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AUTHOR'’S PREFACE TO
THE ENGLISH EDITION

The present book is the first volume of the three-volume general course in physics.
The course is a result of twenty five year’s work in the Department of General
Physics of the Moscow Institute of Engineering Physics. [ was in constant per-
sonal contact with my students not only at lectures, but also, perhaps even more
importantly, at exercises, consultations, and examinations. These fruitful contacts
helped me refine and improve the exposition of the various topics in the course.

The advice and friendly criticism of my colleagues in the department has also
been a great help. I would like to make a special mention of the part played by
N. B. Narozhny, who, in particular, is the author of the original and comparatively
simple statistical derivation of the equation dS = d’Q/T [Eq. ( )].

In writing the book, I have done everything in my power to acquaint students
with the basic ideas and methods in physics and to teach them how to think phys-
ically. This is why the book is not encyclopedic in its nature. It is mainly devoted
to explaining the meaning of physical laws and showing how to apply them con-
sciously. What I have tried to achieve is a deep knowledge of the fundamental
principles of physics rather that a shallower acquaintance with the a wide range of
questions.

While using the book, try not to memorise the material formalistically and me-
chanically, but logically, i.e., memorise the material by thoroughly understanding
it.  have tried to present physics not as a science for “cramming’, not as a certain
volume of information to be memorised, but as a clever, logical, and attractive sci-
ence. It is left to the reader to judge the extent to which I have succeeded in doing
this.

Acknowledging the fact that a thick volume by its very appearance makes a
student despondent, I have done my utmost to limit the size of the course. This
was achieved by carefully choosing the material which in my opinion should be
included in a general course of physics. I also tried to be concise, but not at the
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expense of clarity.

Notwithstanding my desire to reduce the size, I considered it essential to in-
clude a number of mathematical sections in the course: on vectors, linear differen-
tial equations, the basic concepts of the theory of probability, etc. This was done
to impart a “physical” tinge to the relevant concepts and relations. In addition, the
mathematical “inclusions” make it possible to go on with the physics even if, as
is often the case, the relevant material has not yet been covered in a mathematics
course.

The present course is intended above all for higher technical schools with an
extended syllabus in physics. The material has been arranged, however, so that
the book can be used as a teaching aid for higher technical schools with ordinary
syllabus simply omitting some sections.

Igor Savelyev

Moscow, July, 1979
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INTRODUCTION

Physics is a science dealing with the most general properties and forms of motion
of matter.

A classical definition of matter was given by V. Lenin in his book Materialism
and Empirio-Criticism: “Matter is a philosophical category denoting the objective
reality which is given to man by his sensations, and which is copied, photographed
and reflected by our sensations, while existing independently of the”!. Two propo-
sitions are significant in this definition, namely, (1) matter is what exists objectively,
i.e., independently of anyone’s consciousness or sensations, and (2) matter is copied
and reflected by our sensations and, consequently, is cognizable.

It follows from the definition of physics that it concentrates knowledge accu-
mulated on the most general properties and phenomena of the world surrounding
us. As academician S. Vavilov noted in one of his articles, “the extremely common
character of a considerable part of the contents of physics, its facts and laws drew
physics and philosophy together from time immemorial.... Sometimes physical
statements have such a nature that they are difficult to distinguish and separate
from philosophical statements, and a physicist must be a philosopher”.

Two kinds of matter are known at present: substance and field. The first kind
of matter—substance—includes, for example, atoms, molecules, and all bodies
built of them. Electromagnetic, gravitational, and other fields form the second kind
of matter. The different kinds of matter can change into each other. For instance,
an electron and a positron (representatives of substance) may transform into pho-
tons (i.e., into an electromagnetic field). The reverse process is also possible.

Matter is in continuous motion, which is understood to mean any change in
general in dialectical materialism?. Motion is an inalienable property of matter,

V. 1. Lenin. Collected Works, Vol. 14, p. 130. Moscow, Foreign Languages Publishing House (1962).
2Djalectical materialism is the name given to the Marxist-Leninist philosophy. The fundamental
issue of any philosophy as to what is primary—matter or consciousness—is solved by dialectic ma-
terialism in favour of matter when it states that matter is primary and consciousness is secondary.
The method of this philosophy is dialectics. It considers matter in constant motion and develop-
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which, like matter itself, cannot be created or destroyed. Matter exists and moves
in space and in time, which are forms of existence of matter.

The laws of physics are established by generalizing experimental facts. They
express the objective regularities existing in nature. These laws are customarily
expressed in the form of quantitative relationships between various physical quan-
tities.

The fundamental method of investigation in physics is the running of an ex-
periment, i.e., the observation of the phenomenon being studied in accurately con-
trolled conditions. The latter must permit one to watch the course of the phe-
nomenon and reproduce it each time when these conditions are repeated. Phe-
nomena can be produced experimentally that are not observed in nature. For ex-
ample, more than ten of the chemical elements known at present have meanwhile
not been discovered in nature and were obtained artificially by means of nuclear
reactions.

Hypotheses are enlisted to explain experimental data. A hypothesis is a scien-
tific assumption advanced to explain a definite fact or phenomenon and requiring
verification and proving to become a scientific theory or law. The correctness of a
hypothesis is verified by running the corresponding experiments and by determin-
ing whether the corollaries following from the hypothesis agree with the results of
experiments and observations. A hypothesis that has successfully passed such ver-
ification and has been proved becomes a scientific law or theory.

A physical theory is a system of basic ideas summarizing experimental data and
reflecting the objective regularities of nature. A physical theory explains a whole
field of natural phenomena from a single viewpoint.

Physics is subdivided into the so-called classical physics and quantum physics.
The term classical is applied to the physics whose creation was completed at the
beginning of the 20th century. Classical physics was founded by Isaac Newton
(1642-1727), who formulated the fundamental laws of classical mechanics. Newto-
nian mechanics proved to be exceedingly fruitful and mighty, and physicists ac-
quired the conviction that any physical phenomenon can be explained with the aid
of Newton's laws.

The edifice of classical physics built up by the end of the last century was very
harmonious. Most physicists were convinced that they already knew everything
about nature that could be known. The most perspicacious physicists, however,
understood that the edifice of classical physics had weak spots. For example, the
British physicist William Thomson (Lord Kelvin, 1824-1907) said that there are two

ment whose source is contained in the internal contradictions inherent in objects and phenomena
themselves.



dark clouds on the horizon of the cloudless sky of classical physics—the unsuc-
cessful attempts to set up a theory of blackbody radiation, and the contradictory
behaviour of ether—the hypothetical medium in which light waves were supposed
to propagate. The persistent attempts to surmount these difficulties led to unex-
pected results. To solve these problems, which were beyond the possibilities of
classical physics, it became necessary to revise quite radically the established, habit-
ual notions and introduce concepts that were alien to the spirit of classical physics.
Max Planck (1858-1947) succeeded in solving the problem of blackbody radiation in
1900 by introducing the concept of light emission in separate portions—quanta.
Thus, at the threshold of the 20th century, the concept of the quantum appeared.
It plays an exceedingly important part in modern physics and has resulted in the
creation of quantum mechanics.

The contradictory nature of the experimental facts relating to ether induced
Albert Einstein (1879-1955) to revise the notions of space and time that were con-
sidered to be obvious from Newton’s times. The result was the appearance of the
theory of relativity. The latter gives equations of motion appreciably differing from
those of Newtonian mechanics for bodies travelling with speeds that are noticeable
in comparison with the speed of light.

The year 1897 saw the discovery of the electron. The atoms of all the chemical
elements were found to contain these particles. Thus, atoms, previously considered
indivisible, appeared to have a complicated structure.

The beginning of the 20th century was thus marked in physics by the radical
breaking down of numerous habitual concepts and notions. New physical discov-
eries and theories destroyed the notions of the structure of matter formed by many
physicists. Some of them interpreted this as the vanishing of matter. Many physi-
cists lapsed into idealism, and a crisis began in physics.

V. Lenin in his book Materialism and Empirio-Criticism written in 1908 gave
annihilating criticism of “physical” idealism. He showed that the new discoveries
indicate not the vanishing of matter, but the vanishing of the limit up to which
matter was known before that time. “Matter disappears”, wrote Lenin, “means that
the limit within which we have hitherto known matter disappears and that our
knowledge is penetrating deeper; properties of matter are likewise disappearing
which formerly seemed absolute, immutable, and primary (impenetrability, inertia,
mass, etc.) and which are now revealed to be relative and characteristic only of
certain states of matter. For the sole "property’ of matter with whose recognition
philosophical materialism is bound up is the property of being an objective reality,
of existing outside the mind.””.

3V. L Lenin. Collected Works, Vol. 14, p. 260. Moscow, Foreign Languages Publishing House (1962).
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The process of recognizing the world is infinite. Our knowledge at any given
stage of development of science is due to the historically achieved level of cognition
and cannot be considered as final or complete. It is of necessity relative knowledge,
i.e., requires further development, further verification, and more precise definition.
At the same time, any truly scientific theory, notwithstanding its relativity and in-
completeness, contains elements of absolute, i.e., complete, knowledge, and thus
signifies a step in the cognition of the objective world. For instance, mechanics
based on Newton’s laws is not correct, strictly speaking. But for a certain range
of phenomena, this mechanics is quite satisfactory. Thus, the development of sci-
ence did not cross out Newtonian mechanics. It only established the limits within
which it is correct. Newtonian mechanics formed a constituent part of the general
edifice of the physical science.

The beginning of the 20th century is characterized by persistent attempts to
penetrate into the internal structure of atoms. The key to determining their struc-
ture was found to be the studying of atomic spectra. The theory of the atom de-
veloped by Niels Bohr (1885-1962) in 1913 was the first striking success in explaining
the observed spectra. This theory, however, has obvious features of inconsistency:
in addition to the motion of an electron in an atom obeying the laws of classical
mechanics, the theory imposes special quantum restrictions on this motion. The
theory soon had to pay for this lack of consistency. After the first successes in ex-
plaining the spectra of the simplest atom—that of hydrogen—it was found that
Bohr’s theory is unable to explain the behaviour of atoms with two or more elec-
trons.

The need to develop a new comprehensive theory of atoms became pressing.
A bold hypothesis of Louis de Broglie put forward in 1924 placed the cornerstone
in such a theory. It was known by that time that light, while being a wave process,
also exhibits a corpuscular nature in a number of cases, i.e., behaves like a stream
of particles. De Broglie put forth the idea that the particles of a substance, in turn,
should display wave properties too in definite conditions. De Broglie’s hypothesis
soon received a brilliant experimental confirmation—it was proved that a wave
process is associated with the particles of a substance, and it must be taken into
account when considering the mechanics of an atom. A result of this discovery was
the development by Erwin Schrodinger (1887-1961) and Werner Heisenberg (1901-
1976) of a new physical theory—wave or quantum mechanics. The latter achieved
striking successes in explaining atomic processes and the structure of a substance.
Results were obtained that showed excellent agreement with experimental data
when ’it was found possible to surmount the mathematical difficulties.

The latest decades were noted by remarkable achievements in the field of study-



ing the atomic nucleus. Scientists and engineers have mastered nuclear processes
to such an extent that the practical use of nuclear energy has become possible.
One of the leading places in this field belongs to Soviet physics. Particularly, the
first atomic power plant in the world was erected in the USSR.

Finally, in recent years, the walls of laboratories created by the hands of man
were moved apart beyond the limits of our globe. On October 4, 1957, an artificial
satellite of the Earth was launched in the Soviet Union the first time in history.
It was a small laboratory outfitted with apparatus for scientific research. April 12,
1961, saw the first flight of a man into outer space. The first Soviet cosmonaut, Yuri
Gagarin, flew around the Earth and landed safely. The first space rockets were built
in the Soviet Union. They left the field of the Earth’s attraction and transmitted to
the Earth by means of radio signals valuable results of studying outer space and,
particularly, photographs of the reverse side of the Moon. In 1969, U.S. astronauts
landed on the Moon. In 1975, two Soviet automatic spaceships made a soft landing
on Venus and transmitted valuable information on the physical conditions on this
planet, and also photographs of its surface.

There is no doubt that the nearest future will be marked with new fundamental
discoveries in the science of physics.






PART 1

THE PHYSICAL
FUNDAMENTALS OF
MECHANICS






Chapter 1
KINEMATICS

1.1. Mechanical motion

Mechanical motion is the simplest form of motion of matter. It consists in the
movement of bodies or their parts relative to one another. We can see movements
of bodies everywhere in our ordinary life. This is why mechanical notions are so
clear. This also explains the fact that mechanics was the first of all the natural
sciences to be developed very broadly.

A combination of bodies separated for consideration is called a mechanical
system. The bodies to be included in a system depend on the nature of the problem
being solved. In a particular case, a system may consist of a single body.

It was indicated above that motion in mechanics is defined as the change in
the mutual arrangement of bodies. If we imagine a separate isolated body in a
space where no other bodies are present, then we cannot speak of the motion of
the body because there is nothing with respect to which the body could change its
position. It thus follows that if we intend to study the motion of a body, then we
must indicate with respect to what other bodies the given motion occurs.

Motion occurs both in space and in time (space and time are inalienable forms
of existence of matter). Consequently, to describe motion, we must also determine
time. We use a timepiece (watch or clock) for this purpose.

A combination of bodies that are stationary relative to one another with respect
to which motion is being considered and a timepiece indicating the time forms a
reference frame.

The motion of the same body relative to different reference frames may have a
different nature. For example, let us imagine a train gaining speed. Suppose that a
passenger is walking with a constant velocity along the corridor of one of the cars
of the train. The motion of the passenger relative to the ear will be uniform, and
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relative to the Earth’s surface it will be accelerated.

To describe the motion of a body means to indicate for every moment of time
the position of the body in space and its velocity. To set the state of a mechanical
system, we must indicate the positions and the velocities of all the bodies forming
the system. A typical problem of mechanics consists in determining the states of
a system at all the following moments of time t when we know the state of the
system at a certain initial moment t( and also the laws governing the motion.

It must be noted that no physical problem can be solved absolutely exactly.
An approximate solution is always obtained. The degree of approximation is de-
termined by the nature of the problem and the object to be achieved. In solving
a problem approximately, we disregard the factors that are not significant in the
given case. For example, we may often disregard the dimensions of the body whose
motion is being studied. For instance, it is quite possible to disregard the Earth’s
dimensions when treating its motion about the Sun. This allows us to considerably
simplify our description of the motion because the Earth’s position in space can be
determined by a single point.

A body whose dimensions may be disregarded in the conditions of a given
problem is called a point particle (or simply a particle). Whether or not we may
consider a given body as a particle depends not on the dimensions of the body, but
on the conditions of the problem. The same body in some cases may be treated as
a particle, but in others it must be considered as an extended body.

When speaking about a body as a particle, we disengage ourselves from its
dimensions. Another abstraction which we have to do with in mechanics is a per-
fectly rigid body. Absolutely undeformable bodies do not exist in nature. Any body
deforms to a greater or smaller extent, i.e., changes its shape and dimensions, un-
der the action of forces applied to it. The deformations of bodies when considering
their movements may often be disregarded, however. If this is done, then the body
is called perfectly rigid. Thus, a body whose deformations may be disregarded in
the conditions of a given problem is called a perfectly rigid, or simply a rigid
body.

Any motion of a rigid body can be resolved into two basic kinds of motion—
translational motion and circular motion.

Translational motion (translation) is defined as motion in which any straight
line associated with the moving body remains parallel to itself (Fig. 1.1).

In circular motion (rotation), all the points of a body move in circles whose
centers are on a single straight line called the axis of rotation (Fig. 1.2). The axis of
rotation can be outside a body (see Fig. 1.2b).

Since when treating a body as a particle we ignore its length, the concept of
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circular motion about an axis passing through such a body cannot be applied to it.

To acquire the possibility of describing motion quantitatively, we have to asso-
ciate a coordinate system (for example a Cartesian one) with the bodies forming
a reference frame. Hence, the position of a particle can be determined by setting
the three numbers x, y, and z—the Cartesian coordinates of the particle. A co-
ordinate system can be made by forming a rectangular lattice from identical rods
or rules graduated to a definite scale: (Fig. 1.3). Identical clocks synchronized with
one another must be placed at the lattice points. The position of a particle and the
moment of time corresponding to this position are recorded on the graduated rods
and the clock closest to the particle.

It is simpler to treat a point particle than an extended body. We shall therefore
first study the mechanics of a particle, and then go over to the mechanics of a rigid
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body. We shall start with kinematics, and then delve into dynamics. We remind
our reader that kinematics studies the motion of bodies without regard to what
causes this motion. Dynamics studies the motion of bodies with a view to what
causes this motion to have the nature it does, i.e., with a view to the interactions
between bodies.

1.2. Vectors

Definition of a Vector. Vectors are defined as quantities characterized by a nu-
merical value and a direction and also as ones that are added according to the tri-
angle or parallelogram method'. The last requirement is a very significant one. We
can indicate quantities characterized by a numerical value and a sense of direction
but that are added in a different way than vectors. We shall take as an example the
rotation of a body about an axis through the finite angle ¢. Such rotation can be
depicted in the form of a segment of length ¢ directed along the axis about which
rotation is occurring and pointing in a direction associated with that of rotation
according to the right-hand screw rule. The top portion of Fig. 1.4 shows two con-
secutive turns of the sphere through the angles 7/2 depicted by the segments ¢;
and ¢;. The first turn about axis 1—1 transfers point A of the sphere to position
A’, and the second turn about axis 2—2 transfers it to position A”. The same re-
sult, i.e., transfer of point A to position A”, can be achieved by turning the sphere
about axis 3—3 (see the bottom portion of Fig. 1.4) through the angle 7. Hence,
such a turn should be considered as the sum of the turns ¢; and ¢,. It cannot be
obtained from the segments ¢; and ¢,, however, by adding them according to the
parallelogram method. Such addition gives a segment of length 7/V?2 instead of
the required length 7. Rotation through the angle 7/V?2 transfers point A to point
A", Tt thus follows that the turns through finite angles depicted by the directed
segments do not have the properties of vectors.

The numerical value of a vector is called its magnitude. Figuratively speaking,
the magnitude of a vector indicates its length. The magnitude of a vector is a scalar,
and always a positive one.

Vectors are represented graphically by arrows. The length of an arrow deter-
mines to the established scale the magnitude of the relevant vector, and the arrow
points in the direction of the vector.

Vectors are customarily distinguished by setting their symbols in boldface type,
for example, a, b, v and F. The same symbols set in italics signify the magnitude of

TAccording to a stricter definition, a vector is a combination of three quantities that transform
when the coordinate axes rotate according to a definite law.
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the relevant vectors, for example, a is the magnitude of the vector a’. It is some-
times necessary to express the magnitude by placing a vertical bar (an absolute
value sign) on each side of the symbol for the vector. Thus, |a| is the magnitude of
the vector a. This representation is used, for example, to show the magnitude of
the sum of the vectors a; and a,:

|a; + a;| = magnitude of the vector (a; + a3). (11)

In this case, the notation a; + a, signifies the sum of the magnitudes of the vectors
being added, which in general does not equal the magnitude of the sum of the
vectors (the two sums will be equal only when the vectors being added have the
same direction).

Vectors directed along parallel straight lines (in the same or in opposite direc-
tions) are called collinear. Vectors in parallel planes are called coplanar. Collinear
vectors can be arranged along the same straight line and coplanar vectors can be
brought into one plane by parallel translation.

Collinear vectors equal in magnitude and having the same direction are con-
sidered to equal each other?.

Vector Addition and Subtraction. It is more convenient to add vectors in
practice without constructing a parallelogram. Examination of Fig. 1.5 shows that
we can achieve the same result if we bring the tail of the second vector in contact

2In handwriting, vectors are denoted by arrows over their symbols (for example, d. In this case,
the same letter without the arrow stands for the magnitude of the vector.

3What is meant are the so-called free vectors, i.e., vectors that can be drawn from any point in
space. Also distinguished are slip vectors whose tail can be placed at any point on the straight line
along which the vector is directed, and localized vectors, which are applied to a definite point. The
last two kinds of vectors can be expressed through free vectors. This is why vector calculus is based
on the concept of the free vector, usually called simply a vector.
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as

Fig. 1.5 Fig. 1.6

with the tip of the first one, and then draw the resultant vector from the tail of the
first vector to the tip of the second one. It is very good to use this procedure when
we have to add more than two vectors (Fig. 1.6).

The difference of two vectors a and b is defined as such a vector ¢ which when
added to the vector b gives the vector a (Fig. 1.7—the vector —b depicted by a dash
line will be treated below The magnitude of the difference of two vectors, like the
magnitude of a sum [see Eq. (1.1)], may be written only with the aid of vertical bars:

|a; — a;| = magnitude of the vector (a; — a,), (1.2)

because the notation a; —a; signifies the difference of the magnitudes of the vectors
a; and a;, which, generally speaking, does not equal the magnitude of the vector
difference.

Multiplication of a Vector by a Scalar. Multiplication of the vector a by
the scalar « yields a new vector b = « a whose magnitude is |a| times that of the
vector a (i.e., b = |a]a). The direction of the vector b either coincides with that of
the vector a (if « > 0), or is opposite to it (if « < 0). It follows from the above that
multiplication by —1 reverses the direction of a vector. Consequently, the vectors
a and —a have the same magnitudes, but are opposite in direction. It is simple
to see with the aid of Fig. 1.7 that subtraction of the vector b from the vector a is
equivalent to addition of the vector —b to the vector a.

It follows from our definition of multiplication of a vector by a scalar that any
vector a can be represented in the form

a=ae, (1.3)

where a is the magnitude of the vector a and e,, is vector with a magnitude of unity
and of the same direction as a (Fig. 1.8).
The vector e, is called the unit vector of the vector a. The unit vector can be
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. c=a-b
a
—
Fig. 1.7 Fig. 1.8
represented in the form
by = g (1.4)

whence it follows that it is a dimensionless quantity.

Unit vectors can be compared not only with vectors, but also with any direction
in space. For example, é, is the unit vector of the coordinate axis x, &, is the unit
vector of a normal to a curve or surface, and é; is the unit vector of a tangent to a
curve.

Linear Relation Between Vectors. Let us consider three non-collinear vec-
tors a, b and ¢ that are in one plane. A glance at Fig. 1.9 shows that any of them (for
instance, c) can be expressed through the other two with the aid of the relation

c=aa+fb, (15)
where a and f are scalars (for the case shown in the figure, « > 1and —1 < f§ <
0). Hence, we conclude that any vector ¢ that is in the same plane as the non-
collinear vectors a and b can be expressed through the latter with the aid of linear
relation (1.5). When the vectors a and b are fixed, any third vector is unambiguously
determined by the two quantities « and f.

Assume that we have three vectors a, b and ¢, each of which is not coplanar with
the other two.* By analogy with Eq. (1.5), we can see quite easily that any vector d
can be represented as a linear combination of the given vectors:

d=aa+fb+yc, (1.6)
When the vectors a, b and ¢ are fixed, any vector d is unambiguously determined
by the three quantities @,  and y, each of which may be either positive or negative.

Projection of a Vector. Let us consider a direction in space that we shall set
by the axis [ (Fig. 1.10). Let the vector a make the angle ¢ with the axis I°. The
quantity

a;=a cosg (1.7)

4Two vectors are always coplanar. This follows from the fact that their tails can he made to
coincide by translation, and they will thus be in one plane.

SIf the straight line along which the vector a is directed and the axis | do not intersect, the angle
@ should be found by drawing a straight line parallel to the vector a and intersecting the axis . The
angle between this line and the axis [ will be the angle ¢ we are interested in.
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(where a is the magnitude of the vector) is called the projection of the vector a
onto the axisl. A projection is designated by the same symbol as its vector, with
the addition of a subscript showing the direction onto which the vector has been
projected.

A projection of a vector is an algebraic quantity. If the vector makes an acute
angle with the given direction, then cos ¢ > 0, and the projection is positive. If
the angle ¢ is obtuse, then cos ¢ < 0, and, consequently, the projection is negative.
When a vector is at right angles to a given axis, its projection equals zero.

The projection of a vector has a simple geometrical meaning. It equals the
distance between the projections of the tail and the tip of the segment depicting
the given vector onto the given axis. When ¢ < 7/2, this distance is assumed to be
positive, and when ¢ > 7/2, it is negative.

Leta = a; + a, + a3 + a4 (Fig. 1.11). It is easy to see from the figure that the pro-
jection of the resultant vector a onto a direction [ equals the sum of the projections
of the separate vectors being added:

aj = ay + ay + az + aq. (1.8)
We must remind our reader that when adding the projections of the vectors shown
in Fig. 1.11, the distances 0—1, 1—2, and 2—3 have to be taken with the plus sign,
and the distance 3—4 with the minus sign. Equation (1.8) holds for any number of
addends.

Expressing a Vector Through Its Projections onto the Coordinate Axes.
Let us take Cartesian coordinate axes and consider the vector a in a plane at right
angles to the z-axis (Fig. 1.12). We shall introduce the unit vectors of the coordinate
axes, i.e., the unit vectors &y, &, and e, (e, is not shown in the drawing, it is per-
pendicular to the plane of the drawing and directed toward us). It must be noted
that these three unit vectors completely determine a system of coordinates and are
therefore called the basis of the coordinate system.

Inspection of Fig. shows that the vector a can be represented in the form
of a linear combination of the unit vectors e, and e, [see Eq. (1.9)]:

a=ae,+aye,.
The projections of the vector onto the coordinate axes play the part of the coef-
ficients @ and f. In the example being considered, the projection a, is negative,
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therefore the vector a,e, has a direction opposite to that of the unit vector e,.

We took the vector a perpendicular to the z-axis owing to which a, = 0. In
the general case when all three projections of a vector differ from zero, we have

a=a.e,+ ayéy +a,e,, (1.9)

Thus, any vector can be expressed through its projections onto the coordinate axes
and the unit vectors of these axes. Therefore, the projections of a vector onto the
coordinate axes are called its components.

The components ay, a), a, equal (with an accuracy to the sign) the sides of
a right parallelepiped in which the vector a is the major diagonal (Fig. 1.13). We

therefore have

a?=a’+ ai +al. (1.10)

Assume that ¢ = a + b. Representing each of these vectors in accordance with

Eq. (1.9), we get

Crly +Cyey+aze, = (ay+by)ex+(ay,+by)e, + (a; +b;)e;
(we have factored out &y, &, and é;)- Equal vectors have identical projections onto
the coordinate axes. On these grounds, we can write that

€y =ax+by, ¢y,=ay,+b,, a,=a,+b, (1.11)
[compare with Eq. (1.8)]. Equations (1.11) express analytically the rule of vector ad-
dition. They hold for any number of addends.

Position Vector. The position vector (or radius vector) r of a point is defined
as the vector drawn from the origin of coordinates to the given point (Fig. 1.14). Its
projections onto the coordinate axes equal the Cartesian coordinates of the given
point:

=X, r,=y r =z (1.12)

Consequently, in accordance with Eq. (1.9), the position vector can be represented
in the form

r=xeé, +ye,+ze,. (113)
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By Eq. (1.10), we have
r=x*+ y2 + 22 (1.14)

The Scalar Product of Vectors. Two vectors a and b can be multiplied by
each other in two ways. One of them results in a scalar quantity, and the other
in a certain new vector. Accordingly, two products of vectors are distinguished—
the scalar product and the vector product. It must be noted that the operation of
dividing a vector by a vector does not exist.

The scalar product of the vectors a and b is defined as the scalar quantity equal
to the product of the magnitudes of these vectors and the cosine of the angle «
between them:

a-b=absina (1.15)
(Fig. 1.15). When writing a scalar product, the symbols of the vectors being multi-
plied are usually written next to each other with dot between them (this is why a

scalar product is also called a dot product; sometimes nothing is used between the
symbols)¢. Equation (1.15) expresses an algebraic quantity: when « is acute, we have

6The dot symbol between vectors is preferred in the IK[gXversion to adopt a more modern ap-
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a-b > 0, and when it is obtuse, we have a-b < 0. The scalar product of mutually
perpendicular vectors (¢ = 7/2) equals zero.

It must be noted that by the square of a vector is always meant the scalar prod-
uct of this vector by itself:

a’=a-a=aacosa = a’. (1.16)

Thus, the square of a vector equals the square of its magnitude. In particular, the

square of any unit vector equals unity:

~2

2= = é? =1. (117)

x =€y
We shall note in passing that owing to the unit vectors being mutually perpendic-
ular, scalar products such as é;-e;, equal zero if i # k.

The Kronecker symbol or delta dj;, is very convenient. It is determined as fol-

lows:

1 ifi=k
S = 18
=0, ifizk. (118)

When this symbol is used, the properties of the scalar products of the coordinate
axis unit vectors established above can be expressed by a single formula:

éi-ep =0y (Lk=x,2) (119)
where the subscripts i and k can assume any of the values x, y and z independently
of each other.

It follows from the definition (1.15) that a scalar product is commutative, i.e., it
does not depend on the sequence of the multipliers:

a-b=b-a. (1.20)
Equation (1.15) can be written in several ways:

a-b=abcosa = (acosa)b=a(bcosa).

Examination of Fig. 1.15 shows that a cos & equals a,—the projection of the vector
a onto the direction of the vector b. Similarly, b cos @ = b,—the projection of the
vector b onto the direction of the vector a. We can therefore say that the scalar
product of two vectors is defined as the scalar quantity equal to the product of the
magnitude of one of the vectors being multiplied and the projection of the second
vector onto the direction of the first one:

a-b = ayb = ab,. (1.21)

Taking into account that the projection of the sum of vectors equals the sum
of the projections of the vectors being added, we can write that

a-(b+c+...) = a(b+c+...); = a(bg+cy+...) = abg+ac,+... = ab+ac+.... (1.22)

proach.
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Hence, it follows that the scalar product of vectors is distributive—the product of
the vector a and the sum of several vectors equals the sum of the products of the
vector a and each of the added vectors taken separately.

Let us represent the vectors being multiplied in the form of Eq. (1.9) and take
advantage of the distributive nature of a scalar product. We get

a-b=(a,e;+aye,+ae;)(bie, +b,e,+b.e)
= acbyec-e, +aybye -8, +ayb.ec-e; +aybee,-e. +aybe,-e,
+ayb.ey-e. +abce.-e,+abye.-e, +ab.e.-e,.
Now let us take Eq. (1.19) into consideration. As a result, we get an expression for a
scalar product through the projections of the vectors being multiplied:
a-b=ayby +ayb, +ab,. (1.23)
It must be noted that when the coordinate axes are rotated, the projections of vec-
tors onto these axes change. The quantity ab cos @ does not depend on the choice of
the axes, however. We thus conclude that the changes in the projections of the vec-

tors a and b, when the axes are rotated, are of a nature such that their combination
of the form of Eq. (1.23) remains invariant (unchanged):

a-b=a,by; +a,b, +a.b, =inv. (1.24)
[t is a simple matter to see that the projection of the vector a onto the direction
[ [see Eq. (1.7)] can be represented in the form
a=a-e, (1.25)
where ¢ is the unit vector of the direction /. Similarly,
ay=a-e;, ay,=a-e, a=a-e,. (1.26)
The Vector Product. The vector product of the vectors a and b is defined as
the vector ¢ determined by the equation
¢ = absin(a)n, (1.27)
where a y b magnitudes of the vectors being multiplied, , is the angle between the
vectors, #, is the unit vector of a normal” to the plane containing the vectors a and
b (Fig. 1.16).
The direction of # is chosen so that the sequence of the vectors a, b, #t forms
a right-handed system. This signifies that if we look along the vector #, then the
shortest path in rotation from the first multiplier to the second one will be clock-

wise. In Fig. 1.16, the vector # is directed beyond the drawing, and it is therefore
depicted by a circle with a cross®. The direction of the vector ¢ coincides with that

7The symbol # is simpler and more illustrative than é,.
8We shall depict vectors perpendicular to the plane of a drawing by a circle with a cross in it if
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of .
A vector product is usually designated in one of two ways:
[a,b] or axb

the latter notation resulting in the term cross product sometimes being used to
signify a vector product. We shall use the latter notation®. Thus, according to
Eq. (1.27), we have

ax b= (absina)n. (1.28)

A glance at Fig. shows that the magnitude of a vector product has a sim-
ple geometrical meaning—the expression ab sin « numerically equals the area of a
parallelogram constructed on the vectors being multiplied.

We determined the direction of the vector a X b by relating it to the direction of
rotation from the first multiplier to the second one. When considering vectors such
as the position vector r, the velocity v, and the force F, the choice of their direction
is quite obvious—it follows from the nature of these quantities themselves. Such
vectors are called polar or true. Vectors of the type axb whose direction is related
to that of rotation are called axial or pseudovectors. When conditions change,
for example, upon going over from a right-hand system of coordinates to a left-
hand one, the directions of pseudovectors are reversed, while those of true vectors
remain unchanged.

It must be borne in mind that a vector product will be a pseudovector only
when both of the vectors being multiplied are true (or both are pseudovectors).
The vector product of a true vector and a pseudovector will be true. Reversing of
a condition determining the direction of a pseudovector will lead in this case to a
change in the sign in front of the vector product and also to a change in the sign
of one of the multipliers. As a result, the quantity expressed by the vector product
remains unchanged.

Since the direction of a vector product is determined by the direction of rota-
tion from the first multiplier to the second one, the result of vector multiplication
depends on the order of the multipliers. Transposition of the multipliers leads to
reversing of the direction of the resultant vector. Thus, a vector product does not
have the property of commutativity:

axb=-bxa. (1.29)

the vector is directed away from us, and by a circle with a point at its centre if the vector is directed
toward us. For clarity, we can imagine a vector in the form of an arrow with a tapered tip and cross-
shaped feathers on its tail. Thus, when the vector is directed toward us (the arrow is flying toward
us), we see a circle with a point; when the vector is directed away from us (the arrow is flying away
from us), we see a circle with a cross.

9To avoid confusion, in the IK[gXversion, we shall use the cross product symbol.
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A vector product can be proved to be distributive, i.e., it can be shown that
ax(by+by+..)]=axb+axby+.... (1.30)

Let us consider the vector products of the unit vectors of the coordinate axes
(Fig. 1.17). In accordance with the definition (1.28), we have

exXey=e,xe, =e,xe, =0,
ey Xe, =—e,Xe, =¢, (1.31)
éyXéz :_ézXéy :éxr
e;Xe,=—eXe, =e,.
Representing the vectors being multiplied in the form of Eq. (1.9) and taking ad-
vantage of the distributivity of a vector product, we get:
aXb=(a.e;+aye,+ae;)x (byex+bye,+b.e;)
= axbyey X &x +aybye, X e, +ayb.e, xe,
+aybye, X ex+aybye, Xe,+ayb.e, xe,
+azb.e, X e, +abye, xXe, +ab.e, xe,

Taking into account relation (1.31), we arrive at the following expression:

axb=eé.(ayb, —ab,) +e,(a.b, —a,b;) +e.(axb, —a,b,). (1.32)
The above expression can be represented in the form of a determinant
ex e e
axb=|a, a, a. (1.33)
by by b,

Scalar Triple Product. A scalar triple product of three vectors is defined as
the expression a- (b X c), i.e., the scalar product of the vector a and the vector
product of the vectors b and ¢. According to the definitions (1.15) and (1.28), we have

a-(bxc)=a{bcsin(b,c)} cos(a, ).

Here (b, c) is the angle between b and ¢, and (a, #) is the angle between the vector
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Fig. 1.18

a and the unit vector # determining the direction of the vector b X ¢. Inspection
of Fig. shows that the expression bc sin(b, ¢) numerically equals the area of
the base of a parallelepiped constructed on the vector being multiplied, while the
expression a cos(a, #) numerically equals the altitude of this parallelepiped taken
with the plus sign if the angle (a, ) is acute, and with the minus sign if it is obtuse.
Consequently, the expression a- (b X c¢) has a simple geometrical meaning—it nu-
merically equals the volume of a parallelepiped constructed on the vectors being
multiplied [taken with the plus or minus sign depending on the value of the angle
(a,#)]. In calculating the volume of a parallelepiped, the result cannot depend on
which of its faces is taken as the base. Hence, it follows that

a-(bxc)=b-(cxa)=c-(axb). (1.34)
Thus, a scalar triple product permits cyclic transposition of the multipliers, i.e.,
substitution for each of the multipliers of the one following it in the cycle:

a
L,
Vector Triple Product. Let us consider a vector triple product of the three
vectors a, b and ¢
d=axbxec.
Any vector product is perpendicular to both multipliers. Therefore, the vector d
is perpendicular to the unit vector # determining the direction of the vector b X c.

Hence, it follows that the vector d is in the plane formed by the vectors b and ¢ and,
consequently, can be represented as a linear combination of these vectors:

d=ab+fc
[see Eq. (1.5)]. We find from the relevant calculations that « = a-c and f = —a-b.
Thus,

axbxc=b(a-c)—c(a-b). (1.35)

Derivative of a Vector. Let us consider a vector that changes in time accord-
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ing to a known law a(t). The projections of this vector onto the coordinate axes
are preset functions of time. Hence,

a(t) = exa,(t) +eya,(t) +é.a:(t) (1.36)
(we assume that the coordinate axes do not rotate in space so that their unit vectors
do not change with time).

Let the vector projections receive the increments Aay, Aay, Aa, during the
time At. The vector therefore receives the increment Aa = e, Aa, +¢,Aa, +e,Aa,.
The rate of change of the vector a with time can be characterized by the ratio of
Aa to At:

A

Aa | Aay Aay | Aa,

E zexE +eyE +82E. (137)
This expression gives the mean rate of change of a during the time interval At.
Let us assume that a changes continuously with time, without any jumps. Conse-
quently, the smaller the interval At, the more accurately does the value of Eq. (1.37)
characterize the rate of change in a at the moment ¢t preceding the interval At.
Therefore, the rate of change in the vector a at the moment ¢t equals the limit of
Eq. (1.37) obtained when At tends to zero:

a
the rate of change ina = lim —
At—0 At

e tim 2% im0, 2% 4 m 2% )
At—0 At At—0 T At A0 T At
If there is a function f(¢) of the argument ¢, then the limit of the ratio of the
increment of the function Af to the increment of the argument At obtained when
At tends to zero is called the derivative of the function f with respect to t and
is designated by the symbol df /dt. Expression (1.38) can therefore be written as
follows:
da da da da
5 =0 +éyd—ty te
The result obtained signifies that the projections of the vector da/dt onto the co-
ordinate axes equal the time derivatives of the projections of the vector a:

da da, da da, da da,
¥ T \@) T \w T (1.40)
pr. x pr.y pr. z

It is customary practice in physics to denote time derivatives by the symbol of
the corresponding quantity with a dot over it, for example,
dp d%e . da | d’a

a = w Tt wTh wtt -4

(1.39)
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Using this notation, we can write equation (1.39) as follows:

a=eydy+eyd,+e.d,. (1.42)
If we take the position vector r(t) of a moving point as a(t), then by Eq. (1.42) we
have

T =e,f, +e)fy +e.7, (1.43)
where x, y, z are functions of ¢, namely, x = x(t), y = t(t), z = z(t).
The differential (“increment”) of the function f(t) is defined as the expression

df =f"dt, (1.44)

where f” is the derivative of f with respect to t. According to Eq. (1.39), the differ-
ential of the vector a is determined by the equation
da = e,da, +eyda, + e.da.. (1.45)
In particular,
dr = e,dx + e,dy +e.dz. (1.46)
It must be noted that the increment of a function during a very short, but finite
interval At approximately equals
%At. (1.47)
In the limit, when At — 0, the approximate equation (1.47) transforms into the
accurate equation (1.44).
A similar equation to (1.47) can also be written for the vector function
da

Aa ~ — At. 48
ax (1.48)

Derivative of the Product of Functions. We shall consider the function b(t)
that equals the product of the scalar function ¢(t) and the vector function a(t), i.e.,
b(t) = p(t)a(t) or, more briefly, b = ga. Let us find the increment of the function
b:

Af = f At =

Ab = A(ga) = (¢ + Ag)(a + Aa) — pa = pAa + alp + ApAa.
Representing the increments of the functions in the form of expressions (1.47) and
(1.48), we get:

d ded
9P pp 4 Sp 04

At)?
dt dtdt( )

da
Ab ~ At+a
v
whence
Ab  da +adq0 LY dp da
A Par dr dr
In the limit when dt tends to zero, this approximate equation transforms into an
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accurate one. Thus,

d—b: lim d—b: lim ¢%+ad—¢+d—¢%

dt  4a—odt A—o\" dt dt  dt dt
The first two addends do not depend on At and therefore do not change when going
over to the limit. The limit of the third addend equals zero. Hence, substituting pa
for b, we obtain

d(ga) ~da dp .
T - %% +a i pa+ ¢a. (1.49)
Now let us consider the scalar product of two vector functions a(t) and b(t).

The increment of this product is
A(ab) = (a + Aa)(b+ Ab) — ab
= aAb+bAa + Aalb
~ abAt + baAt + ab(Ar)?

Hence
d(ab A(ab . .
(ab) = lim (ab) = lim (ab + ba + abAt)
dt AM—0 At At—0
or finally
d(ab .
(;t ) = ab + ba. (1.50)
Multiplying Eq. (1.50) by dt, we get a differential:
d(ab .
(C‘;t ) — ab + ba, (151

Let us calculate the derivative and the differential of the square of a vector
function. According to Egs. (1.50) and (1.51), we have

2
% = 2aa, (1.52)
d(a®) = 2ada, (1:53)

Taking into account that a> = a? [see Eq. (1.16)], we can write:
2
2ada=d(a*) or ada=d (%) . (1.54)

Finally, let us consider the derivative of the vector product of the functions
a(t) and b(t). The increment of the function being conside