appro:xi:Ddtely equal 
parts ea lJ cd llssion fi:agment.s. 

Further investigations sho­
wed t}Jat hssio11 may occur in 
diffenmt wavs. A total of 
aLout 80 dUi~nmt fragments 
arc fornwd, thD most probable 
hein1~ fission into fragments 
thfl i·atio of whose masses is 
2 : 3. Tbe eurve shown in 
Fig. 10,9 giYes the l'elative 

'ItT"--- ........ -·-- .. ---· --··-·· _._J yield (in pm·e~:mt) ul" fragments 
oZ1 81/ Jl/17 121/· 141/ /btl .1/ of different mass obtained in 

F"ig. 10.9 
the fission of U235 produced 
by slow (thermal*) neutrons 
(a logarithmic scale is used 

along tlw axis of ordinat<~s). Inspection of the curve :reveals that the 
relative number of fission events when two fragments of equal mass 
are formed (A ~ 117) is 10-2 per cent, whereas the formation of 
fragments with mass numbers of the ordnr of ns <l.nd 140 (95 : 140 ;:::; 
~ 2 : :3) is observed in 7 per eent of all case8. 

The binding energ-y per nucleon for nuclei of a medium mass is . 
greater than that of heavy nuclei by about 1. MeV (see Fig. 10.1). 

--;-Th~"m.e thermal i11 appJ.ied LH neutrons that l;lfe in thurmal equilihA·ium 
with the atoms of a substance. Thoir cm~rgy is about 0.03 eV. 
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Hence,, it follows that the fission of nuclei must be attended by the 
liberation of a great amount of energy. But of special importance 
is the fact that several neutrons are freed upon the fission of every 
nucleus. The relative number of neutrons in heavy nuclei is apprecia­
bly greater than in medium-size ones. Consequently, the fragments 
formed are greatly overloaded with neutrons, and as a result they 
liberate several neutrons each. Most of the neutrons are emitted 
instantaneously (during a time less than -10-14 s). Part (about 
0. 75%) of the neutrons called deJayed neutrons are emitted not 
instantaneously, but with a delay ranging from 0.05 s to 1 min. 
On an average, 2. 5 neutrons are released per fission event. 

rile liiJpration of instantaneous ;l/ld delt'lyed neutrons does not 
cornpietely eliminate the overloading of the fission fragments with 
neutrons. Therefore, the fragments are mainly radioactive and 
undergo a chain of ~- transformations attended by the emission of 
gamma rays. Let us explain what has been said above with an exam­
ple. One way in which fission may proceed is as follows: 

s2U235+ n ._ ssCst~o + 37Rb9~+ 2n 

The fission fragments-cesium and rubidium-undergo transfor­
mations: 

ssCst4o- ssBaHo- s7Lat4o- ssCet4o 

37Rb9"- 3ssrs" _. 39 Y"-+ •oZr9'-

The products--cerium Ce140 and zirconium Zr94-are stable. 
In addition to uranium, bombardment by neutrons* causes the 

fission of thorium (90Th232) and protactinium (91 Pa231), and also 
of the transuranium eleV!ent plutonium (9.Pu239}. Neutrons of super­
high energies (of the order of several hundred MeV) produce the 
nssiou of lighter nuclei too. The ftssion of the nuclei of U235 and 
P">\~3~ 1s produced b-y neutn:ms oi an-y energ-y, but especiall-y well 
1::t~? slow neutrons. The fission oi \.3 233 and Th230 is also produced b-y 
thermal neutrons, but these isoto-pes are not encountered in nature, 
they are prepared art.incially. 

Onl-y fast neutrons (with energies not lower than ,...,1_ MeV) can 
cause the fission of nuclei of U'~38 • At lower energies, the neutrons 
are absorbed by the nuclei of U238 without their following fission. 
The result is the formation of a nucleus of U239 whose excitation 
energy is liberated in the form of a gamma photon. This is why such 
a process is called radioactive capture [the reaction (n, y)l. The 
effective cross section of this process sharply grows at an energy of 
the neutrons equal to "'7 eV, reaching 23 000 barns (see Fig. 10.8). 

* The fission of heavy nuclei may be produced not only by neutrons, but 
also by other particles-protons, deuterons, alpha particles, and also by gamma 
photons. In the latter case, we have t.o do with the photofission of nuclei. 
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The cross section of the capture by a nucleus of U238 of thermal neu­
trons is less than three barns. 

The nucleus of U239 formed as a result of the capture of a neutron 
is not stable (its half-life T is 23 min). Emitting an electron, an anti­
neutrino, and a gamma photon, it transforms into a nucleus of the 
transuranium element neptunium Np239• Neptunium also experiences 
~-decay (T = 2.3 days) and tr;msforms into plutonium Pu239• This 
chain of transformations can be written as follows: 

U239 (25 min) N 239 (2 . .1 days) p 239 
92 ~ 93 p --- 94 ll (10.37) 

Plutonium is alpha-radioactive, but its half-life is so great 
(24 400 years) that it may be considered virtually stable. 

The radiative capture of neutrons by a nucleus of Th232 leads to the 
formation of the fissioning uranium isotope U233 that is absent in 
natural uranium: 

Th232 + Th233 (22 min) A 233 (27 day~) U233 
eo n- 10 ----+ o1 c --__..,. s2 

Uranium-233 is alpha-radioactive (T = 162 000 years). 
The emission of several neutrons in the fission of nuclei of U2311 , 

Pu239 , and U233 makes it possible to achieve a chain nuclear reaction. 
Indeed, the z neutrons emitted in the fission of one nucleus may cause 
the fission of z nuclei; as a result z2 new neutrons will he emitted, which 
will cause the fission of z2 nuclei, and so on. Thus, the number of 
neutrons born in each generation grows in a geometrical progression. 
The neutrons emitted in the fission of nuclei of U235 have an average 
energy of-2 MeV, which corresponds to a velocity of -2 X 109 cm/s. 
Therefore, the time that elapses between the emission of a neutron and 
its capture by a new ftssioning nucleus is very small. Hence, the pro­
cess of multiplication of neutrons in a fissioning substance goes on 
quite rapidly. 

The picture we have drawn above is ideal. Neutrons would multi­
ply as described above provided that all the liberated neutrons are 
absorbed by fissioning nuclei. Actually, matters are far from being 
so. First of all, owing to the finite dimensions of the fissioning body 
and the high penetrating ability of the neutrons, many of them will 
leave the reaction zone before they are captured by a nucleus and 
cause its fission. Moreover, part of the neutrons will be absorbed by 
non-fissioning impurities owing to which they drop out of the game 
without causing fission and, consequently, without giving birth to 
new neutrons: 

The volume of a body grows as the cube and its surface as the 
square of its linear dimensions. Therefore, the relative part of the 
neutrons flying out of a body diminishes with an increasing mass of 
the fissioning substance. 
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Natural uranium contains 99.27% of the isotope U238 , 0.72% 
of U235 and about 0.01% of U2M. Hence, for each nucleus of U2s5 

that fissions under the action of slow neutrons there are 140 nu­
clei of U238 that capture not too fast neutrons without fission. 
This is the reason why no chain fission reaction occ.urs in natural 
uranium. 

A chain nuclear reaction can he achieved in uranium in one of two 
ways. The first consists in recovering the fissioning isotope U235 

from natural uranium. Owing to the chemical indistinguishability 
of the isotopes, it is a very difficult task to sepa­
rate them. It was solved, however, in several ways. 

In a piece of pure U235 (or Pu239) each neutron 
captured by a nucleus produces fission with the emis­
sion of -2.5 new neutrons. If the mass of such a 
piece, however, is less than a definite critical 
value, most of the emitted neutrons will fly out 
without producing fission, so that a chain reaction 
does not occur. At a mass greater than the critical 
one, the neutrons rapidly multiply, and the reaction 
acquires an explosive nature. The functioning of an 
atomic bomb is based on this principle. The nuclear 
charge of such a bomb is two or more pieces of Fig. 10.10 
almost pure U235 or Pu239 (they are denoted by the 
reference number 1 in Fig. 10.10). The m.ass of each piece is less 
than critical, as a result of which no chain reaction occurs. 

The Earth's atmosphere always contains a certain number of neu­
trons produced by cosmic rays. Therefore, to call forth an explosion, 
it is sufficient to connect the parts of the nuclear charge into one piece 
with a mass greater than the critical one. This must be done very 
rapidly, and the pieces must be connected very tightly. Otherwise, 
the nuclear charge will fly apart into fragments before an appreciable 
portion of the fissioning substance has time to react. Ordinary ex­
plosive substance 2 (an igniter}, by means of which one part of the 
nuclear charge is shot into the other, is 11sed for connecting them. 
The entire device is confined in massive shell 3 of a high-density me­
tal. The shell reflects neutrons and, in addition, prevents scattering 
of the nuclear charge until the maximum possible number of its 
nuclei have liberated their energy in fission. The chain reaction in 
an atomic bomb proceeds on fast neutrons. Only a part. of the nuclear 
charge has time to react upon an explosion. 

A different way of carrying out a chain reaction is used in nuclear 
reactors. The fissioning substance employed in reactors is natural 
uranium (or uranium enriched somewhat with the isotope U235). 

To prevent radiative capture of neutrons by the nuclei of U238 (which 
becomes especially intensive at an energy of the neutrons of ,.,_7 eV)t 
comparatively small rods of the fissioning substance are spaced at. 
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a certain distance apart, and the spaces between these rods are filled 
with a moderator, i.e. a substance in which the neutrons are retarded 
to thermal velocities. The cross section of thermal neutron capture 
by a nucleus of U238 is only three barns, whereas the fission cross 
section of U235 by thermal neutrons is almost 200 times greater 
(580 barns). Therefore, although the neutrons collide with U238 

nuclei 140 times more often than with U235 nuclei, radiative capture 
occurs less frequently than fission, and at large critical dimensions 
of the entire device, the neutron multiplication factor (i.e. the ra­
tio of the number of neutrons born in each of two consecutive genera­
tions) may reach values greater than unity. 

The neutrons are retarded at the expense of elastic scattering. 
In this case, the energy lost by a particle being retarded depends on 
the ratio of the masses of the colliding particles. The maximum 
amount of energy is lost when both particles have the same mass 
(see Sec. 3.11 of Vol. I, p. 104 et seq). From this viewpoint, a sub­
stance containing ordinary hydrogen, for example, water (the masses 
of a proton and a neutron are approximately the same) ought to be 
an ideal moderator. Such substances were found to be unsuitable as 
a moderator, however, because protons absorb neutrons, entering 
with them into the reaction 

p (n, y) d 
The moderator nuclei must have a small cross section of neutron 

capture and a large cross section of elastic scattering. This condi­
tion is satisfied by a deuteron (a nucleus of heavy hydrogen-deuter­
ium D), and also by nuclei of graphite (C) and beryllium (Be). About 
25 collisions are sufficient to reduce the energy of a neutron from 
2 MeV to thermal energies in heavy water (D 20), and about 100 
-collisions in C or Be. 

The first uranium-graphite reactor was started in December, 1942, 
at the University of Chicago under the supervision of the Italian 
physicist Enrico Fermi. In the Soviet Union, a reactor of the same 
kind was placed into operation under the supervision of Igor Kur­
chatov in December, 1946, in Moscow. 

A schematic view of an uranium-graphite reactor is shown in 
Fig. 1 0.11. Reference number 1 designates the moderator-graphite; 
2-uranium elements; and 3-rods containing cadmium or boron. 
These rods are used to control the process in the reactor. Cadmium 
and boron are intensive absorbers of neutrons. Therefore, when the 
rods are pushed into the reactor, the neutron multiplication factor 
diminishes, and when they are pulled out, this factor grows. A spe­
cial automatic device controlling the rods makes it possible to main­
tain the power developed in the reactor at the preset level. Control 
is considerably facilitated by the circumstance that part of the neu­
trons, as we have already noted, are emitted upon the fission of nu­
clei not instantaneously, but with a delay of up to 1 min. 
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The first industrial reactors were intended to produce a fissioning 
material for atomic bombs-plutonium. In such reactors, part of the 
neutrons emitted in the fission of U235 nuclei maintains the chain 
reaction, while the other part experiences radiative capture by nuc­
lei of U238 , which, as we have seen, leads in the long run to the for­
mation of Pu239 [see scheme (10.37)]. After a sufficient amount of 
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Pu has accumulated in the uranium elements, the latter are extracted 
from the reactor and delivered for chemical treatment to recover the 
Pu from them. 

The use of nuclear energy for peaceful purposes was first achieved 
in the USSR under the supervision of Igor Kurchatov. In 1954, the 
first atomic power plant with a capacity of 5000 kW was placed into 
service in the USSR. A schematic view of an atomic power plant is 
shown in Fig. 10.12. The energy liberated in the active zone of reac­
tor 1 is picked up by a heat carrying agent flowing in circuit 2. Cir­
culation is ensured by pump 3. Water or alkali metals having a low 
melting point, for example, sodium (T melt = 98 °C} are used as the 
heat carrying agent. In heat exchanger 4, the heat carrying agent 
gives up its heat to water and transforms it into steam that rotates 
turbine 5. 

Reactors with a moderator operate on slow (thermal) neutrons. 
By using fuelenriched with fissioning isotopes (U 236 or Pu239), it is 
possible to construct a reactor operating on fast neutrons. Part of 
the neutrons in such reactors are used to transform U238 into Pu238 . 

or Th232 into U233 • Here the number of nuclei formed that are capa­
ble of fission under the action of thermal neutrons may exceed the 
number of fissioning nuclei used for maintaining operation of the 
reactor. Hence a greater amount of nuclear fuel is reproduced than 
burns in the reactor. Such nuclear reactors are therefore called breed• 
er reactors or breeders. 
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We shall note in conclusion that by-products of the processes 
occurring in nuclear reactors are radioactive 'isotopes of many chem­
ical elements that find widespread use in biology, medicine, and 
engineering. 

10.8. Thermonuclear Reactions 

Nuclear fusion, i.e. the fusion of light nuclei into a single nucleus~ 
is attended, like the fission of heavy nuclei, by the liberation of 
enormous amounts of energy. Since very high temperatures are 
needed for the synthesis of nuclei, this process is called a thermonuc­
lear reaction. 

To surmount the potential barrier due to Coulomb repulsion, 
nuclei with the atomic numbers zl and z2 must have the energy 

E = Z 1Z2e2 

rnuc 

where rnuc is the radius of actiun of nuclear forces equal to -2 X 
X 10-13 em. Even for nuclei with Z1 = Z2 = 1, this energy is 

E =___:!__ = (4.Sx1Q-l0)2 1.15 x 10-6 erg~ 0.7 MeV 
rnuc 2X10-13 

An energy of 0.35 MeV falls to the part of each colliding nucleus. A 
temperature of the order of 2 X 109 K corresponds to an average 
energy of thermal motion equal to 0.35 MeV. The fusion of light nu­
clei, however, can proceed at considerably lower temperatures. The 
matter is that owing to the random distribution of particles by ve­
locities, there is always a certain number of nuclei whose energy 
considerably exceeds the average value. Moreover, which is especial­
ly important, the fusion of nuclei may occur owing to the tunnel 
effect. Therefore, some thermonuclear reactions proceed with an 
appreciable intensity already at temperatures of the order of 107 K. 

The conditions for the fusion of nuclei of deuterium and tritium 
are especially favourable because the reaction bet\veen them has a 
resonance nature. It is exactly these substances that form the charge 
of a hydrogen (or thermonuclear) bomb*. The igniter in such a bomb 
is a conventional atomic bomb upon whose explosion a temperature 
of the order of 107 K is produced. The reaction of fusion of a deuteron 
(d) and a tritium nucleus (1H3) 

td2 + tH3-+ 2He~ -t- ont . 

is attended by the liberation of energy equal to 17.6 MeV, which is 
--3.5 l\1eV per nucleon. We shall indicate for comparison that the 

* The first thermonuclear explosion was conducted in the Soviet Union 
in 1953. 
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f1ssion of a uranium nucleus leads to the liberation of about 0.85 MeV 
per nucleon. 

There was no doubt up to recent times that the fusion of hydrogen 
nuclei into helium nuclei is the source of energy of the Sun* and 
stars, the temperature inside of which reaches '107 to 108 K. This 
fusion may occur in two ways. At lower temperatures, the proton· 
proton cycle occurs, which proceeds as follows. First the fusion of 
two protons occurs with the formation of a deuteron, a positron, 
and a neutrino: 

p + p-+ d + e+ + v 

The deuteron formed collides with a proton and combines with it 
to form a He3 nucleus: 

d + p-+ 2He3 + v 
The last link in the cycle is formed by the reaction 

2He3 + 2He3 -+ 2He4 + P+ p 

At higher temperatures, the carbon (or carbon-nitrogen) cycle 
proposed by the German physicist Hans Bethe (born 1906) has a 
greater probability. It consists of the following reactions: 

sCtz + tPt-+ ,Nta + y 

71'\13- sCtJ + e+ + ,, 
sCIJ + tPt-+ 7Nt4 + y 

,Nt~ + tPt-+ sOt5 + y 

8015 ._,Nt5 + e+ + v 

7Nt5 + tPt-+ sCt2 + zHe4 

The result of the carbon cycle is the vanishing of four protons and the 
formation of one alpha particle. The number of carbon nuclei re­
mains constant; these nuclei participate in the reaction as a catalyst. 

In a hydrogen bomb, the thermonuclear reaction has an uncontrol­
led nature. To carry out controlled thermonuclear reactions, it is 
necessary to set up and maintain a temperature of the order of 
108 K in a certain volume. At such a high temperature, a substance is 
a completely ionized plasma (see Sec. 12.5 of Vol. II, p. 249 et seq). 
There are tremendous difficulties in the path of carrying out a con­
trolled thermonuclear reaction. In addition to the need of obtaining 

* In the middle of the seventies, grounds appeared to doubt the correctness 
of this statement. It can be seen from the equations of the reactions given below 
that the fusion of protons is attended by the appearance of neutrinos whose 
number can be assessed. Measurements have shown, however, that the number of 
neutrinos liberated on the Sun is extremely small. In this connection, the ques-­
tion of the nature of solar energy remains unclear. 
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extremely high temper'atures, the problem appears of keeping the 
plasma within the preset volume. Contact of the plasma with the 
Wf!llS of the vessel will result in its cooling. In addition, a wall of 
any substance will immediately evaporate. Jn this connection, a 
magnetic field has to be used to retain the plasma within the preset 
volume. The forces acting in this field on moving charged particles 
make them travel along trajectories arranged in a limited part of 
space. 

The achievement of controlled thermonuclear fusion will provide 
mankind with a virtually inexhaustible source of energy. This is 
why work on mastering controlled thermonuclear reactions is going on 
in many countries. The scope of this work is the greatest in the USSR 
and the USA. 



CHAPTER 11 ELEMENTARY PARTICLES 

11.1. Kinds of Interactions and Classes 
of Elementary Particles 

It is rather difficult to give a strict definition of the concept of an 
elementary particle. As a first approximation, we can define elemen­
tary particles to be such microparticles whose internal structure at 
the present stage of development of physics cannot be presented as 
a combination of other particles. In all phenomena observed to date, 
each such particle behaves like a single whole. Elementary particles 
can transform into one another. We encountered such transforma­
tions in the preceding chapter (see (10.7), (10.14), (10.15), and (10.16)]. 

To explain the properties and the behaviour of elementary par­
ticles, we have to supply them, in addition to mass, electric charge 
and spin, with a number of additional quantities characterizing 
them (quantum numbers), which will be treated on a later page. 

Four kinds of interactions between elementary particles are known:­
strong, electromagnetic, weak, and gravitational (we have listed 
them in the order of diminishing of their intensity). 

The intensity or strength of an interaction is customarily charac­
terized with the aid of the so-called coupling constant. The latter is­
a dimensionless parameter determining the probability of the pro­
cesses due to the given kind of interaction. The ratio of the values­
of the constants gives the relative strength of the corresponding­
interactions. 

Strong Interaction. This kind of interaction ensures the binding­
of nucleons in a nucleus. The coupling constant in strong interaction 
has a value of the order of 10. The greatest distance over which strong­
interaction manifests itself (the radius of action r) is about 10-13 em. 

Electromagnetic Interaction. The coupling constant is 1/137 ~ 
:=::::: 10-2 (see formula (5.37) and the text following it]. The radius of 
action is unlimited (r = oo ). 

Weak Interaction. This interaction is responsible for all kinds­
of beta decay of nuclei (including e-capture), for many disintegrations­
of elementary particles, and also for all the processes of interaction 
of neutrinos with a substance. The coupling constant is 10-14 in its 
order of magnitude. Weak interaction, like its strong counterpart, is 
short-range. 

Gravitational Interaction. The coupling constant has a value of 
the order of 10-39• The radius of action is unlimited (r = oo ). Gra.:.. 
vitational interaction is universal. All elementary particles without 
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any exception are subjected to it. In the processes of the microworld, 
however, gravitational interaction does not play an appreciable part. 

Table 11.1 gives the values (the ordf'r of magnitude) of the coupl­
ii.ng constants for the different kinds of interaction. The last column 

Table 11.1 

Kind of interaction 

Strong 
Electromagnetic 
Weak 
Gravitational 

Coup! in'! 
constant 

10 
1Q-2 
w-u 
10-38 

Lifetime, s 

10-23 

10-16 

10-8 

-of the table indicates the average lifetime of particles that decay as 
a result of the given kind of interaction (this time is also known as 
the decay time). 

Elementary particles are usually divided into four classes*. The 
first of them includes only a single particle--the photon. The second 
class includes leptons, the third-mesons, and, finally, the fourth 
class includes baryons. Mesons and baryons are often combined into 
a single dass of strongly interaeting particles called hadrons (the 
Greek word "hadros" means large, massive). 

Let us briefly characterize the listed classes of particles. 
1. Photons, '\' (quanta of an electromagnetic field), participate in 

electromagnetic interactions, but do not have strong and weak in­
teract ions. 

2. Leptons derive their name from the Greek word "leptos", which 
means "light-weight". They include particles having no strong in­
teraction: muons (~t -, ~t +), electrons (e-, e+), electron neutrinos 
(ve, ~e) and lllUOD neutrinos (vfJ., vj.l) (see Sec. 11.8). All leptons have 

a spin equal to ~ , and are therefore fermions. All leptons have weak 

interaction. Those of them that carry an electric charge (i.e. muons 
and electrons) also have electromagnetic interaction. 

3. Mesons are strongly interacting unstable particles not carrying 
a so-called baryon charge (see below). They include n-mesons or pions 
(n +, n -. n°), K-mesons or kaons (K+, [(-, K 0 , K0 ), and the eta-meson 
(lj). Pions were treated in Sec. 10.4. The mass of K-mesons is about 
970 me (494 MeV for charged and 498 MeV for neutral K-mesons). 
The lifetime of K-mesons is of the order of 10-s s. They decay with 

* There presumably exists another class of particles-gravitons (quanta 
of a gravitational field). These particles have not yet been discovered experiment­
tally. 
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the formation of n-mesons and leptons or only leptons. The mass of 
an eta-meson is 549 MeV (1074 me), its lifetime is of the order of 
10-19 s. Eta-mesons decay with the formation of n-mesons and y­
photons. 

Unlike leptons, mesons have not only weak (and, if charged, 
electromagnetic), but also strong interaction. The latter manifests 
itself when they interact with one another, and also in interaction 
between mesons and baryons. The spin of all mesons is zero, so that 
they are bosons. 

4. The class of baryons combines nucleons (p, n) and unstable 
particles having a mass greater than that of nucleons and called 
hyperons (A, ~+, ~ 0 , ~-. 8°, S-, ~2-). All baryons have strong 
interaction and, consequently, readily interact with atomic nuclei. 
The spin of all baryons is 112, so that baryons are fermions. Except 
for the proton, all baryons are unstable. When a baryon decays, a 
baryon is formed without fail in addition to other particles. This 
is one of the manifestations of the law of baryon charge conservation, 
which we shall deal with in Sec. 11.4. 

In addition to the particles listed above, a great number of strong­
ly interacting short-lived particles called resonances have been 
discovered. These particles are resonance states formed by two or 
more elementary particles. The lifetime of resonances is only about 
10-23 to 10-22 s. Some of the resonances are bosons and must be in­
cluded in the class of mesons. Others are fermions and must be in·· 
eluded in the class of hyperons. We shall not consider resonances in 
the following. 

11.2. Methods for Detecting Elementary Particles 

We succeed in observing elementary particles, and also complex 
micro particles (a, d, etc.) owing to the traces they leave in passing 
through a substance. The nature of the traces makes it possible to 
judge about the charge sign of a particle, its energy, momentum, etc. 
Charged particles ionize the molecules along their path. Neutral 
particles leave no traces, but they may reveal their presence at the 
moment of decaying into charged particles ot· at the moment of collid­
ing with a nucleus. Hence, in the long run, neutral particles are also 
detected according to the ionization produced by the charged particles 
they give birth to. · 

The instruments used to detect ionizing particles are divided into 
two groups. The first group includes devices that register the fact 
of a particle flying through them and, in addition, sometimes make 
it possible to judge about its energy. The second group inch~des 
track-detecting instruments, i.e. instruments that make 1t poss1ble 
to observe the tracks of particles in a substance. 
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The registering instruments include ionization chambers and gas· 
discharge counters (see Sec. 12.3 of Vol. II, p. 240 et seq), and also 
Cerenkov counters (see Sec. 20.6 of Vol. II, p. 471), scintillation, 
counters, and semiconductor counters. 

The operation of scintillation counters is based on the fact that a 
charged particle when flying through a substance produces not only· 
ionization, but also excitation of the atoms. Upon returning to their 
normal state, the atoms emit visible light. Substances in which 
charged particles produce a noticeable flash of light (scintillation) 
are called phosphors or scintillators. A scintillation counter consists 
of a phosphor from which light is supplied via. a special light guide 

Fig. 11.1 

to a photomultiplier. The pulses obtained at the 
output of the photomultiplier are counted. The 
amplitude of the pulses (which is proportional to 
the intensity of the scintillations) is also deter­
mined. This provides additional information on the 
particles being registered. 

A semiconductor counter is a semiconductor diode 
to which a voltage is fed of a sign such that the 
main current carriers are pulled back from the 
junction layer. Consequently, in the normal state, 
the diode is cut off. A fast charged particle when 
passing through the junction layer gives birth to 
electrons and holes that are drained off to the elec~ 
trodes. The result is the appearance of an elec­
tric pulse proportional to the number of current 
carriers produced by the particle. 

Counters are often combined into groups and are connected so as 
to register only those events that are recorded by several instru­
ments simultaneously, or, conversely, that are recorded only by one 
of the instruments. In the first case, the counters are said to form a 
coincidence system or circuit, and in the second one an anticoinci· 
dence system or circuit. By using different systems of connection, 
one can single out the phenomenon of interest from a multitude of 
phenomena. For exampl_e, two coincidence counters (Fig. 11.1) in­
stalled one after the other register particle 1 flying along their com­
mon axis and do not register particles 2 and 3. 

Track-detecting instruments include Wilson chambers, diffusion 
chambers, bubble chambers, spark chambers, and emulsion chambers. 

The Wilson Cloud Chamber. This instrument 'was developed by the 
British physicist Charles Wilson (1869-1959) in 1912. A track of the 
ions formed by a charged particle flying through the cloud chamber 
becomes visible in it because the supersaturated vapour of a liquid 
condenses on the ions. The instrument operates in cycles, and not 
continuously. The comparatively short (about 0.1 to 1 s) time of 
sensitivity of the cloud chamber alternates with the dead time (from 
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100 to 1000 times greater) during which the chamber is prepared for 
the next working cycle. Supersaturation is achieved by sudden cool­
ing produced by the sharp (adiabatic) expansion of the working mix­
ture consisting of a non-condensing gas (helium, nitrogen, argon) 
and the vapour of water, ethyl alcohol, etc. At the same moment, 
the working volume of the cloud chamber is photographed stereoscop­
ically (i.e. from several points). Stereophotography makes it pos­
sible to reproduce a three-dimensional picture of the recorded phenom­
enon. Since the ratio of the sensitive time to the dead time is very 
small, sometimes tens of thousands of photographs have to be made 
before an event having a low probability will be recorded. To in­
crease the probability of observing rare phenomena, controlled Wilson 
chambers are used in which the operation of the expansion mechanism 
is controlled by particle counters included in the electronic circuit 
singling out the required event. 

In 1927, the Soviet scientist Dmitri Skobeltsyn (born 1892) for 
the first time placed a Wilson cloud chamber between the poles of 
an electromagnet, which greatly extended its possibilities. The cur­
vature of the trajectory produced by the action of the magnetic field 
makes it possible to determine the sign of the charge of a particle 
and its momentum. An exo.mple of a photograph obtained with the 
aid of a Wilson cloud chamber placed in a magnetic field is Fig. 11.7 
(see p. 275), in which the tracks of an electron and a positron can be 
seen. 

The Diffusion Chamber. Like the Wilson cloud chamber, the 
working substance in a diffusion chamber is a supersaturated vapour. 
The state of supersaturation, however, is produced not by adiabatic 
expansion, but as a result of the diffusion of alcohol vapour from the 
lid of the chamber, which is at a temperature of about 10 °C, to its 
bottom, which is cooled by solid carbon dioxide (to about -70 oq. 
A layer of supersaturated vapour a few centimeters thick appears not 
far from the bottom. It is exactly in this layer that tracks are formed. 
Unlike the Wilson cloud chamber, a diffusion chamber functions 
continuously. 

The Bubble Chamber. In the bubble chamber invented by the 
American physicist Donald Glaser (born 1926) in 1952, the supersa­
turated vapour is replaced with a transparent superheated liquid 
(i.e. a liquid under an external pressure that is less than its saturated 
vapour pressure; see Sec. 15.5 of VoL I, p. 394 et seq). An ionizing 
particle flying through the chamber causes violent boiling of the 
liquid, owing to which the track of a particle is indicated by a chain 
of vapour bubbles. A bubble chamber, like a Wilson cloud chamber, 
operates in cycles. The chamber is started by a sharp lowering of the 
pressure, owing to which the working liquid transforms into the meta­
stable superheated state. The capacity of the working liquid, which 
simultaneously is a target for the particles flying through it, is filled 
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by hydrogen, xenon, propane (C 3H8) and certain other substances. 
The working volume of a chamber reaches 1000 litres. 

The Spark Chamber. In 1957, T. Cranshaw and J. De Beer devel­
oped an instrument for registering the trajectories of charged particles 

1 Counter 

f 

Fig. 11.2 

called a spark chamber. The in­
strument consists of an array of 
plane parallel metal electrodes 
(Fig. 11.2). The even-numbered 
electrodes are grounded, and the 
odd-numbered ones are periodi­
cally supplied with a short (last­
ing 10-7 s) high-voltage pulse 
(10-15 kV). If an ionizing par­
ticle flies through the chamber 
at the moment when a pulse is 
supplied to it, its track will be 
marked by a chain of sparks 
jumping between the electrodes. 
The chamber is switched on auto­

matically with the aid of additional counters connected in a coinci­
dence circuit that register the passage of the particles being 
investigated through the working volume of the chamber. 

An improved variant of the spark chamber is the streamer 
chamber. In this chamber the high voltage is removed before 

; #. ·.~. 
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Fig. 11.3 

a spark manages to develop completely. Therefore, only embryonic 
sparks develop that form a clearly visible track. 

The Emulsion Chamber. The Soviet physicists Lev Mysovsky and 
Aleksandr Zhdanov were the first to use photographic plates for 
recording microparticles. Charged particles act on a photographic 
emulsion .in the same way as photons. Therefore, after the develop­
ment of a plate, a visible track of a particle that has flown past it is 
formed. A shortcoming of the photographic plate method was the 
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small thickness of the emulsion layer, as a result of which only the 
tracks of particles flying parallel to the plane of the layer were ob­
tained completely. In emulsion chambers, thick bundles (with a 
mass of up to several scores of kilogrammes and a thickness of sever­
al hundred millimetres) made up from separate layers of photograph­
ic emulsions (without a substrate) are subjected to radiation. After 
irradiation, the bundle is taken apart into layers, each of which is 
developed and examined under a microscope. To be able to trace the 
path of a particle when passing from one layer to another, before the 
bundle is taken apart an identical coordinate network is inscribed on 
all the layers by means of X-rays. The tracks of particles obtained 
in this way are shown in Fig. 11.3, in which the consecutive transfor­
mation of a n-meson into a muon and then into a positron has been 
recorded. 

11.3. Cosmic Rays 

Before the development of powerful accelerators of charged parti­
cles, cosmic radiation was the only source of particles having an 
energy sufficient for the formation of mesons and hyperons. The 
positron, muons, n-mesons, and many strange particles (see Sec. 
11.6) were discovered in the composition of cosmic rays. 

Primary and secondary cosmic rays are distinguished. The primary 
rays are a flux of atomic nuclei (mainly protons) of a high energy 
(on an average of about 10 GeV, the energy of individual particles 
reaching 1010 GeV*) continuously falling on the Earth. The particles 
of primary cosmic rays collide inelastically with atomic nuclei in the 
upper layers of the atmosphere, the result being secondary radiation. 
At altitudes below 20 km, cosmic rays are virtually completely of 
a secondary nature. All the elementary particles known at present 
are encountered in the secondary rays. 

The intensity of the primary cosmic rays at the atmosphere's 
boundary (i.e. at an altitude of about 50 km) is approximately 1 
particle/(cm2 • s). The flux of charged particles at sea level averag~ 
about 2 x 10-2 particle/(cm2 ·s). The existence of the Earth's mag­
netic field leads to the fact that the intensity of cosmic rays varies 
with the latitude. This phenomenon is known as the latitude effect. 

Instruments installed on artificial satellites of the Earth and on 
spaceships helped scientists discover radiation belts near the Earth. 
These are two zones with a sharply increased intensity of ionizing 
radiation surrounding the Earth. Their existence is due to the eap­
ture and retaining of charged cosmic particles by the Earth's magnet­
ic field. In the plane of the equator, the internal radiation belt ex-

• We remind our reader that 1 GeV (gigaelectron-volt) equals 101 eV. 
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tends from 600 to 6000 km, and the external belt from 20 000 to 
60 000 km. At latitudes of 60 to 70 degrees, both belts approach the 
Earth to a distance of several hundred kilometres. 

Secondary cosmic rays contain two components. One of them is 
greatly absorbed by lead and was therefore called soft; the second 

Fig. 11.4 

one penetrates through thick layers of lead and. 
was called hard. 

The soft component consists of cascades or 
showers of electron-positron pairs. A gamma pho­
ton produced as a result of the decay of a n°-me­
son [see (10.15)1 or of the sharp retardation of 
a fast electron when flying near an atomic nucleus 
gives birth to an electron-positron pair (Fig.11.4). 
The retardation of these particles again results 
in the formation of gamma photons, and so on. 
The processes of the birth of pairs and of the pro­
duction of gamma photons alternate until the 
energy of the gamma photons becomes inadequate 
for the formation of pairs. Since the energy of the 

initial photon is very high, many generations of secondary particles 
have time to appear before the development of a shower stops. 

The hard penetrating component of cosmic rays consists mainly 
of muons. It is formed predominatingly in the upper and middle 
layers of the atmosphere as a result of the decay of charged n-mesons 
[see (10.14)]. 

With the appearance of accelerators making it possible to accel­
erate particles up to energies of hundreds of GeV (see Sec. 10.5 of 
Vol. II, p. 223 et seq.), cosmic rays have lost their exclusive signific­
ance in studying elementary particles. As previously, however, they 
remain the only source of particles having superhigh energies. 

11.4. Particles and Antiparticles 

The Schrodinger equation does not satisfy the requirements of 
the theory of relativity-it is not invariant with respect to the Lo­
rentz transformations. In 1928, the British physicist Paul Dirac 
succeeded in finding a relativistic quantum-mechanical equation 
for an electron from which a number of remarkable corollaries follow. 
First of all, this equation naturally, without any additional assump­
tions, gives us the spin and the numerical value of the intrinsic mag­
netic moment of an electron. The spin was thus found to be a quantity 
that is simultaneously a quantum and a relativistic one. 

But this does not exhaust the significance of Dirac's equation. 
It also made it possible to predict the existence of an electron's 
antiparticle-the positron. Dirac's equation gives not only positive, 
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but also negative values for the total energy of a free electron. In­
vestigation of the equation shows that at a given momentum of a 
particle p it has solutions corresponding to the energies 

E = + V c2p2+ m~c" (11.1) 
There is an interval of energy values between the maximum negative 
energy (-m 6c2) and the minimum positive energy (+m6c2) that can­
not be realized. The width of this interval is 2m6c2 (Fig.11.5). Hence, 
two regions of energy eigenvalues are obtained, one begins from 
+mec2 and extends to +oo and the other begins from -m6c2 and 
extends to -oo. 

In non-quantum relativistic mechanics, the energy is expressed 
through the momentum with the aid of an expression coinciding 
with Eq. (11.1) [see Eq. (8.42) of Vol. I, p. 242], so that it formally 
can also have negative values. In the non-quantum theory, however, 
energy changes continuous! y and therefore cannot intersect the for­
bidden band and pass from positive values to negative ones. In the 
quantum theory, the energy can change not only continuously, but 
also in a jump, so that the existence of a forbidden band cannot pre­
vent the transition of a particle to states with a negative energy 
(compare with the transition of an electron in a semiconductor from 
the valence band to the conduction band, Fig. 8.3). 

A particle with a negative energy must have very strange proper­
ties. Upon passing over to states with a decreasing energy (i.e. with 
a negative energy increasing in magnitude), it could libi:lrate energy, 
say, in the form of radiation, and since I E I is restricted by nothing, 
a particle having a negative energy could emit an infinitely great 
amount of energy. A similar conclusion can be arrived at as follows. 
A glance at the equation E = mc2 reveals that the mass of a particle 
having a negative energy will also be negative. Under the action of 
a retarding force, a particle with a negative mass should accelerate 
instead of retarding, doing an infinitely great amount of work on the 
source of the retarding force. 

These difficulties should seem to make us acknowledge that states 
with a negative energy must be excluded from consideration as lead­
ing to absurd results. This, however, would contradict some of the 
general principles of quantum mechanics. Therefore, Dirac chose a 
different way. He assumed that transitions of electrons to states 
with a negative energy are usually not observed because all the avail­
able levels with a negative energy are already occupied by electrons. 
We remind our reader that electrons obey the Pauli principle whi11h 
prohibits more than one particle from being in the same state. 

According to Dirac, a vacuum is a state in which all the levels of 
negative energy are populated hy electrons, while the levels with a 
positive energy are vacant (Fig. 11.6a). Since all the levels below the 
forbidden band are occupied without any exception, the electrons at 
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these levels do not reveal their presence in any way*. If the energy· 

E>2mec2 (11.2) 

is imparted to one of the electrons at negative levels, then this elec­
tron will transfer to a state with a positive energy and will behave 
in the usual way like a particle with a positive mass and a negative­
charge. The vacancy ("hole") formed in the collection of negative 
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levels must behave like a.n electron having a positive charge. In­
deed, the absence of a particle having a negative mass and charge will 
be perceived as the presence of a particle having R positive mass and 
a positive charge. This first particle of those predicted theoretically 
was called a positron. 

When a positron and an electron meet, they annihilate (vanish)­
the electron transfers from a positive level to a vacant negative one**. 
The f'nergy corresponding to the difference between these levels is­
liberated in the form of radiation. In Fig. 11.6b, arrow 1 depicts the­
process of the birth of an electron-positron pair, and arrow 2--their 
annihilation. The term "annihilation" must not be understood liter­
ally. In essence, the particles (electron and posit.ron) do not vanish,. 
but transform into other particles (gamma photons). 

Dirac's theory was so "crazy" that most physicists were very dis­
trustful of it. It won recognition only after the American physicist 
Carl Anderson in 1932 detected a positron in the composition of 
cosmic rays. In a Wilson cloud chamber placed between the poles of 
an electromagnet, a positron left the same track as an electron born 
simultaneously with it, except that this track was curled in the oppo­
site direction (Fig. 11. 7). 

Electron-positron pairs are born when gamma photons pass through 
a substance. This is one of the main processes resulting in a substance-

• Similarly, in a dielectric, the electrons completely filling the valence band 
do not react in any way to the action of an electric field. 

"'* This process is similar to the recornbina tion of an electron and a hole in 
a semiconductor. 



Elementary Particles 275 

absorbing gamma rays. In complete accordance with Dirac's theory, 
the minimum energy of a gamma photon at which the birth of a pair 
is observed is 2mec2 = 1.02 MeV [see expression (11.2)). To observe 

Fig. 11.7 

the law of momentum conservation in the process of the birth of a 
pair, another particle (electron or nucleus) must participate in it 
that receives the exr.ess momentum of a gamma photon over the 
total momentum of an electron and a positron. Hence, a pair is born 
as follows: 

(11.3) 
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or 
y + X - X + e- + e+ (11.4) 

where X is the nucleus in whose force field the pair is born. 
Electron-positron pairs may also be produced when two charged 

particles, for example, electrons, collide: 

e- + e- - e- + e- + r + e+ (11.5) 

In annihilation, the requirements of the law of momentum conser­
vation are observed in that two (more rarely three) gamma photons 
are produced that fly away in different directions: 

e- + e+- "r + y (+y) (11.6) 

The fraction of the energy received by the nucleus X in process 
(11.4) is so small that the threshold of the reaction of pair formation 
(i.e. the minimum energy of a gamma photon needed for it) virtually 
equals 2mec2 • The threshold of reaction (11.3) is 4mec2 , and of reac­
tion (11.5) is 7mec2 (in the latter case by the threshold of the reaction 
is meant the minimum total energy of the colliding electrons). Thus, 
the requirements of the simultaneous conservation of energy and 
momentum result in the fact that the threshold of a reaction (the 
minimum energy of the initial particles) may be appreciably greater 
than the Lolal rest energy of the born particles. 

Dirac's equation in a somewhat modified form may he applied not 
only to electrons, but also to other particles having a spin of 1/2. 
Consequently, for each such particle (for example, a proton or a 
neutron) there must exist an antiparticle*. By analogy with process 
(11.5), the birth of a proton-antiproton pair (p:p) or of a neutron­
antineutron pair (n-ii) can be expected when nucleons having a 
sufficiently high energy collide. The total rest energy of a proton and 
antiproton, like that of a neutron and antineutron, is almost 2 GeV 
[see Eqs. (10.1) and (10.5)1. The threshold of the reaction determined 
by the requirements of energy and momentum conservation is 
5.6 GeV. In 1!)55, an accelerator (synchrophasotron; see Sec. 10.5 of 
Vol. II, p. 227) was put into service at Berkeley, California (USA) 
that made it possible to accelerate particles up to an energy of 
6.3 GeV. By irradiating a copper target with a beam of accelerated 
protons, the American physicists 0. Chamberlain, E. Segre, C. Wie-
gand, and T. Ypsilantis observed the formation of a p-p pair. The 
reaction proceeded according to one of the following schemes: 

p + p - p + p + p + p or p + n - p + n + p + p ( 11. 7) 

The second nucleon in the left-hand side is in a Cu nucleus. Since the 

• An antiparticle)s designated by the same symbol as the particle correspond­
ing to it, with the addition of a tilde (,.....)or a bar over the symbol. For exam-
ple, an antiproton is designated by the symbol p or p-; 
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nucleons in a nucleus are in motion, the threshold energy of the im­
pinging particle in this case is about 4.3 GeV. 

An antiproton differs from a proton in the sign of its electric charge 
and fn its intrinsic magnetic moment (in an antiproton the magnetic 
moment is negative, i.e. directed oppositely to the mechanical angu·· 
lar momentum). The main feature distinguishing an antiproton from 
a proton (and in general a particle from an antiparticle) is their abil­
ity of mutual annihilation, as a result of which other particles are 
produced. An antiproton may annihilate when it encounters not only 
a proton, but also a neutron. The collection of particles produced in 
separate events of annihilation is different. For example, the follow­
ing processes are possible: 

p + p-+- :n;+ + :n;- + :n;+ + :n;- + :n;O } 

~ + p-+- :n;+ -1- 1C -1- no -1- :n;O +- :n;O 

p + n-+-:rt++ :n;- + n-+ :n;o + :n;o 

(11.8) 

In 1956, using the same accelerator at Berkeley, B. Cork, G. Lam­
bertson, 0. Piccioni, and W. Wenzel observed antineutrons obtained 
by the recharging of antiprotons, i.e. as a result of tlie processes 

i+p-+n+n 
(11. 9) 

'P+n-+n+n+n­
An antineutron differs from a neutron in the sign of its intrinsic 
magnetic moment (in an antineutron the direction of the magnetic 
moment coincides with that of the mechanical angular momentum) 
and in its ability to annihilate when it encounters a nucleon (neutron:· 
or proton). Annihilation results in the birth of new particles (mainly 
:n:-mesons). 

Not only fermions, hut also hosons have antiparticles. For example, 
a :rc-meson is the antiparticle with respect to a :n;+-meson. 

There are particles that are identical with their antiparticles (i.e. 
that have no antiparticles). Such particles are called absolutely neu· 
tral. They include the photon, n°-meson, and the '1']-meson. Particles 
identical with their antiparticles are not capable of annihilation. 
This, however, does not signify that they in general cannot trans­
form into other particles. 

If a baryon charge* (or baryon number) B = +1 is ascribed to 
baryons (i.e. nucleons and hyperons), a baryon charge B = -1 is 
ascribed to antibaryons, and a baryon charge B = 0 to all other 
particles, then all the processes occurring with the participation of 
baryons and antibaryons [for example, processes (11.7), (11.8) and 

* The baryon charge is one of the quantum numbers mentioned in the second 
paragraph of Sec. 11.1. 
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(11.9)1 will be characterized by conservation of the baryon charge, 
like processes (11.3)-(11.6} are characterized by conservation of 
the electric charge. 

The law of baryon charge conservation results in the stability of 
the lightest of the baryons-the proton. The other conservation laws 
(of energy, momentum, angular momentum, electric charge, etc.) 
do ·not forbid, for example, the process 

(11.10) 

that in the long run would lead to annihilation of atoms. Such a 
process, however, would be attended by a reduction in the baryon 
charge by unily, and is therefore not observed. Similarly, the law of 
electric charge conservation results in st.a bility of the lightest charged 
particle-the electron, forbidding, for example, the process 

e--+r+v+v (11.11) 

To explain the features of processes with the participation of lep­
tons and antileptons, it is necessary to introduce the quantum num­
ber L. called the lepton charge (or lepton number). For leptons, L = 
= +1, for antileptons L c-= -1, and for all other particles L = Q. 
When this condition is observed, conservation of the total lepton 
charge of the physical system being considered is observed in all . 
processes without any exception. 

The transformation of all the quantitiPs describing a physical · 
system in whieh all the partides are replar.ed with antiparticles (for · 
example, electrons with positrons, positrons with electrons, etc.) 
is called charge conjugation. Which of two eharge-conjugated par­
ticles is to be considerPd a particle and which an antiparticle is, ge­
nerally !'~peaking, a purely conditional matter. Having made a choice 
for one pair of charge-conjugated particles, however, the choice for 
the other pairs must be made so as to conserve the baryon and lepton 
charges in the observed interactions. The eh~ctron and the proton are 
conventionally considered to be particles, and the positron and the 
antiproton to be antiparticles. ·when this condition is observed, the 
choice for the remaining baryons and leptons is unambiguous. For 
example, to conserve the baryon charge in the course of process (10.7), 
we must consider the neutron to be a particle. The results obtained 
when account of the requirements of conserving B and L for other 
particles is taken are given in Table 11.2. 

Table 11.2 indicates all the particles discovered up to 1977 ex­
cept for resonances. Tho first column gives the names of the particles. 
When the antiparticle is designated with the aid of a tilde (--) or a 
bar (-), the name of the antiparticle i.s obtained by adding the prefix 
"anti" to the name of the relevant particle. For example, the antipar­
ticle of the lambda hyperon is called the antilambda hyperon. The 
antiparticle of the electron is the positron. In the remaining cases, 
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Table 11.2 

Name of particle I ~~r:-1 ~~;:: I r:'ev 
lcle '· s I Decay scheme 

I 
T 

Photon "( 0 

I 
stable 

I 
Leptons 

Electron e- e+ 0.51.1 stable 
Muon f.L- e:_+ 106 2.2xto-e e-+v;,+vl1 
Electron neutrino Ve ~e 0 stable 
Muon neutrino VIL VIL 0 stable 

Mesons 

Positive pi-meson n+ I :IC i40 2.6 X 10-8 f.L++vl1 
Neutral pi-meson no 135 0.8 X 10-16 "?+"? 

e+-f-e--f-y 
Positive K-mesou K+ K- 494 1.2 X 10-a f.L++v~'-

n++no 

I 7(o 
n++n++n-

Neutral K-meson J(O 498 t0-1Q_fQ-8 n++n-
no+ no 
n++e-+:;e 

Eta-meson 549 2.4 X 10-18 
n-+e+-f-ve 

1'] "?+"? 

I 
n++n-+no 
no+ no+ no 

Baryons 

Proton - 938.2 stable p E 
Neutron n n 939.6 0.9 X 103 p-f-e·-+ve 
Lambda hyperon 11. X 1116 2.5 X 10-10 p-f-n-

Positive sigma hype- ~+ f+ 
n-f-n° 

1189 0.8 X 1Q-1o p-t-no 
ron n+n+ 

Nautral sigma hype- ~0 fo 1192 < to-u 11.-f-"( 
ron 

Negative sigma hy- ~- f- 1197 1.5 X 10-1o n-f-n-
peron 

Neutral xi hyperon go §:o 1315 3 X 1Q-1o 11.-f-nO 
Negative xi hyperon s- s- 1321 1. 7 X 10-10 11.-f-n-
Negative omega hy- Q- g- 1672 1.3 X 10-10 go+ n-

peron s-+n° 
11.-f-K-
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the names of particles and antiparticles are distinguished by adding 
the words "positive" and "negative". For example, the negative pi­
meson is the antiparticle of the positive pi-meson*. The second and 
third columns give the symbols of the particle and its antiparticle. 
The symbols of absolutely neutral particles are inserted in interrup­
tions of the vertical line dividing the particle and antiparticle columns. 
The fourth and frfth columns give the mass of a particle m and its 
average lifetime 't. Finally, the last column indicates the main 
schemes of decay of the particles. To obtain the scheme of decay of an 
antiparticle, the particles must be replaced with antiparticles and 
the antiparticles with particles For example, the scheme of the decay 
of a positive muon has the form e+ + Ve + ;w 

Now we can explain why the particle produced in decays (10.7) 
and (10.26) should be called an antineutrino, and that produced in 
decay (10.27) a neutrino. This follows from the requirement of con­
servation of the lepton charge. For an electron and a neutrino, L = 
= + 1, and for a positron and an antineutrino, L = - 1. Hence, 
the total lepton charge does not change if an electron is produced 
together with an antineut.rino, and a positron together with a neu­
trino. 

Ascribing L = + 1 to an electron, we must also ascribe L = + 1 
to a negative muon in accordance with decay reaction (10.16), i.e. 
consider f1.- to be a particle, and a positive muon to be an antiparticle 
with a value of L = - 1. It is easy to see that the lepton charge is 
also conserved in n-meson decay processes [see (10.14)}. 

11.5. Isotopic Spin 

It follows from the charge independence of nuclear forces (see 
Sec. 10.4) that a proton and a neutron display much more similarities 
than distinctions. They participate equally in strong interaction, the · 
spin of both particles is the same, their masses are very close. This 
gives us grounds to consider a proton and a neutron as two different 
states of the same particle-a nucleon. If electromagnetic interaction 
is "switched off", then both these states coincide completely (the slight 
difference between the masses of a proton and a neutron is due to 
electromagnetic, interaction). 

Let us turn to the diagram of the sodium atom levels (see Fig. 5.6). 
We remind our reader that the multiplet structure of the levels is due 
to the interaction between the spin and the orbital moments of the 
electrons. "Switching off" of the spin-orbital interaction would re­
sult in vanishing of the difference between, for example, the levels 

• The terms pion and kaon are sometimes used instead of :t-meson and 
K-meson, respectively. 
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32P 1; 1 and 32P s; 2 and in their merging into the single level 3P. 
Switching on of the spin-orbital interaction, on the contrary, results 
in the formation of multiplets like the switching on of electromagnetic 
interaction results in the appearance of differences between a proton. 
and a neutron. This analogy served as the grounds for calling a pro­
ton and a neutron a charge multiplet (doublet). Other particles can 
also be combined into charge multiplets. For example, a lambda 
hyperon forms a singlet (see Table 11.2), n-mesons a triplet (when 
electromagnetic interaction is switched off, all three n-mesons be­
come indistinguishable). 

A definite value of the spin S corresponds to each spectral mul­
tiplet (the number of components in a multiplet is 2S + 1). The 
separate components of a multiplet are distinguished by the values 
of the projection of the spin onto the z-axis. By analogy with con­
ventional spin, to each charge multiplet there is ascribed a definite 
value of the isotopic spin (or isospin)* T selected so tHat 2T + 1 
equals the number of particles in a multiplet. Different values of 
T z-the projection of the isotopic spin onto the z-axis in imaginary 
isotopic space-are ascribed to different particles. For example, for 
nucleons T = 1/2, Tz = +1.12 corresponds to a proton, and Tz = 
= -1/2 to a neutron. For :rt-mesons, T = 1, the projections Tz 
equal +1, 0, and -1 for n+-, n°-, and n--roesons, respectively. 

To avoid misunderstanding, we must note that the quantum num­
ber T called the isotopic spin has no relation to isotopes or to conven­
tional spin. The word "isotopic" appedred in the name of the quantum 
number T because a proton and a neutron form different "varieties" 
of a nucleon, like real isotopes form varieties of a given chemical ele­
ment. The word "spin" appeared in the name because the mathematic­
al apparatus describing the quantum number Twas found to he exact­
ly the same as the mathematical apparatus describing conventional 
spin. Otherwise, there is nothing in common between isotopic and 
conventional spins. 

Table 11.3 gives the values of T and T z for different particles_ 
Each line in this table gives a charge multiplet. Hence, if there are, 
for example, two lines for a nucleon, this signifies that nucleons form 
two charge multiplets_ 

Let us consider two charge multiplets differing in that the particles 
forming one multiplet are antiparticles with respect to the particles 
forming the other multiplet. The isotopic spins of both multiplets are 
obviously the same (2T + 1 gives the number of particles in a mul­
tiplet)_ As regards the projections of the isotopic spin T" they differ 
in sign for a particle and antipacticle. Thus, for a proton, Tz = 

* Isotopic spin was first introduced into consideration by Werner Heisen­
berg in 1932 in order to describe a proton and a neutron as different states of 
a nucleon. 
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Table 11.3 

Isotopic spin 
Projection of isotopic spin T, 

Particle T I -1 -1/2 0 +1/2 +1 

.n:-Meson 1 n- no 
I .n:+ 

K-Meson 1/2 KO 

I 
K+ 

1/2 K- ](o 

t]-Meson 0 1'] I 
Nucleon 1/2 n 

I t 
1/2 p n 

A-Hyperon 0 i\ 

I 0 1\ 

~-Hyperon 1 };- 2:0 

l 
}.;+ 

1 '2+ };0 f-

3-Hyperon 1/2 s-
I 

go 

1/2 So g+ 

Q~Hyperon 0 Q-

I 0 Q--

+ 1/2, for an antiproton, T z =- 1/2, for a neutron Tz - - 1/2, 
for an antineutron, Tz = + 1/2. 

At first sight, it may appear strange that for :n:-mesons, both a 
particle (:n: +)and its antiparticle (:n:-) combine to form a single charge 
multiplet, whereas, for example, a A-hyperon and an anti-A-hyperon 
form two different charge multiplets. The explanation is that a charge 
multiplet unites particles differing only in the magnitude or the 
sign of their electric charge; all the other quantities characterizing 
the particles must be the same*. The hyperons A and A differ in 
the value of their baryon number, and therefore cannot be included 
in one multiplet. The baryon number of all n-mesons is zero, and 
the other quantum numbers are also the same; hence, there are no 
obstacles preventing their combination into one multiplet. 

A conservation law is associated with the isotopic spin. In strong 
interactions, both the isotopic spin T and its projection Tz are con-

• The difference between charged and neutral particles due to electromag­
netic interaction, for example, their slight difference in mass, is not taken 
into consideration. 
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served. In electromagnetic interactions, only T z is conserved, while 
the isotopic spin T itself is not conserved. Weak interactions pro­
ceed, as a rule, with a change in the isotopic spin. 

The concept of isotopic spin was a very fruitful one. It played a 
major part in systematizing elementary particles. In particular, it 
suggested the idea to the Americ:1n physicist Murray Gell-Mann 
(horn 1929) and independently of him to the Japanese physicist 
Kazuhiko Nishijima (born 1926) of combining particles into charge 
multiplets and then led them to the concept of strangeness (see the 
following section). 

11.6. Strange Particles 
K-mesons and hyperons (A, 1:, E) were discovered in cosmic 

rays in the early 1950's . Beginning from 1953, ~cientists have been 
using accelerators to produce them. The behaviour of these particles 
was found to be so unusual that they were called strange. 

The singularity of the behaviour of strange particles consists in 
that they are obviously horn as a result of strong interactions with 
a characteristic time of the order of 10-23 s, whereas their lifetimes 
were found to be of the order of 10-a to 10-10 s. The latter circumstance 
pointed to the fact that the particles decay as a result of weak in­
teractions. It was absolutely incomprehensible why strange particles 
live so long, and what hinders them from decaying at the expense of 
the strong interaction giving birth to them. For example, one of the 
processes producing strange particles has the form 

n- + p ~K0 +A 
while the lambda hyperon decays according to the scheme 

A~ n- + p 

(11.12) 

(11.13) 

(see the photograph of tracks of particles obtained in a liquid hydro­
gen bubble chamber given in Fig. 11.8). Since the same particles 
(a n--meson and a proton) participate both in the birth and in the 
decay of a lambda hyperon, it is surprising that the speed (i.e. prob­
ability) of the two processes is so different. 

Further investigations showed that strange particles are born in 
pairs [see (11.12)1. This suggested the idea that strong interactions 
cannot play a part in the·decay of these particles because the presence 
of two strange particles is needed for their manifestation. For the 
same reason, the single birth of strange particles is forbidden. 

A law of conservation always underlies the forbiddenness of a 
process. Thus, the decay of a free proton according to the scheme 
p ~ n + e+ + v is forbidden by the law of energy conservation, ac-
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cording to the scheme p-+ e+ + v by the law of baryon charge conserva­
tion, etc. 

To explain the forbiddenness of the single birth of strange particles, 
Gell-Mann and Nishijima introduced a new quantum number S 

i''ig. 11.8 

1!'-
, with enerq'JI 
~\ oftCeV~ 9'-

f<o 

,~ 
I 

' ' I 
I 
I 

!lA 
fl+p-A+K': 

I 

whose total value, according to their assumption, must be conserved 
in strong interactions. This quantum number was called the stran­
geness* of a particle. In weak interactions, the strangeness may not 

"' Names of the quantum numbers such as "strangeness" and "charm" (such 
a quantum number also exists) prove that physicists, as a rule, have a sense 
of humour. Naturally, terms such as "quantum number No. 1", "quantum number 
No. 2". etc. could have been introduced instead of such exotic names. But this 
would be awfully boring. 
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be conserved. It is therefore ascribed only to strongly interacting 
particles-mesons and baryons. Thus, for K-mesons, S = + 1, and 
for A-hyperons, S = - 1. Consequently, process (11.12) occurs with 
conservation of the strangeness (the total strangeness of both the 
initial and the formed particles is zero), whereas in the course of 
process (11.13) the strangeness changes by unity. Therefore, process 
(11.13) cannot proceed with the participation of strong interactions. 

Gell-Mann and Nishijima related the strangeness to the average 
electric charge <Q) of the particles forming a charge multiplet and to 
the baryon charge B of a particle: 

8=2 <Q>-B (11.14) 

The data of Table 11.3 can be used to fmd <Q) for each of the multi­
plats, and from Table 11.2 the value of B can be determined for dif­
ferent particles (we remind our reader that for particles B = + 1, 
and for antiparticles B = - 1). It is easy to see that for nucleons, 
antinucleons, n-ri:J.esons, and the l)-mMon, we get S = 0. For examp­
le, for nucleons, <Q) = 1/2, B = + 1, for antinucleons (Q) = -- 1/2, 
B = - 1. The substitution of these values in Eq. (11.14) gives S = 0 
for both cases. Particles with S = 0 are conventional, non-strange 
ones. 

At that time, not all K-mesons and hyperons were known. Gall­
Mann and Nishijima ascribed such values of the quantum number S 
to the known strange particles which with the aid of the law of stran­
geness conservation could explain the features of their birth and de­
cay. This made it possible to establish the possible number of particles 
in charge multiplets and to predict the existence and properties of 
new particles. In this way, the ~o and 5°-hyperons and the i(o_ 
meson were predicted. They were later discovered experimentally. 

The average charge· <Q) for many multiplets is a half-integer. To 
avoid dealing with fractions, the quantum number 

Y=2 <Q> (11.15) 

was introduced, and it was called the hypercharge. According to 
Eq. (11.14), 

Y=B+S (11.16) 

Since the baryon charge is conserved in all interactions, the hyper­
rharge behaves in the same way as the strangeness: it is conserved in 
strong and electromagnetic interactions and may not be conserved in 
weak interactions. 

It is a simple matter to see that the three quantum numbers <Q) 
Y and S are in essence absolutely equivalent-the value of one of 
them determines the values of the other two (B is assumed to be 
known). The most convenient of these three quantum numbers is the 
hypercharge Y; this is why it is ordinarily used instead of S. 
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Table 11.4 gives the values of the hypercharge Y, the baryon charge 
B, and the strangeness S for various charge multiplets. 

Table 11.4 

Charge multiplet I Composition ot multiplet y I B I 8 

--·--·· 
:n-Mesons 

I :n+ non- 0 I I I 0 0 

K-Mesons 

I 
K+ K 0 +1 

I 
0 I +1 

Anti-K-mesons K- j(o -1 0 -1 

Eta-meson I ll 0 I 0 I 0 

Nucleons I 1!'!.:. +1 
I 

+1 
I 

0 
Anlinucleons P n -1 -1 0 

A-Hyperon I A 0 I +1 j-1 
Anti-A-hyperon X 0 -1 +1 
~-Hyperons 

I 
2;+ ~0 2;- 0 

I +1 1-1 
Anti-~~hyperons :f+ fo}:- 0 -1 +1 
2-Hypcrons 

I 
:s- :so -1 I +1 I+; Anti-2-hyperons s+So +1 -1 

Q-Hyperon I Q- -2 l -1 I~; An t.i-Q-hyperon Q- +2 -1 
It must he noted that the electric charge Q of a particle can be 

expressed through the projection of the isotopic spin T: and the by-
percharge Y (or the b~ryon charge B and the strangeness S): 

Y . B+S 
Q=Tz+T=Tz+ ·-2- (11.17) 

We can convinee ourselves that this relation is true by using the 
data of Tables 11.3 stnd 11.4. 

11.7. Non-Conservation of Parity 
in Weak Interactions 

Among the quantities characterizing microparticles, there is a 
purely quantum-mechanical quantity called the parity (P). We know 
that the state of a particle is described in quantum mechanics by 
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the function 1.\J (x, y, z). Let us see how the function 1.\J can behave in 
the so-called inversion of space, i.e. upon transition to the coordi­
nates x', y', z' associated with x, y, z by the relations 

x' = - x, yt =- y, z' = - z 

Examination of Fig. 11.9 shows that such a transformation signifies 
a transition from a right-handed coordinate system to a left-handed 
one. The same transition occurs upon reflection in a mirro1 
(Fig. 11.10). Hence, the inversion transformation results in a right­
handed reference frame being replaced with a left-handed one. The 

tz ~x' 
;-~ 

.Z' ' I 

h' 
Fig. 11.9 

A 
II 

I I 
I I 

v Z'l(. !r y 

:l,xr 
I I 
I I 

r/ 
I; 
v 

fig. 11.10 

two reference frames x, y, z and x', y', z' differ from each other in the 
same way as the right-hand and left-hand gloves of a pair do. If we 
turn right-hand glove, for example, inside out (i.e. subject it to in· 
version), it will coincide with the left-hand one. 

The operation of inversion done twice obviously returns a system 
of coordinates to its initial form. Assume that the operation of in­
version leads to multiplication of the function 1p by a certain number 
a: 

'¢(x', y', z') =a'\j;(x, y, z) 

Applying the operation of inversion once more to the expression ob­
tained, we arrive at the function 

a'iJ (x', y', z') = a2'iJ (x, y, z) 

that must coincide with the initial function 'iJ (x, y, z). Hence, az 
must be 1, and a itself may be +1 or -1. 

It follows from the above that the operatwn of inversion either 
leaves the function lj.l unchanged or reverses the sign of '~· In the first 
case, the state described by the function \jJ is called even, in the sec­
ond one odd. The behaviour of the function ~' upon inversion de­
pends on the internal properties of the particles described by this 
function. Particles described by even functions are said to have 
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positive (even) intrinsic parity (P = +1); particles described by odd 
functions have negative (odd) intrinsic parity (P = -1). The parity 
of a system of particles equals the product of the parities of the sep­
arate particles in the system. 

The law of parity conservation follows from quantum mechanics. 
According to it, in all the transformations experienced by a system of 
particles, the parity of the state remains unchanged. Conservation 
of parity signifies invariance of the laws of nature with respect to 
replacement of right with left (and vice versa). 

There was no doubt up to 1956 that the law of parity conservation 
is observed in all interactions. In 1956, the American physicists 
Tsung Dao Lee (born 1926) and Chen Ning Yang (born '1922) advanced 
the assumption that parity may not be conserved in weak interactions. 
This assumption was based on the following. At that time two me­
sons designated ; .. and 9 were known. Both mesons were absolutely 
identical in all respects except one: the 't'-meson decayed into three 
n-mesons, and the f:l-meson only into two n-mesons. It could natural­
ly have been assumed that both mesons are the same particle capable 
of decaying in two different ways. This assumption, however, con­
tradicted the law of parity conservation. The parity of a n-meson 
P == - 1. Therefore, the parity of a system of two n-mesons is 
(-1)2 = + 1, and of a system of three n-mesons is (-1)3 = - 1. 
It followed from the law of parity conservation that 't'- and 9-me­
sons differ in their intrinsic parity (for a ,;-meson decaying into three 
n-mesons, P = - 1, and for a 9-meson decaying into two n-mesons, 
P = + 1), and are therefore two different particles. 

It was authetically established with time that the 't'- and 9-mesons 
are the same particle now called a K 0-meson, for which P = - 1. 
Consequently, the process 

KO- :n;+ + :n;­

occurs with violation of parity. 
Lee and Yang proposed the idea of an experiment for verifying 

the non-conservation of parity that was carried out at the Columbia 
University (USA) by Chien-Shiung Wu (horn 1913) and her collabo­
rators. The idea of the experiment was as follows. If right and left 
are indistinguishable in nature, then in beta decay the flying out of 
an electron in the direction of spin of the nucleus and in the opposite 
direction must be equally probable. Indeed, upon reflection of a 
nucleus in a mirror, the direction of its "rotation", i.e. the direction 
of its spin, is reversed (Fig. 11.11 ). If a nucleus emits beta electrons 
with equal probability in both directions (Fig. 11.:Ha), then the 
mirror image of the system nucleus-electrons will.be indistinguish­
able from the system itself (they are only turned relative to each other 
through 180 degrees). If the beta electrons are emitted mainly in one 
direction (Fig. 11.Ub), then "left" and "right" become distinguishable. 
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In Wu's experiment, nuclei of radioactive cobalt Co60 were orient­
ed with their spins in one direction with the aid of a magnetic fi.eld. 
To keep thermal motion from hindering such orientation, the radio­
active preparation was cooled to superlow temperatures (.-.0.1 K). A 
considerable difference in the numbers of beta electrons emitted in 
both directions was detected. The beta electrons were found to be 
Bmitted mainly in the direction opposite to that of the nuclear spins. 
It was thus proved experimentally that right and left are not equal in 
weak interactions (we remind our reader that beta decay is due to 
weak interaction). 

After it had been established that space parity (P) is not conserved 
in weak interactions, the Soviet physicist Lev Landau and inde­
pendently of him Lee and Yang advanced the hypothesis that any 
interactions are invariant relative to a com-
plex transformation consisting in the simul­
taneous inversion of space and in the repla­
cement of particles with antiparticles. 
Such a transformation was called combined 
inversion. According to this hypothesis, (a) 
symmetry between right and left is con­
served if in t,he mirror image of space, parti-
cles are replaced with antiparticles. Indeed, 
if we replace the mirror image of the nu- (b) 
cleus in Fig. 11 . H b with an antinucleus, 
then the direction of the spin will be re­
versed and the mirror image of the system 
will not differ from the system itself. 

Fig. 11.11 

t t 
~ 
t t v 

Let us designate the operation of space inversion by the symbol P, 
and the operation of charge eonjugation (i.e. the replacement of 
particles with antiparticles) by the symbol C. The symbol of com­
bined inversion will therefore be C P. This is why the in variance re­
lative to combined inversion is called CP-invariance. The parity of 
the state of a particle relative to combined inversion is called com­
bined parity. Therefore, the two previously existing laws- the law 
of invariance relative to charge conjugation* and tpe law of space 
parity conservation--form a single law of combined parity conser­
vation for weak interactions. 

The combined parity is indeed conserved in a number of processes in 
which space parity is violated. In 1964, however, data were obtained 
in studying Lhe ·decays of /(0-mesons that point to the violation in 
these decays of the law of combined parity conservation. We do not 
have the possibility of delving into the details of this matter. 

* I.e., the inalterability of the laws of nature when particles are replaced 
with ant particles. 
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11.8. The Neutrino 

The neutrino is the only particle that does not partjcipate in strong 
or in electromagnetic interactions. Excluding gravitational interac­
tion, which all particles participate in, a neutrino can take part only 
in weak interactions. 

It was not clear for a long time in what a neutrino differs from an 
antineutrino. The discovery of the law of combined parity conser­
vation (see the preceding section) made it possible to answer this 
question: they differ in their helicity. 

By helicity is meant a definite relation between the directions of 
the momentum p and spin s of a particle. The helicity is considered 
positive if the spin and the momentum have the same direction. In 
this case, the direction of motion of a particle (p) and the direction of 
"rotation" corresponding to the spin form a right-handed screw 
(Fig. 11.12a). With oppositely directed spin and momentum 
(Fig. 11.12b), the helicity will be negative (the forward motion and 
"rotation" form a left-handed screw). It is obvious that the helicity 
can be determined as the sign of the scalar product sp. 

Helicity can have an absolute value, i.e. be an intrinsic property, 
only for a particle with a zero rest mass (such a particle exists only 
when travelling with the speed c). A particle whose rest mass differs 
from zero will travel with a speed v less than c. The helicity of such 
a particle in reference frames travelling with speeds less than v and 
with speeds exceeding v (but less than c) will be different (the mo­
mentum of a particle in such reference frames l1as opposite directions). 
Thus, of all particles, only a neutrino can have helicity as an intrinsic 
property*. 

According to the theory of the longit.udinal neutrino developed 
by Yang and Lee, Landau, and also by the Indian physicist Abdus 
Salam (born 1926}, all neutrinos exi:;ting in nature,. regardless of 
how they were produced, are always completely l~ngitudinally po­
larized (i.e. their spin is either parallel or antiparallel to the momen­
tum p). A neutrino has a negative (left-handed) helicity (the direc­
tions of s and p shown in Fig. 11.12b correspond to it) and an anti­
neutrino has a positive (right-handed) helicity (Fig. 11.12a). Thus, 
the hl'licity is what distinguishes a neutrino from an antineutrino. 

Upon reflection in a mirror, a right-handed helix transforms into 
a left-handed one. Hence, the existence of helicity in neutrinos con­
tradicts the law of space parity conservation (the particle does not 
coincide with its image). But if simultaneously with reflection in a 

* A photon also has a zero rest mass, but unlike a neutrino, the two helicity 
values obtained for a photon (positive and negative) correspond not to a particle 
and antiparticle, but to two different states of polarization of the same particle. 
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mirror we replace a neutrino (having left-handed helicity) with an 
antineutrino (having right-handed helicity), then the requirements 
of the law of combined parity conservation will be observed. 

That a neutrino has helicity is observed in the chain of transfor­
mations n ~ p. -~e. At the end of its path, a n +-meson decays into 
a muon and a neutrino: 

:rt+-+~-t+-1-v 

The spin of a n +-meson is zero, the momentum at the end of its path 
also vanishes. Therefore, the muon and the neutrino must fly away 

0 .;z(." 
(a) {6) 

Fig. 11.12 Fig. H.13 

in opposite directions, the neutrino "imposing" its helicity on the 
muon* (Fig. 11.13); otherwise the spin of the system will not remain 
equal to zero. 

The muon at the end of its path decays as follows: 

Jl +-+ e+ + v + ~ 
Since here we have to do with the decay of polarized muons, the same 
phenomenon should be observed in their decay as in the beta decay 
of polarized nuclei (iq Wu's experiment)-the angular distribution 
of the positrons should be anisotropic relative to the direction of 
polarization of the muon, i.e. relative to the direction of it:s motion 
before stopping. Indeed, studying of the photographs registering the 
processes of n -+ ft -+ e decay in a bubble chamber shows that pos­
itrons are most often emitted in a direction opposite to that of motion 
of the muons (see Fig. 11.13). 

The hypothesis on the existence of neutrinos was advanced in 
1932. During the following quarter of a century, numerous indirect 
proofs of the correctness of this hypothesis were obtained, but no­
one succeeded in directly observing neutrinos. The reason is that neu­
trinos do not have an electric charge and mass and therefore interact 
extremely weakly with a substance. For example, a neutrino with 
an energy of about 1 MeV ha:s a path of about 1020 em or 100 light 
years in lead. Only after the development of nuclear reactors, which 

• The spin of a muon is usually not fixed relative to the direction of its 
motion. 

!')"-
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a~e sources o! ~~werful streams of neutrinos [about 101s part/(cm2 ·s)l, 
d1d the poss1b1hty appear of observing reactions with the participa­
tion of these elusive particles. 
. Antineutrinos were directly observed in a series of experiments run 
m 1953-1956 by the American physicists F. Reines and C. Cowan, Jr. 
The reaction 

(11.18) 

was observed, which is in essence an inversion of neutron decay 
reaction (10. 7)*. That an antineutrino entered into a reaction with 
a proton is indicated by the simultaneous appearance of a neutron 

Capture by 
Cdnucleus 

7 y 
'--v----" "-' --=-~ 

2nd flash tst flaslt 

Fig. 11.14 

Annihilation 

Fig. 11.15 

and a positron (Fig. 11.14). The positron virtually immediately an­
nihilated with an electron, which resulted in the production of two 
gamma quanta each having an energy of 0.51 MeV. The neutron after 
retardation was captured by a cadmium nucleus. The excited nucleus 
formed as a result emitted luminescently several gamma photons 
with a total energy of 9.1 MeV. 

The installation is shown schematically in Fig. 11.1.5. Two tanks 
(190 X 130 X 7 em) filled with au aqueous solution of cadmium 
chloride were the target. Three tanks (190 X 130 X 60 em) were 
filled with a liquid capable of scintillation under the action of gamma 
photons. The scintillation flashes were registered by 1 JO photomul­
tipliers. The tanks were confined in a paraffin and then in a lead 
shield for protection against cosmic radiation and against neutrons 

* The inversion of the reaction of neutron decay in the literal meaning 

of the word would be the reaction v + p + e-- n, but such a reaction re<luires 
the meeting of three particles and is therefore practically impossible. The 'sub­
tract on" of a particle is equivalent to the addition of an antiparticle; by sub­
tracting e- from the left-hand side and adding e+ to the right-hand one, we get 
reaction ( 11.18). 
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leaving the reactor. The entire installation was embedded deep in 
the earth near a large reactor. The scintillation flash produced by 
the captured gamma photons lagged behind the flash caused by anni­
hilation gamma photons by several ~cores of microseconds. Both 
flashes were registered according to a delayed coincidence circuit. 
In addition, the energy of the gamma photons producing each flash 
(1.02 MeV and 9.1 MeV) was also assessed. This made it possible to 
reliably separate the effect being studied from the background due 
to other processes. The experiment lasted 1371 hours (57 days). Every 
hour, an average of about three double flashes of the expected inten­
sity were registered. These results are a direct proof of the existence 
of antineutrinos. 

In some processes, a neutrino (or antineutrino) appears together 
with an electron (positron), in others together with a muon (examples 
can be found in Table 11.2). It was assumed for a long time that the 
former (electron) neutrinos Ve are identical with the latter (muon) 
neutrinos v 11 • In 1962, it was proved expedmentally that this is not 
correct. The idea of the experiment belongs to Bruno Pontecorvo 
(born 1913). The inversion of reaction (10.28) will be the process 

(11.19) 

(see the footnote on page 292). A similar process is possible in which 
a muon appears instead of an electron 

v14 +n-+p+fA- (11.20) 

(the particle participating in this reaction must obviously be a 
muon neutrino, and not an electron one). Pontecorvo proposed to 
irradiate the substance with the muon neutrinos formed in the decay 
n +- f..t + + v 11 and observe the particles produced. The presence of 
both e- and f..t- among them would indicate that Ve and v14 are iden­
tical. The presence of only f..t- would indicate that electron and muon 
neutrinos differ. 

The experiment was carried out by the American physicists L. Le­
derman, M. Schwartz and others at Brookhaven (USA). The accel­
erator produced n +-mesons with an energy of 15 GeV. The process 
of n-r-t-decay [see (10.14)1 resulted in the formation of muon neutrinos 
with an energy of about 500 MeV. The stream of these neutrinos was 
directed into a spark chamber with massive iron plates (with a total 
mass of 10 tonnes). During 800 hours, 51 cases of the birth of muons 
were registered, and not a single case of the birth of electrons. This 
resul..!_ proves the existence of four different neutrinos: v e, ;e, 
'VI!, Vw 

In connection with the need to distinguish electron and muon neu-
trinos, the symbol of the neutrino in formulas (10.7), (10.26), (10.27) 
and (10.28) must be supplemented with the subscript "e", and in 
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formul&s (10.14) with the subscript "JA.". Formulas (10.16) must be 
written as follows: 

11.9. Systematization of Elementary Particles 

The regularities observed in the world of elementary particles can 
be formulated as conservation laws. Quite a lot of such laws have 
accumulated (see Table 11.5). Some of them are not accurate, but 

Table 11.5 

Kind of interaction 
Law or conservation of 

weak strong I electro­magnetic 

------------------------~----~------~-----
energy E 
momentum p 
angular momentum M 
electric charge Q 
baryon charge B 
lepton charge L 
isotopic spin T 
hypercharge Y (or strangeness S) 
charge conjugation C 
parity P 
combined parity CP 

+ + 
+ + 
+ + + + + + 
+ + 
+ 
+ + + + 
+ + + + 

+ + + 
+ + + 

only approximate. For example, the law of hypercharge Y (or 
strangeness S) conservation is obeyed for strong and electromagnetic 
interactions and is violated for weak interactions (observance of a 
law in a given kind of interaction is indicated in Table 11.5 by a 
plus sign, and violation by a minus sign). 

Every conservation law expresses a definite symmetry of a system. 
The laws of conservation of momentum p, angul~r momentum M, 
and energy E reflect the properties of symmetry of space and time: 
the conservation of E is a result of the uniformity of time, the con­
servation of p is due to the uniformity of space, and the conservation 
of M to its isotropy. The law of parity conservation· is associated with 
symmetry between right and left (P is the invariance). Symmetry 
relative to the charge conjugation (symmetry of particles and anti­
particles) leads to conservation of the charge parity (C-invariance). 
The laws of conservation of the electric, baryon, and lepton charges 
express the special symmetry of the 'ljl-function. Finally, the law of 
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isotopic spin conservation reflects the isotropy of isotopic space. The 
failure to observe one of the conservation laws signifies violation of 
the corresponding kind of symmetry in the given interaction. For 
example, electromagnetic interaction violates the symmetry of iso­
topic space, owing to which the isotopic spin T is not conserved in 
electromagnetic interactions. 

The introduction of the isotopic spin made it possible to combine 
particles into charge multiplets (see Sec. 11.5). Extension of the 
scheme of isotopic spin lfld Gell-Mann and independently of him 
Yu. Ne'eman to the creation in 1961 of the theory of unitary sym· 
metry. It is assumed in this theory that strong interaction is invar­
iant relative to special transformations* in a certain three-dimen­
sional complex vector space (the space of unitary spin) that keep the 
isotopic spin T and the hypercharge 
Y unchanged. In this way, it 
becomes possible to group charge 
multiplets into supermultipiets (or 
unitary multiplets). The system of -2 -­
symmetry of particles established 
by the unitary theory is also called -11-----r-~-.......Cf---lt---~ 
the eightfold way. 

The particles** forming a super­
multiplet must have the same spin 
and the same parity P. They may +f 
differ in mass, electric charge, hy­
percharge, and isotopic spin, but +2~--"--~-___,;.'----l.l.....-~ 
these quantities must be related to -2 +1 +2 ~ 
one another by definite rules. 

Figure 11.16 depicts an octet Fig. 11.16 
(a supermultiplet including eight 
particles) combining mesons (except for resonances). All of them have 
a spin equal to zero and a negative parity. The hypercharge Y is 
laid off along the vertical axis, the projection of the isotopic spin T z 
(the third component of the isotopic spin) along the horizontal axis, 
and the electric charge Q along the inclined axis. The particles of 
the meson octet are arranged at the apices and at the centre of a 
regular hexagon. The centre accommodates two particles: n° and 
11· At the time when the theory of unitary symmetry was developed, 
only seven mesons (except for 11) were known. In accordance with 
the conclusions of this theory, the existence of an eighth meson and 
its properties were predicted. In 1961, the predicted meson (l']) was 
discovered, and its properties agreed quite well with the theoretical 
predictions. 

• Belonging to the so-called SU (3) group. 
** We have in mind only strongly interacting particles. 
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Figure 11.17 shows an octet of long-lived baryons. All the particles 
have a spin of 1;2 and a positive parity. The centre of the hexagon 
accommodates the hyperons :l: 0 and A. 

Finally, Fig. 11.18 shows a baryon decuplet (a supermultiplet 
combining 10 partieles). It includes nine resonances and a long-lived 
"genuine" particle--an Q--hyperon. The spin of all the particles is 
3/2, the parity is positive. The partieles are arranged in the diagram 
in the form of an equilateral triangle. The mass m of the particles and 
the mass difference b.m expressed in MeV are indicated at the right 

y 

-1 

+2L---~--~--~--~~~ -z -1 o •t 
Fig. 11.17 Fig. 1L18 

111 !Jm 

1572 
!liZ 

1530 
145 

1385 
149 

1236 

of the figure. I L is worthy of note that when passing f.rom one group 
of particles to another, the mass changes by almost the same amount 
(about 145 MeV). 

At the time when the theory was created, 8*-hyperons and the 
Q--particle were not yet known. 'The resonanc8s 8*- and 8* 0 were 
discovered in 1962. The apex of the pyramid remained unf!lled. Gell­
Mann predicted that the particle corresponding lo it should have a 
spin of 3/2, a hypercharge of Y = - 2, and a mass of about 1675 MeV 
(greater by 145 MeV than the mass of a 8*-partide). Almost imme­
diately systematic searches of this particle were begun, the particle 
being called the Q--hyperon. At the Brookhaven laboratory, an ac­
celerator for ~)3 GeV and a two-metre bubble chamber containing 
900 litres of liquid hydrogen were used for this purpose. About 
300 000 photographs were made before the process of the birth and 
decay of an Q--particle was recorded on one of them in .January, 1964. 
Its properties, in particular its mass, exactly coincided with those 
predicted by theory. Thus, the discovery of the Q--hyperon was a 
triumph of the theory of unitary symmetry. 

The question arises as to why a "genuine" particle, an Q--hyperon, 
which lives approximately 10-10 s, got into one decuplet with reso­
nances whose lifetime is o£ the order of 10-23 s. The reason for such 
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a "vitality" of the Q--hyperon is that its hypercharge is -2 (its 
strangeness S = - 3). As a result, the Q--hyperon cannot decay at 
the expense of strong interactions, with whose participation the re­
maining particles of the decuplet decay. 

The resonances in the decuplet decay as follows: 

il-+N +n, il-+N +n+ +n-, 11-+N +y 
2:*-+A-f-n, 2:*-+2:-f-n 

where N is a nucleon, and A, 2:, and 8 are the corresponding hyper­
ons. In the course of all these processes, the hypercharge (and, there­
fore, the strangeness) is conserved (this can easily be seen by compar­
ing the diagrams shown in Figs. 11.17 and 11.18). Consequently, the 
decays occur at the expense of strong interactions with a characteris­
tic time of about 10-23 s. 

Conservation of the hypercharge (strangeness) of an Q--hyperon 
could occur upon its decay into two or more strange particles. Such 
processes, in which the electric and the baryon charges are also con­
served in addition to the hypercharge; include: 

n--s-+K0 

n-- 2:- +Ko + j(o 
g-_.n+K-+Ko+j{o 
Q-- p + K- + K- + K0 

These processes, however, are forbidden by the law of energy con­
servation. Thus, an Q--hyperon can decay only by violating the 
law of hypercharge conservation, i.e. at the expense of weak interac­
tions. Accordingly, its Hfetime is 10-10 s. Decay occurs in one of the 
following ways: 

Q- -+Eo+ n-, Q- -s- + n°, Q- -+A+ K-

The spin of an Q--hyperon is 3/2, that of a E- and A-hyperons is 
112, and the spin of n- and K-mesons is zero. The· law of angular mo­
mentum conservation is not" violated, however, because the formed 
pair of particles has an orbital angular momentum equal to 1. Con­
sequently, the total angular momentum of these particles is 3/2. 

11.10. Quarks 
The number of particles called elementary has become so great 

that serious doubts concerning their actually being elementary have 
appeared. Each of the strongly interacting particles is characterized 
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by three independent additive quantum numbers: the charge Q, 
hypercharge Y, and baryon charge B. In this connection, a hypothesis 
was advanced that all particles are built up of three fundamental 
particles-the carriers of these charges. The first model of such a 
kind was proposed by the Japanese physicist Shoichi Sakata (born 
1911). He considered the proton p, neutron n, and A-hyperon to be 
the fundamental particles*. Sakata's model, however, was found to 
be inapplicable to the field of strong interactions. 

In 1964, Gell-Mann advanced the hypothesis that all elementary 
particles are built up of three particles which he named quarks**. 
Fractional quantum numbers are ascribed to these particles, in partic­
ular an electric charge equal to +2/3, -113, -1/3, respectively, for 
each of the three quarks. Quarks are usually designated by the letters 
P, N, and A (other symbols are also used). In addition to quarks, 
antiquarks (P, N, A) are also considered. The properties assigned to 
quarks are indicated in Table 11.6. 

Mesons are formed from a quark-antiquark pair, and baryons from 
three quarks. Table 11.7 gives some of these formations. The Jetter 
A in the first column of this table signifies a A-hyperon, and the same 
letter in the second column signifies a A-quark. 

An identical magnetic moment f.lqk is ascribed to each quark. Its 
magnitude is not determined from theory. Calculations performed on 
the basis of such an assumption give the value of the magnetic mo-

2 
rnent of f.lp = f.lqk for a proton, and f.ln = - :f f.lqk for· a neutron. 

TaiJle 11.6 

Quark I 
p 
N 
A 

p 
N 
X 

Electric 
charge, Q 

+2/3 
-1/3 
-1/3 

-2/3 
+113 
+1/3 

I Baryon I 
charge, B 

+1/3 
+1/3 
+113 

-1/3 
-1/3 
-1/3 

Spin 
Isotopic. r Stran:reness, 
spin, T S 

1/2 1/2 0 
1/2 1/2 0 
1/2 () -1 

1/2 1/2 () 

1/2 1/2 0 
1/2 0 +1 

• The fact that many particles have a mass considerably smaller than the 
sum of the masses of p, n, and A should not confuse us because the mass of 
a system of bound particles may be much smaller than the sum of the masses 
of the particles in the system (compare with the binding energy of particles in 
a nucleus, Sec. 10.2). 

** Gell-Mann took the name "quark" from James Joyce's science-fiction 
novel "Finnegan s Wake", from the line "three quarks for Mr. Marks". 
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Table 11.7 

I I Mutual orientation !Mutual "orlentat~on" 
Particle Composition of quark spins of quark ISotopiC 

spms 

n+ PN H tt 
n- PN H tt 
K+ pf.. H t 

p PPN tH tH 
n PNN tH tH 
L+ PPA tH tt 
A PNA Ht H 

Ll++ PPP ttt ttt 
Ll- NNN ttt ttt 
Q- AAA ttt -

Thus, for the ratio of the magnetic momPnts, we get the value 
1-lp 3 
~=-2 

which excellently agrees with the experimental value (see Sec. 10.1). 
It later became necessary to extend the system of quarks. The rea­

son for this, in particular, was the fact that hound states of three 
quarks such as PPP (L\ ++), NNN (L\-), and AAA (Q-) contradict 
the Pauli principle. Indeed, inspection of Table 11.8 reveals that all 

Table 11.8 

I Electric I Baryon I Strange-~ I Quark charge, Q charge, B ness, S Charm, C Colour 

p +213 1/3 0 0 Red, yellow, blue 
N -1/3 113 0 0 Ditto 
A -1/3 1/3 -1 0 Ditto 
c +2/3 1/3 0 1 Ditto 

the quantum numbers of quarks in these formations are the same. 
But since the spin of quarks is 1/2, one system cannot contain not 
only three, hut even two quarks with the same set of quantum num­
bers. 

For a number of considerations, in particular to eliminate the con­
tradiction with the Pauli principle, the concept of the "colour" of 
a quark was introduced. Physicists began to say that each quark can 
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exist in three "coloured" forms: red, yellow, and light blue (we must 
note that a mixture of these colours gives the "neutral" white colour). 
Therefore, let us say, the A-quarks forming the Q--hyperon have 
different colours, and the Pauli principle is not violated. 

The combination of the colours of quarks in hadrons must be such 
that the average colour of a hadron is neutral. For example, the com­
position of a proton includes the quarks P (red), P (yellow), and N 
(light blue). The sum gives the neutral (white) colom. 

Antiquarks are considered to have the anticolour that together 
with the colour gives neutrality. Accordingly, mesons, consisting of 
a quark and an antiquark, also have a neutral colour. 

Basically, however, the colour of a quark (like the sign of an elec­
tric charge) began to express the difference in its property deter­
mining the mutual attraction and repulsion of quarks. By analogy 
with the quanta of fields of different interactions (photons in elec­
tromagnetic interactions, n-mesons in strong interactions, etc.), 
particles were introduced that are carriers of intt)raction between 
quarks. These particles were named gluons (from the word "glue"). 
They transfer colour from one quark to another, as a result of which 
the quarks are kept together. 

In 1974-1975, particles (resonances) with enormous masses of 
3.1, 3.7 and 4.1 GeV (from three to. four nucleon masses) were discov­
ered in powerful accelerators in various laboratories of the world. 
Thus, a new family of strongly interacting '¢-particles was discovered. 
This discovery confirmed the earlier proposed model of particles con­
sisting of four quarks. In addition to the P-, N-, and A-quarks men­
tioned above, a fourth "charmed" C-quark figures in this model. It 
differs from the other quarks in that the quantum number C*, called 
"charm", equals 1 for it, whereas it is zero for the other quarks. The 
properties of all four quarks are given in Table 11 .. 8 (only the quarks 
are indicated, but there are also four antiquarks). 

The C -quark does not enter the composition of ordinary "uncharmed" 
particles (mesons and baryons). The structure CC is ascribed to 
the recently discovered '¢-particles. The correspondingly named 
"charm" quantum number C is zero for these particles. The '¢-particles 
are said to have a concealed charm. 

Theory predicts the existence of charmed particles, i.e. of particles 
having a quantum number C other than zero. The following structures 
are examples: AC (the charm C = + 1), and ACC (C = + 2). 
Such charmed particles have meanwhile not been observed. 

The hypothesis of quarks was quite fruitful. It made it possible 
to predict new particles in addition to systematizing the already 

* The symbol Cis used to designate both a charmed quark and the quantum 
number called the charm. 
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known ones. In particular, the existence of Q--hyperons was predict­
ed with the aid of the quark model. The quark hypothesis also made 
it possible to explain many properties of particles and relate differ­
ent processes to one another. It is quite natural that attempts were 
made to discover quarks. Several sensational reports appeared on the 
experimental discovery of quarks. But these reports WtJre not con­
firmed subsequently. To date, quarks have not been observed, and 
their existence is problematic. 

11.11. Conclusion 

The situation in the physics of elementary particles reminds one 
of the situation in the physics of the atom after Dmitri Mendeleev 
discovered the periodic law in 1869. Although the essence of this law 
was determined only when about 60 years had passed, after the advent 
of quantum mechanics, the law made it possible to systematize the 
chemical elements known at that time and, in addition, led to the 
prediction of the existence of new elements and their properties. In 
exactly the same way, physicists have learned how to systematize 
elementary particles, and in a number of cases this has made it pos­
sible to predict the existence of new particles and anticipate their 
properties. 

The establishment of a classification of elementary particles, how­
ever," ... will not at all solve the fundamental problem of understand­
ing all the laws of the microworld. This understanding will evidently 
arrive only when a new physical theory will be developed ... At pres­
ent, we are approaching a new state in the cognition of the fundamen­
tal laws of structure of nature, from which the quantum theory, the 
theory of relativity, and Newton's theory should follow as a particu­
lar case of the general one ... We are not able to predict when and how 
a new comprehensive physical theory will be created ... But the fact 
that an enormous army of experimenters and theoreticians all over 
the world are working on this front line for physics allows us to hope 
that this time is not far distant." 

The quotation belongs to Academician Igor Tamm. It will com­
plete our tale of the physics of elementary particles. 
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List of Symbols 

A amplitude; mass number of nucleus; work; work function 
a absorptivity; amplitude 
a acceleration 
B baryon charge 
B magnetic induction 
b constant in Wien's displacement law; impact parameter 
C charge conjugation; charm; charmed quark; constant; heat capac-

ity 
c speed of light 
d dimension; distance 
E energy 

EF Fermi level 
E electric field strength 
~ electric field strength;electromotive force 
e base of natural logarithms; electron; elementary charge 

F quantum number of angular momentum of atom 
F force 
f function 
g density of states; Lande g factor 
g acceleration of free fall 
ii Hamiltonian operator 
h Planck's constant 
n Planck's constant h divided by 2:rt 
I current; intensity of light; moment of inertia; nuclear spin quan­

tum number 
i imaginary unity 

J quantum number of angular momentum of electron shell 
j density of energy flux; quantum number of angular momentum of 

electron 
j current density 

K K-meson (kaon) 
k wave number 
k wave vector 
L azimuthal (orbital) quantum number of electron shell; lepton 

charge 
l azimuthal (orbital) quantum number of electron 
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M angular momentum (in Vols. I and II the symbol L was used for 
the angular momentum) 

m magnetic quantum number; mass 
ms spin quantum number 
m* effective mass 
N number; quark 
n integer; neutron; number; principal quantum number 
P parity; probability; quark; radiant power; space inversion 
if> pressure of light 
p proton 
p momentum 
Q amount of heat; charge of a particle 
q charge 

R average recoil energy of atom; distance; radiant emittance; 
radius; reflection coefflcient; Rydberg constant 

r distance; emissivity 
r 0 Bohr radius 
S area; spin quantum number of electron shell; slope of character­

istic; strangeness 
s spin quantum number of electron 
T absolute temperature; half-life; isotopic spin; term; transmis­

sion coefficient 
t time 

U internal energy; potential energy; voltage 
u radiant energy density 
V volume 
v vibrational quantum number 
v velocity 
w energy density 
x Cartesian coordinate 

Y hypercharge · 
y Cartesian coordinate 
Z charge number 
z Cartesian coordinate 

a alpha particle; fine structure constant; initial phase of oscilla-
tions; Rydb~rg correction; thermoelectric coefficient 

~ beta particle 
r breadth of energy level 
'V gamma radiation; photon 
tJ. increment; mass defect 
6 increment 
e energy 
1J eta-meson 
El Debye characteristic temperature 
8 angle 
x wave absorption coefficient 
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A lambda hyperon; quark 
'A decay constant; wavelength 
p, chemical potential; mu-meson (muon); permeability 

J.l.B Bohr magneton 
'"" magnetic moment 
v neutrino 

v' wave number 
S ksi hyperon 
£ displacement of medium particles in wave 

ll Peltier coefficient 
n pi-meson (pion) 
p resistivity 
~ sigma hyperon 
a conductivity; shielding factor; Stefan-Boltzmann constant 
• Thomson coefficient; time 

ct> flux; magnetic flux 
<p angle; function; polar angle; potential 
'I' psi-function 

1p angle; psi-function 
Q omega hyperon; solid angle 
(J) angular velocity; cyclic frequency 
ro angular velocity 
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Absorption, 
multiple-photon, 156f 
resonance, 170, 17 4 

gamma rays, 172f 
Absorptivity, 14 

blackbody, 15 
and emissivity, 14f 

Acceptors, 206, 224 
Activity, radioactive substance, 251 

units, 251 
Alpha particle(s), 52, 238 

impact parameter, 53 
Angular momentum, 

atom, 103, 115f, 234 
atomic residue, 103 
direction, 85 
electron, 110, H 7 
mechanical, and magnetic moment, 

109, 110 
microparticle system, 86 
opera tors, 84 
orbital, 117 
quantization, 83ff 
summation, 111 

Annihilation, 
particle-antiparticle, 277 
positron-electron pair, 274, 276 

Anode, 211 
Antineutrino, 232, 241, 249, 280, 

290ff 
Antineutrons, 277 
Antiparticles, 277ft 

decay scheme, 280 
Antiproton, 277 
Antiquarks, 300 
A tom(s), 

angular momentum, 103 
alkali metal, 103 
resultant, 115f 
total, 234 

electron configuration, i31ff 
energy, 116 
energy levels, see Energy level(s) 
excitation, 137 
excited states, 105 
ground state, 105 

20* 

Atom(s), 
hydrogen, 95ff 

Bohr's theory, 62ff 
electron distance from nucleus, 

100£ 
energy, 96 
energy levels, 63 

internal energy, 62f 
allowed values, 63 

light absorption, 170 
light emission, 170 
magnetic moment, 118 
metastable states, 105 
model, 

nuclear, 52ff 
Hutherford's, 52ff 
Thomson's, 51 
vector, 119f 

nucleus, see Nucleus(i) 
recoil energy, 106 

average, 107 
size assessment, 51 
term, 116f 

Bands, 
allowed, 186, 187 

width, 188 
conduction, 189 

in semiconductor, 201 
energy level. 186! 
forbidden, '186 

width, 203 
spectrum, 

edge, 142£ 
electron-vi bra ti onal, 142£ 
rotational, 143f 
vibrational-rotational, 143, 144f 

valence, 188f 
in semiconductor, 200£ 

Barn, 254 
Baryons, 266, 267, 279, 285 

charge, 277, 285f 
number, 277 

Battery, solar, 230 
Belts, Earth's radiation, 2711 
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Blackbody, 14, 15 
absorptivity, 15 
emissivity, 15f, 29 

and equilibrium radiation den­
sity, 42f 

radiant emittance, 16, 19, 33 
Body, gray, 14 
Bomb, 

atomic, 237, 259, 262 
hydrogen, 237, 262 
thermonuclear, 262 

Bosons, 170, 198, 267, 277 
Breadth, 

energy level, 105 
spectral line, 105, 1.08 

Doppler, 107f 
natural, 106 

Breeders, 261 
Bremsstrahlung, 35, 136 

spectrum, short wavelength limit, 
34, 35£ 

Broadening, Doppler, spectral line, 
106, 107 

Capture, 
e-, 248 
electron, 248, 250 
K, 248, 250 
L, 248 
M, 248 
radioactive, 257f 

Cascades, electron-positron pairs, 272 
Catastrophe, ultraviolet, 29 
Cathode(s), 211 

oxide, 212 
Cathodoluminescence, 11 
Chamber(s), 

bubble, ·269f, 296 
diffusion, 269 
emulsion, 270f 
ionization, 268 
spark, 270, 293 
streamer, 270 
Wilson, cloud, 268f 

Charge, 
baryon, 277, 285f, 298 
conjugation, 278, 289 
lepton, 278 

Charm, 300 
Chemiluminescence, 11, 12 
Coefficient, 

absorptton, negative, 152 
Einstein's, 149 
Peltier, 22 

and specific thermal e.m.f., 222 
reflection, from potential barrier, 90 

Coefficient, 
thermoelectric, 221 
Thomson, 223f 
transmission, through potential bar­
rier, 90, 92 

Conductance, electrical, 194ff 
Conductivity, electrical, 196 
Conjugation, charge, 278, 289 
Constant, 

coupling, 265f 
decay, 244 
electron coupling with electromag­

netic field, 115 
fine structure, 114£ 
Planck's, 30, 86 

determination, 36, 39 
Rydberg, 48, 49, 63 
Stefan-Boltzmann, 19, 33 
Wien's displacement law, 33 

Conversion, internal, 247 
Coordinate( s), 

generalized, 61 
normal, 162 
principal, 162 

Correction, Rydberg, 104 
Counters, 

anticoincidence circuit, 268 
Cerenkov, 268 
coincidence circuit, 268, 270 
gas-discharge, 268 
scintillation, 268 
semiconductor, 268 

Coupling, 
jj, 116 
LS, 116 
Russel-Saunders, 116 

Cross section, 
effective, 253, 254f 
neutron capture and optical frequen­

cy, 168 energy, 255 
Crystal(s), 

combination scattering of light, 169 
direction indices, 159 
electrons in, 184, 190ff 
energy, 168 
heat capacity, 160f, 166f 

high temperatures, 161 
low temperatures, 161 

internal energy, 161, 166, 167 
lattice, see Crystal lattice 
Miller indices, 159f 
point indices, 158f 
standing wave in, 164f 

Crystal lattice, 
normal oscillations, 164f 

acoustic frequency, 168 
maximum frequency, 165f 
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Crystal lattice, 
oscillation frequency, 

acoustic branch, 168 
optical branch, 168 

periods of identity, 158 
unit cells, 158 

Curie (Ci), 251 
Curium, 233 
Current, 

carriers, 
majority, 224, 225 
minority, 224, 226 

critical, 198 
density, 196 
rectification, 

full-wave, 213f 
half-wave, 213 

saturation, 212 
superconduction, 198 

Cycle, 
carbon, 263 
carbon-nitrogen, 263 
proton-proton, 263 

Decay, 
alpha, 245ff 
antiparticles, 280 
beta, 248ff, 288 
electron, 248 
muons, 242 
omega hyperon, 297 
particles, 279 
positron, 249f 

Decuplet, baryon, 296 
Degree, degeneracy, 96f 
Density, 

probability, 78f, 82f, 100 
states, 179 

Deuterium, 133, 262 
Deuteron, 239, 260 
Deuton, 239 
Diagram, energy level, 81f, 97 

cesium, 113f 
diatomic molecule, 142 
hydrogen, 98f, 101 
sodium, 101, 102, 112f 

Dielectric, 190 
Diode(s), 

semiconductor, 224, 268 
vacuum-tube, 210f 
volt-ampere characteristic, 2Hf 

Distribution, Bose-Einstein, 169 
Donors, 205, 224 
Doublet, 109 

complex, 114 
sodium, splitting, 124 

Edge, spectrum band, 142f 
Effect(s), 

Compton, 44ff 
latitude, 271 
Meissner, 197 
Mossbauer, 173ff 
non-linear, in optics, 148 
Paschen-Back, 126 
Pel tier, 222f 

use for refrigeration, 223 
photoelectric, 36ft 

barrier-layer, 229! 
external, 40 
internal, 40 
intrinsic, 229 
multiple-photon 39f, 157 

Raman, see Light, combination 
scattering 

Seebeck, 218ff 
Stark, 122 
thermoelectric, 218ff 
Thomson, 223f 
tunnel, 92, 248 
Zeeman, 122ff 

anomalous, 124 
complicated, 124 
normal, 123 
simple, 123f 

Eigenfunctions, 79f, 82, 96, 99 
complete set, 87 
graphs, 82f 
normalized, 100 
for particle energy eigenvalues, 80 

Eigenvalues, 79f, 83 
energy, 80f, 139f 
particle energy, 80f 

Einsteinium, 233 
Electroluminescence, 11 
Electron(s), 266, 278, 279 

acceleration in crystal, 191 
angular momentum, 

intrinsic, 110 
orbital, 117 

beta, energy, 249 
carrying by phonons, 219 
in circular orbit, 61f 
Compton wavelength, 47, 115, 240 
conduction, 177, 180 

Cooper pairs, 198f 
escape from metal, 208 

configuration, atom, 131ft 
diffraction, 67f, 70 
diffusion in metal conductor, 219 
distance from nucleus, 100f 
distribution by energy states, 185 
drift velocity, 194ff 
dynamics in crystal, 190ft 
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Electron(s), 
effective mass, 192f 

in crystal, 202 
energy, 96 

in diatomic molecule, 140 
in hydrogen atom, 74 
and wave number, 187f 

equation of motion, 195 
equivalent, 134 
free, 177 

number in crystal, 184 
gas, 

degenerate, 185 
non-degenerate, 185 

heat capacity, in metals, 181 
magnetic moment, intrinsic, 111, 

272 
motion in cathode-ray tube, 

73 
optical, 132 
outer, 101 
paramagnetic resonance, 127ft 
photoconduction, 229 
potential energy, 95, 209 

at p-n junction, 229£ 
psi-function, 190 
quantum numbers in atom, 129, 

see also Quantum number(s) 
shells, 130ff 

symbols, 131 
spin, 111, 272 
state(s), 

in atom, 129 
energy, 129 
stationary, 57 
superconductivity, 198f 
symbols, 97 

subshells, 130£f 
total energy, 209 
valence, 101, 132 

energy, 101, 185 
Elements, transuranium, 233 
Emission, 

induced, 148 
resonance, 170 
stimulated, 148ff 

and stimulating radiation, 148 
thermionic, 210ff 

saturation current, 212 
Emissivity, 13 

and absorptivity, 14f 
blackbody, 15f, 29 

and equilibrium density of ra­
diation, 42f 

Emittance, radiant, 12 
blackbody, 16, 19, 33 
and emissivity, 13 

Energy, 
- activation, nucleus, 236 

alpha particles, 246f 
atom, 116 
beta electrons, 249 
binding, 

average per nucleon, 235, 239, 256 
and mass number, 235f 

nucleons, 1234f 
nucleus, 234£ 

conduction electron, 178 
crystal, 168 
eigenvalues, 80f, 139£ 
electron(s), 96 

at absolute zero, 180f 
diatomic molecules, 140 
and electron configuration, 140 
in hydrogen atom, 74 
state, 129 
total, 209 
and wave number, 187f 

Fermi, 183 
gamma quanta, 171 
harmonic oscillator, 60, 141, 160f 
hydrogen atom, 96 
internal, 

atom, 62f 
crystal, 161, 166, 167 

levels, see Energy level(s), Level(s) 
molecule, 138ff 

rotational, 141 
total, 142 
vibrational, 141 

in normal coordinates, 163 
nuclear reaction, 251f 
nucleus at rest, 234 
operator, 78 
phonons, 174 
photon, 41, 65, 14:3, 145, 175, 176 
potential, 

electron, 95, 209, 229£ 
hydrogen molecule, 139 
molecule, 141 

quantization, 79ff 
quantum, 30 
radiant, 

equilibrium density, 16ff 
and radiant emittance of black­

body, 17 
recoil, 106, 171, 173, 174 

average, f07 
visible light, 106 

rest, particle, 234 
spectrum, 81f 

valence electron, 185ff 
system, 162f 
total, in quantum mechanic8, 92 
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Energy, 
valence electron, 101 

in crystal, 185 
zero, 93, 94 

Energy level(s), see also Level(s) 
breadth, 105 
degeneracy degree, 96£, 179 
diagram, 81f, 97, 98f, 101f, 112ff, 142 
discrete, 60 
harmonic oscillator, 93f 
hydrogen atom, 63 
inverse population, 151 
population, 151 
splitting, 122 
transitions between, 148f 

Equation(s), see also Formula 
Dirac's, 272f, 276 
dynamic variables, 78 
electron motion, 195 
motion, 162 
relativistic quantum-mechanical, 

272f 
Schrodinger, 74fl, 95 

with consideration of lattice field, 
187 

free electron, 177 
harmonic oseillator, 93 
hydrogen molecule, 139 
solution with periodic potential, 

187 
stationary states, 76 
and theory of relativity, 272 

Equilibrium, substance and radiation, 
149 

Experiment(s), 
Bothe's, 40f 
Compton's, 44ff 
Davisson's and Germer's, 65f 
Franck's and Hertz's, 57ff 
gedanken, see Experiment(s), mental 
Lederman's and Schwartz's, 293 
mental (thought), 69 
Millikan's, 38f 
Pound's and Rebl<a 's, 176 
Reines's and Cowan's, 292f 
Rutherford's, 52ff 
Stern's, 67 
Stoletov's, 36f 
Tartakovsky's, 67 
Thomson's, 67 
Wu's, 288f, 291 

Factor, 
Lande g, 118, 124 
neutron multiplication, 
shielding, 138 

\ 

260 

Families, radioactive, 245 
Fermi (.Fm), 2:H 
Fermions, 183, 266, 267, 277 
Fermium, 233 
Field, 

critical, 197f 
and temperature, 198 

threshold, 197 
Fission, nuclei, 236, 256ff 

fragments, 256 
spontaneous, 250 

Fluorescence, 
resonance, 170 
X-ray, 40 

Force(s), 
nuclear, 238 

charge independence, 239, 280 
radius of action, 239, 262 
saturation, 239 

photo-electromotive, 229f 
short-range, 239 
thermal electromotive, 218f, 220, 221 

differential, 221 
specific, 221 

Formula, see also Equation(s) 
Balmer, 49, 50 

generalized, 50, 63 
Debye's, 166f 
Einstein's, 38 

for multiple-photon photoelectric 
effect, 40 

Planck's, 32 
Rayleigh-.T cans, 29 
R ichardson-Dashman, 212 
Rutherford, 56 
Rydberg's, 104 

Fraction, binding, 235 
Fragments, fission, 256 
Function(s), 

Block, 183 
Boltzmann distribution, 185 
Fermi-Dirac distribution, 183, 202 
normalized, 78 
psi-, see Psi-function 
spectral distribution, 19 
wave, 74, see also Psi-function 
work, 38, 210, 212 

Fusion, nuclei, 236, 237, 262f 

Gamma quanturn(a), 173 
absorption spectrum, 171f 
emission spectrum, 1i4f 
energy, 171 

Gas, electron, 
degenerate, 185 
non-degenerate, 185 
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Generators, 
molecular, 150 
optical quantum, 150 

Gluons, 300 
Gravitons, 266 
Grids, 215 

Hadrons, 266, 300 
Half-breadth, spectral line, 105 
Half-life, 

neutrons, 232 
radioactive nuclei, 244, 245 

Hamiltonian, 77f 
Harmonic oscillator, 93f 

energy, 141, 160£ 
average value, 160 

energy levels, 93f 
phase trajectory, 60 
possible states, 60 
Schrodinger equation, 93 
selection rule, 94 
total energy, 60 

Harmonics, optical, 156 
Heat, Peltier, 222 
Heat capacity, 

crystals, 160£, 166f 
electrons in metals, 181 

Holes, 
photoconduction, 229 
in semiconductors, 200£1, 204 

Hydrogen, 
atom, 62ff, 951I, 100f, see al8o Atom, 

hydrogen 
heavy, 233 
molecule, potential energy, 139 

Hypercharge, 285f, 297, 298 
Hyperons, 267, 279, 283 

lambda, 279 
omega, 279, 296, 301 

decay, 297 
sigma, 279 
xi, 279 

Hypothesis, 
de Broglie's, 651I 
Planck's, 30, 94 
Yukawa's, 241 

Impurity, 
acceptor; 225 
donor, 225 

Indices, crystal, 158ft 
Instruments, 

registering, 268 
track-detecting, 267 

Interaction(s), 
electromagnetic; 265£ 280 283 

from viewpoint of quant~m elec-
trodynamics, 239ff 

exchange, between nucleons 242f 
gravitational, 265f ' 
nuclear, direct, 252 
spin-orbital, 111, 280f 
strong, 238f, 251, 265£, 282 

between nucleons, 242f 
weak, 265£, 283, 288f 290 

Pf!rity conservation 'taw, 288 
Invar1ance, CP- 289 
Inversion, ' 

combined, 289 
space, and psi-function 287f 

Ion, hydrogen-like, 95 ' 
Isobars, 233 
Isomers, 233 
lsospin, 281, see also Spin, isotopic 
Isotones, 233 
Isotopes, 233 

Junction, p-n, 224ff 
cut-off direction 227 
depletion layer, '227 
forward direction, 226 
forward voltage, 226 
resistance, 227 
reverse direction, 227 
reverse voltage, 227 
transition layer, 227 
use for current rectification 227 
volt-ampere characteristic,' 226f 

Kaons, 266, 280 
Kenotron, 212f 
Kurchatovium, 233 

Lasers, 148, 150ff, 155 
gas, 154 
pumping, 153 
radiation, 154£ 
ruby, 152ff 

Law(s}, 
Boltzmann's, 30, 150, 151 
conservation, 

angular momentum, 249, 294 
baryon charge, 267, 278, 294 
combined parity, 289 
electric charge, 278, 294 
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and electromagnetic interaction, 
294f 

Law(s), 
energy, 294 
hypercharge, 285, 294 
isotopic spin, 282f, 295 
lepton charge, 280, 294 
momentum, 275, 276, 294 
parity, 288, 294 
space parity, 289, 290 
strangeness, 285, 294 
and strong interaction, 294 
and weak interaction, 294 

Debye T3, '167 
Dulong and Petit, 160, 161 
invariance relative to charge con-

jugation, 289 
Kirchhoff's, 14 
Moseley's, 137f 
Newton's second, 192 
Ohm's, 194 
periodic, 301 
radioactive transformation, 244£ 
Stefan-Boltzmann, 19, 33 
three-halves power, 211 
Wien's displacement, 20 

Lawrencium, 233 
Layer, 

depletion, 227 
transition, 22 7 

Leptons, 242, 266, 278, 279 
charge, 278 
number, 278 

Level(s), see also Energy level(s) 
aeceptor, 206f 
donor, 206f 
Fermi, 183f, 196, 199, 202, 206 

210, 215, 225, 226 
at absolute zero, 179 
temperature dependence, 184 

impurity, 206 
Lifetime, 

compound nucleus, 252 
elementary particles, 266, 279 
excited states, 

atoms, 105 
nuclei, 171, 175, 247 

metastable states, atoms, 105 
radioactive nuclei, 244f 

Light, 
beam, critical power, 156 
combination scattering, 146ft, 155 

by crystals, 169 
corpuscular-wave duality, 43, 65 
non-linear reflection, 156 
pressure, 42 
recoil energy, 106 

Light, 
resonance absorption, 170, 255 
resonance emission, 170 
self-focussing, 156 

Line, 
anti-Stokes, 147 
spectral, 

breadth, 105, 108 
natural, 106, 171 

Doppler breadth, 107f, 1 i1, 172 
Doppler broadening, 106, 171, 172 

relative, 107 
half-breadth, 105 

Stokes, 147 
Luminescence, 11 

Magneton, 
Bohr, 117 
nuclear, 231 

Masers, 150 
Mass, 

atomic nucleus, 234 
critical, radioactive substance, 259 
defect, nucleus, 235 
elementary particles, 279 
neutron, 232 
proton, 231 

Mendelevium, 233 
Mesons, 239, 241, 266f, 279, 285, 288, 

300 
eta-, 266f, 277, 279, 295 
K-, 266f, 279, 283, 288 
mu-, 241 
octet, 295 
pi-, 241, 266, 279, 300 

decay, 241 
Metal(s), 189 

electrical conductance, 194ft 
electrical conductivity, 196 
resistivity, 194 

residual, 194 
Microparticles, 65, 68ft 

diffraction by slit, 71f 
trajectory, 69f, 73 

Model, 
atom, 51ff, 119f 
nucleus, 237f 
Sakata's, 298 

Moderator, 260 
Molecule(s), 

diatomic, i38f 
covalent bond, 139 
electron energy, 140 
heteropolar bond, 139 
homopolar bond, 139 
ionic bond, 139 

energy, 138ff 
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Molecule(s}, 
energy, 

potential, 141 
rotational, 141 
total, 142 
vibrational, 141 

hydrogen, potential energy, 139 
moment of inertia, 144,' 145 

Moment, magnetic, 
atom, 118 
electron, 111, 272 
neutron, 232, 243, 298f 
proton, 231, 243, 298f 

Momentum, 
angular, see Angular momentum 
photon, 41f 

Multiplet(S), 109, 114 
charge, 281ff 

baryon charge, 286 
electric charge, 285 
hypercharge, 286 
strangeness, 286 

inverted, 135 
normal, 135 
unitary, 295 

Muons, 241, 242, 266, 272, 279 
decay, 242 

Neptunium, 258 
Neutrino(s), 241, 249, 280, 290ff 

electron, 266, 279, 293 
longitudinal, 290 
muon, 266, 279, 293 

Neutron(s), 231, 254, 280 
magnetic moment, 232, 243, 298f 
mass, 232 
radioactivity, 248 
resonance absorption, 255 
spin, 232 
thermal, 256, 261 

Normalization condition, 78, 100 
psi-function, 177f 

Nucleons, 231, 267, 280, see also 
Neutron(s), Protons 

binding energy in nucleus, 234f 
Nucleus(i), 

activation energy, 236 
atomic, see Nucleus(i) 
atomic number, 232 
binding energy, 234f 
characteristics, 232f 
charge number, 232 
composition, 231 
compound, 252 
cross section, 253 
daughter, 245 

Nucleus(i), 
doubly magic, 238 
energy, 234 
even-even, 234 
excited states, lifetime, 171, 175 

average, 247 
fission, 236, 256ff 

fragments, 256 
spontaneous, 250 

fusion, 236, 237, 262f 
internal conversion, 247 
light, fusion, 262f 
magic, 238 
mass, 234 
mass defect, 235 
mass number, 232 
models, 237f 

liquid-drop, 237f 
shell, 238 

parent, 245 
photofission, 257 
proton number, 232 
radioactive, 

average lifetime, 244f 
half-life, 244, 245 

radius, 233f 
spin, 175, 234 
theory, 237 
velocity of thermal motion, 171 

Number(s), 
atomic, determination, 138 
baryon, 277 
lepton, 278 
magic, 238 
quantum, see Quantum number(s) 
wave, 49 

Octet, 
baryons, 296 
mesons, 295 

Operator, 78 
definition, 77 
energy, 78 
Laplacian, 75 

Optics, 
linear, 155 
non-linear, 155ff 

Orbits, stationary, 60 
Oscillations, normal, 162ff 

crystal lattice, 164f 
acoustic frequency, 168 
maximum frequency, 165f 
optical frequency, 168 

Oscillator, harmonic, see Harmonic· 
oscillator 
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Packet, wave, 190 
Pairs, 

Cooper, 198f 
electron-positron, 272, 274f 

annihilation, 274, 276 
birth, 274f 
cascades, 272 
showers, 272 

Parameter, impact, 53 
Parity, 286, 288 

combined, 289 
non-conservation, 288 

Particles, 
absolutely neutral, 277, 279, 280 
alpha, 246f 

energies, 246£ 
scattering, 247 

and antiparticles, 277ff 
charmed, 300 
elementary, 265ff, 297 

average lifetime, 266, 279 
classes, 266 
decay scheme, 279 
detecting methods, 267ft 
helicity, 290f 
mass, 279 
with even intrinsic parity, 288 
with negative intrinsic parity, 288 
with odd intrinsic parity, 288 
with positive intrinsic parity, 288 

penetration through potential bar-
rier, 88ff 

psi, 300 
rest energy, 234 
scattering, 252 

elastic, 252 
inelastic, 252 

strange, 283ff 
strangeness, 283, 284ff 
virtual, 240 

Phonon(s), 168, 173, 199 
average number, 169 
carrying of electrons by, 219 
energy, 174 
and photons, 169 
quasimomentum, 168, 169 

Photoconduction, 
electron, 229 
hole, 229 

Photocurrent, 37, 230 
and voltage, 37 

Photoelectrons, maximum velocity, 38 
Photoluminescence, 11 
Photon(s), 40, 41, 99, 247, 266, 277, 

279, 290, 300 
cascade formation in stimulated 

emission, 153f 

Photon(s), 
collisions with molecules, 147 
distribution, 169 
energy, 41, 65, 143, 145, 175 
flux, relative fluctuation, 44 
frequencies, 145 

gravitational red shift, 175 
gamma, 247, 248 

absorption lines, 172, 176 
emission lines, 172, 176 
energy, 176 

gravitational mass, 175 
momentum, 41f, 65 
and phonons, 169 
rest mass, 42 
scattering, 147 
speed, 42 
spin, 97f 
virtual, 239f 

Photoresistors, 229 
Pions, 241, 266, 280 
Plane, phase, 60 
Plant, atomic power, 261 
Plasma, 263 
Plutonium, 233, 258, 261 
Population, energy level, 151 

inverse, 151 
Positron, 249f, 272, 274 
Postulates, Bohr's, 57 
Potential, 

chemical, 169f 
contact, 215 

difference, 215ff 
external, 216f 
internal, 216 

emission, 210 
Power, critical, light beam, 156 
Pressure, light, 42 
Principle, 

exclusion, see Principle, Pauli 
Heisenberg uncertainty, 71 
Pauli, 129ff, 134, 169, 179, 273, 

299f 
superposition, 190 

of states, 87 
Process, 

forbiddenness and conservation 
laws, 283f 

multiple-photon, 39 
single-photon, 39 

Protium, 233 
Proton, 231, 280 

charge, 231 
magnetic moment, 231, 243, 

298f 
mass, 231 
spin, 231 



316 Subject Index 

Psi~function, 74f 
meaning, 78f 
normalization condition, 177f 
in space inversion, 287f 
standard conditions, 79, 96 

Pumping, laser, 153 

Quantities, canonically conjugate, 71 
Quantization, angular momentum, 

83ff 
Quantum( a), 

action, 30 
energy, 30 

ml:lximum value, 36 
light, 40 
light energy, 57 
magnetic flux, 200 

Quantum number(s), 
angular momentum, 

resultant, 116 
resultant spin, 116 
total, 111, 113, 234 
total orbital, 116 

azimuthal, 84, 86, 96, 97, 1.03, 111, 
129 

charm, 300 
electron in atom, 129 
hypcrcharge, 285 
isotopic spin, 281£ 
magnetic, 85, 96, 123, 1.29 
nuclear spin, 234 
orbital, 84, 86 
principal, 62, 96, 129 
rotational, 141 
spin, 110, 111, 129, 178 
and state of conduction electron, 

178f 
strangeness, 284£ 
vibrational, 141 

Quarks, 297ff 
baryon charge, 298 
charmed, 300 
colour, 299£ 
electric charge, 298 
spin, 298f 
strangeness, 298 

Quasiparticles, 169, 202 

Radiation, 
braking, see Bremsstrahlung 
characteristic, 35, 136 
equilibrium, in cavity, 28 
mean energy, 31 
minimum wavelength, 36 
thermal, 11 ff 

Radiation, 
thermal, 

equilibrium with emitting bodies, 
11f . 

equilibrium energy density and 
radian't emittance of black­
body, 18 

wavelength, 13 
X-ray, 136ff 

Radioactivity, 243ff 
artificial, 243 
natural, 243, 245 
proton, 250f 

Radiocarbon, 255£ 
Radius, 

action, 265 
Bohr, 62 

Hatio, gyromagnetic, 117f 
Rays, 

alpha, 245 
beta, 245 
cosmic, 241, 271f 

primary, 271 
secondary, 271 

hard component, 272 
soft eomponent, 272 

gamma, 170, 245, 248 
resonance absorption, 172f 

Reaction(s), 
nuclear, 251ff 

chain, 258f 
effective cross sections, 254£ 

energy, 251I 
pickup, 253 
stripping, 252 

t.hermowJdear, 237, 262ff 
con~rolled, 263£ 

threshold, 276 
Reactors, 

breeder, 261 
nuclear, 237, 259ff 

Recombination, electron~hole, 204, 
207 

probabllity, 204 
Relation, uncertainty, 71ff, 190, 240 
Resistivity, metals, 194 
Resonancll, 

electron paramagnetic, 127ff 
nuclear magnetic, 127 

Resonances, 267, 300 
Rule(s), 

Hund's, 1.35f 
selection, 94, 152 

for J, 141 
for j, H3 
for l, 97, 103 
for ntJ, 12il, 127 
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Rule(s), 
selection, 

for mL, 126 
for v, 141 

Satellite, 
red, 147, 169 
violet, 147, 169 

Scintillation, 52 
Semiconductor(s), 200ff 

conductance, 
electronic, 205 
hole, 206 
impurity, 205ff 
intrinsic, 202ff, 207 
and temperature, 200f 

electronic, 190 
extrinsic, 200 
holes, 200ff, 204 
impurity, 200 
intrinsic, 200f 

n-type, 205, 206 
non-uniformly heated, 220 

p-type, 206 
non-uniformly heated, 220 

typical, 203f 
Series, 

Balmer, 49, 99 
Bergmann, 101 
Brackett, 49 
diffuse, 101, 103, 104 

ftne structure, H4 
fundamental, 101, 103, 104 
limit, 50 
Lyman, 49, 99 
Paschen, 49 
Pfund, 49, 50 
principal, 101, 103, 104 
radioactive, 245 
sharp, 101, 103, 104 
X-ray spectra, 136 

Shells, 
electron, 130ff 

symbols, 1.31 
nuclear, 238 

Shift, 
gravitational, red, 175 
Lorentz, 123 
normal, 123 

Showers, electron·· positron pairs, 2'72 
Singlets, 109, 122 
Space, isotopic, 281 
Spectroscope, microwave, 128 
Spectrum( a), 

absorption, gamma quanta, 174f 
alpha, fine structure, 246 

Spectrum(a), 
atomic, 48 

fine structure, 234 
hyperfine structure, 234 

band, 142ff 
bremsstrahlung X-ray, short wave-

length limit, 34, 35f 
combination scattering, 146f 
continuous, 80 
discrete, 80, 81, 85 
emission, 

alkali metals, 101 
gamma quanta, 174f 

energy, 81f 
valence electron, 185ff 

fine structure, 109 
hydrogen atom, 48ff 

frequencies of lines, 49f 
line, 48 
molccula.l', 142ff 
of quantity, 80 
series of line~. 48, .~ee also Series 
X-ray, 34, 136f£ 

Spin, 110, 272 
atomic nucleus, 234 
double magnetism, 118 
electron, 111, 272 
isotopic, 28Hf, .208f 
neutron, 232 
nuclei, 175 
photon, f.rif, 110 
prnton, 231 
quuut.nm number, 110, 111, 129, 178 
quarks, 298f 

State(s), 
degenerate, D6 
electron, .o<ym bois, 97 
even, 287 
excited, 99, 105 
ground, 99, 105 
inetastahle, 1.05 
with negative temperatures, 15t 
odd, 287 
stationary, 7!) 

dectron, 57 
Sehriidinger equation, 76 

supercondneting, 197ft 
Stati~ties, 

B'1se-E instein, 1'70 
Fermi-Dirac. 183 

Strangem~ss. 29"1, 298 
quarks. 298 

StrengtL, electl'ic field, and tempera-
ture gradient, 220 

SubshelL, electron, 130ff 
Superconductivity, 197fi 
Superconductor. 197 
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Superfluidity, 198 
Supermultiplets, 295 
Surface, Fermi, 180, 187f 
Symbols, 

electron shells, 131 
electron states, 97 
terms, 112f 

System, 
generalized coordinates, 162 
periodic, of elements, 131ff 

Temperature, 
characteristic Debye, 166 
critical, 197 
Fermi, 181, 185 
transition, 197 

Term(s), 50, 60 
atom, 116£ 
multiplicity, 117 
spectral, 50, see also Term(s) 
symbols, 112f, 116f 

Theory, 
BCS, 198ff 
Bohr's, hydrogen atom, 62ff 
Dehye's, 164ff 
Dirac's, 273ff 
longitudinal neutrino, 290 
superconductivity, 198ff 
unitary symmetry, 295 

Thermocouple, 221f 
Threshold, 

photoelectric, 39, 40 
reaction, 276 

Time, 
decay, 266 
nuclear, 252 

transit, 252 
relaxation, 195, 196 

Trajectory, 
microparticle, 69f, 73 
particle, 79 
and particle mass, 72f 
phase, 60 

Transistor(s), 224, 228 
base, 228 
collector, 228 

Subject Index 

Transistor(s), 
emitter, 228 
n-p-n, 228f 
p-n-p, 229 

Triode(s), 213ff 
grid characteristics, 214 

slope, 214 
semiconductor, 224, 228 

Tritium, 233, 262 
Tube, 

electronic, 210ff 
three-electrode, 213f 
two-electrode, 210f 
X-ray, 34 

Unit(s), 
activity, radioactive substances, 251 
atomic mass (amu), 231 
natural system, 115 

Uranium, natural, 259 

Variables, dynamic, 70 
equation, 78 

Velocity, 
drift, 194ff 
group, 190 

Voltage, retarding, 37f 

Water, heavy, 260 
Wave(s), 

number, 49 
packet, 190 
standing, 

in crystal, 164f 
in three-dimensional space, 20ff 
two-dimensional, 23 
wave vector, 25 

Wavelength, Compton, 47 
electron, 47, 115, 240 

Way, eightfold, 295 
Work function, 38, 210, 212 

Zone, Brillouin, 187 
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