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AUTHOR’S PREFACE TO
THE ENGLISH EDITION

The present book is the first volume of the three-volume general course in physics.
The course is a result of twenty five year’s work in the Department of General
Physics of the Moscow Institute of Engineering Physics. I was in constant per-
sonal contact with my students not only at lectures, but also, perhaps even more
importantly, at exercises, consultations, and examinations. These fruitful contacts
helped me refine and improve the exposition of the various topics in the course.

The advice and friendly criticism of my colleagues in the department has also
been a great help. I would like to make a special mention of the part played by
N. B. Narozhny, who, in particular, is the author of the original and comparatively
simple statistical derivation of the equation d( = d′&/) [Eq. (11.110)].

In writing the book, I have done everything in my power to acquaint students
with the basic ideas and methods in physics and to teach them how to think phys-
ically. This is why the book is not encyclopedic in its nature. It is mainly devoted
to explaining the meaning of physical laws and showing how to apply them con-
sciously. What I have tried to achieve is a deep knowledge of the fundamental
principles of physics rather that a shallower acquaintance with the a wide range of
questions.

While using the book, try not tomemorise thematerial formalistically andme-
chanically, but logically, i.e., memorise the material by thoroughly understanding
it. I have tried to present physics not as a science for “cramming”, not as a certain
volume of information to be memorised, but as a clever, logical, and attractive sci-
ence. It is left to the reader to judge the extent to which I have succeeded in doing
this.

Acknowledging the fact that a thick volume by its very appearance makes a
student despondent, I have done my utmost to limit the size of the course. This
was achieved by carefully choosing the material which in my opinion should be
included in a general course of physics. I also tried to be concise, but not at the
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expense of clarity.
Notwithstanding my desire to reduce the size, I considered it essential to in-

clude a number of mathematical sections in the course: on vectors, linear differen-
tial equations, the basic concepts of the theory of probability, etc. This was done
to impart a “physical” tinge to the relevant concepts and relations. In addition, the
mathematical “inclusions” make it possible to go on with the physics even if, as
is often the case, the relevant material has not yet been covered in a mathematics
course.

The present course is intended above all for higher technical schools with an
extended syllabus in physics. The material has been arranged, however, so that
the book can be used as a teaching aid for higher technical schools with ordinary
syllabus simply omitting some sections.

Igor Savelyev

Moscow, July, 1979
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1

INTRODUCTION

Physics is a science dealing with the most general properties and forms of motion
of matter.

A classical definition of matter was given by V. Lenin in his bookMaterialism
and Empirio-Criticism: “Matter is a philosophical category denoting the objective
reality which is given to man by his sensations, and which is copied, photographed
and reflected by our sensations, while existing independently of the”¹. Two propo-
sitions are significant in this definition, namely, (1) matter is what exists objectively,
i.e., independently of anyone’s consciousness or sensations, and (2) matter is copied
and reflected by our sensations and, consequently, is cognizable.

It follows from the definition of physics that it concentrates knowledge accu-
mulated on the most general properties and phenomena of the world surrounding
us. As academician S. Vavilov noted in one of his articles, “the extremely common
character of a considerable part of the contents of physics, its facts and laws drew
physics and philosophy together from time immemorial. . . . Sometimes physical
statements have such a nature that they are difficult to distinguish and separate
from philosophical statements, and a physicist must be a philosopher”.

Two kinds of matter are known at present: substance and field. The first kind
of matter—substance—includes, for example, atoms, molecules, and all bodies
built of them. Electromagnetic, gravitational, and other fields form the second kind
of matter. The different kinds of matter can change into each other. For instance,
an electron and a positron (representatives of substance) may transform into pho-
tons (i.e., into an electromagnetic field). The reverse process is also possible.

Matter is in continuous motion, which is understood to mean any change in
general in dialectical materialism². Motion is an inalienable property of matter,

¹V. I. Lenin. Collected Works, Vol. 14, p. 130. Moscow, Foreign Languages Publishing House (1962).
²Dialectical materialism is the name given to the Marxist-Leninist philosophy. The fundamental

issue of any philosophy as to what is primary—matter or consciousness—is solved by dialectic ma-
terialism in favour of matter when it states that matter is primary and consciousness is secondary.
The method of this philosophy is dialectics. It considers matter in constant motion and develop-
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which, like matter itself, cannot be created or destroyed. Matter exists and moves
in space and in time, which are forms of existence of matter.

The laws of physics are established by generalizing experimental facts. They
express the objective regularities existing in nature. These laws are customarily
expressed in the form of quantitative relationships between various physical quan-
tities.

The fundamental method of investigation in physics is the running of an ex-
periment, i.e., the observation of the phenomenon being studied in accurately con-
trolled conditions. The latter must permit one to watch the course of the phe-
nomenon and reproduce it each time when these conditions are repeated. Phe-
nomena can be produced experimentally that are not observed in nature. For ex-
ample, more than ten of the chemical elements known at present have meanwhile
not been discovered in nature and were obtained artificially by means of nuclear
reactions.

Hypotheses are enlisted to explain experimental data. A hypothesis is a scien-
tific assumption advanced to explain a definite fact or phenomenon and requiring
verification and proving to become a scientific theory or law. The correctness of a
hypothesis is verified by running the corresponding experiments and by determin-
ing whether the corollaries following from the hypothesis agree with the results of
experiments and observations. A hypothesis that has successfully passed such ver-
ification and has been proved becomes a scientific law or theory.

A physical theory is a system of basic ideas summarizing experimental data and
reflecting the objective regularities of nature. A physical theory explains a whole
field of natural phenomena from a single viewpoint.

Physics is subdivided into the so-called classical physics and quantum physics.
The term classical is applied to the physics whose creation was completed at the
beginning of the 20th century. Classical physics was founded by Isaac Newton
(1642-1727), who formulated the fundamental laws of classical mechanics. Newto-
nian mechanics proved to be exceedingly fruitful and mighty, and physicists ac-
quired the conviction that any physical phenomenon can be explained with the aid
of Newton’s laws.

The edifice of classical physics built up by the end of the last century was very
harmonious. Most physicists were convinced that they already knew everything
about nature that could be known. The most perspicacious physicists, however,
understood that the edifice of classical physics had weak spots. For example, the
British physicist William Thomson (Lord Kelvin, 1824-1907) said that there are two

ment whose source is contained in the internal contradictions inherent in objects and phenomena
themselves.
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dark clouds on the horizon of the cloudless sky of classical physics—the unsuc-
cessful attempts to set up a theory of blackbody radiation, and the contradictory
behaviour of ether—the hypothetical medium inwhich light waves were supposed
to propagate. The persistent attempts to surmount these difficulties led to unex-
pected results. To solve these problems, which were beyond the possibilities of
classical physics, it became necessary to revise quite radically the established, habit-
ual notions and introduce concepts that were alien to the spirit of classical physics.
Max Planck (1858-1947) succeeded in solving the problem of blackbody radiation in
1900 by introducing the concept of light emission in separate portions—quanta.
Thus, at the threshold of the 20th century, the concept of the quantum appeared.
It plays an exceedingly important part in modern physics and has resulted in the
creation of quantum mechanics.

The contradictory nature of the experimental facts relating to ether induced
Albert Einstein (1879-1955) to revise the notions of space and time that were con-
sidered to be obvious from Newton’s times. The result was the appearance of the
theory of relativity. The latter gives equations ofmotion appreciably differing from
those ofNewtonianmechanics for bodies travellingwith speeds that are noticeable
in comparison with the speed of light.

The year 1897 saw the discovery of the electron. The atoms of all the chemical
elementswere found to contain these particles. Thus, atoms, previously considered
indivisible, appeared to have a complicated structure.

The beginning of the 20th century was thus marked in physics by the radical
breaking down of numerous habitual concepts and notions. New physical discov-
eries and theories destroyed the notions of the structure of matter formed bymany
physicists. Some of them interpreted this as the vanishing of matter. Many physi-
cists lapsed into idealism, and a crisis began in physics.

V. Lenin in his book Materialism and Empirio-Criticism written in 1908 gave
annihilating criticism of “physical” idealism. He showed that the new discoveries
indicate not the vanishing of matter, but the vanishing of the limit up to which
matter was known before that time. “Matter disappears”, wrote Lenin, “means that
the limit within which we have hitherto known matter disappears and that our
knowledge is penetrating deeper; properties of matter are likewise disappearing
which formerly seemed absolute, immutable, and primary (impenetrability, inertia,
mass, etc.) and which are now revealed to be relative and characteristic only of
certain states of matter. For the sole ’property’ of matter with whose recognition
philosophical materialism is bound up is the property of being an objective reality,
of existing outside the mind.”³.

³V. I. Lenin. Collected Works, Vol. 14, p. 260. Moscow, Foreign Languages Publishing House (1962).
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The process of recognizing the world is infinite. Our knowledge at any given
stage of development of science is due to the historically achieved level of cognition
and cannot be considered as final or complete. It is of necessity relative knowledge,
i.e., requires further development, further verification, andmore precise definition.
At the same time, any truly scientific theory, notwithstanding its relativity and in-
completeness, contains elements of absolute, i.e., complete, knowledge, and thus
signifies a step in the cognition of the objective world. For instance, mechanics
based on Newton’s laws is not correct, strictly speaking. But for a certain range
of phenomena, this mechanics is quite satisfactory. Thus, the development of sci-
ence did not cross out Newtonian mechanics. It only established the limits within
which it is correct. Newtonian mechanics formed a constituent part of the general
edifice of the physical science.

The beginning of the 20th century is characterized by persistent attempts to
penetrate into the internal structure of atoms. The key to determining their struc-
ture was found to be the studying of atomic spectra. The theory of the atom de-
veloped by Niels Bohr (1885-1962) in 1913 was the first striking success in explaining
the observed spectra. This theory, however, has obvious features of inconsistency:
in addition to the motion of an electron in an atom obeying the laws of classical
mechanics, the theory imposes special quantum restrictions on this motion. The
theory soon had to pay for this lack of consistency. After the first successes in ex-
plaining the spectra of the simplest atom—that of hydrogen—it was found that
Bohr’s theory is unable to explain the behaviour of atoms with two or more elec-
trons.

The need to develop a new comprehensive theory of atoms became pressing.
A bold hypothesis of Louis de Broglie put forward in 1924 placed the cornerstone
in such a theory. It was known by that time that light, while being a wave process,
also exhibits a corpuscular nature in a number of cases, i.e., behaves like a stream
of particles. De Broglie put forth the idea that the particles of a substance, in turn,
should display wave properties too in definite conditions. De Broglie’s hypothesis
soon received a brilliant experimental confirmation—it was proved that a wave
process is associated with the particles of a substance, and it must be taken into
account when considering themechanics of an atom. A result of this discovery was
the development by Erwin Schrödinger (1887-1961) and Werner Heisenberg (1901-
1976) of a new physical theory—wave or quantum mechanics. The latter achieved
striking successes in explaining atomic processes and the structure of a substance.
Results were obtained that showed excellent agreement with experimental data
when ’it was found possible to surmount the mathematical difficulties.

The latest decadeswere noted by remarkable achievements in the field of study-
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ing the atomic nucleus. Scientists and engineers have mastered nuclear processes
to such an extent that the practical use of nuclear energy has become possible.
One of the leading places in this field belongs to Soviet physics. Particularly, the
first atomic power plant in the world was erected in the USSR.

Finally, in recent years, the walls of laboratories created by the hands of man
were moved apart beyond the limits of our globe. On October 4, 1957, an artificial
satellite of the Earth was launched in the Soviet Union the first time in history.
It was a small laboratory outfitted with apparatus for scientific research. April 12,
1961, saw the first flight of a man into outer space. The first Soviet cosmonaut, Yuri
Gagarin, flew around the Earth and landed safely. The first space rockets were built
in the Soviet Union. They left the field of the Earth’s attraction and transmitted to
the Earth by means of radio signals valuable results of studying outer space and,
particularly, photographs of the reverse side of the Moon. In 1969, U.S. astronauts
landed on the Moon. In 1975, two Soviet automatic spaceships made a soft landing
on Venus and transmitted valuable information on the physical conditions on this
planet, and also photographs of its surface.

There is no doubt that the nearest futurewill bemarkedwith new fundamental
discoveries in the science of physics.
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Chapter 1

KINEMATICS

1.1. Mechanical motion

Mechanical motion is the simplest form of motion of matter. It consists in the
movement of bodies or their parts relative to one another. We can see movements
of bodies everywhere in our ordinary life. This is why mechanical notions are so
clear. This also explains the fact that mechanics was the first of all the natural
sciences to be developed very broadly.

A combination of bodies separated for consideration is called a mechanical
system. The bodies to be included in a systemdepend on the nature of the problem
being solved. In a particular case, a system may consist of a single body.

It was indicated above that motion in mechanics is defined as the change in
the mutual arrangement of bodies. If we imagine a separate isolated body in a
space where no other bodies are present, then we cannot speak of the motion of
the body because there is nothing with respect to which the body could change its
position. It thus follows that if we intend to study the motion of a body, then we
must indicate with respect to what other bodies the given motion occurs.

Motion occurs both in space and in time (space and time are inalienable forms
of existence of matter). Consequently, to describe motion, we must also determine
time. We use a timepiece (watch or clock) for this purpose.

A combination of bodies that are stationary relative to one anotherwith respect
to which motion is being considered and a timepiece indicating the time forms a
reference frame.

The motion of the same body relative to different reference frames may have a
different nature. For example, let us imagine a train gaining speed. Suppose that a
passenger is walking with a constant velocity along the corridor of one of the cars
of the train. The motion of the passenger relative to the ear will be uniform, and
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relative to the Earth’s surface it will be accelerated.
To describe the motion of a body means to indicate for every moment of time

the position of the body in space and its velocity. To set the state of a mechanical
system, we must indicate the positions and the velocities of all the bodies forming
the system. A typical problem of mechanics consists in determining the states of
a system at all the following moments of time B when we know the state of the
system at a certain initial moment B0 and also the laws governing the motion.

It must be noted that no physical problem can be solved absolutely exactly.
An approximate solution is always obtained. The degree of approximation is de-
termined by the nature of the problem and the object to be achieved. In solving
a problem approximately, we disregard the factors that are not significant in the
given case. For example, wemay often disregard the dimensions of the bodywhose
motion is being studied. For instance, it is quite possible to disregard the Earth’s
dimensions when treating its motion about the Sun. This allows us to considerably
simplify our description of the motion because the Earth’s position in space can be
determined by a single point.

A body whose dimensions may be disregarded in the conditions of a given
problem is called a point particle (or simply a particle). Whether or not we may
consider a given body as a particle depends not on the dimensions of the body, but
on the conditions of the problem. The same body in some cases may be treated as
a particle, but in others it must be considered as an extended body.

When speaking about a body as a particle, we disengage ourselves from its
dimensions. Another abstraction which we have to do with in mechanics is a per-
fectly rigid body. Absolutely undeformable bodies do not exist in nature. Any body
deforms to a greater or smaller extent, i.e., changes its shape and dimensions, un-
der the action of forces applied to it. The deformations of bodies when considering
their movements may often be disregarded, however. If this is done, then the body
is called perfectly rigid. Thus, a body whose deformations may be disregarded in
the conditions of a given problem is called a perfectly rigid, or simply a rigid
body.

Any motion of a rigid body can be resolved into two basic kinds of motion—
translational motion and circular motion.

Translational motion (translation) is defined as motion in which any straight
line associated with the moving body remains parallel to itself (Fig. 1.1).

In circular motion (rotation), all the points of a body move in circles whose
centers are on a single straight line called the axis of rotation (Fig. 1.2). The axis of
rotation can be outside a body (see Fig. 1.2b).

Since when treating a body as a particle we ignore its length, the concept of
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Fig. 1.1 Fig. 1.2

Fig. 1.3

circular motion about an axis passing through such a body cannot be applied to it.
To acquire the possibility of describing motion quantitatively, we have to asso-

ciate a coordinate system (for example a Cartesian one) with the bodies forming
a reference frame. Hence, the position of a particle can be determined by setting
the three numbers F, G, and H—the Cartesian coordinates of the particle. A co-
ordinate system can be made by forming a rectangular lattice from identical rods
or rules graduated to a definite scale: (Fig. 1.3). Identical clocks synchronized with
one another must be placed at the lattice points. The position of a particle and the
moment of time corresponding to this position are recorded on the graduated rods
and the clock closest to the particle.

It is simpler to treat a point particle than an extended body. We shall therefore
first study the mechanics of a particle, and then go over to the mechanics of a rigid
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body. We shall start with kinematics, and then delve into dynamics. We remind
our reader that kinematics studies the motion of bodies without regard to what
causes this motion. Dynamics studies the motion of bodies with a view to what
causes this motion to have the nature it does, i.e., with a view to the interactions
between bodies.

1.2. Vectors

Definition of a Vector. Vectors are defined as quantities characterized by a nu-
merical value and a direction and also as ones that are added according to the tri-
angle or parallelogrammethod¹. The last requirement is a very significant one. We
can indicate quantities characterized by a numerical value and a sense of direction
but that are added in a different way than vectors. We shall take as an example the
rotation of a body about an axis through the finite angle i. Such rotation can be
depicted in the form of a segment of length i directed along the axis about which
rotation is occurring and pointing in a direction associated with that of rotation
according to the right-hand screw rule. The top portion of Fig. 1.4 shows two con-
secutive turns of the sphere through the angles c/2 depicted by the segments i1
and i2. The first turn about axis 1—1 transfers point � of the sphere to position
�′, and the second turn about axis 2—2 transfers it to position �′′. The same re-
sult, i.e., transfer of point � to position �′′, can be achieved by turning the sphere
about axis 3—3 (see the bottom portion of Fig. 1.4) through the angle c . Hence,
such a turn should be considered as the sum of the turns i1 and i2. It cannot be
obtained from the segments i1 and i2, however, by adding them according to the
parallelogram method. Such addition gives a segment of length c/

√
2 instead of

the required length c . Rotation through the angle c/
√
2 transfers point � to point

�′′′. It thus follows that the turns through finite angles depicted by the directed
segments do not have the properties of vectors.

The numerical value of a vector is called its magnitude. Figuratively speaking,
themagnitude of a vector indicates its length. Themagnitude of a vector is a scalar,
and always a positive one.

Vectors are represented graphically by arrows. The length of an arrow deter-
mines to the established scale the magnitude of the relevant vector, and the arrow
points in the direction of the vector.

Vectors are customarily distinguished by setting their symbols in boldface type,
for example, a, b, v and L . The same symbols set in italics signify the magnitude of

¹According to a stricter definition, a vector is a combination of three quantities that transform
when the coordinate axes rotate according to a definite law.
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Fig. 1.4

the relevant vectors, for example, 0 is the magnitude of the vector a². It is some-
times necessary to express the magnitude by placing a vertical bar (an absolute
value sign) on each side of the symbol for the vector. Thus, |0| is the magnitude of
the vector a. This representation is used, for example, to show the magnitude of
the sum of the vectors a1 and a2:

|a1 + a2 | = magnitude of the vector (a1 + a2). (1.1)
In this case, the notation 01 + 02 signifies the sum of the magnitudes of the vectors
being added, which in general does not equal the magnitude of the sum of the
vectors (the two sums will be equal only when the vectors being added have the
same direction).

Vectors directed along parallel straight lines (in the same or in opposite direc-
tions) are called collinear. Vectors in parallel planes are called coplanar. Collinear
vectors can be arranged along the same straight line and coplanar vectors can be
brought into one plane by parallel translation.

Collinear vectors equal in magnitude and having the same direction are con-
sidered to equal each other³.

Vector Addition and Subtraction. It is more convenient to add vectors in
practice without constructing a parallelogram. Examination of Fig. 1.5 shows that
we can achieve the same result if we bring the tail of the second vector in contact

²In handwriting, vectors are denoted by arrows over their symbols (for example, ®0. In this case,
the same letter without the arrow stands for the magnitude of the vector.

³What is meant are the so-called free vectors, i.e., vectors that can be drawn from any point in
space. Also distinguished are slip vectors whose tail can be placed at any point on the straight line
along which the vector is directed, and localized vectors, which are applied to a definite point. The
last two kinds of vectors can be expressed through free vectors. This is why vector calculus is based
on the concept of the free vector, usually called simply a vector.
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Fig. 1.5 Fig. 1.6

with the tip of the first one, and then draw the resultant vector from the tail of the
first vector to the tip of the second one. It is very good to use this procedure when
we have to add more than two vectors (Fig. 1.6).

The difference of two vectors a and b is defined as such a vector c which when
added to the vector b gives the vector a (Fig. 1.7—the vector −b depicted by a dash
line will be treated below The magnitude of the difference of two vectors, like the
magnitude of a sum [see Eq. (1.1)], may be written only with the aid of vertical bars:

|a1 − a2 | = magnitude of the vector (a1 − a2), (1.2)
because the notation 01−02 signifies the difference of themagnitudes of the vectors
a1 and a2, which, generally speaking, does not equal the magnitude of the vector
difference.

Multiplication of a Vector by a Scalar. Multiplication of the vector a by
the scalar U yields a new vector b = U a whose magnitude is |U | times that of the
vector a (i.e., 1 = |U |0). The direction of the vector b either coincides with that of
the vector a (if U > 0), or is opposite to it (if U < 0). It follows from the above that
multiplication by −1 reverses the direction of a vector. Consequently, the vectors
a and −a have the same magnitudes, but are opposite in direction. It is simple
to see with the aid of Fig. 1.7 that subtraction of the vector b from the vector a is
equivalent to addition of the vector −b to the vector a.

It follows from our definition of multiplication of a vector by a scalar that any
vector a can be represented in the form

a = 0 ê0, (1.3)
where 0 is themagnitude of the vector a and ê0, is vector with amagnitude of unity
and of the same direction as a (Fig. 1.8).

The vector ê0 is called the unit vector of the vector a. The unit vector can be
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Fig. 1.7 Fig. 1.8

represented in the form

ê0 =
a

0
, (1.4)

whence it follows that it is a dimensionless quantity.
Unit vectors can be compared not onlywith vectors, but alsowith any direction

in space. For example, êF is the unit vector of the coordinate axis F, ê< is the unit
vector of a normal to a curve or surface, and êg is the unit vector of a tangent to a
curve.

Linear Relation Between Vectors. Let us consider three non-collinear vec-
tors a, b and c that are in one plane. A glance at Fig. 1.9 shows that any of them (for
instance, c) can be expressed through the other two with the aid of the relation

c = Ua + Vb, (1.5)
where U and V are scalars (for the case shown in the figure, U > 1 and −1 < V <

0). Hence, we conclude that any vector c that is in the same plane as the non-
collinear vectors a and b can be expressed through the latter with the aid of linear
relation (1.5). When the vectors a and b are fixed, any third vector is unambiguously
determined by the two quantities U and V.

Assume thatwe have three vectors a, b and c, each ofwhich is not coplanarwith
the other two.⁴ By analogy with Eq. (1.5), we can see quite easily that any vector d
can be represented as a linear combination of the given vectors:

d = Ua + Vb + Wc, (1.6)
When the vectors a, b and c are fixed, any vector d is unambiguously determined
by the three quantities U, V and W , each of which may be either positive or negative.

Projection of a Vector. Let us consider a direction in space that we shall set
by the axis : (Fig. 1.10). Let the vector a make the angle i with the axis :⁵. The
quantity

0: = 0 cos i (1.7)

⁴Two vectors are always coplanar. This follows from the fact that their tails can he made to
coincide by translation, and they will thus be in one plane.

⁵If the straight line along which the vector a is directed and the axis : do not intersect, the angle
i should be found by drawing a straight line parallel to the vector a and intersecting the axis :. The
angle between this line and the axis : will be the angle i we are interested in.
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Fig. 1.9 Fig. 1.10

(where 0 is the magnitude of the vector) is called the projection of the vector a
onto the axis:. A projection is designated by the same symbol as its vector, with
the addition of a subscript showing the direction onto which the vector has been
projected.

A projection of a vector is an algebraic quantity. If the vector makes an acute
angle with the given direction, then cos i > 0, and the projection is positive. If
the angle i is obtuse, then cos i < 0, and, consequently, the projection is negative.
When a vector is at right angles to a given axis, its projection equals zero.

The projection of a vector has a simple geometrical meaning. It equals the
distance between the projections of the tail and the tip of the segment depicting
the given vector onto the given axis. When i < c/2, this distance is assumed to be
positive, and when i > c/2, it is negative.

Let a = a1 + a2 + a3 + a4 (Fig. 1.11). It is easy to see from the figure that the pro-
jection of the resultant vector a onto a direction : equals the sum of the projections
of the separate vectors being added:

0: = 01: + 02: + 03: + 04: . (1.8)
Wemust remind our reader that when adding the projections of the vectors shown
in Fig. 1.11, the distances 0—1, 1—2, and 2—3 have to be taken with the plus sign,
and the distance 3—4 with the minus sign. Equation (1.8) holds for any number of
addends.

Expressing a Vector Through Its Projections onto the Coordinate Axes.
Let us take Cartesian coordinate axes and consider the vector a in a plane at right
angles to the H-axis (Fig. 1.12). We shall introduce the unit vectors of the coordinate
axes, i.e., the unit vectors êF , êG and êH (êH is not shown in the drawing, it is per-
pendicular to the plane of the drawing and directed toward us). It must be noted
that these three unit vectors completely determine a system of coordinates and are
therefore called the basis of the coordinate system.

Inspection of Fig. 1.12 shows that the vector a can be represented in the form
of a linear combination of the unit vectors êF and êG [see Eq. (1.5)]:

a = 0F êF + 0G êG .
The projections of the vector onto the coordinate axes play the part of the coef-
ficients U and V. In the example being considered, the projection 0F is negative,
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Fig. 1.11 Fig. 1.12

therefore the vector 0F êF has a direction opposite to that of the unit vector êF .
We took the vector a perpendicular to the H-axis owing to which 0H = 0. In

the general case when all three projections of a vector differ from zero, we have
a = 0F êF + 0G êG + 0H êH , (1.9)

Thus, any vector can be expressed through its projections onto the coordinate axes
and the unit vectors of these axes. Therefore, the projections of a vector onto the
coordinate axes are called its components.

The components 0F , 0G , 0H equal (with an accuracy to the sign) the sides of
a right parallelepiped in which the vector a is the major diagonal (Fig. 1.13). We
therefore have

02 = 02F + 02G + 02H . (1.10)
Assume that c = a + b. Representing each of these vectors in accordance with

Eq. (1.9), we get
2F êF + 2G êG + 0H êH = (0F + 1F) êF + (0G + 1G) êG + (0H + 1H) êH

(we have factored out êF , êG , and êH)· Equal vectors have identical projections onto
the coordinate axes. On these grounds, we can write that

2F = 0F + 1F , 2G = 0G + 1G , 0H = 0H + 1H (1.11)
[compare with Eq. (1.8)]. Equations (1.11) express analytically the rule of vector ad-
dition. They hold for any number of addends.

Position Vector. The position vector (or radius vector) r of a point is defined
as the vector drawn from the origin of coordinates to the given point (Fig. 1.14). Its
projections onto the coordinate axes equal the Cartesian coordinates of the given
point:

@F = F, @G = G, @H = H. (1.12)
Consequently, in accordance with Eq. (1.9), the position vector can be represented
in the form

r = FêF + GêG + HêH . (1.13)
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Fig. 1.13 Fig. 1.14

Fig. 1.15

By Eq. (1.10), we have
@2 = F2 + G2 + H2. (1.14)

The Scalar Product of Vectors. Two vectors a and b can be multiplied by
each other in two ways. One of them results in a scalar quantity, and the other
in a certain new vector. Accordingly, two products of vectors are distinguished—
the scalar product and the vector product. It must be noted that the operation of
dividing a vector by a vector does not exist.

The scalar product of the vectors a and b is defined as the scalar quantity equal
to the product of the magnitudes of these vectors and the cosine of the angle U
between them:

a·b = 01 sin U (1.15)
(Fig. 1.15). When writing a scalar product, the symbols of the vectors being multi-
plied are usually written next to each other with dot between them (this is why a
scalar product is also called a dot product; sometimes nothing is used between the
symbols)⁶. Equation (1.15) expresses an algebraic quantity: when U is acute, we have

⁶The dot symbol between vectors is preferred in the LATEXversion to adopt a more modern ap-
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a·b > 0, and when it is obtuse, we have a·b < 0. The scalar product of mutually
perpendicular vectors (U = c/2) equals zero.

It must be noted that by the square of a vector is always meant the scalar prod-
uct of this vector by itself:

a2 = a·a = 00 cos U = 02. (1.16)
Thus, the square of a vector equals the square of its magnitude. In particular, the
square of any unit vector equals unity:

ê2F = ê2G = ê2H = 1. (1.17)
We shall note in passing that owing to the unit vectors being mutually perpendic-
ular, scalar products such as ê7 · ê9, equal zero if 7 ≠ 9.

The Kronecker symbol or delta X79 is very convenient. It is determined as fol-
lows:

X79 =

{
1, if 7 = 9,
0, if 7 ≠ 9.

(1.18)

When this symbol is used, the properties of the scalar products of the coordinate
axis unit vectors established above can be expressed by a single formula:

ê7 · ê9 = X79 (7, 9 = F, G, H) (1.19)
where the subscripts 7 and 9 can assume any of the values F, G and H independently
of each other.

It follows from the definition (1.15) that a scalar product is commutative, i.e., it
does not depend on the sequence of the multipliers:

a·b = b·a. (1.20)
Equation (1.15) can be written in several ways:

a·b = 01 cos U = (0 cos U) 1 = 0 (1 cos U).
Examination of Fig. 1.15 shows that 0 cos U equals 01—the projection of the vector
a onto the direction of the vector b. Similarly, 1 cos U = 10—the projection of the
vector b onto the direction of the vector a. We can therefore say that the scalar
product of two vectors is defined as the scalar quantity equal to the product of the
magnitude of one of the vectors being multiplied and the projection of the second
vector onto the direction of the first one:

a·b = 011 = 010. (1.21)
Taking into account that the projection of the sum of vectors equals the sum

of the projections of the vectors being added, we can write that
a· (b+c+ . . .) = 0(b+c+ . . .)0 = 0(10+20+ . . .) = 010+020+ . . . = 01+02+ . . . . (1.22)

proach.
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Hence, it follows that the scalar product of vectors is distributive—the product of
the vector a and the sum of several vectors equals the sum of the products of the
vector a and each of the added vectors taken separately.

Let us represent the vectors being multiplied in the form of Eq. (1.9) and take
advantage of the distributive nature of a scalar product. We get

a·b = (0F êF + 0G êG + 0H êH) (1F êF + 1G êG + 1H êH)
= 0F1F êF · êF + 0F1G êF · êG + 0F1H êF · êH + 0G1F êG · êF + 0G1G êG · êG
+ 0G1H êG · êH + 0H1F êH · êF + 0H1G êH · êG + 0H1H êH · êH .

Now let us take Eq. (1.19) into consideration. As a result, we get an expression for a
scalar product through the projections of the vectors being multiplied:

a·b = 0F1F + 0G1F + 0H1H . (1.23)
It must be noted that when the coordinate axes are rotated, the projections of vec-
tors onto these axes change. The quantity 01 cos U does not depend on the choice of
the axes, however. We thus conclude that the changes in the projections of the vec-
tors a and b, when the axes are rotated, are of a nature such that their combination
of the form of Eq. (1.23) remains invariant (unchanged):

a·b = 0F1F + 0G1F + 0H1H = inv. (1.24)
It is a simple matter to see that the projection of the vector a onto the direction

: [see Eq. (1.7)] can be represented in the form
0: = a · ê: , (1.25)

where ê: is the unit vector of the direction :. Similarly,
0F = a · êF , 0G = a · êG , 0H = a · êH . (1.26)

The Vector Product. The vector product of the vectors a and b is defined as
the vector c determined by the equation

c = 01 sin(U)n̂, (1.27)
where 0 y 1magnitudes of the vectors being multiplied, U, is the angle between the
vectors, n̂, is the unit vector of a normal⁷ to the plane containing the vectors a and
b (Fig. 1.16).

The direction of n̂ is chosen so that the sequence of the vectors a, b, n̂ forms
a right-handed system. This signifies that if we look along the vector n̂, then the
shortest path in rotation from the first multiplier to the second one will be clock-
wise. In Fig. 1.16, the vector n̂ is directed beyond the drawing, and it is therefore
depicted by a circle with a cross⁸. The direction of the vector c coincides with that

⁷The symbol n̂ is simpler and more illustrative than ê<.
⁸We shall depict vectors perpendicular to the plane of a drawing by a circle with a cross in it if



Vectors 21

of n̂.
A vector product is usually designated in one of two ways:
[a, b] or a × b

the latter notation resulting in the term cross product sometimes being used to
signify a vector product. We shall use the latter notation⁹. Thus, according to
Eq. (1.27), we have

a × b = (01 sin U)n̂. (1.28)
A glance at Fig. 1.16 shows that the magnitude of a vector product has a sim-

ple geometrical meaning—the expression 01 sin U numerically equals the area of a
parallelogram constructed on the vectors being multiplied.

We determined the direction of the vector a×b by relating it to the direction of
rotation from the firstmultiplier to the second one. When considering vectors such
as the position vector r, the velocity v, and the force L , the choice of their direction
is quite obvious—it follows from the nature of these quantities themselves. Such
vectors are called polar or true. Vectors of the type a×bwhose direction is related
to that of rotation are called axial or pseudovectors. When conditions change,
for example, upon going over from a right-hand system of coordinates to a left-
hand one, the directions of pseudovectors are reversed, while those of true vectors
remain unchanged.

It must be borne in mind that a vector product will be a pseudovector only
when both of the vectors being multiplied are true (or both are pseudovectors).
The vector product of a true vector and a pseudovector will be true. Reversing of
a condition determining the direction of a pseudovector will lead in this case to a
change in the sign in front of the vector product and also to a change in the sign
of one of the multipliers. As a result, the quantity expressed by the vector product
remains unchanged.

Since the direction of a vector product is determined by the direction of rota-
tion from the first multiplier to the second one, the result of vector multiplication
depends on the order of the multipliers. Transposition of the multipliers leads to
reversing of the direction of the resultant vector. Thus, a vector product does not
have the property of commutativity:

a × b = −b × a. (1.29)

the vector is directed away from us, and by a circle with a point at its centre if the vector is directed
toward us. For clarity, we can imagine a vector in the form of an arrow with a tapered tip and cross-
shaped feathers on its tail. Thus, when the vector is directed toward us (the arrow is flying toward
us), we see a circle with a point; when the vector is directed away from us (the arrow is flying away
from us), we see a circle with a cross.

⁹To avoid confusion, in the LATEXversion, we shall use the cross product symbol.
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Fig. 1.16 Fig. 1.17

A vector product can be proved to be distributive, i.e., it can be shown that
a × (b1 + b2 + . . .)] = a × b1 + a × b2 + . . . . (1.30)

Let us consider the vector products of the unit vectors of the coordinate axes
(Fig. 1.17). In accordance with the definition (1.28), we have

êF × êF = êG × êG = êH × êH = 0,
êF × êG = −êG × êF = êH , (1.31)
êG × êH = −êH × êG = êF ,

êH × êF = −êF × êH = êG .

Representing the vectors being multiplied in the form of Eq. (1.9) and taking ad-
vantage of the distributivity of a vector product, we get:

a × b = (0F êF + 0G êG + 0H êH) × (1F êF + 1G êG + 1H êH)
= 0F1F êF × êF + 0F1G êF × êG + 0F1H êF × êH
+ 0G1F êG × êF + 0G1G êG × êG + 0G1H êG × êH
+ 0H1F êH × êF + 0H1G êH × êG + 0H1H êH × êH

Taking into account relation (1.31), we arrive at the following expression:
a × b = êF (0G1H − 0H1G) + êG (0H1F − 0F1H) + êH (0F1G − 0G1F). (1.32)

The above expression can be represented in the form of a determinant

a × b =

������êF êG êH
0F 0G 0H

1F 1G 1H

������ . (1.33)

Scalar Triple Product. A scalar triple product of three vectors is defined as
the expression a · (b × c), i.e., the scalar product of the vector a and the vector
product of the vectors b and c. According to the definitions (1.15) and (1.28), we have

a· (b × c) = 0{12 sin(b, c)} cos(a, n̂).
Here (b, c) is the angle between b and c, and (a, n̂) is the angle between the vector
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Fig. 1.18

a and the unit vector n̂ determining the direction of the vector b × c. Inspection
of Fig. 1.18 shows that the expression 12 sin(b, c) numerically equals the area of
the base of a parallelepiped constructed on the vector being multiplied, while the
expression 0 cos(a, n̂) numerically equals the altitude of this parallelepiped taken
with the plus sign if the angle (a, n̂) is acute, and with the minus sign if it is obtuse.
Consequently, the expression a· (b × c) has a simple geometrical meaning—it nu-
merically equals the volume of a parallelepiped constructed on the vectors being
multiplied [taken with the plus or minus sign depending on the value of the angle
(a, n̂)]. In calculating the volume of a parallelepiped, the result cannot depend on
which of its faces is taken as the base. Hence, it follows that

a· (b × c) = b· (c × a) = c · (a × b). (1.34)
Thus, a scalar triple product permits cyclic transposition of the multipliers, i.e.,
substitution for each of the multipliers of the one following it in the cycle:

a

c b

Vector Triple Product. Let us consider a vector triple product of the three
vectors a, b and c

d = a × b × c.
Any vector product is perpendicular to both multipliers. Therefore, the vector d
is perpendicular to the unit vector n̂ determining the direction of the vector b× c.
Hence, it follows that the vector d is in the plane formed by the vectors b and c and,
consequently, can be represented as a linear combination of these vectors:

d = Ub + Vc
[see Eq. (1.5)]. We find from the relevant calculations that U = a·c and V = −a·b.
Thus,

a × b × c = b(a·c) − c(a·b). (1.35)
Derivative of a Vector. Let us consider a vector that changes in time accord-
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ing to a known law a(B). The projections of this vector onto the coordinate axes
are preset functions of time. Hence,

a(B) = êF0F (B) + êG0G (B) + êH0H (B) (1.36)
(we assume that the coordinate axes do not rotate in space so that their unit vectors
do not change with time).

Let the vector projections receive the increments J0F , J0G , J0H during the
time JB. The vector therefore receives the increment Ja = êFJ0F + êGJ0G + êHJ0H .
The rate of change of the vector a with time can be characterized by the ratio of
Ja to JB:

Ja

JB
= êF

J0F

JB
+ êG

J0G

JB
+ êH

J0H

JB
. (1.37)

This expression gives the mean rate of change of a during the time interval JB.
Let us assume that a changes continuously with time, without any jumps. Conse-
quently, the smaller the interval JB, the more accurately does the value of Eq. (1.37)
characterize the rate of change in a at the moment B preceding the interval JB.
Therefore, the rate of change in the vector a at the moment B equals the limit of
Eq. (1.37) obtained when JB tends to zero:

the rate of change in a = lim
JB→0

Ja

JB

= êF lim
JB→0

J0F

JB
+ lim
JB→0

êG
J0G

JB
+ lim
JB→0

êH
J0H

JB
. (1.38)

If there is a function 5 (B) of the argument B, then the limit of the ratio of the
increment of the function J5 to the increment of the argument JB obtained when
JB tends to zero is called the derivative of the function 5 with respect to B and
is designated by the symbol d5/dB. Expression (1.38) can therefore be written as
follows:

da
dB

= êF
d0F
dB
+ êG

d0G
dB
+ êH

d0H
dB
. (1.39)

The result obtained signifies that the projections of the vector da/dB onto the co-
ordinate axes equal the time derivatives of the projections of the vector a:(

da
dB

)
pr. F

=
d0F
dB
,

(
da
dB

)
pr. G

=
d0G
dB

,

(
da
dB

)
pr. H

=
d0H
dB
, . (1.40)

It is customary practice in physics to denote time derivatives by the symbol of
the corresponding quantity with a dot over it, for example,

di
dB

= ¤i, d2i
dB2

= ¥i, da
dB

= ¤a, d2a
dB2

= ¥a. (1.41)
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Using this notation, we can write equation (1.39) as follows:
¤a = êF ¤0F + êG ¤0G + êH ¤0H . (1.42)

If we take the position vector r(B) of a moving point as a(B), then by Eq. (1.42) we
have

¤r = êF ¤@F + êG ¤@G + êH ¤@H , (1.43)
where F, G, H are functions of B, namely, F = F(B), G = B(B), H = H(B).

The differential (“increment”) of the function 5 (B) is defined as the expression
d5 = 5 ′ dB, (1.44)

where 5 ′ is the derivative of 5 with respect to B. According to Eq. (1.39), the differ-
ential of the vector a is determined by the equation

da = êFd0F + êGd0G + êHd0H . (1.45)
In particular,
dr = êFdF + êGdG + êHdH. (1.46)

It must be noted that the increment of a function during a very short, but finite
interval JB approximately equals

J5 ≈ 5 ′JB = d5
dB
JB. (1.47)

In the limit, when JB → 0, the approximate equation (1.47) transforms into the
accurate equation (1.44).

A similar equation to (1.47) can also be written for the vector function

Ja ≈ da
dB
JB. (1.48)

Derivative of the Product of Functions.We shall consider the function b(B)
that equals the product of the scalar function i(B) and the vector function a(B), i.e.,
b(B) = i(B)a(B) or, more briefly, b = ia. Let us find the increment of the function
b:

Jb = J(ia) = (i + Ji) (a + Ja) − ia = iJa + aJi + JiJa.
Representing the increments of the functions in the form of expressions (1.47) and
(1.48), we get:

Jb ≈ ida
dB
JB + adi

dB
JB + di

dB
da
dB
(JB)2

whence
Jb

JB
≈ ida

dB
+ adi

dB
+ di

dB
da
dB
JB.

In the limit when dB tends to zero, this approximate equation transforms into an
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accurate one. Thus,
db
dB

= lim
JB→0

db
dB

= lim
JB→0

(
i
da
dB
+ adi

dB
+ di

dB
da
dB
JB

)
.

Thefirst two addends donot depend on JB and therefore donot changewhen going
over to the limit. The limit of the third addend equals zero. Hence, substituting ia
for b, we obtain

d(ia)
dB

= i
da
dB
+ adi

dB
= i¤a + ¤ia. (1.49)

Now let us consider the scalar product of two vector functions a(B) and b(B).
The increment of this product is

J(ab) = (a + Ja) (b + Jb) − ab
= aJb + bJa + JaJb
≈ a¤bJB + b¤aJB + ¤a¤b(JB)2

Hence
d(ab)
dB

= lim
JB→0

J(ab)
JB

= lim
JB→0
(a¤b + b¤a + ¤a¤bJB)

or finally
d(ab)
dB

= a¤b + b¤a. (1.50)

Multiplying Eq. (1.50) by dB, we get a differential:
d(ab)
dB

= a¤b + b¤a. (1.51)

Let us calculate the derivative and the differential of the square of a vector
function. According to Eqs. (1.50) and (1.51), we have

da2

dB
= 2a¤a, (1.52)

d(a2) = 2a da, (1.53)
Taking into account that a2 = 02 [see Eq. (1.16)], we can write:

2a da = d(02) or a da = d
(
02

2

)
. (1.54)

Finally, let us consider the derivative of the vector product of the functions
a(B) and b(B). The increment of the function being considered is

Ja × b = [(a + Ja), (b + Jb) − a × b]
= [a, Jb] + [Ja, b] + [Ja, Jb]
≈ [a, ¤bJB] + [ ¤aJB, b] + [ ¤aJB, ¤bJB].
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Fig. 1.19

Correspondingly,
d
dB
(a × b) = lim

JB→0
{[a, ¤b] + [ ¤a, b] + [ ¤a, ¤b]JB}.

After a limit transition, we arrive at the equation
d
dB
(a × b) = [a, ¤b] + [ ¤a, b]. (1.55)

Derivative of a Unit Vector. Let us consider the unit vector ê0 of the vector
a. It is obvious that the vector ê0 can change only in direction. Assume that during
the very short interval JB the vector a and together with it the unit vector ê0 rotate
through the angle Ji (Fig. 1.19). At a low value of Ji, the magnitude of the vector
Jê0 approximately equals the angle Ji, namely, |Jê0 | ≈ Ji (the segment depicting
Jê0 is the base of an isosceles triangle with sides equal to unity). Wemust note that
the smaller is Ji, the more accurate is our approximate equation. The vector Ji
itself can be represented in the form

Jê0 = |Jê0 | · êJe ≈ Ji · êJe
where êJe is the unit vector of the vector Jê0. When Ji tends to zero, the unit
vector êJewill rotate and in the limit coincidewith the unit vector ê⊥ perpendicular
to ê0 (see Fig. 1.19).

The derivative of ê0 with respect to B, by definition, is
dê0
dB

= lim
JB→0

Jê0
JB

= lim
JB→0

Ji

JB
êJe =

di
dB

ê⊥.

Thus,
¤̂e0 = ¤iê⊥. (1.56)

The quantity ¤i = di/dB is the angular velocity of rotation of the vector a (see
Sec. 1.5). The unit vector ê⊥ is in the plane in which the vector a is rotating at the
given moment, and its sense is in the direction of rotation.
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Fig. 1.20 Fig. 1.21

1.3. Velocity and Speed

A point particle in motion travels along a certain line. The latter is called its path
or trajectory¹⁰. Depending on the shape of a trajectory, we distinguish rectilinear
or straight motion, circular motion, curvilinear motion, etc.

Assume that a point particle (in the following we shall call it simply a parti-
cle for brevity’s sake) travelled along a certain trajectory from point 1 to point 2
(Fig. 1.20). The path between points 1 and 2 measured along the trajectory is called
the distance travelled by the particle. We shall denote it by the symbol A.

The straight line between points 1 and 2, i.e., the shortest distance between
these points, is called the displacement of the particle. We shall denote it by the
symbol r12. Let us assume that a particle completes two successive displacements
r12 and r23 (Fig. 1.21). It is natural to call such a displacement r13 the sum of the
first two that leads to the same result as they do together. Thus, displacements
are characterized by magnitude and direction and, besides, are added by using the

¹⁰It must be noted that the concept of a trajectory can be applied only to a “classical” particle
to which accurate values of its coordinate and momentum (i.e., velocity) can be ascribed at each
moment of time. According to quantummechanics, real particles can be characterizedwith the aid of
a coordinate and momentum only with a certain accuracy. The limit of this accuracy is determined
by the equation of Heisenberg’s uncertainty principle: JFJ> & ℏ. Here JF is the uncertainty in
the coordinate of a particle, J> is the uncertainty in its momentum, and ℏ is Planck’s constant ℎ
divided by 2c , i.e., ℏ = ℎ/2c = 1.05 × 10−34 J s. The sign & signifies “greater than a value of the
order of”. Replacing the momentum with the product of the mass and the velocity, we can write
JFJD & ℏ/;. It can be seen from this relation that the smaller the mass of a particle, the more
uncertain do its coordinate and velocity become, and, consequently, the less applicable is the concept
of trajectory. For macroscopic bodies (i.e., bodies formed by a very great number of molecules),
the uncertainties in the coordinate and velocity do not exceed the practically attainable accuracy of
measuring these quantities. Hence, the concept of trajectory may be applied to such bodies without
any reservations. For microparticles (electrons, protons, neutrons, separate atoms and molecules),
the concept of trajectory either cannot be applied at all, or can be applied with a limited accuracy,
depending on the conditions in which motion occurs. For example, the motion o electrons in a
cathode-ray tube can approximately be considered as occurring along certain trajectories.
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Fig. 1.22

parallelogram method. Hence, it follows that displacement is a vector.
In everyday life, we use the terms speed and velocity interchangeably, but

in physics there is an important distinction between them. Speed depends on the
distance travelled, and velocity on the displacement. Speed is the distance travelled
by a particle in unit time. If a particle travels identical distances during equal time
intervals that may be as small as desired, its motion is called uniform. In this case,
the speed of the particle at each moment can be calculated by dividing the distance
A by the time B.

Velocity is a vector quantity characterizing not only how fast a particle trav-
els along its trajectory, but also the direction in which the particle moves at each
moment. Let us divide a trajectory into infinitely small portions of length dA. An
infinitely small displacement d@ corresponds to each of these portions (Fig. 1.22).
Dividing this displacement by the corresponding time interval dB, we get the in-
stantaneous velocity at the given point of the trajectory:

v =
dr
dB

= ¤r. (1.57)

Thus, the velocity is the derivative of the position vector of the particlewith respect
to time. The displacement d@ coincides with an infinitely small element of the
trajectory. Consequently, the vector v is directed along a tangent to the trajectory
(see Fig. 1.22).

Reasoning more strictly, to derive equation (1.57) we must proceed as follows.·
Having fixed a certain moment of time B, let us consider the increment of the posi-
tion vector Jr during the small time interval JB¹¹ following B (Fig. 1.23). The ratio
Jr/JB gives the average value of the velocity during the time JB. If we take smaller

¹¹The symbol J (delta) is used in two cases: (a) for designating the increment of a quantity. In
the case being considered, Jr is the increment of the position vector r during the time JB; (b) for
designating a fraction of a quantity. For example, JB is a fraction of the total time B during which
motion occurs, and JA is a fraction of the entire distance A travelled by the particle.
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Fig. 1.23 Fig. 1.24

and smaller intervals JB, the ratio Jr/JB in the limit will give us the value of the
velocity v at the moment B:

v = lim
JB→0

Jr

JB
=
dr
dB
. (1.58)

We have arrived at equation (1.57).
Let us find the magnitude of the expression (1.58), i.e., the magnitude of the

velocity v:

D = |v| =
���� limJB→0

Jr

JB

���� = lim
JB→0

|Jr |
JB

. (1.59)

We cannot write J@ instead of |Jr | in this formula. The vector Jr is in essence
the difference between two vectors (r at the moment B + JBminus r at the moment
B). Therefore, its magnitude may be written only with the aid of vertical bars [see
Eq. (1.2)]. The symbol |Jr | signifies the magnitude of the increment of the vector r,
whereas J@ is the increment of the magnitude of the vector r, i.e., J|r |. These two
quantities, generally speaking, do not equal each other:

|Jr | ≠ J|r | = J@.

The following example will illustrate this. Assume that the vector r receives such
an increment Jr that its magnitude does not change, i.e., |r + Jr | = |r | (Fig. 1.24).
Consequently, the increment of the magnitude of the vector equals zero (J|r | =
J@ = 0). At the same time, the magnitude of the increment of the vector r, i.e.,
J|r |, differs from zero (it equals the length of 2 − 3). What has been said above
holds for any vector a: in the general case J|a| ≠ J|0|.

Inspection of Fig. 1.23 shows that the distance JA, generally speaking, differs in
value from the magnitude of the displacement |Jr |. If we take increments of the
distance JA and the displacement Jr corresponding to smaller and smaller time
intervals JB, then the difference between JA and |Jr | will diminish, and their ratio
in the limit will become equal to unity:

lim
JB→0

JA

|Jr | = 1.
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On these grounds, we can substitute JA for |Jr | in equation (1.59), which gives us
the expression

D = lim
JB→0

JA

JB
=
dA
dB
. (1.60)

Thus, the magnitude of the velocity equals the derivative of the distance with re-
spect to time.

It is evident that the quantity which in everyday life we call the speed is actually
the magnitude of the velocity v. In uniform motion, the magnitude of the velocity
remains constant (D = constant), whereas the direction of the vector v changes
arbitrarily (in particular it may be constant).

In accordance with Eq. (1.57), the elementary displacement of a particle is
dr = v dB. (1.61)

Sometimes for clarity’s sake, we shall denote an elementary displacement by the
symbol ds, i.e., write Eq. (1.61) in the form

ds = v dB. (1.62)
The velocity vector, like any other vector, can be represented in the form
v = DF êF + DG êG + DH êH (1.63)

where DF , DG , DH are the projections of the vector v onto the coordinate axes. At the
same time, the vector ¤r equal to v, according to Eq. (1.43), can be written as follows:

¤r = ¤FêF + ¤GêG + ¤HêH (1.64)
It follows from a comparison of Eqs. (1.63) and (1.64) that

DF = ¤F, DG = ¤G, DH = ¤H. (1.65)
Consequently, the projection of the velocity vector onto a coordinate axis equals
the time derivative of the relevant coordinate of the moving particle. Taking Eq.
(1.10) into account, we get:

D =
√
¤F2 + ¤G2 + ¤H2. (1.66)

The velocity vector can be written in the form v = DêD, where D is the magni-
tude of the velocity, and êD is the unit vector of v. Let us introduce the unit vector 3̂
of the tangent to a trajectory with its sense the same as that of v. Hence, obviously,
the unit vectors êD and 3̂ will coincide, and we can write the following expression:

v = DêD = D3̂ . (1.67)
Let us obtain still another expression forv. For this purpose, we shall introduce

the position vector in the form of r = @ê@ into Eq. (1.57). According to Eq. (1.49), we
have

v = ¤r = ¤@ê@ + @ ¤̂e@ . (1.68)
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Fig. 1.25

We shall limit ourselves, for simplicity, to the case when the trajectory is a plane
curve, i.e., a curve such that all its points are in a single plane. Let this plane be
the plane F, G. In Eq. (1.68), the vector v written in the form of two components
(Fig. 1.25). The first of them, which we shall designate v@ , is

v@ = ¤@ê@ . (1.69)
It is directed along the position vector r and characterizes the rate of change of the
magnitude of r. The second component, which we shall designate vi, is

vi = @ ¤̂e@ . (1.70)
It characterizes the rate of change of the direction of the position vector.

Using Eq. (1.56), we can write that

¤̂e@ =
di
dB

êi = ¤iêi
where i is the angle between the position vector and the F-axis, and êi is a unit
vector perpendicular to the position vectorwith its sense in the direction of growth
of the angle i [in Eq. (1.56) the symbol ê⊥ was used for this unit vector]. Using this
value in Eq. (1.70), we get:

vi = @ ¤iêi. (1.71)
We have introduced the symbolsvi and êi to underline the fact that the component
vi and the corresponding unit vector are related to a change in the angle i.

The vectors v@ and vi are obviously mutually perpendicular. Hence,

D =

√
D2@ + D2i =

√
¤@2 + @2 ¤i2. (1.72)

Now let us consider how to calculate the distance travelled by a particle from
the moment of time B1 to B2 if we know the speed at each moment. Let us divide
the interval B2 − B1 into # small, but not necessarily equal intervals: JB1, JB2, . . . ,
JB# . The total distance A travelled by a particle can be represented as the sum of
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the distances JA1, JA2, . . . , JA# travelled during the relevant time intervals JB:

A = JA1 + JA2 + . . . + JA# =

#∑
7=1

JA7.

In accordance with Eq. (1.60), each of the addends can approximately be repre-
sented in the form

JA7 ≈ D7JB7
where JB7 is the time interval during which the distance JA7 was travelled, and D7
is one of the values of the speed during the time JB7. Hence,

A ≈
#∑
7=1

D7JB7. (1.73)

This expression will be obeyed more accurately with diminishing time intervals
JB7. In the limit when all the JB7’s tend to zero (the number of intervals JB7 will
correspondingly grow unlimitedly), the approximate equation will become accu-
rate:

A = lim
JB7→0

#∑
7=1

D7JB7.

This expression is a definite integral of the function D(B) takenwithin the limits
from B1 to B2. Thus, the distance travelled by a particle during the interval from B1
to B2 is

A =

∫ B2

B1

D(B) dB. (1.74)

It must be underlined that here we are speaking of the speed. If we take an integral
of the velocity v(B), we get the vector of the displacement of the particle from the
point where it was at the moment B1 to the point where it was at the moment B2:∫ B2

B1

D(B) dB =
∫ B2

B1

dr = r12 (1.75)

[see Eq. (1.61)].
If we plot the dependence of D on B (Fig. 1.26), then the distance travelled can be

represented as the area of the figure confined between the curve D(B), the straight
lines B = B1 and B = B2, and the B-axis. Indeed, the product D7JB7 numerically equals
the area of the 7-th strip. The sum Eq. (1.73) equals the area of the figure confined on
top by the broken line formed by the top edges of all such strips. When all the JB7’s
tend to zero, the width of a strip diminishes (their number grows simultaneously),
and the broken line will coincide with the curve D = D(B) in the limit. Thus, the
distance travelled during the time from the moment B1 to the moment B2 numeri-
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Fig. 1.26

cally equals the area confined between the curve of the function D = D(B), the time
axis, and the straight lines B = B1 and B = B2.

It should be noted that the average value of the speed during the time from
B = B1 to B = B2, by definition, is

〈D〉 = A

B2 − B1
.

(The symbol 〈〉 embracing the D indicates an average.) Introducing into this equa-
tion the expression (1.74) for A, we get

〈D〉 = 1
B2 − B1

∫ B2

B1

D(B) dB. (1.76)

The average values of any scalar or vector functions are calculated in a similar way.
For example, the average value of the velocity is

〈v〉 = 1
B2 − B1

∫ B2

B1

v(B) dB = r12
B2 − B1

. (1.77)

[see Eq. (1.75)]. The average value of the function G(F) within the interval from F1
to F2 is determined by the expression

〈G〉 = 1
B2 − B1

∫ F2

F1

G(B) dF. (1.78)

1.4. Acceleration

The velocity v of a particle can change with time both in magnitude and in direc-
tion. The rate of change of the vector v, like the rate of change of any function of
time, is determined by the derivative of the vector v with respect to B. Denoting
this derivative by the symbol a, we get:

a = lim
JB→0

Jv

JB
=
dv
dB

= ¤v. (1.79)

The quantity determined by equation (1.79) is called the acceleration of the parti-
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cle.
It must be noted that the acceleration a plays the same part with respect to v

as the vector v does with respect to the position vector r.
Equal vectors have identical projections onto the coordinate axes. Consequent-

ly, for example,

0F =

(
dv
dB

)
pr. x

=
dDF
dB

= ¤DF

[see Eqs. (1.40)]. At the same time according to Eqs. (1.65), we have DF = ¤F = dF/dB.
Therefore,

dDF
dB

=
d
dB

(
dF
dB

)
=
d2F
dB2

= ¥F.

What we have obtained is that the projection of the acceleration vector onto the F-
axis equals the second derivative of the coordinate F with respect to time: 0F = ¥F.
Similar expressions are obtained for the projections of the acceleration onto the
G- and H-axes. Thus,

0F = ¥F, 0G = ¥G, 0H = ¥H. (1.80)
Using Eq. (1.67) for v in (1.79), we get:

a =
d(D3̂)
dB

. (1.81)

We remind our reader that 3̂ is the unit vector of a tangent to a trajectory having
the same direction as v. According to Eq. (1.49),

a = ¤D3̂ + D ¤̂3 . (1.82)
Hence, the vector a can be represented in the form of the sum of two components.
One of them has the direction 3̂ , i.e., is tangent to the trajectory. It is therefore
designated a3̂ and is called the tangential acceleration. It equals

a3̂ = ¤D3̂ . (1.83)
The second component equal to D ¤̂3 is directed, as we shall show below, along a
normal to the trajectory. It is therefore designated an̂ and is called the normal
acceleration. Thus,

an̂ = D ¤̂3 . (1.84)
In studying the properties of the two components, we shall restrict ourselves

for the sake of simplicity to the case when the trajectory is a plane curve.
The magnitude of the tangential acceleration (1.83) is
a3̂ = | ¤D|. (1.85)

If ¤D > 0 (the velocity grows inmagnitude), then the vector a3̂ has the same direction
as 3̂ (i.e., the same direction as v). If ¤D < 0 (the velocity decreases with time), then
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the vectors v and a3̂ have opposite directions. In uniform motion, ¤D = 0, and,
therefore, tangential acceleration is absent.

To determine the properties of the normal acceleration [Eq. (1.84)], we must
find out what ¤̂3 , i.e., the rate of change with time of the direction of a tangent to
the trajectory, is determined by. It is easy to understand that this rate will grow
with an increasing curvature of the trajectory and a higher velocity of a particle
along it.

The degree of bending of a plane curve is characterized by its curvature �
determined by the expression

� = lim
JB→0

Ji

JA
=
di
dA

(1.86)

where Ji is the angle between tangents to the curve at points spaced JA apart
(Fig. 1.27). Thus, the curvature determines the rate of turning of a tangent inmotion
along a curve.

The reciprocal of the curvature� is called the radius of curvature at the given
point of the curve and is designated ': The degree of bending of a plane curve is
characterized by its curvature � determined by the expression

' =
1
�

= lim
Ji→0

JA

Ji
=

dA
di
. (1.87)

The radius of curvature is the radius of a circle that coincides at the given spot with
the curve on an infinitely small portion of it. The centre of this circle is defined as
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the centre of curvature for the given point of the curve.
The radius and centre of curvature at point 1 (see Fig. 1.27) can be determined

as follows. Take point 1′ near point 1. Draw the tangents 3̂ and 3̂ ′ at these points.
The perpendiculars to the tangentswill intersect at a certain point 0′. Wemust note
that for a curve which is not a circle the distances '′ and '′′ will differ somewhat
from each other. If point 1′ is brought closer to point 1, the point of intersection 0′

of the perpendiculars will move along the straight line '′ and in the limit will be at
point 0. It is exactly the latter that will be the centre of curvature for point 1. The
distances '′ and '” will tend to a common limit ' equal to the radius of curvature.
Indeed, if points 1 and 1′ are close to each other, we can write that Ji ≈ JA/'′ or
'′ ≈ JA/Ji. In the limit when Ji→ 0, this approximate equation will transform
into the strict equation ' = dA/di coinciding with the definition of the radius of
curvature [see Eq. (1.87)].

Let us now turn to the calculation of an [see Eq. (1.84)]. According to Eq. (1.56),

¤̂3 =
di
dB

n̂ (1.88)

where n̂ is the unit vector of the normal to the trajectory with its sense in the
direction of rotation of the vector 3̂ when a particle travels along the trajectory
[in Eq. (1.56) a similar unit vector was designated ê⊥]. The quantity di/dB can be
related to the radius of curvature of the trajectory and the speed of the particle v.
It follows from Fig. 1.27 that

Ji ≈ JA

'′
=
D′ JB

'′

where Ji is the angle of rotation of the vector 3̂ during the time JB (coinciding
with the angle between the perpendiculars '′ and '′′), and D′ is the average speed
over the distance JA. Hence,

Ji

JA
≈ D′

'′
.

In the limit when JB tends to zero, the approximate equation will become a strict
one, the average speed D′ will transform into the instantaneous speed D at point 1,
and '′ will become the radius of curvature '. As a result, we get the equation

di
dB

=
D

'
= D� (1.89)

(� is the curvature). Hence, the rate of rotation of the velocity vector, as we as-
sumed, is proportional to the curvature of the trajectory and the speed of a particle
along its trajectory.

Using Eq. (1.89) in (1.88), we find that ¤̂3 = (D/')n̂. And at last, introducing this
expression intoEq. (1.84), we arrive at the final equation for the normal acceleration:
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an̂ =
dD2

d'
n̂. (1.90)

Thus, the acceleration vector when a particle travels along a plane curve is
determined by the following expression:

a = a3̂ + an̂ = ¤D3̂ + D
2

'
n̂. (1.91)

The magnitude of the vector a is

0 =

√
023̂ + 0

2
n̂ =

√
¤D2 +

(
D2

'

)2
. (1.92)

In rectilinear motion, the normal acceleration is absent. It must be noted that
an vanishes at the inflection point of a curvilinear trajectory (at point IP in Fig. 1.28).
At both sides of this point, the vectors an̂ have different directions. The vector an̂
cannot change in a jump. Its direction reverses smoothly, and it becomes equal to
zero at the inflection point. Assume that a particle is travelling uniformly with an
acceleration constant in magnitude. Since in uniformmotion themagnitude of the
velocity does not change, we have a3̂ = 0, so that a = an̂. The constant magnitude
of an signifies that D2/' = constant. Hence, we conclude that ' = constant (D =

constant because the motion is uniform). This means that the particle is travelling
along a curve of constant curvature, i.e., a circle. Thus, when the acceleration of a
particle is constant in magnitude and is directed at each moment of time at right
angles to the velocity vector, the trajectory of the particle will be a circle.

1.5. Circular Motion

The rotation of a body through a certain angle i can be given in the form of a
straight line whose length is i and whose direction coincides with the axis about
which the body is rotating. To indicate the direction of rotation about a given
axis, it is related to the line depicting rotation by the right-hand screw rule: the
line should be directed so that when looking along it (Fig. 1.29) we see clockwise
rotation (when rotating the head of a right-hand screw clockwise, we cause it to
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Fig. 1.29

move away from us). We showed in Sec. 1.2 (see Fig. 1.4) that rotations through finite
angles are not added by the parallelogram method and are therefore not vectors.
Matters are different for rotations through very small angles J>. The distance
travelled by any point of a body when rotated through a very small angle can be
considered as a straight line (Fig. 1.30). Consequently, two small circular motions
J>1 and J>2 performed sequentially, as can be seen from the figure, result in the
same displacement Jr3 = Jr1+Jr2 of any point of the body as the circularmotion
J>3 obtained from J>1 and J>2 by addition using the parallelogram method.
Hence it follows that very small circular motions can be considered as vectors (we
shall denote these vectors by J> or d>). The direction of the rotation vector is
associated with the direction of rotation of a body. Consequently, d> is not a true
vector, but a pseudovector.

The vector quantity

8 = lim
JB→0

J>

JB
=
d>
dB

(1.93)

(where JB is the time during which the circular motion J> is performed) is called
the angular velocity of a body¹². The angular velocity 8 is directed along the axis
about which the body is rotating in a direction determined by the right-hand screw
rule (Fig. 1.31) and is a pseudovector. The magnitude of the angular velocity, i.e.,
the angular speed, equals di/dB. Circular motion at a constant angular velocity
is called uniform. For uniform circular motion, we have l = iB, where i is the
finite angle of rotation during the time B (compare with D = A/B). Thus, in uniform
circular motion, l shows the angle through which a body rotates in unit time.

Uniform circular motion can be characterized by the period of revolution) .
It is defined as the time during which a body completes one revolution, i.e. rotates
through the angle 2c rad, or 360°. Since the time interval JB = ) corresponds to

¹²The velocity v considered in Sec. 1.3 is sometimes called linear.
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the angle of rotation Ji = 2c , we have

l =
2c
)

(1.94)

whence

) =
2c
l
. (1.95)

The number of revolutions in unit time a is evidently equal to

a =
1
)

=
l

2c
. (1.96)

It follows from Eq. (1.96) that the angular velocity equals 2c multiplied by the num-
ber of revolutions per unit time:

l = 2ca. (1.97)
The concepts of the period of revolution and the number of revolutions per

unit time can also be retained for non-uniform circular motion. Here, we must
understand the instantaneous value of ) to signify the time during which a body
would perform one revolution if it rotated uniformly with the given instantaneous
value of the angular velocity, and a to signify the number of revolutions which a
body would complete in unit time in similar conditions.

The vector 8may vary either as a result of a change in the speed of rotation of
a body about its axis (in this case it changes in magnitude), or as a result of turning
of the axis of rotation in space (in this case 8 changes in direction). Assume that
during the time JB the vector 8 receives the increment J8. The change in the
angular velocity vector with time is characterized by the quantity

" = lim
JB→0

J8

B
=
d8
dB

(1.98)
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called the angular acceleration. The latter, like the angular velocity, is a pseu-
dovector.

Different points of a body in circular motion have different linear velocities
v. The velocity of each point continuously changes its direction. The speed D is
determined by the speed of rotation of the body l and the distance ' to the point
being considered from the axis of rotation. Assume that during a small interval of
time the body turned through the angle Ji (Fig. 1.32). The point at the distance '
from the axis travels the path JA = 'Ji. The linear speed of the point is

D = lim
JB→0

JA

JB
= lim

JB→0
'
Ji

JB
= ' lim

JB→0

Ji

JB
= '

di
dB

= 'l.

Thus,
D = l'. (1.99)

Equation (1.99) relates the linear and the angular speeds. Let us find an expres-
sion relating the relevant velocities v and 8. We shall determine the position of
the point of the body being considered by the position vector r drawn from the
origin of coordinates on the axis of rotation (Fig. 1.33). Examination of the figure
shows that the vector product 8 × r coincides in direction with the vector v and
its magnitude is l@ sin U = l'. Hence,

v = 8 × r. (1.100)
The normal acceleration of the points of a rotating body is an̂ = D2/'. Intro-

ducing into this expression the value of D from Eq. (1.99), we get
0n̂ = l2'. (1.101)

If we introduce the vector X drawn to the given point of the body from the axis
of rotation at right angles to the latter (see Fig. 1.33), then Eq. (1.101) can be given a
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vector form:
an̂ = −l2X. (1.102)

There is a minus sign in this formula because the vectors an̂ and X have opposite
directions.

Let us assume that the axis of rotation of a body does not turn in space. Ac-
cording to Eq. (1.85), the magnitude of the tangential acceleration is |dD/dB |. Using
equation (1.99) and taking into account that the distance to the point being consid-
ered from the axis of rotation ' = constant, we can write

03̂ =

���� limJB→0

JD

JB

���� = ���� limJB→0

J(l')
JB

���� = ' ���� limJB→0

J(l)
JB

���� = 'U
where U, is the magnitude of the angular acceleration. Consequently, the magni-
tude of the tangential acceleration is related to the magnitude of the angular accel-
eration as follows:

03̂ = U'. (1.103)
Thus, the normal and tangential accelerations grow linearly with an increasing

distance to a point from the axis of rotation.
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Chapter 2

DYNAMICS OF A POINT PARTICLE

2.1. Classical Mechanics. Range of Its Applicability

Kinematics describes the motion of bodies without being concerned with why a
body moves exactly in a given way (for example, uniformly along a circle, or with
uniform acceleration along a straight line), and not in a different one.

Dynamics studies the motion of bodies in connection with its causes (the in-
teractions between bodies) resulting in the occurrence of a specific kind of motion.

The so-called classical or Newtonian mechanics is based on three laws of dy-
namics that were formulated by Isaac Newton in 1687.

Newton’s laws (like all other laws of physics) were the result of generalizing a
great amount of experimental facts. Their correctness (although it covers a very
extensive range of phenomena, the latter are nevertheless limited) is confirmed by
the agreement of the corollaries following from them with experimental results.

Newtonianmechanics achieved such great successes during two centuries that
many physicists of the 19th century were convinced in its omnipotence. It was con-
sidered that the explanation of any physical phenomenon required its reduction to
a mechanical process obeying Newton’s laws. With the development of science,
however, new facts were uncovered for which no place could be found within the
confines of classical mechanics. These facts were explained in new theories—the
special theory of relativity and quantum mechanics.

The special theory of relativity advanced by Albert Einstein in 1905 radically re-
vised Newton’s notions of space and time. This revision resulted in the creation of
“high-speed mechanics” or, as it is called, relativistic mechanics. The newmechan-
ics did not result, however, in complete negation of the old Newtonian mechanics.
The equations of relativistic mechanics in their limit (for speeds small in compar-
ison with the speed of light) transform into the equations of classical mechanics.
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Thus, classical mechanics has entered relativistic mechanics as a particular case of
it and has retained its previous significance for describing motions occurring at
speeds much smaller than that of light.

Matters are similar with the relation between classical and quantum mechan-
ics. The latter took root in the twenties of the present century as a result of the
development of physics of the atom. The equations of quantum mechanics also
result in those of classical mechanics in their limit (for masses that are great in
comparison with the masses of atoms). Consequently, classical mechanics is also a
part of quantum mechanics and is a limiting case of it.

Thus, the development of science has not eliminated classical mechanics, but
has only shown its limited applicability. Classical mechanics based on Newton’s
laws is themechanics for bodies of large (comparedwith themass of atoms) masses
travelling at low (compared with the speed of light) speeds.

2.2. Newton’s First Law. Inertial Reference Frames

Newton’s first law is formulated as follows: every body continues in its state of rest
or of uniform motion in a straight line unless it is compelled by external forces to
change that state. Both states named are distinguished by the acceleration of the
body equalling zero. Therefore, the first law can also be formulated as follows:
the velocity of every body remains constant (in particular, it equals zero) until the
action of other bodies on this body causes it to change.

Newton’s first law is obeyed not in any reference frame. We have already noted
that the nature of motion depends on the choice of the reference frame. Let us
consider two frames of reference moving with respect to each other with a certain
acceleration. If a body is at rest relative to one of them, then it will obviously
travel with acceleration relative to the other one. Consequently, Newton’s first
law cannot be obeyed simultaneously in both frames.

A reference frame in which Newton’s first law is obeyed is called an inertial
one. The law itself is quite often called the law of inertia. A reference frame in
which Newton’s first law is not obeyed is called a non-inertial reference frame.
There is an infinite multitude of inertial frames. Any reference frame moving uni-
formly in a straight line (i.e., with a constant velocity) relative to an inertial frame
will also be an inertial one. This will be discussed in greater detail in Sec. 2.7.

It has been established experimentally that the reference frame whose centre
coincides with the Sun and whose axes are directed toward appropriately selected
stars is an inertial one. This system is defined as a heliocentric reference frame
(helios means Sun in Greek). Any reference frame moving uniformly in a straight
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line relative to the heliocentric frame will be an inertial one.
The Earth moves relative to the Sun and stars along a curvilinear trajectory

having the shape of an ellipse. Curvilinear motion always occurs with a certain
acceleration. The Earth also rotates about its axis. For these reasons, a reference
frame associated with the Earth’s surface travels with acceleration relative to the
heliocentric reference frame, and is not inertial. The acceleration of such a frame,
however, is so small that it may be considered practically inertial in a great num-
ber of cases. But sometimes the non-inertial nature of a reference frame associated
with the Earth significantly affect the nature of mechanical phenomena being con-
sidered relative to it. We shall treat some of these cases on a later page.

2.3. Mass and Momentum of a Body

The action of other bodies on a given one causes its velocity to change, i.e., imparts
an acceleration to it. Experiments show that the same action imparts accelerations
differing in magnitude to different bodies. Every body resists attempts to change
its state of motion. This property of bodies is called inertia. It is characterized
quantitatively by a physical quantity called themass of a body.

To find the mass of a body, we must compare it with that of the body taken as
the standard of mass. We can also compare the mass of the given body with that
of a body having a known mass (found by comparing it with the standard). The
masses ;1 and ;2 of two point particles can be compared as follows. We place the
particles in conditions allowing us to ignore their interaction with other bodies. A
system of bodies interacting only with one another and not interacting with other
bodies is called isolated. We are therefore considering an isolated system of two
particles. If we make these particles interact (for example, by colliding with each
other), their velocities receive the increments Jv1 and Jv2. Experiments show that
these increments are always directed oppositely, i.e., differ in their sign. The ratio
of the magnitudes of the velocity increments, however, does not depend on the
method and intensity of interaction of the given two bodies or particles¹. This ratio
is inversely proportional to the ratio of the masses of the bodies being considered:

|Jv1 |
Jv2

=
;2

;1
(2.1)

(the velocity of the body with the greater inertia, i.e., with the larger mass, changes
less). Taking into account the relative direction of the vectors Jv1 and Jv2, Eq. (2.1)

¹This holds for the case when the initial and final velocities of the particles are small in compar-
ison with the speed of light 2.
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can be written in the form
;1Jv1 = −;2Jv2. (2.2)

In Newtonian mechanics (i.e., in mechanics based on Newton’s laws), the mass
of a body is assumed to be a constant quantity not depending on its velocity. At
velocities smaller than the speed of light 2 (when D � 2), this assumption is obeyed
in practice. Taking advantage of the constancy of mass, we can write Eq. (2.2) as
follows:

J(;1v1) = −J(;2v2). (2.3)
The product of the mass and the velocity of a body is called its momentum.

Using the symbol p for it, we get
p = ;v. (2.4)

Definition (2.4) holds for point particles and extended bodies in translational mo-
tion. Whenwehave to dowith an extended bodywhosemotion is not translational,
we must imagine the body as a combination of particles of masses J;7, determine
the momenta J;7v7 of these particles, and then add these momenta vectorially.
The result will be the total momentum of the body:

p =
∑
7

;7v7. (2.5)

In translation of a body, all the v7’s are the same, and Eq. (2.5) transforms into (2.4).
Substituting themomenta p for the products;v in Eq. (2.3), we get Jp1 = Jp2,

whence J(p1+p2) = 0. When the increment of a quantity equals zero, this signifies
that the quantity itself remains unchanged. We have thus arrived at the conclusion
that the total momentum of an isolated system of two interacting particles remains
constant:

p = p1 + p2 = constant. (2.6)
The above statement forms the law of conservation of momentum. We shall
consider this law in greater detail in Sec. 3.10.

We must note here that in relativistic mechanics (see Chap. 8) the expression
for the momentum is more complicated than Eq. (2.4):

p =
;v√

1 − D2/22
. (2.7)

Here; is the so-called rest mass of a body (its mass at D = 0), and 2 is the speed of
light in a vacuum. Equation (2.7) can be interpreted to state that the mass of a body
does not remain constant (as is assumed in Newtonian mechanics), but changes
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with the speed according to the law

;(D) = ;√
1 − D2/22

(2.8)

Hence, Eq. (2.7) can be written as follows:
p = ;(D) v (2.9)

i.e., in a form similar to Eq. (2.4).
Themass;(D) determined by Eq. (2.8) is called the relativisticmass. We shall

designate it by the symbol ;r in the following.

2.4. Newton’s Second Law

Newton’s second law states that the rate of change of the momentum of a body equals
the force L acting on the body:

dp
dB

= L . (2.10)

Equation (2.10) is called the equation of motion of a body.
Substituting ;v for p according to Eq. (2.4) and taking into account that in

Newtonian mechanics the mass is assumed to be constant, we can write Eq. (2.10)
in the form

;a = L (2.11)
where a = ¤v. We have thus arrived at a different formulation of Newton’s second
law: the product of the mass of a body and its acceleration equals the force acting on the
body.

Equation (2.11) has called forth and is continuing to call forth many controver-
sies among physicists. To date, there is no generally adopted interpretation of this
relation. The complication consists in that there are no independent ways of de-
termining the quantities ; and L in Eq. (2.11). To determine one of them (; or L),
we have to use Eq. (2.11) relating it to the other one and to the acceleration a. For
example, according to S. Khaikin², “Since to establish a way of measuring the mass
of a body we use the same second law of Newton (the magnitude of the mass of a
body is determined by simultaneously measuring the force and the acceleration),
then Newton’s second law contains, on the one hand, a statement that the accel-
eration is proportional to the force, and on the other, a definition of the mass of a
body as the ratio of the force acting on it to the acceleration imparted to this body”.

R. Feynman states the following about the meaning of Newton’s second law:

²S. E. Khaikin. Fizicheskie osnovy mekhaniki (The Physical Fundamentals of Mechanics).
Moscow, Fizmatgiz (1963), p. 104.
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“Let us ask, ‘What is the meaning of the physical laws of Newton, which we write
as � = ;0? What is the meaning of force, mass, and acceleration?’ Well, we can
intuitively sense the meaning of mass, and we can define acceleration if we know
the meaning of position and time. We shall not discuss these meanings, but shall
concentrate on the new concept of force. The answer is equally simple: ‘If a body
is accelerating, then there is a force on it’. That is what Newton’s laws say, so the
most precise and beautiful definition of force imaginable might simply be to say
that force is the mass of an object times the acceleration. . . ”. However, “if we have
discovered a fundamental law, which asserts that the force is equal to the mass
times the acceleration, and then define the force to be the mass times the acceler-
ation, we have found out nothing. . . , such things certainly cannot be the content
of physics, because they are definitions going in a circle. . .no prediction whatso-
ever can be made from a definition. . . . The real content of Newton’s laws is this:
that the force is supposed to have some independent properties, in addition to the
law L = ;a; but the specific independent properties that the force has were not
completely described by Newton or by anybody else. . . ”³.

We must underline the fact that Newton’s second law (like his other two laws)
is an experimental one. It took shape as a result of generalization of the data of
experiments and observations.

In a particular case when L = 0 (i.e., in the absence of action on a body by
other bodies), the acceleration, as follows from Eq. (2.11), also equals zero. This
conclusion coincides with Newton’s first law. Therefore, the first law is contained
in the second one as a particular case of it. Notwithstanding this circumstance,
the first law is formulated independently of the second one because it contains in
essence the postulate (statement) of the existence of inertial reference frames.

In conclusion, we shall note that upon an independent choice of the units of
mass, force, and acceleration, the second law must be written in the form

;a = 9L (2.12)
where 9 is a constant of proportionality.

2.5. Units and Dimensions of Physical Quantities

The laws of physics, as we have already noted, establish quantitative relations be-
tween physical quantities. To establish such relations, it is necessary to be able to
measure various physical quantities.

To measure a physical quantity (for example, speed) means to compare it with

³R. P. Feynman, R. B. Leighton, M. Sands. The Feynman Lectures on Physics. Reading, Mass.,
Addison-Wesley (1965), p. 12-1.
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a quantity of the same kind (in our example with speed) taken as a unit.
Generally speaking, we could establish a unit for every physical quantity ar-

bitrarily, regardless of other quantities. We can limit ourselves, however, to an
arbitrary choice of the units for only a few (at least three) quantities taken as the
basic ones. Any quantities can be taken as the basic ones in principle. The units
of all other quantities can be established with the aid of these basic units using for
this purpose the physical laws relating the relevant quantity to the basic ones or to
quantities for which the units have already been established in this way.

Let us consider the following example to explain what has been said above. As-
sume that we have already established the units for mass and acceleration. Equa-
tion (2.12) expresses the law relating these quantities to a third physical quantity
—force. We choose the unit of force so that the proportionality constant in this
equation will equal unity. Equation (2.12) thus acquires a simple form:

;a = L . (2.13)
It follows from Eq. (2.13) that the established unit of force is a force such that a body
of unitmass receives an acceleration of unity under its action [substitution of � = 1
and ; = 1 in Eq. (2.13) gives 0 = 1].

When units are selected in this way, physical relations acquire a simpler form.
The combination of units themselves forms a definite system.

There are several systems differing in the selection of the basic units. Systems
based on the units of length, mass, and time are called absolute.

USSR State Standard GOST 9867-61 in force from January 1, 1963, provides for
the use of the International System of Units, designated SI, in the USSR. This sys-
tem of units has been introduced as preferable in all fields of science, engineering,
and the national economy, and also in education. The basic units of the SI sys-
tem include the unit of length—the metre (its symbol is m), the unit of mass—the
kilogramme (kg), and the unit of time—the second (s). The SI system is thus an
absolute one. In addition to the three units indicated above, the other basic units
of this system are the unit of current—the ampere (A), the unit of thermodynamic
temperature—the kelvin (K), the unit of luminous intensity—the candela (cd), and
the unit of the amount of substance—the mole (mol). These units will be treated
in the corresponding parts of our course.

The metre is defined as the length equal to 1, 650, 763.73 wavelengths in vac-
uum of the radiation corresponding to the transition between the levels 2p10 and
5d5 of the krypton-86 atom⁴ (the orange line of krypton-86). The metre approxi-
mately equals 1/40, 000, 000th of the length of an Earth’s meridian. Multiple and
submultiple units are also used, namely, the kilometre (1 km = 103m), the cen-

⁴The meaning of these symbols will be explained in Vol. III in the part “Atomic Physics”.
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timetre (1 cm = 10−2m), the millimetre (1mm = 10−3m), the micrometre (1 µm =

10−6m), etc.
The kilogramme is the mass of a platinum and iridium⁵ body kept in the In-

ternational Chamber of Weights and Measures at Sèvre (near Paris). This body is
called the international prototype of the kilogramme. The mass of this prototype
is close to that of 1000 cm of pure water at 4 ◦C. A gramme equals one-thousandth
of a kilogramme.

The second is the duration of 9192631770 periods of the radiation correspond-
ing to the transition between the two hyperfine levels of the ground state of the
cesium-133 atom. The second approximately equals 1/86400 of the mean solar day.

Physics also employs an absolute system of units called the cgs system. The
basic units in this system are the centimetre, gramme, and second.

The units of the quantities that we introduced in kinematics (velocity and ac-
celeration) are derived from the basic units. Thus, the unit of velocity (or speed)
is the velocity of a body in uniform motion that travels a distance of unit length
(metre or centimetre) in unit time (second). This unit is designated m s−1 in the SI
system and cm s−1 in the cgs system. The unit of acceleration is the acceleration
of uniformly varying motion when the velocity of a body changes by one unit (one
m s−1 or cm s−1) in unit time (s). This unit is designated m s−2 in the SI system and
cm s−2 in the cgs system.

The unit of force in the SI system is called the newton (N). According to Eq.
(2.13), one newton equals the force that imparts an acceleration of 1m s−2 to a body
with a mass of 1 kg. The unit of force in the cgs system is called the dyne (dyn).
One dyne equals the force that imparts an acceleration of 1 cm s−2 to a body with
a mass of 1 g. The newton and dyne are related as follows:

1N = 1 kg × 1m s2 = 103 g × 102 cm s2

The mk(force)s system (usually called the technical system) is widely used in
engineering. The basic units of this system are the metre, the unit of force—the
kilogramme-force (kgf), and the second. The kilogramme-force is defined as the
force that imparts an acceleration of 9.80655m s−1 (the normal acceleration of free
fall) to a mass of 1 kg. It follows from this definition that 1 kgf = 9.80655N (ap-
proximately 9.81N).

The unit of mass in the mk(force)s system, according to Eq. (2.13), should be
taken equal to the mass of a body that receives an acceleration of 1m s−2 when
acted upon by a force of 1 kgf. Although many names have been proposed for this

⁵An alloy of platinum and iridium has a high hardness and resistance to corrosion (i.e., is virtually
not subjected to the chemical action of the surroundings).
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unit⁶, none of them has been legalized, and it is designated kgf s2m−1. It is obvious
that 1 kgf s2m−1 = 9.80655 kg (approximately 9.81 kg).

It follows from the way a system of units is constructed that a change in the
basic units leads to a change in the derived ones. If, for example, the minute is
taken as the unit of time instead of the second, i.e., the unit of time is increased 60
times, then the unit of velocity will diminish 60 times, and the unit of acceleration
will diminish 3600 times.

The relation showing how a unit of a quantity changes when the basic units
are changed is called the dimension of this quantity. The dimension of an arbitrary
physical quantity is designated by its symbol placed in brackets. For example, [D]
stands for the dimension of velocity. Special symbols are used for the dimensions
of the basic quantities: L for the length, M for the mass, and T for the time. Thus,
designating the length by :, the mass by ;, and the time by B, we can write

[:] = L, [;] = M, [B] = T.
When these symbols are used, the dimension of an arbitrary physical quantity

has the form LUMVTW (U, V and W may be either positive or negative, and in particu-
larmay equal zero). This notation signifies that when the unit of length is increased
<1 times, the unit of a given quantity grows <U1 times (accordingly, the number that
expresses the value of the quantity in these units diminishes <U1 times). When the
unit of mass is increased <2 times, the unit of the given quantity grows <V2 times.
Finally, when the unit of time is increased <3 times, the unit of the given quantity
grows <W3 times.

Since physical laws cannot depend on the selection of the units for the quanti-
ties figuring in them, the dimensions of both sides of the equations expressing these
laws must be the same. This condition can be used, first, for verifying the correct-
ness of physical relations obtained, and, second, for establishing the dimensions of
physical quantities. For example, speed is determined by the formula D = JA/JB.
The dimension of JA is L, and that of JB is T. The dimension of the right-hand side
of the above formula is [JA]/[JB] = L/T = LT−1. The dimension of the left-hand
side must be the same. Hence,

[D] = LT−1. (2.14)
This relation is called a dimension formula, and its right-hand side the dimension
of the relevant quantity (in our case, of speed).

⁶See L. A. Sena. Units of Physical Quantities and Their Dimensions. 2nd ed., Moscow, Mir Pub-
lishers (1975), pp. 9, 54
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Fig. 2.1

The relation 0 = JD/JB permits us to establish the dimension of acceleration:

[0] = [JD][JB] =
LT−1

T
= LT−2. (2.15)

The dimension of force is
[�] = [;] [0] = MLT−2. (2.16)

The dimensions of all other quantities are established in a similar way.

2.6. Newton’s Third Law

Any action of bodies on one another has the nature of mutual interaction: if body
1 acts on body 2 with the force L21 then body 2, in turn, acts on body 1 with the
force L12.

Newton’s third law states that the forces exerted by interacting bodies on each
other are equal in magnitude and opposite in direction. Using the above symbols for
such forces, the third law can be expressed in the form of the equation

L12 = −L21. (2.17)
It follows fromNewton’s third law that forces appear in pairs: for any force ap-

plied to a body there is another force equal in magnitude and opposite in direction
applied to the second body interacting with the first one.

Newton’s third law is not always correct. It is observed quite strictly in contact
interactions (i.e., interactions observed upon the direct contact of bodies), and also
when bodies at rest that are a certain distance apart interact with each other.

As an example of the violation of Newton’s third law, we can take a system of
two charged particles 41 and 42 moving at the given moment as shown in Fig. 2.1. It
is proved in electrodynamics that apart from the force of electrostatic interaction
L12 obeying the third law, the magnetic force L1 will also be exerted on the first
particle. Only the force L21 equal to −L12 acts on the second particle. The mag-
nitude of the magnetic force acting on the second particle for the case shown in
the figure equals zero. It must be noted that for speeds of particles that are much
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Fig. 2.2

smaller than the speed of light in a vacuum (when D1 � 2 and D2 � 2) the force L1
is negligibly small in comparison with the force L12, so that Newton’s third law is
virtually correct in this case too.

Now let us consider a system of two electrically neutral particles ;1 and ;2
at the distance @ from each other. Owing to universal gravitation, these particles
attract each other with the force

� = �
;1;2

@2
. (2.18)

In this case, the particles interact via a gravitational field. Say, the first particle sets
up in the space surrounding it a field which manifests itself in that the particle ;2
placed at a point of this field experiences a force of attraction to the first particle.
Similarly, the second particle sets up a field which manifests itself in its action on
the first particle. Experiments show that the changes in the field due, for instance,
to a change in the position of the particle producing it propagate in space not in-
stantaneously, but at a finite, though very high, speed equal to the speed of light in
a vacuum 2.

Let us assume that the particles ;1 and ;2 are initially at rest at positions 1
and 2 (Fig. 2.2). The forces of interaction L12 and L21 are equal in magnitude and
opposite in direction. Now assume that the particle ;1 moves very rapidly (with a
speed almost equal to 2) to position 1′. At this point, the particle;1 will experience
the force L ′12 smaller in magnitude (@′ > @) and directed differently than L12 (we
remind our reader that the field of the particle;2 remains constant). The force L21
will continue to act on the second particle until the disturbance of the field due to
the displacement of ;1 reaches point 2. Consequently, Newton’s third law was
violated while the particle;1 was in motion some time after it stopped at point 1′.

If the particle;1moved frompoint 1 to point 1′with the speed Dmuch smaller
than 2 (D � 2), or the speed of propagation of field disturbances were infinitely
great, then the instantaneous values of the field at point 2 would correspond to
the positions of the particle;1 at the same moment of time, and, consequently, no
violations of the third law would be observed.

Newtonian mechanics in general holds only for speeds that are much smaller
than the speed of light (when D � 2). Therefore, within the confines of this me-
chanics, the speed of propagation of field disturbances is considered to be infinite,
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Fig. 2.3

and Newton’s third law is always obeyed.

2.7. Galileo’s Relativity Principle

Let us consider two reference frames moving relative to each other with the con-
stant velocity v0. One of these frames, designated in Fig. 2.3 by the letter K, will
conditionally be considered fixed. Therefore the second frame K′ will move uni-
formly in a straight line. Let us choose the coordinate axes F, G, H of frame K and
the axes F′, G′, H′ of frame K′ so that the axes F and F′ coincide, while the axes G
and G′, and also H and H′ are parallel to each other.

Let us find the relation between the coordinates F, G, H of a point P in frame K
and the coordinates F′, G′, H′ of the same point in frame K′. If we begin to count
the time from the moment when the origins of the coordinates of the two frames
coincided, then as follows from Fig. 2.3, we have F = F′+ D0B. In addition, it is quite
obvious that G = G′ and H = H′. Adding to these relations the assumption adopted
in classical mechanics that the time flows the same in both frames, i.e., that B = B′,
we get a group of four equations:

F = F′ + D0B, G = G′, H = H′, B = B′. (2.19)
They are called Galilean transformations.

The first and last of Eqs. (2.19) are correct only at values of D0 that are small in
comparison with the speed of light in a vacuum 2 (i.e., D0 � 2). At values of D0
comparable with 2, the Galilean transformations must be replaced with the more
general Lorentz transformations (see Sec. 8.2). Equations (2.19) are assumed to be
accurate within the confines of Newtonian mechanics.

Differentiating Eqs. (2.19) with respect to time, we find the relation between the
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velocities of point P relative to the reference frames K and K′:
¤F = ¤F′ + D0, or DF = D

′
F + D0

¤G = ¤G′, or DG = D
′
G (2.20)

¤H = ¤H′, or DH = D
′
H .

The three scalar relations Eq. (2.20) are equivalent to the following relation
between the velocity vector v relative to frame K and the velocity vector v′ relative
to frame K′:

v = v′ + v0. (2.21)
To convince ourselves in the truth of this equation, it is sufficient to project vector
equation (2.21) onto the axes F, G, H. As a result, we get equations (2.20).

Equations (2.20) and (2.21) give the rule of velocity addition in classical mechan-
ics. It must be borne in mind that Eq. (2.21), like any other vector equation, remains
correct upon an arbitrary selection of the mutual directions of the coordinate axes
of the frames K and K′. Equations (2.20), however, are obeyed only when the axes
are chosen as shown in Fig. 2.3.

We noted in Sec. 2.2 that any reference frame moving relative to an inertial
frame with a constant velocity will also be inertial. Now we are in a position to
prove this statement. To do this, let us differentiate Eq. (2.21) with respect to time.
Taking into account that v0 is constant, we get

¤v = ¤v′, or a = a′. (2.22)
Hence it follows that the acceleration of a body in all reference frames moving
uniformly in a straight line relative to one another is the same. Therefore, if one of
these frames is inertial (this signifies that in the absence of forces a = 0), then the
others will also be inertial (a′ also equals zero).

The fundamental equation of mechanics (2.21) is characterized by containing
only the acceleration of the kinematic quantities. It does not contain the velocity.
Aswe have established above, however, the acceleration of a body in two arbitrarily
selected inertial reference frames K and K′ is the same. Hence it follows according
toNewton’s second law that the forces acting on a body in frames K andK′will also
be the same. Consequently, the equations of dynamics do not change upon transition
from one inertial reference frame to another one, i.e., they are said to be invariant with
respect to the transformation of the coordinates corresponding to the transition
from one inertial reference frame to another. From the viewpoint of mechanics,
all inertial reference frames are absolutely equivalent, and none of them can be
preferred to others. In practice, this manifests itself in that we cannot establish by
anymechanical experiments conductedwithin the limits of a given reference frame
whether it is in a state of rest or in uniform straight-line motion. For example, if
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we are in a car of a train running uniformly in a straight line without jolts we
cannot determine whether the car is moving or at rest without looking out of a
window. The free fall of bodies, the motion of objects that we throw, and all other
mechanical processes in this case will occur in the same way as if the car were
standing.

These circumstances were already established by Galileo Galilei (1564-1642).
The statement that all mechanical phenomena in different inertial reference frames
proceed identically, owing to which no mechanical experiments allow us to de-
termine whether the given reference frame is at rest or is moving uniformly in a
straight line, is called Galileo’s relativity principle.

2.8. Forces

Four kinds of interactions are distinguished in modern physics: (1) gravitational
(or interaction due to universal gravitation), (2) electromagnetic (achieved via elec-
tric and magnetic fields), (3) strong or nuclear (ensuring the binding of particles
in an atomic nucleus), and (4) weak interaction (responsible for many processes of
elementary particle decay).

Within the confines of classical mechanics, we have to do with gravitational
and electromagnetic forces, and also with elastic and friction forces. The latter
two kinds of forces are determined by the nature of the interaction between the
molecules of a substance. The forces of interaction between molecules have an
electromagnetic origin. Consequently, elastic and friction forces are electromag-
netic in their nature.

Gravitational and electromagnetic forces are fundamental—they cannot be re-
duced to other simpler forces. Elastic and friction forces, on the other hand, are
not fundamental.

The laws of the fundamental forces are exceedingly simple. The magnitude of
the gravitational force is determined by Eq. (2.18). The magnitude of the force with
which two point charges ?1 and ?2 at rest interact is determined by Coulomb’s law:

� = 9
?1?2

@2
(2.23)

(9 is a constant of proportionality depending on the units chosen for the quantities
in the formula).

If the charges are moving, then magnetic forces act on them in addition to the
force defined by Eq. (2.23). The magnetic force acting on a point charge ? moving
with the velocity v in a magnetic field of induction H is determined by the formula
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L = 9′? (v × H) (2.24)
(9′ is a constant of proportionality).

Equations (2.18), (2.23), and (2.24) are accurate ones. For elastic and friction
forces we can obtain only approximate empirical formulas that are considered in
the following sections.

2.9. Elastic Forces

Any real body becomes deformed, i.e., changes its dimensions and shape, under
the action of forces applied to it. If the body regains its initial dimensions and
shape after the action of the forces stops, the deformation or strain is called elastic.
Elastic deformations are observed when the force producing the deformation does
not exceed a definite limit, called the elastic limit, for each concrete body.

Let us take a spring of length :0 in its undeformed state and apply the forces
L1 and L2 to its ends that are equal in value and opposite in direction (Fig. 2.4).
Under the action of these forces, the spring will stretch over a certain distance J:,
after which equilibrium will set in. In the state of equilibrium, the external forces
L1 and L2 will be balanced by the elastic forces set up in the spring as a result of
its deformation. Experiments show that with small deformations, the stretching
of the spring J: is proportional to the stretching force: J: ∝ � (here � = �1 = �2).
Accordingly, the elastic force is proportional to the elongation of the spring:

� = 9 J:. (2.25)
The constant of proportionality 9 is called the spring constant.

The statement that the elastic force and deformation are proportional to each
other is called Hooke’s law.

Elastic strains are set up throughout the entire spring. Any part of the spring
acts on another part with a force determined by Eq. (2.25). Therefore, if we cut the
spring in half, an identical elastic force will appear in each half with the elongation
being half the original value. Hence, we conclude that with a given material of the
spring and a given coil size the magnitude of the elastic force is determined not by
the absolute elongation of the spring J:, but by its relative elongation J:/:0.

Elastic strains, but of the opposite sign, are also set up when a spring is com-
pressed. Let us generalize Eq. (2.25) as follows. We shall rigidly fix one end of a
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spring (Fig. 2.5) and shall consider the elongation of the spring as the coordinate
F of its other end measured from its position corresponding to the undeformed
spring⁷. In addition, by � we shall understand the projection of the elastic force
Lel onto the F-axis. We can thus write that

� = −9F (2.26)
(inspection of Fig. 2.5 shows that the projection of the elastic force onto the

F-axis and the coordinate F always have opposite signs).
Homogeneous bars behave in tension or uniaxial compression like a spring. If

we apply the forces L1 and L2 (�1 = �2 = �) to the ends of a bar, these forces being
directed along its axis and acting uniformly over the entire cross section, then the
length of the bar :0 will receive either a positive (in stretching) or a negative (in
compression) increment⁸ J: (Fig. 2.6). It is quite natural to take the relative change
in the length of the bar as the quantity characterizing its deformation:

Y =
J:

:0
. (2.27)

Experiments show that for bars of a given material the relative elongation or
strain in elastic deformation is proportional to the force per unit cross-sectional

⁷In Fig. 2.5b, the distance over which the end of the spring moved is designated −F. The reason
is that the distance is a positive quantity, while the coordinate F in this case, however, is a negative
one.

⁸A change in the length of the bar is attended by a corresponding change in its cross-sectional
dimensions.
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area of the bar:

Y = U
J:

(
. (2.28)

The constant of proportionality a is called the compliance coefficient.
The quantity equal to the ratio between the force and the area of the surface it

is acting on is called the stress. Owing to the interaction of the parts of a body with
one another, the stress is transmitted to all points of the body—the entire volume
of the body, for example a bar, will be in a stressed state. If the force is directed
along a normal to the surface, the stress is called normal. If it is directed along a
tangent to the surface it is acting on, the stress is called tangential (shear). The
normal stress is designated by the symbol f , the tangential or shear stress by the
symbol g.

The ratio �/( in Eq. (2.28) is the normal stress f . Hence, this equation can be
written in the form

Y = Uf . (2.29)
In addition to the compliance coefficient U, the elastic properties of a material are
also characterized by its reciprocal � = 1/U, which is called themodulus of elas-
ticity or Young’s modulus. It is measured in pascals (the pascal is the unit of
pressure in the SI system—1Pa = 1Nm−2).

Using 1/� instead of U in Eq. (2.9), we get

Y =
U

�
(2.30)
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from which it follows that Young’s modulus equals such a normal stress at which
the relative elongation or strain will equal unity (i.e., the increment of the length
J: will be equal to the original length :0) if so great elastic deformations were pos-
sible (actually a bar will fail at considerably smaller stresses, and the elastic limit is
reached still earlier).

Solving Eq. (2.28) with respect to � and using J:/:0 instead of Y and 1/� instead
of U, we get

� =
� (

:0
J: = 9 J: (2.31)

where 9 is a constant quantity for a given bar. Equation (2.31) expresses Hooke’s
law for a bar [compare with Eq. (2.26)]. Do not forget that this law is obeyed only
until the elastic limit is reached.

In conclusion, let us briefly consider shear strain. Let us take a homogeneous
body having the shape of a rectangular parallelepiped and apply to its opposite
faces the forces L1 and L2 (�1 = �2 = �) directed parallel to these faces ( Fig. 2.7).
If the action of the forces is uniformly distributed over the entire surface of the
corresponding face, then in any cross section parallel to these faces the tangential
(shear) stress

g =
�

(
(2.32)

will appear (( is the area of a face). The action of the stresses will cause the body
to deform so that one face will move relative to another over the distance 0. If
we mentally divide the body into elementary layers parallel to the faces we are
considering, then each layer will be shifted with respect to its neighbours. For this
reason, such deformation is called shear.

In shear, any straight line originally perpendicular to the layerswill turn through
the angle i. Shear is characterized by the quantity

W =
0

1
= tan i (2.33)
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called the relative shear (what 0 and 1 are is clear from Fig. 2.7). Upon elastic
deformations, the angle i is very small. We can therefore assume that tan i ≈ i.
Consequently, the relative shear W equals the angle of shear i.

Experiments show that the relative shear is proportional to the tangential stress:

W =
1
�
g. (2.34)

The coefficient � depends only on the properties of a material and is called the
shear modulus. It equals such a tangential (shear) stress at which the angle of
shear will be 45 degrees (tan i = 1) if the elastic limit were not exceeded at such
great deformations. The shear modulus �, like Young’s modulus �, is measured in
pascals (Pa).

2.10. Friction Forces

Forces of friction appear when contacting bodies or their parts move relative to
one another. The friction occurring in the relative movement of two contacting
bodies is called external; the friction between parts of the same continuous body
(for example, a fluid) is called internal.

The force of friction appearing when a solid body moves relative to a fluid
(liquid or gas) medium must be related to the category of internal friction forces
because in this case the layers of the fluid in direct contact with the body are carried
along with it at the body’s velocity. The motion of the body is influenced by the
friction between these layers of the fluid and other of its layers that are external
relative to them.

Friction between the surfaces of two solids in the absence of any intermediate
layer, for instance, a lubricant between them, is called dry. Friction between a solid
and a fluid, and also between the layers of a fluid, is called viscous (or liquid).

Two kinds of dry friction are distinguished: sliding and rolling.
Forces of friction are directed along a tangent to the surfaces (or layers) in

contact so that they resist the relative displacement of these surfaces (layers). If,
for example, two layers of a liquid slide over each other with different velocities,
then the force applied to the faster layer is directed oppositely to the direction of
motion, while the force acting on the slower layer is directed along its motion.

Dry Friction. In dry friction, a force of friction appears not only when one
surface slides over another one, but also when attempts are made to set up such
sliding motion. In the latter case, we have to do with the force of static friction.
Let us consider two contacting bodies 1 and 2 of which the latter is fixed in place
(Fig. 2.8). Body 1 is pressed against body 2 by the force L n̂ directed along a normal
to the surface of contact of the bodies. It is called thenormal force andmay be due
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to the pressure of the body’s weight, or to other reasons. Let us try to move body 1
by acting on it with an external force L . We shall find that for every concrete pair
of bodies and every value of the normal force there is a definite minimum value
�0 of the force L at which body 1 first begins to move. At values of the external
force � within the limits from 0 to �0, the body remains at rest. According to
Newton’s second law, this is possible if the force L is balanced by a force equalling it
in magnitude and opposite in direction, which is exactly the force of static friction
L fr (see Fig. 2.8). It automatically⁹ acquires a value equal to that of the external force
� (provided that the latter does not exceed �0). The quantity �0 is the maximum
possible value of the force of static friction.

It must be noted that in accordance with Newton’s third law body 2 must also
experience the force of static friction L ′fr (it is shown by a dashed arrow in Fig. 2.8)
equal in magnitude to the force L fr but directed oppositely.

If the external force L exceeds �0 in magnitude, the body begins to slide. Its
acceleration is determined by the resultant of two forces: the external one L and
the force of sliding friction L fr whosemagnitude depends to a certain extent on the
sliding speed. The nature of this relation is determined by the nature and state of
the contacting surfaces. The kind of the speed dependence of the force of friction
shown in Fig. 2.9 is encountered most frequently. The graph shows both static
and sliding friction. The force of static friction, as we have already noted, may
range from 0 to �0, which is shown by the vertical line in the graph. In accordance
with Fig. 2.9, the force of sliding friction first diminishes somewhat with increasing
speed, and then begins to grow. With special processing of contacting surfaces, the
force of sliding friction may be virtually independent of the speed. In this case,
the curved portion of the graph in Fig. 2.9 will transform into a horizontal line
beginning at the point �0.

The laws of dry friction consist in the following: the maximum force of static

⁹This occurs in the same way as a spring acted upon by a stretching force automatically acquires
an elongation such that the elastic force balances the external one.
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friction, and also the force of sliding friction do not depend on the area of con-
tact between bodies and are approximately proportional to the magnitude of the
normal force pressing the contacting surfaces together:

�fr = 5 �n̂. (2.35)
The dimensionless proportionality constant 5 is called the coefficient of friction
(static or sliding friction, as the case may be). It depends on the nature and state of
the contacting surfaces, particularly on their roughness. The coefficient of sliding
friction is a function of speed.

Friction forces play a very great part in nature. Friction is often a great help to
us in our everyday life. Let us remember the tremendous difficulties encountered
by pedestrians and vehicles on ice-covered pavements and roads, when the fric-
tion between the pavement surface and the pedestrians’ soles or the wheels of the
vehicles considerably diminishes. If there were no friction forces, our furniture
would have to be fastened to the floor like on a ship on a rolling sea because upon
the most minute deviation of the floor from a horizontal position it would slide in
the direction of the slope. Our reader can give numerous similar examples of how
helpful friction is.

The part played by friction is often extremely negative, and measures have to
be taken to reduce it as much as possible. This relates, for example, to the friction
in bearings or between the hub of a wheel and an axle.

The most radical way of reducing forces of friction is to replace sliding fric-
tion with rolling friction. The latter appears, for example, between a cylindrical or
spherical body rolling over a flat or curved surface. Rolling friction formally obeys
the same laws as sliding friction, but the coefficient of friction in this case is much
lower.
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Viscous Friction and Resistance of the Medium. Unlike dry friction, vis-
cous (internal) friction is characterized by the force of viscous friction vanishing
together with the velocity. Therefore, no matter how small an external force is, it
can impart a relative velocity to the layers of a viscous medium. The laws which
the forces of friction between the layers of a medium obey will be considered in
the chapter devoted to fluid mechanics (Chap. 9).

In this section, we shall limit ourselves to a treatment of the friction forces
between a solid and a viscous (fluid) medium. It must be borne in mind that apart
from the forces of friction proper, the motion of bodies in a fluid is attended by
the so-called forces of resistance of the medium that can be much greater than
the forces of friction. We have no possibility of considering the causes of these
forces in detail. We shall only treat the laws obeyed jointly by forces of friction and
resistance of the medium. We shall conditionally call the total force the force of
friction. The speed dependence of this force is shown in Fig. 2.10.

At low velocities, the force grows linearly with the velocity:
L fr = −91v (2.36)

(the minus sign signifies that the force is directed oppositely to the velocity). The
value of the coefficient 91 depends on the shape and dimensions of a body, the state
of its surface, and on the property of the fluid called its viscosity. For example, this
coefficient is much higher for glycerine than for water.

At high velocities, the linear law transforms into a quadratic one, i.e., the force
begins to grow in proportion to the square of the velocity:

L fr = −92 D2 êD (2.37)
(êD is the unit vector of the velocity). The value of the coefficient 92 depends on the
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shape and dimensions of a body.
The magnitude of the velocity at which the law (2.36) transforms into (2.37)

depends on the shape and dimensions of a body, and also on the viscosity and
density of the fluid.

2.11. Force of Gravity and Weight

The force of attraction to the Earth causes all bodies to fall with the same accel-
eration relative to the Earth’s surface, which is designated by the symbol 6. This
signifies that in a reference frame associated with the Earth, any body of mass ; is
acted upon by the force

V = ;g (2.38)
called the force of gravity¹⁰. When a body is at rest relative to the Earth’s surface,
the force V is balanced by the reaction¹¹ Lr of the suspension or support preventing
falling of the body (Lr = −V). According to Newton’s third law, the body in this
case acts on the suspension or support with the force] equal to −Lr, i.e., with the
force

] = V = ;g

¹⁰Owing to the non-inertial nature of a reference frame associated with the Earth, the force of
gravity will differ somewhat from the force with which a body is attracted to the Earth. This will be
treated in greater detail in Sec. 4.2.

¹¹Reactions are forces with which a given body is acted upon by bodies restricting its motion.
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The force] with which a body acts on its suspension or support is called the
weight of the body. This force equals ;g only when the body and its support (or
suspension) are stationary relative to the Earth. If they are moving with a certain
acceleration a, their weight] will not equal ;g. This can be explained by the fol-
lowing example. Let a suspension in the form of a spring fastened to a frame move
together with a body with the acceleration a (Fig. 2.11). The equation of motion of
the body will therefore have the form

V + Lr = ;a (2.39)
where Lr is the reaction of the suspension, i.e., the force with which the spring
acts on the body. According to Newton’s third law, the body acts on the spring
with a force equal to −Lr, which by definition is the weight of the body] in these
conditions. Substituting the force −] for the reaction Lr and the product ;g for
the force of gravity V in Eq. (2.39), we get

] = ;(g − a). (2.40)
Equation (2.40) determines the weight of a body in the general case. It holds for a
suspension or a support of any kind.

Let us assume that our body and the suspension are moving in a vertical direc-
tion (Fig. 2.11 is based on this assumption).

We project Eq. (2.40) onto the direction of a plumb line:
, = ;(6 ± 0). (2.41)

In this expression, , , 6, and 0 are the magnitudes of the corresponding vectors.
The plus sign corresponds to a directed upward, and the minus sign to a directed
downward.

It follows from Eq. (2.41) that the magnitude of the weight ] may be either
greater or smaller than the force of gravity V . In free fall of the frame with the
suspension, a = g, and the force] with which the body acts on the suspension
vanishes. A state of weightlessness sets in. A spaceship orbiting around the Earth
with its engines switched off travels, like the freely falling frame, with the acceler-
ation g. As a result, the bodies inside it are in a state of weightlessness—they exert
no pressure on the bodies in contact with them.

It must be noted that the force of gravity V is often confused with the weight
of a body ] . This is due to the fact that with a stationary support, the forces V
and V coincide both inmagnitude and in direction (they both equal;g). It must be
remembered, however, that these forces are applied to different bodies: V is applied
to a body itself, whereas] is applied to the suspension or support restricting the
free motion of the body in the field of the Earth’s gravitational forces. In addition,
the force V always equals ;g regardless of whether the body is moving or at rest,



Practical Application of Newton’s Laws 67

Fig. 2.12

whereas the force of weight] depends on the accelerationwithwhich the support
and the body are moving. It may be either greater or smaller than ;g, and, in
particular, in a state of weightlessness it vanishes.

The relation (2.40) between the mass and the weight of a body provides a way
of comparing the masses of bodies by weighing them: the ratio of the weights of
bodies determined in identical conditions (usually at a = 0) at the same point on
the Earth’s surface equals the ratio of the masses of these bodies:

,1 : ,2 : ,3 : . . . = ;1 : ;2 : ;3 . . . .

It will be shown in Sec. 4.2 that the acceleration of free fall 6 and the force of
gravity % depend on the latitude of a locality. They also depend on the altitude,
and diminish with an increasing distance from the centre of the Earth.

2.12. Practical Application of Newton’s Laws

To compile an equation of motion, we must first of all establish what forces act on
the body being considered. It is necessary to determine the action of other bodies
on the given one that must be taken into account. For example, for a body sliding
down an inclined plane (Fig. 2.12), the action exercised by the Earth is important (it
is characterized by the force ;g), and also the action exercised by the plane (it is
characterized by the force of the reaction Lr).

Never take into account “moving”, “rolling down”, “centripetal”, “centrifugal”¹²
and similar forces. To prevent an error, characterize a force according to the “sour-
ce” causing it to appear, and not according to the action it produces. This means

¹²This does not relate to the term “centrifugal force of inertia” (see Sec. 4.2.
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that behind every force we must see the body whose action sets up the force. This
will eliminate the typical error consisting in that the same force is taken into ac-
count twice under different names.

In the example we are considering (see Fig. 2.12), it is good to resolve the force
of the reaction Lr into two components—the normal force L n̂ and the friction
force L fr. This, in particular, is useful in connection with the fact that the force of
friction is proportional to the magnitude of the force L n̂ [see Eq. (2.35)].

Having determined the forces acting on a body, we write an equation of New-
ton’s second law. In our example, it has the form

;a = ;g + Lr = ;g + L n̂ + L fr. (2.42)
To perform calculations, we must pass over from vectors to their projections onto
the correspondingly chosen directions, using the following properties of projec-
tions:

(1) equal vectors have identical projections;
(2) the projection of a vector obtained bymultiplying another vector by a scalar

equals the product of the projection of this second vector and the scalar;
(3) the projection of a sum of vectors equals the sum of the projections of the

vectors being added [see Eq. (1.8)].
Let us project the vectors in Eq. (2.42) onto the direction F shown in Fig. 2.12.

The projections of the vectors are 0F = 0 (0 is the magnitude of the vector a),
6F = 6 sin U, �n̂F = 0, �rF = −5 �n̂F = −5;6 cos U. Consequently, we arrive at the
equation

;0 = ;6 sin U − 5;6 cos U
from which it is a simple matter to find 0.

In more complicated cases, we have to project the vectors onto several direc-
tions and solve the resulting system of algebraic or differential equations.
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Chapter 3

LAWS OF CONSERVATION

3.1. Quantities Obeying the Laws of Conservation

Bodies forming a mechanical systemmay interact with one another and with bod-
ies not belonging to the given system. Accordingly, the forces acting on the bodies
of a system can be divided into internal and external ones. We shall define inter-
nal forces as the forces with which a given body is acted upon by the other bodies
of the system, and external forces as those produced by the action of bodies not
belonging to the system. If external forces are absent, the relevant system is called
closed.

There are functions of the coordinates and velocities of the particles¹ form-
ing a system for closed systems that retain constant values upon motion. These
functions are called motion integrals.

The number of motion integrals that can be formed for a system of # particles
between which there are no rigid constraints is 6# − 1. Only those of them are of
interest to us that have the property of additivity. This property consists in that the
value of a motion integral for a system comprising parts whose interaction may be
disregarded equals the sum of the values for each part. There are three additive
motion integrals. The first is called energy, the second—momentum, and the
third—angular momentum.

Thus, three physical quantities do not change in closed systems, namely, en-
ergy, momentum, and angular momentum. Accordingly, there are three laws of
conservation—that of energy conservation, that ofmomentumconservation, and
that of angular momentum conservation. These laws are closely associated with
the fundamental properties of space and time.

The conservation of energy is based on theuniformity of time, i.e., the equiv-

¹We remind our reader that by a particle here we mean a point particle.
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alence of all moments of time. The equivalence should be understood in the sense
that the substitution of the moment of time B2 for the moment B1 without a change
in the values of the coordinates and velocities of the particles does not change the
mechanical properties of a system. This signifies that after such a substitution, the
coordinates and velocities of the particles have the same values at any moment of
time B2 + B as they would have had before the substitution at the moment B1 + B.

The conservation of momentum is based on the uniformity of space, i.e., the
identical properties of space at all points. This should be understood in the sense
that a translation of a closed system from one place in space to another without
changing the mutual arrangement and velocities of the particles does not change
the mechanical properties of the system (it is assumed that the closed nature of the
system is not violated at the new place).

Finally, the conservation of angular momentum is based on the isotropy of
space, i.e., the identical properties of space in all directions. This should be un-
derstood in the sense that rotation of a closed system as a whole does not affect its
mechanical properties.

The laws of conservation are a powerful means of research. It is often ex-
tremely difficult to accurately solve equations of motion. In these cases, the laws
of conservation permit us to obtain numerous important data on how mechani-
cal phenomena proceed without having to solve equations of motion. The laws of
conservation do not depend on the nature of the acting forces. This is why they
can help us obtain much important information on the behaviour of mechanical
systems even when the forces are unknown.

In the following sections, we shall obtain the laws of conservation on the ba-
sis of Newton’s equations. It must be borne in mind, however, that the laws of
conservation have a much more general nature than Newton’s laws. The laws of
conservation remain strictly correct even when Newton’s laws (particularly the
third one) are violated. We stress the fact that the laws of energy, momentum, and
angular momentum conservation are accurate laws that are also strictly obeyed in
the relativistic realm.

3.2. Kinetic Energy

Let us now pass over to finding the additive integrals of motion. We shall first
consider the simplest system consisting of a single point particle.

The equation of motion of the particle is
;¤v = L . (3.1)

Here L is the resultant of the forces acting on the particle. Multiplying Eq. (3.1) by
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the displacement of the particle ds = v dB, we get
;v¤v dB = L ds. (3.2)

The product ¤v dB is the increment of the velocity of the particle dv during the time
dB. Accordingly

;v¤v dB = ;v dv = ; d
(
D2

2

)
= d

(
;D2

2

)
(3.3)

Performing such a substitution in Eq. (3.2), we arrive at the expression

d
(
;D2

2

)
= L ds. (3.4)

If the system is closed, i.e., L = 0, then d(;D2/2) = 0, while the quantity

�k =
;D2

2
(3.5)

itself remains constant. This quantity is called the kinetic energy of the particle.
For an isolated particle, the kinetic energy is an integral of motion².

Multiplying the numerator and denominator of Eq. (3.5) by ; and taking into
consideration that the product ;D equals the momentum > of a body, the expres-
sion for the kinetic energy can be given the form

�k =
>2

2;
. (3.6)

If the force L acts on a particle, its kinetic energy does not remain constant. In
this case in accordance with Eq. (3.4), the increment of the particle’s kinetic energy
during the time dB equals the scalar product L ds (ds is the displacement of the
particle during the time dB). The quantity

d� = L ds (3.7)
is called the work done by the force L over the path dA (dA is the magnitude of
the displacement ds). The scalar product (3.7) can be represented as the product
of the projection of the force onto the direction of the displacement �s and the
elementary distance dA. Consequently, we can write that

d� = �s dA. (3.8)
It is clear from the above that work characterizes the change in energy due to the
action of a force on a moving particle.

²For a single isolated particle, any power of the velocity remains constant. But for a system of
several interacting particles, it is exactly quantities of the form of Eq. (3.5) that are addends in the
additive integral of motion.
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Let us integrate Eq. (3.4) along a certain trajectory from point 1 to point 2:∫ 2

1
d
(
;D2

2

)
=

∫ 2

1
L ds.

The left-hand side is the difference between the values of the kinetic energy at
points 2 and 1, i.e., the increment³ of the kinetic energy along path 1-2. Taking this
into account, we get:

�k,2 − �k,1 =
;D22

2
−
;D21

2
=

∫ 2

1
L ds. (3.9)

The quantity

� =

∫ 2

1
L ds =

∫ 2

1
�s dA (3.10)

is the work of the force L over path 1-2. We shall sometimes denote this work by
the symbol �12 instead of �.

Thus, the work of the resultant of all the forces acting on a particle produces an
increment of the particle’s kinetic energy:

�12 = �k,2 − �k,1. (3.11)
It follows from Eq. (3.11) that energy has the same dimension as work. Accordingly,
energy is measured in the same units as work (see the following section).

3.3. Work

Let us consider the quantity that we called work in greater detail. Equation (3.7)
can be written in the form

d� = L ds = � cos U dA (3.12)
where U is the angle between the direction of the force and that of the displacement
of the point of application of the force.

If the force and the direction of the displacement make an acute angle (cos U >
0), the work is positive. If the angle U is obtuse (cos U < 0), the work is negative.
When U = c/2, thework equals zero. This especially clearly shows that the concept
of work in mechanics appreciably differs from our ordinary notion of it. In the
ordinary meaning, any effort, particularly muscular strain, is always attended by

³The change in a quantity 0 can be characterized either by its increment or its decrement. The
increment of the quantity 0, which we shall designate by J0 is defined as the difference between
the final (02) and initial (01) values of this quantity: increment = J0 = 02 − 01. The decrement of
the quantity a is the difference between its initial (01) and final (02) values: increment = 01 − 02 =

−J0. The decrement of a quantity equals its ·increment with the opposite sign. The increment and
decrement are algebraic quantities.
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work being done. For example, in order to hold a heavy load while standing still,
and, moreover, to carry this load along a horizontal path, a porter spends much
effort, i.e., “does work”. The work as a mechanical quantity in these cases, however,
equals zero.

Figure 3.1 is a plot of the projection of the force onto the direction of displace-
ment �s as a function of the position of the particle on its trajectory (the axis of
abscissas has been taken as the A-axis, the length of the part of this axis between
points 1 and 2 equals the total length of the path). Examination of the figure shows
that the elementary work d� = �s dA equals numerically the area of the shaded
strip, while the work � over path 1-2 equals numerically the area of the figure con-
fined by the curve �s, the vertical lines from points 1 and 2 and the A-axis (compare
with Fig. 1.26).

Let us use this result to find the work done in the deformation of a spring
obeying Hooke’s law [see Fig. 2.5 and Eq. (2.26)]. We shall begin with stretching of
the spring. We shall do this very slowly so that the force Lext which we act on the
spring with may be considered equal in magnitude to the elastic force Lel all the
time. Hence, LF,ext = −LF,el = 9F, where F is the elongation of the spring (Fig. 3.2).
A glance at the figure shows that the work required to cause the elongation F of
the spring is

� =
9F2

2
. (3.13)

When the spring is compressed by the amount F, work of the same magnitude and
sign is done as in stretching by F. The projection of the force Lext in this case is
negative (Lext is directed to the left, F grows to the right, see Fig. 3.2), and all the
dF’s are also negative. As a result, the product LF,ext dF is positive.
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In a similar way, we can find an expression for the work done upon the elastic
stretching or compression of a bar. According to Eq. (2.31), this work is

� =
1
2
�(

:0
(J:)2 = 1

2
�(:0

(
J:

:0

)2
=
1
2
�+ Y2 (3.14)

where + = (:0 is the volume of the bar, and Y = J:/:0 is the relative elongation
[see Eq. (2.27)].

Assume that several forces whose resultant is L =
∑
7 L 7 act simultaneously on

a body. It follows from the distributivity of a scalar product of vectors [see Eq. (1.20)]
that the work d� done by the resultant force over the path dA can be represented
in the form

d� =

(∑
7

L 7

)
dA =

∑
7

L 7 ds =
∑
7

d�7. (3.15)

This signifies that the work of the resultant of several forces equals the algebraic
sum of the work done by each force separately.

The elementary displacement ds can be represented as vdB. We can therefore
write the expression for the elementary work in the form

d� = Lv dB. (3.16)
The work done during the interval from B1 to B2 can thus be calculated by the for-
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mula

� =

∫ B2

B1

L dB. (3.17)

In accordance with Eq. (1.21), we have L ds = � dA� , where dA� , is the projection
of the elementary displacement dsA onto the direction of the force L . The formula
for work can therefore be written as follows:

d� = � dA� . (3.18)
If the force has a constant magnitude and direction (Fig. 3.3), then the vector L

in the expression for work may be put outside the integral. The result is

� = L

∫ 2

1
dv = L ·s = �A� (3.19)

where s is the vector of the displacement from point 1 to point 2, and A� is its
projection onto the direction of the force.

The work done in unit time is called power. If the work d� is done in the time
dB, then the power is

% =
d�
dB
. (3.20)

Taking d� as given by Eq. (3.16), we get the following expression for the power:
% = L ·v (3.21)
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according to which the power equals the scalar product of the force vector and the
vector of the velocity with which the point of application of the force is moving.

Units of Work and Power. The unit of work is the work done by a force
equal to unity and acting in the direction of the displacement over a unit distance.
Consequently,

(1) in the SI system, the unit of work is the joule (J)—the work done by a force
of 1N over a distance of 1m;

(2) in the cgs system, the relevant unit is the erg—the work done by a force of
1 dyn over a distance of 1 cm;

(3) in the mkg(force)s system, the unit is the kilogramme(force)m (kgf m)—the
work done by a force of 1 kgf over a distance of 1m.

The units of work are related as follows:
1 J = 1N × 1m = 105 dyn × 102 cm = 107 erg
1 kgf m = 1 kgf × 1m = 9.81N × 1m = 9.81 J.

The unit of power is the power at which 1 unit of work is done in unit time. The
unit of power in the SI system is the watt (W) equal to one joule per second (J s−1).
The unit of power in the cgs system (erg s−1) has no special name. The relation
between the watt and the erg s−1 is 1W = 107 erg s−1.

The unit of power in the mkgforce)s system is the (metric) horsepower (hp),
equal to 75 kgf m s−1, 1 hp = 736W (do not confuse this unit with the British or
U.S. horsepower equal to 550 ft-lb s−1 or 746W).

A system of prefixes is used, especially in the SI system, to denotemultiples and
submultiples of units. The names and symbols of these prefixes and the relevant
factor by which the basic unit is multiplied are indicated in Table 3.1.

For example, the unit of work called the megajoule is equivalent to 106 joules
(1MJ = 106 J), and the unit of power called the microwatt is equivalent to 10−6

watt (1 µW = 10−6W. Similarly, 1 micrometer (formerly called the micron) is
equivalent to 10−6m (1 µm = 10−6m), and 1 pN = 10−12N.

3.4. Conservative Forces

If a particle is subjected to the action of other bodies at every point of space, the
particle is said to be in a field of forces. For example, a particle near the Earth’s
surface is in the field of gravity forces—at every point of space the force V = ;g
acts on it.

Let us consider as a second example the charged particle 4 in the electric field
set up by the fixed point charge ? (Fig. 3.4). A feature of this field is that the direction
of the force acting on the particle at any point of space passes through a fixed centre
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(the charge ?), while themagnitude of the force depends only on the distance to this
centre, i.e., � = � (@) [see Eq. (2.23)]. A field of forces with such properties is called
a central one.

If at every point of a field the force acting on a particle is identical inmagnitude
and direction (L = constant), the field is called homogeneous.

A field that changes with time is called non-stationary. A field that remains
constant with time is called stationary.

For a stationary field, the work done on a particle by the forces of the field may
depend only on the initial and final positions of the particle and not depend on
the path along which the particle moved. Forces having such a property are called
conservative.

It follows from the work of conservative forces being independent of the path
that the work of such forces along a closed path equals zero. To prove this, let us

Table 3.1: Prefixes for Multiples and Submultiples of Units

Factor by which Factor by which
Name Symbol unit is multiplied Name Symbol unit is multiplied

Tera T 1012 Centi c 10−2

Giga G 109 Milli m 10−3

Mega M 106 Micro µ 10−6

Kilo k 103 Nano n 10−9

Hecto h 102 Pico p 10−12

Deca da 101 Femto f 10−15

Deci d 10−1 Atto a 10−18
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divide an arbitrary closed path into two parts: path I along which a particle passes
from point 1 to point 2, and path II along wh1ch the particle passes from point 2
to point 1 (Fig. 3.5). We have chosen points 1 and 2 arbitrarily. The work along the
entire closed path equals the sum of the work done on each of the parts:

� = (�12)I + (�21)II. (3.22)
It is easy to see that the work (�21)II differs from (�12)I only in its sign. Indeed,
reversing of the direction of motion results in ds being replaced with −ds, and as
a consequence the value of the integral

∫
L ds reverses its sign. Thus, Eq. (3.22) can

be written in the form
� = (�12)I − (�21)II.

and since the work does not depend on the path, i.e., (�12)I = (�21)II, we arrive at
the conclusion that � = 0.

From the equality to zero of the work over a closed path, it is easy to obtain
that the work �12 is independent of the path. This can be done by reversing the
above reasoning.

Thus, conservative forces can be defined in two ways: (1) as forces whose work
does not depend on the path along which a particle passes from one point to an-
other, and (2) as forces whose work along any closed path equals zero.

We shall prove that the force of gravity is conservative. This force at any point
has the same magnitude and direction—vertically downward (Fig. 3.6). Therefore,
regardless of the path along which the particle moves (for example I or II in the
figure), the work �12 according to Eq. (3.19) is determined by the expression

�12 = ; (g ·s12) = ;6(A12)pr. g .
Inspection of Fig. 3.6 shows that the projection of the vector s12 onto the direction
g equals the difference between the heights ℎ1 − ℎ2. Hence, the expression for the
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work can be written in the form
�12 = ;6(ℎ1 − ℎ2). (3.23)

This expression obviously does not depend on the path. Hence it follows that the
force of gravity is conservative. Q.E.D.⁴

It is a simple matter to see that the same result is obtained for any stationary
homogeneous field.

The forces acting on a particle in a central field are also conservative. By
Eq. (3.18), the elementary work over the path dA (Fig. 3.7) is

d� = � (@) dA� .
But the projection of dA onto the direction of the force at a given point, i.e., onto
the direction of the position vector r, is d@—the increment of the distance from
the particle to the force centre O, namely, dA� = d@. Hence, d� = � (@) d@, and the
work along the entire path is

�12 =

∫ @2

@1

� (@) d@. (3.24)

Equation (3.24) depends only on the form of the function � (@) and on the values of
@1 and @2. It does not depend in any way on the form of the trajectory, whence it
follows that the forces are conservative.

For our reader not to form the erroneous idea that any force depending only
on the coordinates of a point is conservative, let us consider the following example.
Assume that the components of a force are determined by the equations

�F = 0G, �G = −0F, �H = 0. (3.25)

⁴Q.E.D. is an abbreviation of the Latin phrase “quod erat demonstrandum”, literally meaning
“what was to be shown”.
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Fig. 3.8

This force has a magnitude equal to � = 0@, and is directed along a tangent to a
circle of radius @ (Fig. 3.8). Indeed, as follows from the figure, for a force of such a
magnitude and direction, we have

�F = 0@ cos
( c
2
− U

)
= 0@ sin U = 0@

G

@
= 0G,

�G = 0@ cos(c − U) = 0@ cos U = −0@
F

@
= −0F,

which coincides with the values given by Eqs. (3.25). Let us take a closed path in the
form of a circle of radius @ with its centre at the origin of coordinates. The work
of the force along this path evidently equals � × 2c@ = 0@ × 2c@ = 2c0@2 , i.e., does
not equal zero. Consequently, the force is not conservative.

Forces of friction are typical non-conservative ones. Since the force of friction
L and the velocity of a particle v are directed oppositely⁵, then the work of the
force of friction on each part of the path is negative:

d� = L ds = (L ·v) dB = −�D dB = −� dA < 0.

⁵Here we have in view friction between a moving body and a stationary (relative to the reference
frame) one. The forces of friction may sometimes be positive. This occurs, for instance, when the
force of friction is due to the interaction of a given body with another one moving in the same
direction, but with a higher velocity.
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Therefore, the work along any closed path will also be negative (i.e., other than
zero). Hence it follows that the forces of friction are not conservative.

It must be noted that a field of conservative forces is a particular case of a po-
tential force field. A field of forces is called potential if it can be described with the
aid of the function+ (F, G, H, B), whose gradient [see the following section, Eq. (3.31)]
determines the force at each point of the field: L = ∇+ [compare with Eq. (3.32)].
The function + is called the potential function or the potential.

When a potential does not depend explicitly on the time, i.e., + = + (F, G, H),
the potential field is stationary, and its forces are conservative. In this case

+ (F, G, H) = −�p(F, G, H)
where �p(F, G, H) is the potential energy of a particle (see the following section).

For a non-stationary force field described by the potential + (F, G, H, B), the po-
tential and conservative forces cannot be considered identical.

3.5. Potential Energy in an External Force Field

Let us consider the case when the work of field forces does not depend on the path,
but depends only on the initial and final positions of a particle in the field. A value
of a certain function �p(F, G, H) can be assigned to each point of the field such that
the difference between the values of this function at points 1 and 2 will determine
the work of the forces when the particle passes from the first point to the second
one:

�12 = �p,1 − �p,2. (3.26)
We can assign this function as follows. We take an arbitrary value of the func-

tion equal to �p,0 , for an initial point 0. We assign the value
�p(%) = �p,0 + �p,0 (3.27)

to any other point %. Here �p,0 is the work done on a particle by the conservative
forces when it is moved from point % to point 0. Since the work is independent of
the path, the value of �p(%) determined in this way will be unambiguous. It must
be noted that the function �p(%) has the dimension of work (or energy).

In accordance with Eq. (3.27), the values of the function at points 1 and 2 are
�p,1 = �p,0 + �10, �p,2 = �p,0 + �20.

Let us form the difference between these values and take into account that �20 =

−�02 (see the preceding section). As a result, we get
�p,1 − �p,2 = �10 − �20 = �10 + �02.

The sum �10 + �02 gives the work done by the forces of the field when the particle
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moves from point 1 to point 2 along a trajectory passing through point 0. How-
ever, the work done to move the particle from point 1 to point 2 along any other
trajectory (including one not passing through point 0) will be the same. Hence, the
sum �10 + �02 can be written simply in the form �12. As a result, we get Eq. (3.26).

We can thus use the function �p to determine the work done on a particle by
conservative forces along any path beginning at arbitrary point 1 and terminating
at arbitrary point 2.

Assume that only conservative forces act on the particle. Consequently, the
work done on the particle along path 1-2 can be represented in the formofEq. (3.26).
According to Eq. (3.11), this work produces an increment of the kinetic energy of
the particle. We thus arrive at the equation

�k,2 − �k,1 = �p,1 − �p,2
whence it follows that

�k,2 + �p,2 = �k,1 + �p,1
The result obtained signifies that the quantity

� = �k + �p (3.28)
for a particle in the field of conservative forces remains constant, i.e., is an integral
of motion.

It follows from Eq. (3.28) that �p is an addend in the motion integral having
the dimension of energy. In this connection, the function �p(F, G, H) is called the
potential energy of a particle in an external force field. The quantity � equal to the
sum of the kinetic and potential energies is called the total mechanical energy
of the particle.

According to Eq. (3.26), the work done on a particle by conservative forces
equals the decrement of the potential energy of the particle.

We can say in a different way that work is done at the expense of the store of
potential energy. We can see from Eq. (3.27) that the potential energy is determined
with an accuracy to a certain unknown additive constant �p,0. This circumstance
is of no significance, however, because all physical relations contain either the dif-
ference between the values of �p for two positions of a body, or the derivative of
the function �p with respect to the coordinates. In practice, the potential energy
of a body at a certain position is considered to equal zero, and the energy at other
positions is taken with respect to this energy.

Knowing the form of the function �p(F, G, H), we can find the force acting on
a particle at every point of a field. Let us consider the displacement of a particle
parallel to the F-axis by the amount dF. This displacement is attended by work
being done on the particle that is d� = L ds = �F dF (the displacement components
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dG and dH equal zero). According to Eq. (3.26), the same work can be represented as
the decrement of the potential energy: d� = −d�p. Equating the two expressions
for the work, we obtain

�F dF = −d�p
whence

�F = −
d�p
dF
( G = constant, H = constant).

The expression in the right-hand side is the derivative of the function �p(F, G, H)
calculated on the assumption that the variables G and H remain constant, and only
the variable F changes. Such derivatives are called partial ones and are denoted,
unlike derivative functions of one variable, by the symbol ∂�p/∂F. Consequently,
the component of the force along the F-axis equals the partial derivative of the
potential energy with respect to the variable F taken with the opposite sign: �F =
−∂�p/∂F. Similar expressions are obtained for the components of the force along
the G- and H-axes. Thus,

�F = −
∂�p

∂F
, �G = −

∂�p

∂G
, �H = −

∂�p

∂H
. (3.29)

Knowing its components, we can find the force vector:

L = �F êF + �G êG + �H êH = −
∂�p

∂F
êF −

∂�p

∂G
êG −

∂�p

∂H
êH . (3.30)

A vector having the components ∂i/∂F, ∂i/∂G, ∂i/∂H, where i is a scalar func-
tion of the coordinates F, G, H, is called the gradient of the function i and is des-
ignated by the symbol grad i or ∇i (∇ stands for the nabla operator). It follows
from the definition of the gradient that

∇i =
∂i

∂F
êF +

∂i

∂G
êG +

∂i

∂H
êH . (3.31)

A comparison of Eqs. (3.30) and (3.31) shows that the conservative force equals
the gradient of the potential energy taken with the opposite sign:

L = −∇�p. (3.32)
Assume that a particle which the force (3.32) acts on moves over the distance ds

having the components dF, dG, dH. The force does the work

d� = L ds = −∇�p ds = −
(
∂�p

∂F
dF +

∂�p

∂G
dG +

∂�p

∂H
dH

)
.

Taking into account that d� = −d�p, we get the following expression for the in-
crement of the function �p:

d�p =
∂�p

∂F
dF +

∂�p

∂G
dG +

∂�p

∂H
dH. (3.33)
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An expression such as Eq. (3.33) is called the total differential of the relevant func-
tion.

The concept of the total differential plays a great part in physics. For this rea-
son, we shall devote a few lines to it. The total differential of the single-valued
function 5 (F, G, H) is defined as the increment which this function receives in tran-
sition from a point with the coordinates F, G, H to a neighbouring point with the
coordinates F + dF, G + dG, H + dH. By definition, this increment equals

d5 (F, G, H) = 5 (F + dF, G + dG, H + dH) − 5 (F, G, H)
and, consequently, is determined only by the values of the function at the initial
and final points. Hence, it cannot depend on the path along which the transition
occurs. Let us take the broken line consisting of the segments dF, dG, dH as such a
path (Fig. 3.9). On the segment dFD, the function 5 (F, G, H) behaves like a function of
one variable F, and receives the increment (∂5/∂F) dF. Similarly, on the segments
dG and dH, the function receives the increments (∂5/∂G) dG and (∂5/∂H) dH. The
total increment of the function when passing from the initial point to the final one
thus equals

d5 (F, G, H) = ∂5

∂F
dF + ∂5

∂G
dG + ∂5

∂H
dH. (3.34)

We have arrived at the expression for the total differential [compare with Eq. (3.33)].
Not any expression of the kind
% (F, G, H)dF + &(F, G, H)dG + '(F, G, H)dH

is a total differential of a certain function 5 (F, G, H). Particularly, the expression for
the work done by the force whose projections are given by Eqs. (3.25)

d� = 0G dF − 0F dG (3.35)
is not a total differential because there is no such function �p for which−∂�p/∂F =

0G, and −∂�p/∂G = −0F [see Eqs. (3.25)]. Correspondingly, there is no function �p
whose decrement would determine the work (3.35).

It follows from the above that only forces complying with the condition (3.32)
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Fig. 3.10

can be conservative, i.e., such forces whose components along the coordinate axes
equal the derivatives of a certain function �p(F, G, H) with respect to the relevant
coordinates taken with the opposite sign. This function is the potential energy of
a particle.

The concrete form of the function �p(F, G, H) depends on the nature of the
force field. Let us find as an example the potential energy of a particle in a field of
forces of gravity. According to Eq. (3.23), the work done on a particle by the forces
of this field is

�12 = ;6(ℎ1 − ℎ2).
On the other hand, according to Eq. (3.26),

�12 = �p,1 − �p,2.
Comparing these two expressions for the work, we arrive at the conclusion that
the potential energy of a particle in a field of gravity forces is determined by the
expression

�p = ;6ℎ (3.36)
where ℎ is measured from an arbitrary level.

The zero of potential energy may be chosen arbitrarily. Therefore, �p may
have negative values. If we take the potential energy of a particle on the Earth’s
surface as zero, for example, then the potential energy of a particle lying on the
bottom of a pit with a depth of ℎ′ will be �p = −;6ℎ′ (Fig. 3.10). It must be noted
that the kinetic energy cannot be negative.

Assume that the non-conservative force L∗ acts on a particle in addition to
conservative forces. Hence, when the particle is moved from point 1 to point 2,
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the work done on it will be

�12 =

∫ 2

1
L ds +

∫ 2

1
L∗ ds = �cons + �∗12

where �∗12 is the work of the non-conservative force. The work of the conservative
forces �cons can be represented as �p,1 − �p,2. As a result, we find that

�12 = �p,1 − �p,2 + �∗12
The total work of all the forces applied to the particle produces an increment of its
kinetic energy [see Eq. (3.11)]. Consequently,

�k,2 − �p,1 = �p,1 − �p,2 + �∗12
whence, taking into consideration that �k + �p = �, we get

�2 − �1 = �∗12. (3.37)
The result obtained signifies that the work of non-conservative forces is spent on
an increment of the total mechanical energy of a particle.

If the kinetic energy of a particle is the same in its final and initial positions (in
particular, it equals zero), then the work of the non-conservative forces produces
an increment of the potential energy of the particle:

�∗12 = �p,2 − �p,1 (3.38)
(�k,2 = �k,1). This relation is useful when finding the difference between the values
of the potential energy.

Let us consider a system consisting of # particles in the field of conservative
forceswhen the particles do not interactwith one another. Each of the particles has
the kinetic energy �k,7 = ;7D

2
7
/2 (7 is the number of the particle) and the potential

energy �p,7 = �p,7 (F7, G7, H7). Considering the 7-th particle independently of the
other particles, we can find that

�7 = �k,7 + �p,7 = constant7
Summing these equations for all the particles, we arrive at the relation

� =

#∑
7=1

�7 =

#∑
7=1

�k,7 +
#∑
7=1

�p,7 = constant. (3.39)

This relation points to the additivity of the total mechanical energy for the system
being considered.

According to Eq. (3.39), the total mechanical energy of a system of non-interacting
particles on which only conservative forces act remains constant. This statement ex-
presses the law of energy conservation for the above mechanical system.

If non-conservative forces L∗ act on particles in addition to conservative forces,
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the total energy of the system does not remain constant, and

�2 − �1 =
#∑
7=1

(�∗12)7 (3.40)

where (�∗12)7 is the work done by the non-conservative force applied to the 7-th
particle when it moves from its initial position to its final one.

We established at the end of the preceding section that the work of friction
forces is always negative. Therefore, when such forces are present in a system, the
total mechanical energy of the system diminishes (dissipates), transforming into
non-mechanical forms of energy (for example, into the internal energy of bod-
ies, or, as is customarily said, into heat). This process is called the dissipation of
energy. Forces leading to the dissipation of energy are called dissipative. Thus,
friction forces are dissipative. In general, forces that always act oppositely to the
velocities of particles and therefore cause their retardation are called dissipative.

We shall note that non-conservative forces are not necessarily dissipative ones.

3.6. Potential Energy of Interaction

Up to now, we treated systems of non-interacting particles. Nowwe shall pass over
to the consideration of a system of two particles interacting with each other. Let
L12 be the force with which the second particle acts on the first one, and L21 be
the force with which the first particle acts on the second one. In accordance with
Newton’s third law, L12 = −L21.

Let us introduce the vector X12 = r2 − r1 , where r1 and r2 are the position
vectors of the particles (Fig. 3.11). The distance between the particles equals the
magnitude of this vector. Assume that the magnitudes of the forces L12 and L21
depend only on the distance X12 between the particles, and that the forces are
directed along the straight line connecting the particles. We know that this holds
for forces of gravitational and Coulomb interactions [see Eqs. (2.18) and (2.23)].

With these assumptions, the forces L12 and L21 can be represented in the form

L12 = −L21 = 5 ('12) ê12 (3.41)
where ê12 is the unit vector of X12 (Fig. 3.12), and 5 ('12) is a certain function of '12
that is positive when the particles attract each other and negative when they repel
each other.

Considering our system to be closed (there are no external forces), let us write
the equations of motion for our two particles:

;1 ¤v1 = L12, ;2 ¤v2 = L21

Let us multiply the first equation by dr1 = v1 dB, the second by dr2 = v2 dB, and
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Fig. 3.11 Fig. 3.12

add the resulting equations⁶. We get
;1v1 ¤v1 dB + ;2v2 ¤v2 dB = L12 dr1 + L21 dr2. (3.42)

The left-hand side of this equation is the increment of the kinetic energy of the
system during the time dB [see Eq. (3.3)], and the right-hand side is the work of the
internal forces during the same time. Taking into account that L21 = −L12, we can
write the right-hand side as follows:

d�int = L12 dr1 + L21 dr2 = −L12 d(r2 − r1) = −L12 dX12. (3.43)
Introducing Eq. (3.41) for L12 into the above equation, we get

d�int = −5 ('12) ê12 dX12.

Examination of Fig. 3.12 shows that the scalar product ê12 dX12 equals d'12—the
increment of the distance between the particles. Thus,

d�int = −5 ('12) d'12. (3.44)
The expression 5 ('12) d'12 can be considered as the increment of a certain

function of '12. Designating this function �p('12), we arrive at the equation
5 ('12) d'12 = d�p('12). (3.45)

Consequently,
d�int = d�p. (3.46)

With a view to everything said above, Eq. (3.42) can be written in the form
d�k = −d�p, or

d� = d(�k + �p) = 0 (3.47)
whence it follows that the quantity � = �k + �p for the closed system being con-
sidered remains unchanged. The function �p('12) is the potential energy of inter-
action. It depends on the distance between the particles.

Let the particles move from their positions spaced ' (0)12 apart to new positions
spaced ' (1)12 apart. In accordancewith Eq. (3.46), the internal forces do the following

⁶Here it is expedient to use the symbol d@ for the displacement instead of ds.
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work on the particles:

�ab, int = −
∫ 1

0

d�p = �p [' (0)12 ] − �p ['
(1)
12 ]. (3.48)

It follows from Eq. (3.48) that the work of the forces (3.41) does not depend on the
paths of the particles and is determined only by the initial and final distances be-
tween them (the initial and final configurations of the system). Forces of interaction
of the form given by Eq. (3.41) are thus conservative.

If both particles move, the total energy of the system is

� =
;1D

2
1

2
+
;2D

2
2

2
+ �p,ia('12) (3.49)

where �p,ia('12) is the potential energy of interaction.
Assume that particle 1 is fixed at a certain pointwhichwe shall take as the origin

of coordinates (r1 = 0). As a result, this particle will lose its ability to move, so that
the kinetic energy will consist only of the single addend ;2D

2
2/2. The potential

energy will be a function only of r2. Therefore, Eq. (3.49) becomes

� =
;2D

2
2

2
+ �p,ia(@2). (3.50)

If we consider the system consisting of only the single particle 2, then the function
�p,ia will play the part of the potential energy of particle 2 in the field of the forces
set up by particle 1. In essence, however, this function is the potential energy of
interaction of particles 1 and 2. In general, the potential energy in an external field
of forces is essentially the energy of interaction between the bodies of the system
and those producing a force field that is external relative to the system.

Let us again turn to a system of two interacting free (“unfixed”) particles. If the
external force L∗1 acts on the first particle in addition to the internal force, and the
force L∗2 on the second particle, then the addends L

∗
1 dr

∗
1 and L

∗
2 dr

∗
2 will appear in

the right-hand side of Eq. (3.42), and their sum will give the work of the external
forces d�ext. Equation (3.47) will correspondingly become

d(�k + �p,ia) = d�ext. (3.51)
When the total kinetic energy of the particles remains constant (for example,

equals zero), Eq. (3.51) becomes
d�p,ia = d�ext (3.52)

(here d�k = 0). Integration of this equation from configuration 0 to configuration
1 yields

�p,ia [' (1)12 ] − �p,ia ['
(0)
12 ] = d�ab,ext (3.53)

(�k,1 = �k,0) [compare with Eq. (3.38)].
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Let us extend the results obtained to a system of three interacting particles. In
this case, the work of the internal forces is

d�int = (L12 + L13) dr1 + (L21 + L23) dr2 + (L31 + L32) dr3. (3.54)
Taking into account that L 79 = −L97 we can write Eq. (3.54) in the form

d�int = −L12 d(r2 − r1) − L13 d(r3 − r1) − L23 d(r3 − r2)
= −L12 dX12 − L13 dX13 − L23 dX23 (3.55)

where X79 = r9 − r 7.
Let us assume that the internal forces can be represented in the form L 79 =

579 ('79) ê79 [compare with Eq. (3.41)]. Hence,
d�int = −512('12) ê12 dX12 − 513('13) ê13 dX13 − 523('23) ê23 dX23.

Each of the products ê79 d'79 equals the increment of the distance between the
corresponding particles d'79. Consequently,

d�int = −512('12) d'12 − 513('13) d'13 − 523('23) d'23
= −d[�p,12('12) + �p,13('13) + �p,23('23)] = −d�p,ia. (3.56)

Here
�p,ia = �p,12('12) + �p,13('13) + �p,23('23) (3.57)

is the potential energy of interaction of the system. It consists of the energies
of interaction of the particles taken in pairs.

Equating d�k to the sum of the work d�int = −d�p,ia and d�ext we arrive at
Eq. (3.51) in which by �p,ia we must understand Eq. (3.57).

The result obtained is easily generalized for a system with any number of par-
ticles. For a system of # interacting particles, the potential energy of interaction
consists of the energies of interaction of the particles taken in pairs:

�p,ia = �p,12('12) + �p,13('13) + . . . + �p,1# ('1# )
+ �p,23('23) + �p,2# ('2# ) + . . . + �p,#−1,# ('#−1,# ). (3.58)

This sum can be written as follows:
�p,ia =

∑
7<9

�p,79 ('79) (3.59)

[note that in Eq. (3.58) the first subscript of each addend has a value smaller than the
second one]. In connection with the fact that �p,79 ('79) = �p,97 ('97), the energy of
interaction can also be represented in the form

�p,ia =
1
2

∑
7≠9

�p,79 ('79). (3.60)

In the sums (3.59) and (3.60), the subscripts 7 and 9 take on values from 1 to # with
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observance of the condition that 7 < 9 or 7 ≠ 9.
Assume that a system consists of four particles, and that the first particle inter-

acts only with the second one and the third particle only with the fourth one. The
total energy of this system will be

� = �k,1 + �k,2 + �k,3 + �k,4 + �k,12 + �k,34
= (�k,1 + �k,2 + �k,12) + (�k,3 + �k,4 + �k,34) = �′ + �′′. (3.61)

Here �′ is the total energy of the subsystem formed by particles 1 and 2, and �′′ is
the total energy of the subsystem formed by particles 3 and 4. In accordance with
our assumption, there is no interaction between the subsystems. Equation (3.61)
proves the additivity of energy (see the third paragraph of Sec. 3.1).

In conclusion, let us find the form of the function �p,ia for the case when the
force of interaction is inversely proportional to the square of the distance between
the particles:

5 ('12) =
U

'212
(3.62)

(U is a constant). We remind our reader that for attraction between the particles
U > 0, and for repulsion between them U < 0 [see the text following Eq. (3.41)].

In accordance with Eq. (3.45)

d�p,ia = 5 ('12) d'12 =
U

'212
d'12.

Integration yields

�p,ia = −
U

'12
+ constant. (3.63)

Like the potential energy in an external field of forces, the potential energy of
interaction is determined with an accuracy up to an arbitrary additive constant.
It is usually assumed that when '12 = ∞, the potential energy becomes equal to
zero [at such a distance the force Eq. (3.62) becomes equal to zero—the interaction
between the particles vanishes]. Hence, the additive constant in Eq. (3.63) vanishes,
and the expression for the potential energy of interaction acquires the form

�p,ia = −
U

'12
. (3.64)

In accordance with Eq. (3.53), the following work must be done to move the
particles away from each other from the distance '12 to infinity without changing
their velocities:

�ext = �p,ia(∞) − �p,ia('12).
Introduction of the corresponding values of the function Eq. (3.64) leads to the
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expression

�ext = 0 −
(
− U

'12

)
=

U

'12
. (3.65)

When the particles are attracted to each other, we have U > 0; accordingly,
positive work must be done to move the particles away from each other.

Upon repulsion of the particles from each other, U < 0, and the work (3.65) is
negative. This work has to be done to prevent the particles that are repelling each
other from increasing their velocity.

3.7. Law of Conservation of Energy

Let us combine the results obtained in the preceding sections. We shall consider a
system consisting of # particles of masses ;1, ;2, . . . , ;# . Assume that the parti-
cles interact with one another with the forces L 79, whose magnitudes depend only
on the distance '79 between the particles. We established in the preceding section
that such forces are conservative. This signifies that the work done by these forces
on the particles is determined by the initial and final configurations of the system.
Assume that the external conservative force L 7 and the external non-conservative
force L∗7 act on the 7-th particle in addition to the internal forces. The equation of
motion of the 7-th particle will therefore acquire the form

;7 ¤v7 =
#∑
9=1
(9≠7)

L 79 + L 7 + L∗7 (3.66)

where 7 = 1, 2, . . . , # .
Multiplying the 7-th equation by ds7 = dr 7 = v7 dB and adding together all the

# equations, we get

#∑
7=1

;7v7 dv7 =
#∑
7=1


#∑
9=1
(9≠7)

L 79

 dr 7 +
#∑
7=1

L 7 ds7 +
#∑
7=1

L∗7 ds7. (3.67)

The left-hand side is the increment of the kinetic energy of the system:
#∑
7=1

;7v7 dv7 = d

[
#∑
7=1

;7D
2
7

2

]
= d�k (3.68)

[see Eq. (3.3)]. It follows from Eqs. (3.54)-(3.59) that the first term of the right-hand
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side equals the decrement of the potential energy of interaction of the particles:

#∑
7=1


#∑
9=1
(9≠7)

L 79

 dr 7 = −
∑
7<9

L 79 dX79 = −d
[∑
7<9

�p,79 ('79)
]
= −d�p,ia. (3.69)

According to Eq. (3.26), the second term in Eq. (3.67) equals the decrement of the
potential energy of the system in the external field of the conservative forces:

#∑
7=1

L 7 ds7 = −d
[
#∑
7=1

�p,7 (r 7)
]
= −d�p,ext. (3.70)

Finally, the last term in Eq. (3.67) is the work of the non-conservative external
forces:

#∑
7=1

L∗7 ds7 =
#∑
7=1

d�∗7 = d�∗ext. (3.71)

Taking into account equations (3.68)-(3.71), we can write Eq. (3.67) as follows:
d(�k + �p,ia + �p,ext) = d�∗ext. (3.72)

The quantity
� = �k + �p,ia + �p,ext (3.73)

is the total mechanical energy of the system. If external non-conservative forces
are absent, the right-hand side of Eq. (3.72) will vanish, and, consequently, the total
energy of the system remains constant:

� = �k + �p,ia + �p,ext = constant. (3.74)
We have thus arrived at the conclusion that the total mechanical energy of a system
of bodies on which only conservative forces act remains constant. This statement is the
essence of one of the fundamental laws of mechanics—the law of conservation
of mechanical energy.

For a closed system, i.e., a system whose bodies experience no external forces,
Eq. (3.74) has the form

� = �k + �p,ia = constant. (3.75)
In this case, the law of conservation of energy is formulated as follows: the total
mechanical energy of a closed system of bodies between which only conservative forces
act remains constant.

If non-conservative forces, for example, forces of friction, act in a closed sys-
tem in addition to conservative ones, then the total mechanical energy of the sys-
tem is not conserved. Considering the non-conservative forces as external ones,
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Fig. 3.13

we can write in accordance with Eq. (3.72) that
d� = d(�k + �p,ia) = d�non-cons. (3.76)

Integration of this equation yields
�2 − �1 = �12,non-cons. (3.77)

The law of energy conservation for a system of non-interacting particles was
formulated in Sec. 3.5 [see the text following Eq. (3.39)].

3.8. Energy of Elastic Deformation

Not only a system of interacting bodies, but also a separately taken elastically de-
formed body (for example, a compressed spring, a stretched rod, etc.) can have
potential energy. In this case, the latter depends on the mutual arrangement of
separate parts of the body (for example, on the distance between adjacent coils of
a spring).

According to Eq. (3.13), the work � = 9F2/2 must be done to stretch or com-
press a spring by the amount F. This work goes to increase the potential energy of
the spring. Consequently, the potential energy of a spring depends on the elonga-
tion F as follows:

�p =
9F2

2
(3.78)

where 9 is the spring constant (see Sec. 2.9). Equation Eq. (3.78) is based on the
assumption that the potential energy of an undeformed spring equals zero. Fig-
ure 3.13 shows a plot of �p against F.

The work determined by Eq. (3.14) is done in the elastic longitudinal deforma-
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tion of a bar or rod. Accordingly, the potential energy of an elastically deformed
rod is

�p =
�Y2

2
+ (3.79)

where � is the Young’s modulus, Y is the relative elongation and + is the volume of
the rod.

Let us introduce the concept of the density of the energy of elastic deformation
Ee, which we shall define as the ratio of the energy d�p to the volume d+ in which
it is confined:

Ee =
d�p
d+

. (3.80)

Since the rod is assumed to be homogeneous and its deformation is uniform, i.e.,
identical at different points of the rod, the energy Eq. (3.79) is also distributed uni-
formly in the rod. We can therefore consider that

Ee =
�p

+
=
�Y2

2
. (3.81)

This expression also gives the density of the energy of elastic deformation in stretch-
ing (or compression) when the deformation is not uniform. In the latter case to find
the energy density at a certain point of a rod, the value of Y at this point must be
introduced into Eq. (3.81).

On the basis of Eqs. (2.32)-(2.34), it is not difficult to obtain the following equa-
tion for the density of the energy of elastic deformation in shear:

Ee =
� W2

2
(3.82)

where � is the shear modulus and W is the relative shear.

3.9. Equilibrium Conditions of a Mechanical System

Let us consider a point particle whose motion is restricted so that it has only one
degree of freedom⁷. This signifies that its position can be determined with the aid
of a single quantity, for example the coordinate F. We can take as an example a ball
sliding without friction along a stationary wire bent in a vertical plane (Fig. 3.14a).

Another example is a ball attached to the end of a spring and sliding without
friction along a horizontal guide wire ( Fig. 3.15a). The ball is acted upon in each
case by a conservative force: the force of gravity and the elastic force of the de-

⁷By the number of degrees of freedom of a mechanical system is meant the number of indepen-
dent quantities with whose aid the position of the system can be set. This will be treated in greater
detail in Sec. 11.5.
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formed spring, respectively. Plots of the potential energy �p against F are shown
in Figs. 3.14b and 3.15b.

Since the balls move along the relevant wires without friction, the force with
which the wire acts on the ball in each case is at right angles to the velocity of the
ball and, consequently, does no work on the ball. Therefore, the energy is con-
served

� = �k + �p = constant. (3.83)
It follows from Eq. (3.83) that the kinetic energy can grow only at the expense of a
reduction in the potential energy. Hence, if a ball is in a state such that its velocity
equals zero and its potential energy is minimum, it will be unable to start moving
without external action on it, i.e., it will be in equilibrium.

Values of F equal to F0 correspond to minima of �p in the graphs (in Fig. 3.15,
F0 is the length of the undeformed spring). The condition of a minimum of the
potential energy has the form

d�p
dF

= 0. (3.84)

In accordance with Eq. (3.32), the condition (3.84) is equivalent to the fact that
�F = 0 (3.85)

(when �p is a function of only one variable, we have ∂�p/∂F = d�p/dF). Thus,
the position corresponding to a minimum of the potential energy has the property
that the force acting on the body equals zero.

In the case shown in Fig. 3.14, the conditions (3.84) and (3.85) are also observed
for F equal to F0 (i.e., for a maximum �p). The position of the ball determined by
this value of F will also be an equilibrium one. This equilibrium, however, unlike
that at F = F0, will be unstable: it is sufficient to slightly move the ball out of this
position, and a force will appear that will move it away from the position F0. The
forces appearing when the ball is displaced from its position of stable equilibrium
(for which F = F0) are directed so that they tend to return the ball to its equilibrium
position.

Knowing the form of the function expressing the potential energy, we can ar-
rive at a number of conclusions on the nature of motion of a particle. We shall
explain this using the graph shown in Fig. 3.14b to describe the motion of our par-
ticle. If the total energy has the value shown in the figure, then the particle can
move either within the limits from F1 to F2, or within the limits from F3 to infin-
ity. The particle cannot penetrate into the regions with F < F1 and F2 < F < F3
because its potential energy cannot become greater than its total energy (if this oc-
curred, then the kinetic energy would be negative). Thus, the region F2 < F < F3 is
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Fig. 3.14 Fig. 3.15

a potential barrier throughwhich the particle cannot penetrate having its given
stock of total energy. The region F1 < F < F2 is called a potential well.

If a particle in its motion cannot move away to infinity, the motion is called
finite. If the particle can travel any distance away, the motion is called infinite. A
particle in a potential well performs finite motion. The motion of a particle with
a negative total energy in the central field of forces of attraction will also be finite
(it is assumed that the potential energy vanishes at infinity).

3.10. Law of Momentum Conservation

In the preceding sections, we considered the additive integral of motion called en-
ergy. Let us find another additive quantity that is conserved for a closed system.
For this purpose, we shall consider a system of # interacting particles. Assume
that external forces whose resultant is L 7 act on the 7-th particle in addition to the
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internal forces L 79. Let us write Eq. (2.10) for all the # particles:

¤p1 = L12 + L13 + . . . + L19 + . . . + L1# + L1 =

#∑
9=2

L19 + L1

¤p2 = L21 + L23 + . . . + L29 + . . . + L2# + L2 =

#∑
9=1
(9≠2)

L29 + L2

· · · · · · · · · · · · · · ·

¤p7 = L 71 + L 72 + . . . + L 79 + . . . + L 7# + L 7 =
#∑
9=1
(9≠7)

L 79 + L 7

· · · · · · · · · · · · · · ·

¤p# = L#1 + L#2 + . . . + L#9 + . . . + L#,#−1 + L# =

#−1∑
9=1

L#9 + L#

Let us find the sum of these # equations. Since L12 + L21 = 0, etc., only the
external forces will remain in the right-hand side. We thus arrive at the relation

d
dB
(p1 + p2 + . . . + p# ) = L1 + L2 + . . . + L# =

#∑
7=1

L 7 (3.86)

The sum of themomenta of the particles forming amechanical system is called
themomentum of the system. Denoting this momentum by p, we find that

p =

#∑
7=1

p7 =
#∑
7=1

;7v7. (3.87)

It follows from Eq. (3.87) that the momentum is an additive quantity.
Let us write Eq. (3.86) in the form

dp
dB

=

#∑
7=1

L 7. (3.88)

Hence it follows that in the absence of external forces, dp/dB = 0. Consequently,
for a closed system, p is constant. This statement forms the content of the law of
momentum conservation, which is formulated as follows: the momentum of a
closed system of point particles remains constant.

It should be noted that the momentum also remains constant for an unclosed
system provided that the sum of the external forces is zero [see Eq. (3.88)]. When
the sum of the external forces does not equal zero, but the projection of this sum
on a certain direction does equal zero, the component of the momentum in this
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direction is conserved. Indeed, upon projecting all the quantities of Eq. (3.88) onto
a certain direction F, we find that

d>F
dB

=

#∑
7=1

�F7 (3.89)

whence our statement follows. [We remind our reader that (dp/dB)pr. x = d>F/dB,
see Eqs. (1.40)].

The momentum of a system of particles can be represented as the product of
the total mass of the particles and the velocity of the centre of mass of the system:

p = ;vC (3.90)
The centre of mass (or the centre of inertia) of a system is defined as the

point C whose position is set by the position vector rC determined as follows:

rC =
;1r1 + ;2r2 + . . . + ;#r#

;1 + ;2 + . . . + ;#

=

∑#
7=1 ;7r 7∑#
7=1 ;7

=
1
;

#∑
7=1

;7r 7 (3.91)

where ;7 is the mass of the 7-th particle, r 7 the position vector determining the
position of this particle, and ; the mass of the system.

The Cartesian coordinates of the centre of mass equal the projections of rC
onto the coordinate axes:

FC =
1
;

#∑
7=1

;7F7, GC =
1
;

#∑
7=1

;7 G7, HC =
1
;

#∑
7=1

;7H7. (3.92)

It must be noted that in a homogeneous field of gravity forces the centre of mass
coincides with the centre of gravity of a system.

We find the velocity of the centre ofmass by time differentiation of the position
vector (3.91):

vC = ¤rC =
1
;

#∑
7=1

;7 ¤r 7 =
1
;

#∑
7=1

;7v7 =
p

;

(see Eq. (3.87)]. Hence follows Eq. (3.90).
For a closed system, p = ;vC = constant. Therefore, the centre of mass of a

closed system either moves uniformly in a straight line, or remains stationary.
A reference frame in which the centre of mass is at rest is called a centre-of-

mass frame or a c.m.-frame. This frame is obviously an inertial one.
A reference frame associated with measuring instruments is called a labora-

tory or an l-frame.
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3.11. Collision of Two Bodies

When bodies collide with one another, they become deformed. The kinetic energy
which the bodies had before the collision partially or completely transforms into
the potential energy of elastic deformation and into the so-called internal energy
of the bodies. An increase in the internal energy of bodies is attended by elevation
of their temperature.

Two extreme kinds of collisions are distinguished: perfectly elastic and com-
pletely inelastic ones. A perfectly elastic collision is one inwhich themechanical
energy of the bodies does not transform into other non-mechanical kinds of en-
ergy. In such a collision, the kinetic energy transforms completely or partly into
the potential energy of elastic deformation. Next the bodies return to their original
shape, repelling each other. As a result, the potential energy of elastic deformation
again transforms into kinetic energy, and the bodies fly apart with velocities whose
magnitude and direction are determined by two conditions—conservation of the
total energy and conservation of the total momentum of the system of bodies.

A completely inelastic collision is characterized by the fact that no potential
energy of deformation is produced. The kinetic energy of the bodies completely or
partly transforms into internal energy. After colliding, the bodies eithermovewith
the same velocity or are at rest. In a completely inelastic collision, only the law of
conservation of momentum is observed. The law of conservation of mechanical
energy is not observed—instead of it the law of conservation of the total energy of
different kinds-mechanical and internal—is observed.

Let us first consider a completely inelastic collision of two particles (point par-
ticles) forming a closed system. Let the masses of the particles be ;1 and ;2, and
their velocities before colliding v10 and v20. In view of the law of momentum con-
servation, the total momentum of the particles after the collision must be the same
as before it:

;1v10 + ;2v20 = ;1v + ;2v = (;1 + ;2)v (3.93)
(v is the identical velocity of both particles after colliding). It follows from Eq. (3.93)
that

v =
;1v10 + ;2v20

;1 + ;2
. (3.94)

For practical calculations, Eq. (3.94) must be projected onto the correspondingly
selected directions.

Let us now consider a perfectly elastic collision. We shall limit ourselves to the
case of a central collision of two homogeneous spheres. A collision is called cen-
tral if the spheres before colliding travelled along the straight line passing through
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Fig. 3.16

their centres. A central collision of two spheres can take place (1) if the spheres are
moving toward each other (Fig. 3.16a), or (2) if one of the spheres is overtaking the
other one (Fig. 3.16b).

We shall assume that the spheres form a closed system or that the external
forces applied to them balance each other. We shall also assume that the spheres
do not rotate.

Let the masses of the spheres be;1 and;2, the velocities of the spheres before
the collision be v10 and v20, and, finally, the velocities after the collision be v1 and
v2. The equations of conservation of energy and momentum are:

;1v210
2
+
;2v220
2

=
;1v21
2
+
;2v22
2

(3.95)

;1v10 + ;2v20 = ;1v1 + ;2v2. (3.96)
Taking into account that (a2 − b2) = (a − b) (a + b), we can write Eq. (3.95) in the
form

;1(v10 − v1) (v10 + v1) = ;2(v2 − v20) (v2 + v20). (3.97)
Relation Eq. (3.96) can be transformed as follows:

;1(v10 − v1) = ;2(v2 − v20). (3.98)
We can state, fromconsiderations of symmetry, that the velocities of the spheres

after the collision will be directed along the same straight line that was the path
of the centres of the spheres before colliding. Consequently, all the vectors in
Eqs. (3.97) and (3.98) are collinear. For the collinear vectors a, b, c, it follows from
the equation a·b = a·c that b = c. Therefore, comparing Eqs. (3.97) and (3.98), we
can conclude that

v10 + v1 = v2 + v20. (3.99)
Multiplying Eq. (3.99) by ;2 and subtracting the result from Eq. (3.98), then multi-
plying Eq. (3.99) by ;1 and adding the result to Eq. (3.98), we get the velocities of
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the spheres after the collision:

v1 =
2;2v20 + (;1 − ;2)v10

;1 + ;2
, v2 =

2;1v10 + (;2 − ;1)v20
;1 + ;2

. (3.100)

For numerical calculations, the relations (3.100) must be projected onto the F-axis
along which the spheres are moving (see Fig. 3.16).

We must note that the velocities of the spheres after a perfectly elastic colli-
sion cannot be the same. Indeed, equating expressions (3.100) for v1 and v2 and
performing the relevant transformations, we get

v10 = v20.

Consequently, for the velocities of the spheres to be the same after the collision,
they must also be the same before it, but in this case no collision can take place.
Hence, it follows that the condition of equality of the velocities of the spheres after
the collision is incompatible with the law of conservation of energy.

Let us consider the case when the masses of the colliding spheres are equal:
;1 = ;2. It follows from Eqs. (3.100) that in this condition

v1 = v20 v2 = v10

i.e., the spheres exchange velocities when they collide. Particularly, if one of the
spheres of the same mass, for instance, the second one, is stationary before the
collision, then after it it will travelwith the velocitywhich the first sphere originally
had, while the first sphere after the collision will be stationary.

We can use Eqs. (3.100) to find the velocity of a sphere after an elastic collision
with a stationary or a moving wall (which we can consider as a sphere of infinitely
great mass;2 and infinitely great radius). Dividing the numerator and denomina-
tor of Eqs. (3.100) by ;2 and disregarding the terms containing the factor ;1/;2,
we get

v1 = 2v20 − v10 v2 = v20.

The result obtained shows that the velocity of the wall remains unchanged. The
velocity of the sphere, however, if the wall is stationary (v20 = 0), reverses. If the
wall ismoving, themagnitude of the velocity of the sphere also changes (it grows by
2D20 if the wall moves toward the sphere and diminishes by 2D20 if the wall moves
away from the sphere catching up with it).

3.12. Law of Angular Momentum Conservation

We already know two additive quantities obeying laws of conservation: energy and
momentum. Now we shall find a third quantity of this kind. For this purpose, we
shall consider a system consisting of two interacting particles on which external
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Fig. 3.17

forces also act (Fig. 3.17). The equations of motion of the particles have the form
;1 ¤v1 = L12 + L1, ;2 ¤v2 = L21 + L2.

Let us find the vector product of the first equation and the position vector of the
first particle r1 and of the second equation and the position vector of the second
particle r2, placing the position vectors at the left:{

;1(r1 × ¤v1) = r1 × L12 + r1 × L1

;2(r2 × ¤v2) = r2 × L21 + r2 × L2.
(3.101)

A vector product of the kind r × ¤v is equivalent to the expression d(r × ¤v)/dB.
Indeed, according to Eq. (1.55)

d
dB
(r × ¤v) = r × ¤v + ¤r × v = r × ¤v (3.102)

because ¤r × v = v × v = 0. Making such a substitution in Eqs. (3.101) and taking
into account that L21 = −L12, we get the equations

;1
d
dB
(r1 × v1) = r1 × L12 + r1 × L1

;2
d
dB
(r2 × v2) = −r2 × L12 + r2 × L2.

(3.103)

Mass is a constant scalar quantity. It can therefore be put inside the time
derivative and into the vector product:

;
d
dB
(r × v) = d

dB
(r × ;v) = d

dB
(r × p).

With this in view, we shall find the sum of Eqs. (3.103). We get
d
dB
(r1 × p1 + r2 × p2) = (r1 − r2) × L12 + r1 × L1 + r2 × L2.
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The vectors r1−r2 and L12 are collinear. Consequently, their vector product equals
zero. We thus obtain the relation

d
dB
(r1 × p1 + r2 × p2) = r1 × L1 + r2 × L2. (3.104)

If the system is closed, the right-hand side of this relation vanishes, and, therefore,
r1 × p1 + r2 × p2 = constant.

We have arrived at an additive quantity obeying a law of conservation that is called
the angular momentum (or the moment of momentum) relative to point 0 (see
Fig. 3.17).

For a separate particle, the angular momentum relative to point 0 is defined as
the pseudovector

R = r × p = r × ;v. (3.105)
The angular momentum of a system relative to point 0 is defined as the vector sum
of the angular momenta of the particles in the system:

R =
∑
7

R7 =
∑
7

r 7 × p7. (3.106)

The projection of the vector (3.105) onto the H-axis is called the angular mo-
mentum of a particle relative to this axis:

!H = (r × p)pr.,z . (3.107)
Similarly, the angular momentum of a system relative to the H-axis is defined
as the scalar quantity

!H =
∑
7

(r 7 × p7)pr.,z . (3.108)

A glance at Fig. 3.18 shows that the magnitude of the angular momentum vector of
a particle is

! = @> sin U = :> (3.109)
where : = @ sin U is the length of a perpendicular dropped from point 0 onto the
straight line along which the momentum of the particle is directed. This length is
called the arm of the momentum relative to point 0. It is assumed in Fig. 3.18 that
point 0 relative to which the angular momentum is taken and the vector p are in
the plane of the drawing. The vector R is at right angles to the plane of the drawing
and is directed away from us.

Let us consider two typical examples.
1. Assume that a particle is moving along the straight line depicted in Fig. 3.18
by the dash line. In this case, the angular momentum of the particle can
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Fig. 3.18 Fig. 3.19

change only in magnitude. The magnitude of the angular momentum is
! = ;D: (3.110)

the arm : remaining constant here.
2. A particle of mass ; moves along a circle of radius ' (Fig. 3.19). The magni-

tude of the angular momentum of the particle relative to the centre of the
circle 0 is

! = ;D' (3.111)
The vector R is perpendicular to the plane of the circle. The direction ofmo-
tion of the particle and the vector R form a right-handed system. Since the
arm, which equals ', remains constant, the angular momentum can change
only as a result of a change in the magnitude of the velocity. Upon uniform
motion of the particle along the circle, the angular momentum remains con-
stant both in magnitude and in direction.

The pseudovector
S = r × L (3.112)

is called the moment of the force L relative to point 0 (or the torque relative to this
point) from which the position vector r is drawn to the point of application of the
force (Fig. 3.20). Inspection of the figure shows that the magnitude of the moment
of the force can be written in the form

" = @� sin U = :� (3.113)
where : = @ sin U is the arm of the force (the moment or lever arm) relative to point
0 (i.e., the length of a perpendicular dropped from point 0 onto the straight line
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Fig. 3.20 Fig. 3.21

along which the force acts).
The projection of the vector S onto an axis H passing through point 0 relative

to which S has been determined is called the moment of the force (the torque)
relative to this axis:

"H = r × Lpr.,z . (3.114)
Let us resolve the force vector L (Fig. 3.21) into three mutually perpendicular com-
ponents: L ‖ parallel to the H-axis, L' perpendicular to the H-axis and acting along
a line passing through the axis, and, finally, L 3̂ perpendicular to the plane passing
through the axis and the point of application of the force (this component is des-
ignated in the figure by a circle with a cross in it). If we imagine a circle of radius
' with its centre on the H-axis, then the component L 3̂ will be directed along a
tangent to this circle. The moment of the force L relative to point 0 equals the
sum of the moments of the components: S = S ‖ + S' + S 3̂ . The vectors S ‖ ,
and S' are perpendicular to the H-axis, therefore their projections onto this axis
equal zero. The moment S 3̂ has a magnitude equal to @�3̂ and makes the angle U
with the H-axis. The cosine of U is '/@. Hence, the moment of the component L 3̂

relative to the H-axis has the magnitudeS 3̂ cos U = '�3̂ . The moment of the force
L relative to the H-axis thus equals

"H = '�3̂ . (3.115)
Up to now, we understood �3̂ to stand for themagnitude of the component L 3̂ . But
�3̂ can also be considered as the projection of the vector L onto the unit vector 3̂
that is tangent to a circle of radius ' and is directed so that motion along the circle
in the direction of 3̂ forms a right-handed system with the direction of the H-axis.
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Fig. 3.22

With such an interpretation of �3̂ , Eq. (3.115) will also determine the sign of "H .
The momentS of a force characterizes the ability of the force to rotate a body

about the point relative to which it is taken. We must note that when a body can
rotate arbitrarily relative to point 0, the force will cause it to rotate about an axis
that is perpendicular to the plane containing the force and point 0, i.e., about an
axis coinciding with the direction of the moment of the force relative to the given
point.

The moment of a force relative to the H-axis characterizes the ability of the
force to rotate a body about this axis. The components L ‖ and L' cannot cause
rotation about the H-axis. Such rotation can be produced only by the component
L 3̂ , and the success of the rotation will grow with an increasing moment arm '.

Two equal, parallel and oppositely directed forces are called a force couple
(Fig. 3.22). The distance : between the lines along which the forces act is called the
arm of the couple. The total moment of the forces L1 and L2 forming the couple is

S = r1 × L1 + r2 × L2.

Since L1 = −L2, we can write
S = −r1 × L2 + r2 × L2 = (r2 − r1) × L2 = r12 × L2 (3.116)

where r12 = r2 − r1 is the vector drawn from the point of application of the force
L1 to the point of application of L2. Equation (3.116) does not depend on the choice
of point 0. Consequently, the moment of a force couple relative to any point will
be the same. The vector of the moment of a force couple is perpendicular to the
plane containing the forces (see Fig. 3.22) and numerically equals the product of the
magnitude of any of the forces and the arm.
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Fig. 3.23

Forces of interaction between particles act in opposite directions along the
same straight line (Fig. 3.23). Their moments relative to an arbitrary point 0 are
equal in magnitude and opposite in direction. Therefore, the moments of the in-
ternal forces balance one another in pairs, and the sum of the moments of all the
internal forces for any system of particles, particularly for a solid body, always
equals zero:∑

Sint = 0. (3.117)
In accordance with definitions (3.106) and (3.112), we can write Eq. (3.104) as fol-

lows:
d
dB
R =

∑
Sext. (3.118)

This equation is similar to Eq. (3.88). A comparison of these equations shows that
just like the time derivative of the momentum of a system equals the sum of the
external forces, so does the time derivative of the angular momentum equal the
sum of the moments of the external forces.

It follows from Eq. (3.118) that in the absence of external forces dR/dB. Hence, R
is constant for a closed system. This statement is the content of the law of angular
momentum conservation, which is formulated as follows: the angular momen-
tum of a closed system of point particles remains constant.

We have proved Eq. (3.118) for a system of two particles. It can be generalized
quite simply, however, for any number of particles. Let us write the equations of
motion of the particles:

;1 ¤v1 =
∑
9

L19 + L1

· · · · · · · · ·
;7 ¤v7 =

∑
9

L 79 + L 7

· · · · · · · · ·
;# ¤v# =

∑
9

L#9 + L#
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Multiplying each of the equations by the corresponding position vector, we get [see
Eq. (3.102)]:

d
dB
(r1 × p1) =

∑
9

r1 × L19 + r1 × L1

· · · · · · · · · · · · · · ·
d
dB
(r 7 × p7) =

∑
9

r 7 × L 79 + r 7 × L 7

· · · · · · · · · · · · · · ·
d
dB
(r# × p# ) =

∑
9

r# × L#9 + r# × L# .

Let us add up all the # equations:
d
dB

∑
7

R7 =
∑
7=9
(7≠9)

r 7 × L 79 + r 7 × L 7.

The first sum in the right-hand side is the sum of the moments of all the internal
forces, which, as we have shown, equals zero [see Eq. (3.117)]. The second sum in the
right-hand side is the sum of the moments of the external forces. Consequently,
we have arrived at Eq. (3.118).

We must note that the angular momentum also remains constant for an un-
closed system provided that the total moment of the external forces equals zero
[see Eq. (3.118)].

Projection of all the quantities in Eq. (3.118) onto a certain direction H yields
d
dB
!H =

∑
"H,ext (3.119)

according to which the time derivative of the angular momentum of the system
relative to the H-axis equals the sum of the moments of the external forces relative
to this axis.

It follows from Eq. (3.119) that when the sum of the moments of the external
forces relative to an axis equals zero, the angular momentum of the system relative
to this axis remains constant.

3.13. Motion in a Central Force Field

Let us consider a particle in a central force field. We remind our reader that the
direction of the force acting on a particle at any point of such a field passes through
point 0—the centre of the field—while the magnitude of the force depends only
on the distance from this centre. It is easy to see that the dependence of the force
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Fig. 3.24 Fig. 3.25

L on r has the form
L = 5 (@) ê@ (3.120)

where ê@ is the unit vector of the position vector (Fig. 3.24), and 5 (@) is the pro-
jection of the force vector onto the direction of the position vector, i.e., �@ . The
function 5 (@) is positive for a repulsive force, and negative for an attractive one.
Figure 3.24 has been drawn for the case of repulsion of a particle from the force
centre. Equation (3.120) naturally holds only if the origin of coordinates (i.e., the
point from which the position vectors are drawn) is at the centre of the field.

The moment of the force (3.120) relative to point 0 obviously equals zero. This
follows from the fact that the moment arm equals zero. Hence, in accordance with
Eq. (3.118), we see that the angular momentum of a particle moving in a central
force field remains constant. The vector R = r × p at each moment of time is
perpendicular to the plane formed by the vectors r and p (Fig. 3.25). If R = constant,
this plane will be fixed. Thus, when a particle moves in a central force field, its
position vector always remains in one plane. The vector p is also permanently in
the same plane. Consequently, the trajectory of the particle is a plane curve. The
plane containing the trajectory passes through the centre of the field (see Fig. 3.25).

Figure 3.26 shows a portion of the trajectory of the particle (the vector R is di-
rected beyond the drawing). During the time dB, the position vector of the particle
describes the shaded area d(. This area equals half the area of the parallelogram
constructed on the vectors r and v dB. The area of the parallelogram, in turn, equals
the magnitude of the vector product r×v dB [see the text following Eq. (1.28)]. Thus,
the area of the shaded triangle is

d( =
1
2
|r × v| dB = 1

2;
|r × p| dB = 1

2;
! dB

(we have put the scalar multiplier dB outside the symbol of the vector product).
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Fig. 3.26 Fig. 3.27

Dividing both sides of the equation obtained by dB, we find that
d(
dB

=
d!
d2;

. (3.121)

The quantity d(/dB, i.e., the area described by the position vector of a particle
in unit time, is called the sector velocity. In a central force field, ! = constant,
hence the sector velocity of a particle also remains constant.

Let us find an expression for the angular momentum of a particle in the polar
coordinates @ and i (Fig. 3.27). According to Eqs. (1.68)-(1.71), the vector velocity of
the particle can he represented in the form

v = v@ + > = ¤@ê@ + @ ¤iêi. (3.122)
Using this expression in the equation for R, we get

R = ;(r × v) = ;(r × v@) + ;(r × vi).
The vectors r and v@ are collinear, therefore the first addend equals zero. Conse-
quently

R = ;(r × vi) = ;(r × @ ¤iêi) = ;@ ¤i(r × êi).
The vector product r × êi equals @êH , where êH , is the unit vector of the H-axis (in
Fig. 3.27 this unit vector is directed toward us). Thus,

R = ;@2 ¤iêH . (3.123)
Hence we conclude that

!H = ;@
2 ¤i (3.124)

where !H is the projection of the angular momentum onto the H-axis. The magni-
tude of the angular momentum equals the magnitude of Eq. (3.124).
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Let us now turn to the energy of a particle. Central forces are conservative
(see Sec. 3.4). According to Eq. (3.30), the work of a conservative force equals the
decrement of the potential energy of the particle �p. Hence, for the force (3.120),
the relation d� = −d�p holds, i.e.,

d�p = −d� = 5 (@) ê@ dr = −5 (@) d@.
Integration of this expression yields

�p = −
∫

5 (@) d@. (3.125)

It follows from Eq. (3.125) that the potential energy of a particle in a field of central
forces depends only on the distance @ from the centre: �p = �p(@).

Of special interest are forces inversely proportional to the square of the dis-
tance from the force centre. The function 5 (@) in Eq. (3.120) has the following form
for them:

5 (@) = U

@2
(3.126)

where U is a constant quantity (U > 0 corresponds to repulsion from the centre,
and U < 0 to attraction to the centre). Among such forces are gravitational and
Coulomb ones.

Introduction of the function (3.126) into Eq. (3.125) yields

�p = −U
∫

d@
@2

=
U

@
+ �

where� is an integration constant. The potential energy is conventionally consid-
ered to vanish at infinity (i.e., at @ = ∞). In this condition, � = 0, and

�p =
U

@
. (3.127)

Thus, the total mechanical energy of a particle moving in a central field of forces
that are inversely proportional to the square of the distance from the centre is
determined by the expression

� =
;D2

2
+ U
@
. (3.128)

Substituting the sum of the squares of the velocities v@ and vi, for the square of the
velocity v in accordance with Eq. (3.122), i.e., substituting the expression @2 + @2 ¤i2
for D2, we obtain

� =
;¤@2
2
+ ;@

2 ¤i2
2
+ U
@
. (3.129)

The energy and the angular momentum of a particle are conserved in a central
field. Consequently, the left-hand sides of Eqs. (3.124) and (3.129) are constants. We
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Fig. 3.28 Fig. 3.29

have thus arrived at a system of two differential equations:
;@2 ¤i2 = !H = constant

;¤@2 + ;@2 ¤i2 + 2U
@

= 2� = constant.
(3.130)

After integrating these equations, we can find @ and i0 as functions of B, i.e., the tra-
jectory and the nature of motion of the particle. It must be noted that Eqs. (3.130)
contain the first time derivatives of @ and i. They are, therefore, much easier to
solve than equations following from Newton’s laws, which contain the second
derivatives of the coordinates.

Solution of the system of equations (3.130) is beyond the scope of this book.
We shall limit ourselves to giving the final result. The trajectory of the particle is a
conical section, i.e., an ellipse, or a parabola, or a hyperbola. Which of these curves
is observed in a given concrete case depends on the sign of the constant U and the
magnitude of the total energy of the particle.

For repulsion (i.e., when U > 0), the trajectory of the particle can only be a
hyperbola (Fig. 3.28). If !H = 0, the hyperbola degenerates into a straight line whose
continuation passes through the force centre. We must note that when U > 0, the
total energy (3.128) cannot be negative.

For attraction (i.e., when 0:>ℎ0 < 0), the total energy may be either positive
or negative; in particular, it may equal zero. When � > 0, the trajectory is a hy-
perbola (Fig. 3.29). When � = 0, the trajectory will be a parabola. This case takes
place if a particle begins its motion from a state of rest at infinity (see Eq. (3.128)].
Finally, when � < 0, the trajectory will be an ellipse. At values of the energy and
the angular momentum complying with the condition that � = −;U2/(2!2), the
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ellipse degenerates into a circle.
Motion along an ellipse is finite, and that along a parabola or hyperbola—

infinite (see Sec. 3.9).

3.14. Two-Body Problem

A two-body problem is the name given to a problem on the motion of two in-
teracting particles. The system formed by the particles is assumed to be closed.
We learned in Sec. 3.10 that the centre of mass of a closed system is either at rest
or moves uniformly in a straight line. We shall solve the problem in a centre-of-
mass frame (a c.m. frame), placing the origin of coordinates at point C. In this case,
@C = (;1r1 + ;2r2)/(;1 + ;2) = 0, i.e.,

;1r1 = −;2r2 (3.131)
(Fig. 3.30a). Let us introduce the vector

r = r2 − r1 (3.132)
determining the whereabouts of the second particle relative to the first one (Fig.
3.30b). By simultaneously solving Eqs. (3.131) and (3.132), it is easy to find that

r1 = −
;2

;1 + ;2
r, r2 =

;1

;1 + ;2
r. (3.133)

Similarly to Eq. (3.59), we can write that L12 = −L21 = 5 (@) ê@ , where 5 (@) is
a function of the distance between the particles. It is positive for forces of attrac-
tion (Fig. 3.30c) and negative for forces of repulsion. Let us write the equations of
motion of our particles:

;1¥r1 = 5 (@) ê@ , ;2¥r2 = −5 (@) ê@
Division of the first equation by ;1, of the second one by ;2, and subtraction of
the first equation from the second yield

¥r1 − ¥r2 = −
(
1
;1
+ 1
;2

)
5 (@) ê@ .

According to Eq. (3.132), the left-hand side is r. Hence,

¥r = −
(
1
;1
+ 1
;2

)
5 (@) ê@ . (3.134)

Equation (3.134) can formally be considered as the equation of motion of an imag-
inary particle in a central force field. The position of the particle relative to the
force centre is determined by the position vector r. According to Eq. (3.134), the
mass ` determined by the condition that

1
`
=

1
;1
+ 1
;2

(3.135)
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Fig. 3.30

must be ascribed to our imaginary particle. Hence,

` =
;1;2

;1 + ;2
. (3.136)

The quantity (3.136) is called the reduced mass of the particles.
A two-body problem thus consists in a problem on the motion of a single par-

ticle in a central force field. Finding r as a function of B from Eq. (3.134), we can use
Eqs. (3.133) to determine r1(B) and r2(B). The vectors r1 and r2 are laid off from the
centre of mass C of the system. Therefore, to be able to use Eqs. (3.133), we must
also lay off the position vector r of the imaginary particle from point C [for real
particles the vector (3.132) is drawn from the first particle to the second one].

It can be seen from Eqs. (3.133) and Fig. 3.30 that both particles move relative
to the centre of mass along geometrically similar trajectories⁸. The straight line
joining the particles constantly passes through the centre of mass.

⁸When the force of interaction is inversely proportional to the square of the distance between
the particles, these trajectories are ellipses, or parabolas, or hyperbolas (see Sec. 3.13).
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Chapter 4

NON-INERTIALREFERENCEFRAMES

4.1. Forces of Inertia

Newton’s laws are obeyed only in inertial reference frames. A given body travels
with the same acceleration a relative to all inertial frames. Any non-inertial refer-
ence frame travels with a certain acceleration relative to inertial frames, therefore
the acceleration of a body in a non-inertial reference frame a′ will differ from a.
Let us use the symbol a0 to denote the difference between the accelerations of a
body in an inertial and a non-inertial reference frame:

a − a′ = a0. (4.1)
For a non-inertial frame in translational motion, a0 is the same for all points of
space (a0 = constant) and is the acceleration of the non-inertial reference frame.
For a rotating non-inertial frame, a0 will be different at different points of space
[a0 = a0(r′), where r′ is the position vector determining the position of a point
relative to the non-inertial reference frame].

Let the resultant of all the forces produced by the action of other bodies on the
given body be L . Hence, according to Newton’s second law, the acceleration of the
body relative to any inertial frame is

a =
1
;
L .

The acceleration of the body relative to a non-inertial frame, in accordance with
Eq. (4.1), can be represented in the form

a′ = a − a0 =
1
;
L − a0.

Hence, it follows that even when L = 0, the body will travel relative to the non-
inertial reference frame with the acceleration—a0, i.e., as if a force equal to—;a0
acted on it.
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What has been said above signifies that we can use Newton’s equations in de-
scribing motion in non-inertial reference frames, if in addition to the forces due
to the action of bodies on one another, we take into account the so-called forces
of inertia L in. The latter should be assumed equal to the product of the mass of a
body and the difference between its accelerations relative to the inertial and non-
inertial reference frames taken with the opposite sign:

L in = −;(a − a′) = ;a0. (4.2)
The equation of Newton’s second law for a non-inertial reference frame will ac-
cordingly be

;a′ = L + L in. (4.3)
We shall explain our statement by the following example. Let us consider a cart

with a bracket secured on it fromwhich a ball is suspended on a string (Fig. 4.1). As
long as the cart is at rest or is moving without acceleration, the string is vertical,
and the force of gravity V is balanced by the reaction of the string Lr. Now let us
bring the cart into translational motion with the acceleration a0. The string will
deviate from a vertical line through an angle such that the resultant of the forces
V and Lr imparts an acceleration of a0 to the ball. The ball will be at rest relative
to a reference frame associated with the cart, although the resultant of the forces
V and Lr differs from zero. The absence of acceleration of the ball relative to this
reference frame can be explained formally by the fact that in addition to the forces
V and Lr whose sum equals ;a0, the force of inertia L in = −;a0 also acts on the
ball.
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Fig. 4.2

The introduction of inertial forces permits us to describe the motion of bodies
in any (both inertial and non-inertial) reference frames using the same equations
of motion.

One must understand distinctly that the forces of inertia may never be treated
on a par with such forces as elastic, gravitational, and friction ones, i.e., with forces
produced by the action on a body of other bodies. Forces of inertia are due to
the properties of the reference frame in which mechanical phenomena are being
considered. In this sense, they can be called fictitious forces.

The consideration of forces of inertia is not a necessity. Any motion, in prin-
ciple, can always be considered relative to an inertial reference frame. In practice,
however, it is exactly themotion of bodies relative to non-inertial reference frames,
for instance, relative to the Earth’s surface, that is often of interest to us. The use
of inertial forces makes it possible to solve the relevant problem directly relative
to such a reference frame, and this is frequently much simpler than consideration
of the motion in an inertial frame.

A feature of inertial forces is that they are proportional to the mass of a body.
Owing to this property, inertial forces are similar to gravitational ones. Imagine
that we are in a closed cab removed from all external bodies and moving with the
acceleration g in the direction which we shall call the “top” (Fig. 4.2). All the bodies
in the cab will behave as if they experienced the force of inertia −;g. In partic-
ular, a spring to whose end a body of mass ; is fastened will stretch so that the
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elastic force balances the force of inertia ;g. The same phenomena will be ob-
served, however, when the cab is stationary and is near the Earth’s surface. Having
no possibility of “looking out” of the cab, we would not be able to establish by
any experiments conducted in the cab whether the force −;g is due to its accel-
erated motion or to the action of the Earth’s gravitational field. On these grounds,
we speak of the equivalence of forces of inertia and gravitation. This equivalence
underlies Albert Einstein’s general theory of relativity.

4.2. Centrifugal Force of Inertia

Let us consider a disk rotating about a vertical axis H′ perpendicular to it with
the angular velocity l (Fig. 4.3). A ball fitted onto a spoke and connected to the
centre of the disk by a spring rotates together with the disk. The ball occupies a
position on the spoke such that the force Lspr stretching the spring is equal to the
product of the mass of the ball ; and its acceleration a< = −l2' [see Eq. (1.102); X
is a position vector drawn to the ball from the centre of the disk. Its magnitude '
gives the distance from the centre of the disk to the ball]:

Lspr = −;l2X. (4.4)
The ball is at rest relative to the reference frame associated with the disk. This

can be formally explained by the circumstance that apart from the force (4.4), the
ball experiences the force of inertia

Lcf = ;l
2X. (4.5)

directed along a radius from the centre of the disk.
The force of inertia (4.5) set up in a rotating (relative to inertial frames) refer-
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ence frame is called the centrifugal force of inertia. This force acts on a body in a
rotating reference frame regardless of whether the body is at rest in this frame (as
we have assumed up to now) or is moving relative to it with the velocity v′.

If the position of a body in a rotating reference frame is characterized by the
position vector r′, then the centrifugal force of inertia can be represented in the
form of a vector triple product

Lcf = ;[8 × (r′ × 8)]. (4.6)
Indeed, the vector b = r′ × 8 is directed at right angles to the vectors 8 and Lcf
“toward us” (Fig. 4.4), and its magnitude is l@′ sin U = l'. The vector product of
the mutually perpendicular vectors ;8 and b coincides in direction with Lcf, and
its magnitude is ;l1 = ;l2' = Lcf.

In the accurate solution of problems on the motion of bodies relative to the
Earth’s surface, account must be taken of the centrifugal force of inertia equal to
;l2', where ; is the mass of a body, l is the angular velocity of the Earth in
its rotation about its axis, and ' is the distance to the body from the Earth’s axis
(Fig. 4.5). When the height of bodies above the Earth’s surface (their altitude) is
not great, we may assume that ' = 'E cos i ('E is the Earth’s radius, and i is
the latitude of the locality). The expression for the centrifugal force of inertia thus
becomes

�cf = ;l
2'E cos i. (4.7)
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The acceleration of free fall of bodies g observed relative to the Earth is due to
the action of the force Lg with which a body is attracted by the Earth, and of the
force Lcf. The resultant of these forces

V = Lg + Lcf (4.8)
is the force of gravity equal to ;g [see Eq. (2.38)].

The difference between the force of gravity V and the force of attraction to the
Earth Lg is not great because the centrifugal force of inertia is much smaller than
Lg. Thus, for a mass of 1 kg, the maximum value of �cf observed at the equator is

;l2'E = 1 ×
(

2c
86400

)2
× 6.4 × 106 = 0.035N

whereas Lg approximately equals 9.8N, i.e., is almost 300 times greater.
The angle U between the directions of Lg and V (see Fig. 4.5) can be found by

using the theorem of sines:
sin U
sin i

=
�g

%
=
;l2'E cos i

;6
≈ 0.035N

9.8N
cos i ≈ 0.0035 cos i

whence
sin U ≈ 0.0035 sin i cos i ≈ 0.0018 sin 2i.

The sine of a small angle may be approximately replaced by the value of the angle
itself. Such approximation yields

U ≈ 0.0018 sin 2i. (4.9)
Thus, the angle U varies within the limits from zero (at the equator, where i = 0,
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and at the poles, where i = 90°) to 0.0018 rad or 6′ (at a latitude of 45°).
The direction of the force V coincides with that of a string tensioned by a

weight, which is called the direction of a plumb or the vertical direction. The force
Lg is directed toward the centre of the Earth. Therefore, a vertical line is directed
toward the centre of the Earth only at the poles and the equator, and deviates at
intermediate latitudes by the angle U determined by expression (4.9).

The difference �g − % vanishes at the poles and reaches a maximum equalling
0.3% of the force �g at the equator. Owing to the oblateness of the Earth, the force
�g varies somewhat with the latitude, being about 0.2% less at the equator than at
the poles. As a result, the acceleration of free fall varies with the latitude within
the limits from 9.780m s−2 at the equator to 9.832m s−2 at the poles. The value of
6 = 9.80665m s−2 is taken as the standard one.

We must note that a freely falling body moves relative to an inertial, for ex-
ample, a heliocentric, reference frame with the acceleration a = Lg/; (and not g).
A glance at Fig. 4.5 shows that from the equality of the acceleration 6 for different
bodies we get the equality of the accelerations 0. Indeed, the triangles constructed
on the vectors Lg and V for different bodies are similar (the angles U and i for all
bodies at the given point on the Earth’s surface are identical). Consequently, the
ratio �g/%, which coincides with the ratio 0/6 is the same for all the bodies. Hence,
it follows that we get identical values of 0 for the same 6’s.

4.3. Coriolis Force

When a body moves relative to a rotating reference frame, another force called the
Coriolis force appears in addition to the centrifugal force of inertia.

The appearance of aCoriolis force can be detected in the following experiment.
Let us take a horizontally arranged disk that can rotate about a vertical axis. We
draw radial line$A on the disk (Fig. 4.6a). Let us launch a ball with the velocity v′

in the direction from 0 to A. If the disk does not rotate, the ball will roll along the
radius we have drawn. If the disk is rotated in the direction shown by the arrow,
however, then the ball will roll along dash curve 0B, and its velocity relative to
the disk v′ will change its direction. Consequently, the ball behaves relative to the
rotating reference frame as if it experiences the force LCor perpendicular to the
velocity v′.

To make the ball roll on the rotating disk along the radius, we must install a
guide, for instance, in the form of rib 0A (Fig. 4.6b). When the ball is rolling, the
guide rib exerts the force Lrib on it. The ball travels with a velocity constant in
direction relative to the rotating frame (disk). This can formally be explained by
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the fact that the force Lrib is balanced by the force of inertia LCor applied to the
ball at right angles to the velocity v′. It is exactly the force LCor that is the Coriolis
force.

Let us first find an expression for the Coriolis force in the particular case when
a particle;moves relative to a rotating reference frame uniformly along a circle in
a plane perpendicular to the axis of rotationwith its centre on this axis (Fig. 4.7). Let
v′ stand for the velocity of the particle relative to the rotating frame. The velocity v
of the particle relative to a fixed (inertial) reference frame has themagnitude D′+l'
in case (a) and |D − l' | in case (b), where l is the angular velocity of the rotating
frame, and ' is the radius of the circle (see Eq. (1.99)].

For the particle to move relative to the fixed frame along a circle with the ve-
locity D = D′ +l', it must experience the force L directed toward the centre of the
circle, for example, the force of tension of the string bymeans of which the particle
is tied to the centre of the circle (see Fig. 4.7a). The magnitude of this force is

� = ;0n̂ =
;D2

'
=
;(D′ + l')2

'
=
;D′2

'
+ 2;D′l + ;l2'. (4.10)

The particle in this case moves relative to the rotating frame with the acceleration
0′n̂ = D′2/', i.e., as if it experienced the force

;0′n̂ =
;D2

'
= � − 2;D′l − ;l2' (4.11)

[see Eq. (4.10)]. Thus, the particle behaves in the rotating frame as if two other
forces directed away from the centre acted on it in addition to the force L directed
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toward the centre. These two forces are Lcf = ;l2' and LCor whose magnitude
equals 2;D′l (Fig. 4.7a). It is easy to see that the force LCor can be represented in
the form

LCor = 2;(v′ × 8). (4.12)
The force (4.12) is exactly the Coriolis force. This force vanishes when v′ = 0. The
force Lcf does not depend on v′—as we have already noted, it acts both on bodies
at rest and on moving ones.

For the case shown in Fig. 4.7b, we have

� =
;D2

'
=
;(D′ − l')2

'
=
;D′2

'
− 2;D′l + ;l2'.

Accordingly,
;D′2

'
= � + 2;D′l − ;l2'.

Consequently, in a rotating frame, the particle behaves as if it experienced two
forces L and LCor directed toward the centre of the circle, and also the force Lcf =

;l2' directed away from the centre (see Fig. 4.7b). The force LCor in this case can
be represented in the form of Eq. (4.12).
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Now let us pass over to finding an expression for the Coriolis force when a
particle moves arbitrarily relative to a rotating reference frame. Let us associate
the coordinate axes F′, G′, H′with the rotating frame, andmake the axis H′ coincide
with the axis of rotation (Fig. 4.8). The position vector of the particle can therefore
be represented in the form

r′ = F′ê′F + G′ê′G + H′ê′H (4.13)
where ê′F , ê

′
G and ê′H are the unit vectors of the coordinate axes. The unit vectors

ê′F and ê′G rotate together with the reference frame with the angular velocity l,
whereas the unit vector ê′H remains stationary.

The position of the particle relative to the fixed frame should be determined
with the aid of the position vector r. The symbols r′ and r, however, signify the
same vector drawn from the origin of coordinates to the particle. An observer
“living” in the rotating reference frame denoted this vector by r′. According to his
observations, the unit vectors ê′F , ê

′
G and ê′H are stationary, therefore when differ-

entiating Eq. (4.13), he treats these unit vectors as if they are constants. A stationary
observer uses the symbol r. For him, the unit vectors ê′F and ê′G rotate with the
velocity l (the unit vector ê′H is stationary). Therefore, when differentiating the ex-
pression (4.13) equal to r, he must treat ê′F and ê

′
G as functions of Bwhose derivatives

are
¤̂e′F = lê′G , ¤̂e′G = −lê′F (4.14)

[see Fig. 4.8 and Eq. (1.56); the unit vector ê⊥F′ perpendicular to ê′F equals ê
′
G and the

unit vector ê⊥G′ perpendicular to êG′ equals −êF′]. For the second time derivatives
of the unit vectors, we get

¥̂e′F = l¤̂e′G = −l2ê′F , ¥̂e′G = l¤̂e′F = −l2ê′G . (4.15)
Let us find the velocity of the particle relative to the rotating reference frame.

To do this, we differentiate the position vector (4.13) with respect to time, consid-



Coriolis Force 127

ering the unit vectors as constants:
v′ = ¤r′ = ¤F′ê′F + ¤G′ê′G + ¤H′ê′H (4.16)

If we now differentiate this expression, we get the acceleration of the particle rel-
ative to the rotating reference frame:

a′ = ¤v′ = ¥r′ = ¥F′ê′F + ¥G′ê′G + ¥H′ê′H . (4.17)
Now we shall find the velocity of the particle relative to the fixed reference

frame. For this purpose, we shall differentiate the position vector (4.13) “from the
positions” of the stationary observer. Using the symbol r instead of r′ (recall that
r = r′), we get

v = ¤r = ¤F′ê′F + F′¤̂e′F + ¤G′ê′G + G′¤̂e′G + ¤H′ê′H + H′¤̂e′H . (4.18)
Differentiating this expression with respect to B, we find the acceleration of the
particle relative to the fixed frame:

a = ¤v = ¥F′ê′F + 2 ¤F′¤̂e′F + F′¥̂e′G + ¥G′ê′G + 2 ¤G′¤̂e′G + G′¥̂e′G + ¥H′ê′H + 2 ¤H′¤̂e′H + H′¥̂e′H .
Taking into account Eqs. (4.14), (4.15), and (4.17), we can transform the above expres-
sion into the form:

a = a′ + 2l( ¤F′ê′G − ¤Gê′F) − l2(F′ê′F + ¤Gê′G). (4.19)
Let us consider the vector product 8 × v′. We shall represent it in the form of

a determinant [see Eq. (1.33)]:

8 × v′ =

������
ê′F ê′G ê′H
lF lG lH

D′F D′G D′H

������ . (4.20)

According to Eq. (4.16), DF = ¤F′, DG = ¤G′, DH = ¤H′. In addition, for the direction of the
coordinate axes that we have selected, we have lF = lG = 0, lH = l. Introduction
of these values into Eq. (4.20) yields

8 × v′ =

������
ê′F ê′G ê′H
0 0 l

¤F′ ¤G′ ¤H′

������ = −ê′Fl ¤G′ + ê′Gl ¤F′. (4.21)

The result obtained shows that the second term of Eq. (4.19) can be written in the
form 28 × v′. The expression in parentheses in the last term of Eq. (4.19) equals
the component of the position vector r′ perpendicular to the axis of rotation (to
the axis H′) [see Eq. (4.13)]. Let us denote this component by the symbol X (compare
with Fig. 1.33). In view of everything said above, Eq. (4.19) can be written as follows:

a = a′ + 28 × v′ − l2X. (4.22)
It follows from Eq. (4.22) that the acceleration of the particle relative to the

fixed reference frame can be represented in the form of the sum of three acceler-
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ations: that relative to the rotating frame a′, the acceleration equal to −l2X¹, and
the acceleration

aCor = 28 × v′ (4.23)
called the Coriolis acceleration.

For a particle to move with the acceleration (4.22), bodies must act on it with
the resultant force L = ;a. According to Eq. (4.22)

;a′ = ;a − 2;8 × v′ + ;l2X = L + 2;v′ × 8 + ;l2X (4.24)
(transposition of the multipliers changes the sign of the vector product). The result
obtained signifies that when compiling an equation of Newton’s second law for a
rotating reference frame, in addition to the forces of interaction account must be
taken of the centrifugal force of inertia determined by Eq. (4.25), and also of the
Coriolis force which even in the most general case is determined by Eq. (4.12). We
must note that the Coriolis force is always in a plane perpendicular to the axis of
rotation.

It follows from a comparison of Eqs. (4.14), (4.16), and (4.18) that
v = v′ + F′¤̂e′F + G′¤̂e′G = v′ + l(F′ê′G − G′ê′F).

Calculations similar to those which led us to Eq. (4.22) can help us see that the last
term of the above expression equals 8 × v′. Hence,

v = v′ + 8 × v′. (4.25)
When v′ = 0, this equation transforms into Eq. (1.100).

Examples ofMotions inWhich theCoriolis ForceManifests Itself. In in-
terpreting phenomena associated with the motion of bodies relative to the Earth’s
surface, it is sometimes necessary to take account of the influence ofCoriolis forces.
For example, in the free fall of bodies, a Coriolis force acts on them that causes them
to deviate to the East from a vertical line (Fig. 4.9). This force is the greatest at the
equator and vanishes at the poles.

A flying projectile also experiences deviations due to Coriolis forces (Fig. 4.10).
When a projectile is fired from a gun facing North, it will deviate to the East in the
northern hemisphere and to the West in the southern one. If a projectile is fired
along a meridian to the South, the deviations will be the reverse. If a projectile is
fired along the equator, Coriolis forces will press it toward the Earth if the shot was
directed to the West, and lift it if the shot was directed to the East. We invite our
reader to convince himself that the Coriolis force acting on a body moving along a
meridian in any direction (to theNorth or South) has a rightward direction relative

¹The acceleration atr = −l2X is called transferable. It is the acceleration which a particle would
have being at rest in a moving (in our case in a rotating) reference frame.
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Fig. 4.9 Fig. 4.10

to that of motion in the northern hemisphere and a leftward one in the southern
hemisphere. This is why rivers always wash out their right banks in the northern
hemisphere and their left banks in the southern one. This is also why the rails of a
double-track railway wear differently.

The Coriolis forces also manifest themselves in the oscillations of a pendulum.
Figure 4.11 shows the trajectory of a pendulum bob (it is assumed for simplicity’s
sake that the pendulum is at a pole). At the north pole, the Coriolis force will con-
stantly be directed to the right in the direction of the pendulum’s motion, and at
the south pole to the left. As a result, the trajectory has the shape of a rosette.

As can be seen from the figure, the plane of oscillations of the pendulum turns
clockwise relative to the Earth, and it completes one revolution a day. Relative to
a heliocentric reference frame, the plane of oscillations remains unchanged, while
the Earth rotates completing one revolution a day. It can be shown that at the lat-
itude i the plane of oscillations of a pendulum turns through the angle of 2c sin i
in a day.

Thus, observations of the rotation of the plane in which a pendulum oscillates
(pendulums intended for this purpose are called Foucault pendulums) provide a
direct proof of the Earth’s rotation about its axis.

4.4. Laws of Conservation in Non-Inertial Reference Frames

The equations of motion in a non-inertial frame do not differ in any way from
those of motion in an inertial reference frame when the forces of inertia are taken
into account. Therefore, all the corollaries following from the equations ofmotion,
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particularly Eqs. (3.77), (3.88), and (3.118), also hold in non-inertial reference frames.
Equation (3.77) acquires the following form for a non-inertial frame:
�2 − �1 = �12,non-cons + �12,in (4.26)

where �12,in is the work done by the forces of inertia.
Equations (3.88) and (3.118) can be written as follows for a non-inertial frame:

dp
dB

=
∑

Lext +
∑

L in (4.27)

dR
dB

=
∑

Sext +
∑

Sin. (4.28)

Here Lext is the force due to interaction, L in is the force of inertia, Sext and
Sin are the moments of the above forces.

The centrifugal force of inertia Lcf = ;l2' is conservative. Indeed, the work
of this force is

�12,cf =

∫ 2

1
Lcf dr = ;l2

∫ 2

1
X dr.

Inspection of Fig. 4.12 shows that the projection of the vector dr on the direction
of the vector X equals d'—the increment of the magnitude of X. Consequently,
Xdr = ' d' = d'2/2. Thus,

�12,cf = ;l
2
∫ 2

1
d'2/2 = ;l2

'22

2
− ;l2

'21

2
. (4.29)
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The expression obtained does not obviously depend on the path along which the
displacement from point 1 to point 2 occurred.

The conservative nature of the force Lcf makes it possible to introduce the
potential energy of a particle �p,cf (the centrifugal energy) whose decrement deter-
mines the work of the centrifugal force of inertia:

�12,cf = �p,cf,1 − �p,cf,2 (4.30)
[see Eq. (3.30)]. A comparison of Eqs. (4.29) and (4.30) shows that �p,cf = −;l2'2/2+
constant. We may assume that the constant equals zero. We thus get the following
expression for the centrifugal energy:

�p,cf = −
1
2
;l2'2. (4.31)

If we add Eq. (4.31) to the potential energy of a particle, then the work of the
centrifugal force of inertia must not be included in the quantity �12,in in Eq. (4.26).
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Chapter 5

MECHANICS OF A RIGID BODY

5.1. Motion of a Body

In Sec. 1.1, we acquainted ourselves with the two fundamental kinds of motion of a
rigid body—translation and rotation.

In translation, all the points of a body receive displacements equal in magni-
tude and direction during the same time interval. Consequently, the velocities and
accelerations of all the points are identical at every moment of time. It is therefore
sufficient to determine the motion of one of the points of a body (for example, of
its centre of mass) to completely characterize the motion of the entire body.

In rotation, all the points of a rigid body move along circles whose centres are
on a single straight line called the axis of rotation. To describe rotation, we must
set the position of the axis of rotation in space and the angular velocity of the body
at each moment of time.

Any motion of a rigid body can be represented as the superposition of the two
fundamental kinds ofmotion indicated above. We shall show this for planemotion,
i.e., motion when all the points of a body move in parallel planes. An example of
plane motion is the rolling of a cylinder along a plane (Fig. 5.1).

The arbitrary displacement of a rigid body fromposition 1 to position 2 (Fig. 5.2)
can be represented as the sum of two displacements—translation from position 1
to position 1′ or 1′′, and rotation about the axis 0′ or the axis 0′′. It is quite ob-
vious that such a division of a displacement into translation and rotation can be
performed in an infinitemultitude of ways, but in any case rotation occurs through
the same angle i.

In accordancewith the above, the elementary displacement of a point of a body
ds can be resolved into two displacements—the “translational” one dstr and the
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Fig. 5.1 Fig. 5.2

“rotational” one dsrot:
ds = dstr + dsrot

where dstr is the same for all the points of the body. This resolution of the displace-
ment ds, as we have seen, can be performed in different ways. In each of them, the
rotational displacement dsrot is performed by rotation of the body through the
same angle di (but relative to different axes), whereas dstr and dsrot are different.

Dividing ds by the corresponding time interval dB, we get the velocity of a
point:

v =
ds
dB

=
dstr
B
+ dsrot

B
= v0 + v′

where v0 is the velocity of translation, which is the same for all the points of a body,
v′ is the velocity due to rotation, which is different for different points of the body.

Thus, the plane motion of a rigid body can be represented as the sum of two
motions—translation with the velocity v0 and rotation with the angular velocity
8 (the vector 8 in Fig. 5.1 is directed at right angles to the plane of the drawing,
beyond it). Such a representation of complexmotion can be accomplished inmany
ways differing in the values of v0 and v′, but corresponding to the same angular
velocity 8. For example, the motion of a cylinder rolling without slipping along
a plane (Fig. 5.1) can be represented either as translation with the velocity v0 and
simultaneous rotationwith the angular velocity8 about the axis 0, or as translation
with the velocity v′′0 = 2v0 and rotationwith the same angular velocity8 about the
axis 0′′, or, finally, as only rotation, again with the same angular velocity 8 about
the axis 0′.

Assuming that the reference frame relative to which we are considering the
complex motion of a rigid body is stationary, the motion of the body can be repre-
sented as rotation with the angular velocity 8 in a reference frame moving trans-
lationally with the velocity v0 relative to the stationary frame.

The linear velocity v′ of a point with the position vector r due to rotation of a
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rigid body is v′ = 8 × r [see Eq. (1.100)]. Consequently, the velocity of this point in
complex motion can be represented in the form

v = v0 + 8 × r. (5.1)
An elementary displacement of a rigid body in plane motion can always be

represented as rotation about an axis called the instantaneous axis of rotation.
This axis may be either inside the body or outside it. The position of the instanta-
neous axis of rotation relative to a fixed reference frame and relative to the body
itself, generally speaking, changes with time. For a rolling cylinder (Fig. 5.2), the
instantaneous axis 0′ coincides with the line of contact of the cylinder with the
plane. When the cylinder rolls, the instantaneous axis moves both along the plane
(i.e., relative to a fixed reference frame) and along the surface of the cylinder.

The velocities of all the points of the body for each moment of time can be
considered as due to rotation about the corresponding instantaneous axis. Conse-
quently, planemotion of a rigid body can be considered as a number of consecutive
elementary rotations about instantaneous axes.

In non-planar motion, an elementary displacement of a body can be repre-
sented as rotation about an instantaneous axis only if the vectors v0 and 8 are mu-
tually perpendicular. If the angle between these vectors differs from c/2, the mo-
tion of the body at eachmoment of timewill be the superposition of twomotions—
rotation about a certain axis, and translation along this axis.

5.2. Motion of the Centre of Mass of a Body

By dividing a body into elementary masses ;7 we can represent it as a system of
point particles whose mutual arrangement remains unchanged. Any of these ele-
mentary masses may be acted upon both by internal forces due to its interaction
with other elementarymasses of the body being considered, and by external forces.
For example, if a body is in the field of the Earth’s gravitational forces, each ele-
mentary mass of the body ;7 will experience an external force equal to ;g.

Let us write the equation of Newton’s second law for each elementary mass:
;7a7 = f 7 + L 7 (5.2)

where f 7 is the resultant of all the internal forces, and L 7 the resultant of all the
external forces applied to the given elementary mass. Summation of Eqs. (5.2) for
all the elementary masses yields∑

7

;7a7 =
∑
7

f 7 +
∑
7

L 7. (5.3)

The sum of all the internal forces acting in a system, however, equals zero. Hence,
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Eq. (5.3) can be simplified as follows:∑
7

;7a7 =
∑
7

L 7. (5.4)

Here the resultant of all the external forces acting on the body is in the right-hand
side.

The sum in the left-hand side of Eq. (5.4) can be replaced with the product of
the mass of the body; and the acceleration of its centre of mass (centre of inertia)
aC. Indeed, according to Eq. (3.91), we have∑

7

;7r 7 = ;rC.

Differentiating this relation twice with respect to time and taking into account that
¥r 7 = a7, and ¥rC = aC, we can write∑

7

;7a7 = ;aC. (5.5)

Comparing Eqs. (5.4) and (5.5), we arrive at the equation

;aC =
∑

Lext (5.6)
which signifies that the centre of mass of a rigid body moves in the same way as a point
particle of a mass equal to that of the body would move under the action of all the forces
applied to the body.

Equation (5.6) permits us to find the motion of the centre of mass of a rigid
body if we know the mass of the body and the forces acting on it. For translation,
this equation will determine the acceleration not only of the centre of mass, but
also of any other point of the body.

5.3. Rotation of a Body about a Fixed Axis

Let us consider a rigid body that can rotate about a fixed vertical axis (Fig. 5.3). We
shall confine the axis in bearings to prevent its displacements in space. The flange
�: resting on the lower bearing prevents motion of the axis in a vertical direction.

A perfectly rigid body can be considered as a system of particles (point parti-
cles) with constant distances between them. Equation (3.118), i.e.,

dR
dB

=
∑

Sext

holds for any system of particles, including a rigid body. In the latter case, R is the
angular momentum of the body. The right-hand side of Eq. (3.118) is the sum of the
moments of the external forces acting on the body.

Let us take point 0 on the axis of rotation and characterize the position of the
particles forming the body with the aid of position vectors r drawn from this point
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Fig. 5.3 Fig. 5.4

(Fig. 5.3 depicts the 7-th particle of mass ;1). According to Eq. (3.105), the angular
momentum of the 7-th particle relative to point 0 is

R7 = r 7 × ;7v7 = ;7r 7 × v7. (5.7)
The vectors r 7 and v7 are mutually perpendicular for all the particles of the body.
Therefore, the magnitude of the vector R7 [Eq. (5.7)] is

!7 = ;7@7D7 = ;7@7l'7 (5.8)
[see Eq. (1.99)]. The direction of the vector R7 is shown in Fig. 5.4. It must be noted
that the “length” of the vector R7, according to Eq. (5.8), is proportional to the ve-
locity of rotation of the body 8. The direction of the vector R7, however, is inde-
pendent of 8. The vector R7 is in a plane passing through the axis of rotation and
the particle ;7 and is perpendicular to r 7.

The projection of the vector R7 onto the axis of rotation (the H-axis), as can be
seen from Fig. 5.4, is [see Eq. (5.8)]

!H7 = !7 cos U = ;7@7l'7 cos U = ;7 (@7 cos U)'7l = ;7'
2
7 l. (5.9)

It is not difficult to see that for a homogeneous¹ body which is symmetrical
relative to the axis of rotation (for a homogeneous body of revolution), the direc-
tions of the total angular momentum (equal to

∑
7 R7) and of 8 along the axis of

rotation are the same (Fig. 5.5). Indeed, in this case, the body can be divided into
pairs of symmetrically arranged particles of equal mass (two pairs of particles are
shown in the figure—;7-;′7 and;9-;′9). The sum of the angular momenta of each
pair (in the figure R7 + R′7 and R9 + R′9) is directed along the vector 8. Hence, the
total angular momentum R will also coincide in direction with 8. The magnitude
of the vector R in this case equals the sum of the projections of the momenta R7

¹In mechanics, a body is defined as homogeneous when its density is the same throughout the
entire volume (see Sec. 5.4).
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Fig. 5.5

onto the H-axis. Taking Eq. (5.9) into account, we get the following expression for
the magnitude of the angular momentum of a body:

! =
∑
7

!H7 = l
∑
7

;7'
2
7 = �l. (5.10)

The quantity � equal to the sum of the products of the elementary masses and the
squares of their distances from a certain axis is called the rotational inertia or
themoment of inertia of the body relative to the given axis:

� =
∑
7

;7'
2
7 . (5.11)

Summation is performed over all the elementary masses ;7 into which the body
was mentally divided.

With a view to the fact that the vectors R and 8 have identical directions, we
can write Eq. (5.10) as follows:

R = �8. (5.12)
We remind our reader that we have obtained this relation for a homogeneous body
rotating about an axis of symmetry. In the general case, as we shall see below,
Eq. (5.12) is not obeyed.

For an asymmetrical (or non-homogeneous) body, the angular momentum R,
generally speaking, does not coincide in direction with the vector 8. The dash line
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Fig. 5.6 Fig. 5.7

in Fig. 5.6 shows the part of an asymmetrical homogeneous body that is symmetri-
cal relative to the axis of rotation. The total angular momentum of this part, as we
have established above, is directed along8. The momentum R7 of each particle not
belonging to the symmetrical part deviates to the right from the axis of rotation (in
a plane figure). Consequently, the total angular momentum of the entire body will
also deviate to the right (Fig. 5.7). Upon rotation of the body, the vector R rotates
together with it, describing a cone. During the time dB, the vector R receives the
increment dR, which according to Eq. (3.118) equals

dR =

(∑
Sext

)
dB. (5.13)

If the vector R does not change inmagnitude, then the vector dR is directed beyond
the drawing (Fig. 5.7). The vector

∑
Sext has the same direction. In the example we

are treating, the moments of the external forces include (1) the moment of the force
of gravity ;g directed toward us—we shall call it negative (this force is applied to
the centre of mass of the body C), (2) the positive moments of the forces of lateral
pressure of the bearings on the axis (the forces L1 and L2), and (3) the positive mo-
ment of the force of pressure of the bearing shoulder on the flange L3. We assume
that friction forces are absent, otherwise the vector R would not be constant in
magnitude, and dR would not be perpendicular to R.

The angular momentum relative to the axis of rotation [see Eq. (3.108)] for any
(homogeneous or non-homogeneous, symmetrical or asymmetrical) body is

!H =
∑
7

!H7 =
∑
7

;7'
2
7 l = �l (5.14)

(see Eqs. (5.9) and (5.11)]. It must be stressed that unlike Eq. (5.12), Eq. (5.14) is always
correct.
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Equation (3.119) states that
d!H
dB

=
∑

"H,ext.

Introducing into this expression Eq. (5.14) for !H , we get

�UH =
∑

"H,ext (5.15)
where UH = ¤l is the projection of the angular acceleration onto the H-axis (we are
considering rotation about a fixed axis, therefore the vector 8 can change only in
magnitude). Equation (5.15) is similar to the equation ;a = L . The part of the mass
is played by themoment of inertia, that of the linear acceleration by the angular ac-
celeration, and, finally, the part of the resultant force is played by the total moment
of the external forces.

In the above example, the moments of all the external forces are perpendicular
to the axis of rotation. Hence, their projections onto the H-axis equal zero. Accord-
ingly, the angular velocity 8 remains constant, which is what should be expected
in the absence of friction.

We must point out that in the rotation of a homogeneous symmetrical body,
forces of lateral pressure of the bearings on the axis (the forces L1 and L2 in Fig. 5.7)
do not appear. In the absence of the force of gravity, we could remove the bearings—
the axis would retain its position in space without them. An axis whose position
in space remains constant when bodies rotate about it in the absence of external
forces is called a free axis of a body.

It is possible to prove that for a body of any shape and with an arbitrary ar-
rangement of its mass there are threemutually perpendicular axes passing through
the centre of mass of the body that can be free axes. They are called the principal
axes of inertia of the body.

In a homogeneous parallelepiped (Fig. 5.8), the principal axes of inertia are ob-
viously the axes O1O1, O2O2, and O3O3 passing through the centres of opposite
faces.

In bodies possessing axial symmetry (for example, in a homogeneous² cylin-
der), the axis of symmetry is one of the principal axes of inertia. Any two mutually
perpendicular axes in a plane at right angles to the axis of symmetry and passing
through the centre of mass of the body can be the other two principal axes (Fig. 5.9).
Thus, in such a body only one of the principal axes of inertia is fixed.

In a body with central symmetry, i.e., in a sphere whose density depends only
on the distance from its centre, any three mutually perpendicular axes passing
through the centre of mass are the principal axes of inertia. Consequently, none of

²It is sufficient that the density of the body in each cross section be a function only of the distance
from the axis of symmetry.
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Fig. 5.8 Fig. 5.9

the principal axes of inertia is fixed.
The moments of inertia relative to the principal axes are called the principal

moments of inertia of a body. In the general case, thesemoments differ: �1 ≠ �2 ≠

�3. For a bodywith axial symmetry, two of the principal moments of inertia are the
same, while the third one, generally speaking, differs from them: �1 = �2 ≠ �3. And,
finally, for a bodywith central symmetry, all three principal moments of inertia are
the same: �1 = �2 = �3.

Not only a homogeneous sphere, but also, for instance, a homogeneous cube
has equal values of the principalmoments of inertia. In the general case, such equal-
ity may be observed for bodies of an absolutely arbitrary shape when their mass
is properly distributed. All such bodies are called spherical tops. Their feature is
that any axis passing through their centre of mass has the properties of a free axis,
and, consequently, none of the principal axes is fixed, as for a sphere. All spherical
tops behave the same when they rotate in identical conditions.

Bodies for which �1 = �2 ≠ �3 behave like homogeneous bodies of revolution.
They are called symmetrical tops. Finally, bodies for which �1 = �2 = �3 are
called asymmetrical tops.

If a body rotates in conditions when there is no external action, then only ro-
tation about the principal axes corresponding to the maximum and minimum val-
ues of the moment of inertia is stable. Rotation about an axis corresponding to an
intermediate value of the moment will be unstable. This signifies that the forces
appearing upon the slightest deviation of the axis of rotation from this principal
axis act in a direction causing the magnitude of this deviation to grow. When the
axis of rotation deviates from a stable axis, the forces produced return the body to
rotation about the corresponding principal axis.
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Fig. 5.10

We can convince ourselves that what has been said above is true by tossing a
body having the shape of a parallelepiped (for example, a match box) and simul-
taneously bringing it into rotation³. We shall see that the body when falling can
rotate stably about axes passing through the biggest or smallest faces. Attempts
to toss the body so that it rotates about an axis passing through the faces of an
intermediate size will be unsuccessful.

If an external force is exerted, for instance, by the string on which a rotating
body is suspended, then only rotation about the principal axis corresponding to
the maximum value of the moment of inertia will be stable. This is why a thin
rod suspended by means of a string fastened to its end when brought into rapid
rotation will in the long run rotate about an axis normal to it passing through
its centre (Fig. 5.10a). A disk suspended by means of a string fastened to its edge
(Fig. 5.10b) behaves in a similar way.

Up to now, we have treated bodies with a constant distribution of their mass.
Now let us assume that a rigid body can lose for a certain time its property of a
constant arrangement of its parts, and within this time redistribution of the body’s
mass occurs that results in the moment of inertia changing from �1 to �2. If such
a redistribution occurs in conditions when

∑
Sext = 0, then in accordance with

the law of conservation of angular momentum the following equation must be
observed:

�1l1 = �2l2 (5.16)
where l1 is the initial, and l2 is the final value of the angular velocity of the body.

³The action of the force of gravity in this case is not significant. It only causes the body to fall in
addition to its rotation.
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Thus, a change in the moment of inertia leads to a corresponding change in the
angular velocity. This explains why a spinning figure skater (or a man on a rotating
platform) begins to rotate more slowly when he stretches his arms out, and gains
speed when he presses his arms against his body.

5.4. Moment of Inertia

From the definition of the moment of inertia⁴ [see Eq. (5.11)]

� =
∑
7

J;7'
2
7

we can see that it is an additive quantity. This signifies that the moment of inertia
of a body equals the sum of the moments of inertia of its parts.

We introduced the concept of the moment of inertia when dealing with the
rotation of a rigid body. It must be borne in mind, however, that this quantity
exists irrespective of rotation. Every body, regardless of whether it is rotating or
at rest, has a definite moment of inertia relative to any axis, just like a body has a
mass regardless of whether it is moving or at rest.

The distribution of the mass within a body can be characterized with the aid
of a quantity called the density. If a body is homogeneous, i.e., its properties are
the same at all of its points, then the density is defined as the quantity

d =
;

+
(5.17)

where; and+ are themass and volume of the body, respectively. Thus, the density
of a homogeneous body is the mass of a unit of its volume.

For a body with an unevenly distributed mass, Eq. (5.17) gives the average den-
sity. The density at a given point is determined in this case as follows:

d = lim
JD→0

J;

J+
=
d;
d+

. (5.18)

In this expression, J; is the mass contained in the volume J+ , which in the limit
transition contracts to the point at which the density is being determined.

The limit transition in Eq. (5.18) must not be understood in the sense that J+
contracts literally to a point. If such a meaning is implied, we would get a greatly
differing result for two virtually coinciding points, one of which is at the nucleus
of an atom, while the other is at a space between nuclei (the density for the first
point would be enormous, and for the second one it would be zero). Therefore,
J+ should be diminished until we get an infinitely small volume from the physi-

⁴In this section, it is expedient to use the symbol J;7 instead of ;7 for the elementary mass of a
body.



144 MECHANICS OF A RIGID BODY

cal viewpoint. We understand this to mean such a volume which on the one hand
is small enough for the macroscopic (i.e., belonging to a great complex of atoms)
properties within its limits to be considered identical, and on the other hand is suf-
ficiently great to prevent discreteness (discontinuity) of the substance from mani-
festing itself.

By Eq. (5.18), the elementary mass J;7 equals the product of the density of a
body d7 at a given point and the corresponding elementary volume J+7:

J;7 = d7J+7.

Consequently, the moment of inertia can be written in the form

� =
∑
7

d7'
2
7 J+7. (5.19)

If the density of a body is constant, it can be put outside the sum:

� = d
∑
7

'27 J+7. (5.20)

Equations (5.19) and (5.20) are approximate. Their accuracy grows with dimin-
ishing elementary volumes J+7 and the elementary masses J;7 corresponding to
them. Hence, the task of finding the moments of inertia consists in integration:

� =

∫
'2 d; =

∫
d'2 d+. (5.21)

The integrals in Eq. (5.21) are taken over the entire volume of the body. The quan-
tities d and ' in these integrals are position functions, i.e., for example, functions
of the Cartesian coordinates F, G, and H.

As an example, let us find themoment of inertia of a homogeneous disk relative
to an axis perpendicular to the plane of the disk and passing through its centre
(Fig. 5.11). Let us divide the disk into annular layers of thickness d'. All the points
of one layer will be at the same distance ' from the axis. The volume of such a
layer is

d+ = 2c1' d'
where 1 is the thickness of the disk.

Since the disk is homogeneous, its density at all its points is the same, and d in
Eq. (5.21) can be put outside the integral:

� = d

∫
'2 d+ = d

∫ '0

0
'22c1' d'

where '0 is the radius of the disk. Let us put the constant factor 2c1 outside the
integral:

� = 2c1d
∫ '0

0
'3 d' = 2c1d

'40

4
.
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Fig. 5.11

Finally, introducing the mass of the disk ; equal to the product of the density d
and the volume of the disk 1c'20, we get

� =
;'20

2
. (5.22)

The finding of themoment of inertia in the above example was simplified quite
considerably owing to the fact that the body was homogeneous and symmetrical,
and we sought the moment of inertia relative to an axis of symmetry. If we wanted
to find the moment of inertia of the disk relative, for example, to the axis 0′0′ per-
pendicular to the disk and passing through its edge (see Fig. 5.11), the calculations
would evidently be much more complicated. The finding of the moment of inertia
is considerably simplified in such cases if we use the Steiner or parallel axis theo-
rem, which is formulated as follows: the moment of inertia � relative to an arbitrary
axis equals the moment of inertia �C relative to an axis parallel to the given one and
passing through the body’s centre of mass plus the product of the body’s mass ; and the
square of the distance 1 between the axes:

� = �C = ;12. (5.23)
According to the parallel axis theorem, the moment of inertia of the disk rela-

tive to the axis 0′0′ equals themoment of inertia relative to the axis passing through
the centre of the disk, which we have found [Eq. (5.22)] plus ;'20 (the distance be-
tween the axes 0′0′ and 00 equals the radius of the disk '0):

� =
;'20

2
+ ;'20 =

3
2
;'20.

Thus, the parallel axis theorem in essence reduces the calculation of the mo-
ment of inertia relative to an arbitrary axis to the calculation of the moment of
inertia relative to an axis passing through the centre of mass of the body.
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Fig. 5.12

To prove the parallel axis theorem, let us consider axis C passing through the
centre of mass of a body and axis 0 parallel to it and at a distance 1 from axis C
(Fig. 5.12, both axes are perpendicular to the plane of the drawing). LetX7 be a vector
perpendicular to axis C and drawn from the axis to the elementary mass J;7 and
JX7 be a similar vector drawn from axis 0. We shall also introduce the vector b
perpendicular to the axes and connecting the corresponding points of axes 0 and
C. For any pair of points opposite each other, this vector has the same value (equal
to the distance 1 between the axes) and the same direction. The following relation
holds between the vectors listed above:

X′7 = b + X7.
The square of the distance to the elementary mass J;7 from axis C is '2

7
= X2,

and from axis 0 is
'′27 = (b + X7)2 = 12 + 2b·X7 + '27 .

With a view to the above expression, the moment of inertia of the body relative to
axis 0 can be written in the form

� =
∑
7

J;7'
′2
7 = 12

∑
7

J;7 + 2b
∑
7

J;7X7 +
∑
7

J;7'
2
7 (5.24)

(we have put the constant factors outside the sum). The last term in this expression
is the moment of inertia of the body relative to axis C. Let us designate it �C. The
sum of the elementary masses gives the mass of the body ;. The sum

∑
7 J;7X7

equals the product of the mass of the body and the vector X drawn from axis C to
the centre of mass of the body. Since the centre of mass is on axis C, this vector
X and, consequently, the second term in Eq. (5.24) vanish. We thus arrive at the
conclusion that

� = ;12 + �C
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Fig. 5.13 Fig. 5.14

Fig. 5.15

Q.E.D [see Eq. (5.23)].
In concluding, we shall give the values of the moments of inertia for selected

bodies (the latter are assumed to be homogeneous, ; is the mass of the body).
1. The body is a thin long rod with a cross section of any shape. The maximum
cross-sectional dimension 1 of the rod is many times smaller than its length
: (1 ∼ :). The moment of inertia relative to an axis perpendicular to the rod
and passing through its middle (Fig. 5.13) is

� =
1
12
;:2. (5.25)

2. For a disk or cylinderwith any ratio of ' to : (Fig. 5.14), themoment of inertia
relative to an axis coinciding with the geometrical axis of the cylinder is

� =
1
2
;'2. (5.26)

3. The body is a thin disk. The thickness of the disk 1 is many times smaller
than the radius of the disk ' (1 ∼ '). The moment of inertia relative to an
axis coinciding with the diameter of the disk (Fig. 5.15) is

� =
1
4
;'2. (5.27)

4. The moment of inertia of a sphere of radius ' relative to an axis passing
through its centre is

� =
2
5
;'2. (5.28)
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5.5. Concept of Inertia Tensor

We established in Sec. 5.3 that for a homogeneous body rotating about an axis
of symmetry, the relation between the vectors R and 8 has a very simple form
[Eq. (5.12)]

R = �8

or
!F = �lF , !G = �lG , !H = �lH . (5.29)

The explanation is that for such a body the vectors R and 8 are collinear. In the
general case, however, the vectors R and 8 make an angle differing from zero (see
Fig. 5.7), so that the relation between them cannot be expressed by Eq. (5.12).

Let us try to find a way of relating the vectors R and 8 analytically in the most
general case. We shall proceed from the fact that the magnitudes of R and 8 are
proportional to each other. Indeed, according to Eq. (5.8), the magnitudes of the el-
ementary vectors R7 are proportional to themagnitude of8. Hence, themagnitude
of the sum of these vectors is also proportional to 8. It is easy to understand that
such proportionality is obtained when each component of the vector R depends
linearly on the components of the vector 8:

!F = �FFlF + �FGlG + �FHlH
!G = �GFlF + �G GlG + �GHlH (5.30)
!H = �HFlF + �H GlG + �HHlH .

Here the quantities �FF , �FG , etc. are proportionality constants having the dimen-
sion of the moment of inertia [compare with Eq. (5.29)]. When8 increases a certain
number of times, each of the components lF , lG , lH , and accordingly each of the
components !F , !G , !H grows the same number of times, as, consequently, does the
vector R itself.

The mutual orientation of the vectors R and 8 is determined by the values of
the proportionality constants. Assume, for example, that �FF = �G G = �HH , and the
remaining constants equal zero. In this case, Eqs. (5.30) transform into Eqs. (5.29),
i.e., the vectors R and 8 will be collinear. Now let us assume that the vector 8 is
directed along the H-axis, and the constants �FH , �GH , �HH differ from zero. In this
case lH = l, lF = lG = 0. Substitution of these values in Eqs. (5.30) yields

!F = �FHl ≠ 0, !G = �GHl ≠ 0, !H = �HHl ≠ 0.
All three components of the vector R differ from zero. Hence, the vector Rmakes
a certain angle with the vector 8 directed along the H-axis.

It follows from the above that in themost general case the relation between the
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angular momentum and the angular velocity of a body can be expressed with the
aid of Eqs. (5.30). Similar equations can be written for any vectors a and b whose
magnitudes are proportional to each other:

1F = )FF0F + )FG0G + )FH0H
1G = )GF0F + )G G0G + )GH0H (5.31)
1H = )HF0F + )H G0G + )HH0H .

These three equations can be written compactly in the form of a single expression:

17 =
∑
9=F,G,H

)7909. (5.32)

Assuming that 7 = F and performing summation with the subscript 9 sequentially
having the values F, G, H, we get the first of the equations (5.31), assuming that 7 = G,
we get the second equation, etc.

The combination of the nine quantities )FF , )FG , . . . , )HH is called a tensor of
rank two⁵, and the operation expressed by Eqs. (5.31) is called multiplication of the
vector a by the tensor ) . Such multiplication produces a new vector b.

It is customary practice to write a tensor in the form of a square table⁶:

) =
©­«
)FF )FG )FH

)GF )G G )GH

)HF )H G )HH

ª®¬ (5.33)

(we can write the subscripts 1, 2, 3 instead of F, G, H). The quantities)FF , )FG , . . . are
defined as the components of the tensor. The components )FF , )G G , )HH along the
diagonal of matrix (5.33) are called diagonal ones. The values of the components
depend on the choice of the coordinate axes onto which the vectors a and b are
projected (the components of these vectors also depend on the choice of the axes).

A comparison of Eqs. (5.30) and (5.31) shows that the constants in Eqs.(5.30) are
the components of a tensor of rank two:

� =
©­«
�FF �FG �FH

�GF �G G �GH

�HF �H G �HH

ª®¬ . (5.34)

It is called the inertia tensor of a body. This tensor characterizes the inertia prop-
erties of a body in rotation.

To find the values of the components of the inertia tensor, we shall proceed

⁵A tensor of rank two is defined as a combination of the nine quantities )FF , )FG , . . . , )HH that
transform according to definite rules upon rotations of the coordinate axes.

⁶More commonly known as matrix form –Ed.



150 MECHANICS OF A RIGID BODY

Fig. 5.16

from the definition of the angular momentum of a body:

R =
∑
7

;7 [r 7 × v7] (5.35)

[see Eq. (5.7)]. We shall plot the vectors r 7 from the centre ofmass of a body (Fig. 5.16).
Let us substitute the vector product 8 × r 7 for the velocity v7 in Eq. (5.35) [see
Eq. (1.100)]. We get

R =
∑
7

;7 [r 7 × (8 × r 7)].

We shall now use Eq. (1.35):

R =
∑
7

;7 [8(r 7 · r 7) − r 7 (r 7 · 8)]. (5.36)

We remind our reader that summation is conducted of all the elementary masses
into which we have mentally divided the body.

Let us associate a Cartesian system of coordinates with the body⁷ (see Fig. 5.16)
and write the scalar products figuring in Eq. (5.16) through the components of the
vectors 8 and r 7 along the axes of this system [see Eq. (1.23)]. We place the origin
of coordinates at the centre of mass of the body C (it must be remembered that
we plotted the vectors r 7 from this point). Taking into account that @F7 = F7, @G7 =

G7, @H7 = H7, we get

R =
∑
7

;7 [8(F27 + G27 + H27 ) − r 7 (F7lF + G7lG + H7lH)]. (5.37)

⁷It must be stressed that the axes of this system are rigidly associated with the body and rotate
together with it.
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Let us find the projection of this vector onto the F-axis:

!F =
∑
7

;7 [lF (F27 + G27 + H27 ) − F7 (F7lF + G7lG + H7lH)]

= lF

∑
7

;7 ( G27 + H27 ) − lG
∑
7

;7F7 G7 − lH
∑
7

;7F7H7. (5.38)

In a similar way, we find the projections of the vector R onto the axes G and H:

!G = −lF
∑
7

;7 G7F7 + lG
∑
7

;7 (F27 + H27 ) − lH
∑
7

;7 G7H7 (5.39)

!H = −lF
∑
7

;7H7F7 − lG
∑
7

;7H7 G7 + lH
∑
7

;7 (F27 + G27 ). (5.40)

A comparison of the expressions obtained with Eqs. (5.30) allows us to find the
values of the components of the inertia tensor. Let us write these values at once in
the form of a matrix:

� =

©­­­­­­«

∑
7

;7 ( G27 + H27 ) −
∑
7

;7F7 G7 −
∑
7

;7F7H7

−
∑
7

;7 G7F7

∑
7

;7 (F27 + H27 ) −
∑
7

;7 G7H7

−
∑
7

;7H7F7 −
∑
7

;7H7 G7

∑
7

;7 (F27 + G27 )

ª®®®®®®¬
. (5.41)

The diagonal components of the tensor are the moments of inertia relative to the
corresponding coordinate axes considered in the preceding section. These com-
ponents are called axial moments of inertia. The non-diagonal components are
called centrifugal moments of inertia. It must be noted that the non-diagonal
components of the tensor (5.41) comply with the condition that �FG = �GF , �FH =

�HF , �GH = �H G . A tensor complying with such a condition is called symmetrical.
In practice, the inertia tensor components are computed with the aid of inte-

gration. For example, the component �FF is determined by the formula

�FF =

∫
d(F, G, H) ( G2 + H2) d+

where d(F, G, H) is the density, and d+ is the elementary volume. Integration is
performed over the entire volume of the body.

Let us find the components of the inertia tensor for a homogeneous rectangular
parallelepiped. We select the coordinate axes as shown in Fig. 5.17. The origin of
coordinates coincides with the centre of mass of the body C. To calculate the axial
moment of inertia �HH we divide our parallelepiped into columnswith a base area of
dF dG. All the elements of such a column have identical values of the coordinates F
and G. The volumeof a column is 22 dF dG, and itsmass d; is d22 dF dG. Therefore,
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Fig. 5.17

the contribution of the column to �HH is determined by the expression
d�HH,column = 2d2(F2 + G2)dF dG.

Integration of this expression with respect to F gives the contribution to �HH of the
layer of length 20, width 22, and thickness dG shown in Fig. 5.17:

d�HH,layer =
∫ +0

−0
2d2(F2 + G2) dF dG

= 2d2 dG
∫ +0

−0
F2 dF + 2d2G2 dG

∫ +0

−0
dF

=

(
4
3
d203 + 4d20G2

)
dG (5.42)

(the density d does not depend on the coordinates F, G, and H because the body is
homogeneous).

Finally, integrating Eq. (5.42) with respect to G, we get �HH for the entire paral-
lelepiped of mass ;:

�HH =

∫ +1

−1

(
4
3
d203 + 4d20G2

)
dG =

4
3
d203

∫ +1

−1
dG + 4d20

∫ +1

−1
G2 dG

=
8
3
d2031 + 8

3
d2013 =

1
3
d(20) (21) (22) (02 + 12) = 1

3
;(02 + 12).

Similar calculations give �FF = ;(12 + 22)/3, and �G G = ;(02 + 22)/3.
Now let us calculate one of the centrifugal moments, for instance �FG . The

contribution to this moment of a column with the base dF dG is
d�FG,column = −dFG22 dF dG

and the contribution of a layer is

d�FG,layer = −2d2G dF
∫ +0

−0
F dG = 0.



Concept of Inertia Tensor 153

Fig. 5.18

Accordingly, the moment of the entire parallelepiped equals zero. A similar result
is also obtained for the other centrifugal moments. Thus, when we choose the co-
ordinate axes as shown in Fig. 5.17, the inertia tensor of a homogeneous rectangular
parallelepiped has the form

� =
©­«
�F 0 0
0 �G 0
0 0 �H

ª®¬ (5.43)

(we have retained only one of the two identical subscripts for the diagonal compo-
nents).

We obtained such a result because we choose the principal axes of inertia (see
Sec. 5.3) of the parallelepiped as the coordinate axes. Upon a different choice of
the coordinate axes, the centrifugal moments of inertia will differ from zero. The
following reasoning will convince us that this is true. When we choose the axes
as shown in Fig. 5.18a, the areas of rectangles 1, 2, 3, and 4 are the same. On two of
them, the product FG is positive, and on two negative. As a result, the integral of FG
taken over the entire area vanishes. Whenwe choose the axes as shown in Fig. 5.18b,
the areas of the shaded figures 1 and 3 are less than those of the unshaded figures 2
and 4 (because 0 > 1). Therefore, the integral of FG taken over the entire area will
differ from zero. Accordingly, the centrifugal moment �FG also differs from zero.

The result obtained is common for all bodies regardless of their shape andmass
distribution. If we take the principal axes of inertia of a body as the coordinate axes,
the inertia tensor has the form given by Eq. (5.43). The quantities �F , �G , �H [but not
�FF , �G G , �HH in Eq. (5.34); upon rotation of the coordinate axes all the tensor com-
ponents change, the diagonal ones included] are called the principal moments
of inertia of a body. It must be underlined that the axial moments calculated not
about arbitrary axes, but about the principal ones, are called the principal moments
of inertia.

The principal axes of inertia are mutually perpendicular and intersect at the
centre of mass of a body. In the general case (when �F ≠ �G ≠ �H), we can choose
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these axes in a single way. For a spherical top (i.e., a body for which �F = �G = �H ,
see Sec. 5.3), the position of the principal axes is absolutely indeterminate. For a
symmetrical top (�F = �G ≠ �H), only the H-axis is fixed, the other two axes being
indeterminate.

Assume that a body rotates about one of its principal axes of inertia, say about
the H-axis. Selecting the principal axes as the coordinate ones, we have lH = l, lF =
lG = 0. Since the inertia tensor has the form of Eq. (5.43) when the coordinate axes
are chosen in this way, Eqs. (5.30) give the following values of the components of
the angular momentum of a body:

!F = !G = 0, !H = �Hl.

Consequently, the vector R has the same direction as8. The same result is obtained
for rotation of a body about the other principal axes. In all these cases, we arrive
at Eq. (5.12):

R = �8

where � is the corresponding principal moment of inertia of the body. In Sec. 5.3,
we obtained Eq. (5.12) for a homogeneous body rotating about its axis of symmetry.
Now we have established that this equation holds when an arbitrary body rotates
about one of its principal axes of inertia.

In conclusion, let us determinewhen the equation ¤R = S [see Eq. (3.118)], which
is always correct, can be written in the form

�" = S. (5.44)
We may do this first of all when a body rotates about a principal axis, and the

moment of the forcesS is directed along this axis. Indeed, in this case, themoment
S produces the increment dR that is collinear with R (dR = S dB). Hence, rotation
constantly takes place about a principal axis so that the relation R = �8 is never
violated. In this case, however, Eq. (5.44) gives nothing new in comparison with the
formula

�UH = "H . (5.45)
Here H is the axis of rotation.

When S is not collinear with R (for example, when S is perpendicular to
R, the axis of rotation moves relative to the body with time. Consequently, even
provided that the relation R = �8 is obeyed at the initial moment, this relation
stops being obeyed with time, and Eq. (5.44) loses its meaning. The displacement
of the axis of rotation relative to the body is of no significance only when the body
is a spherical top. For such a top, any axis is a principal one and has the same value
of the moment of inertia � . Therefore, Eq. (5.44) holds for any mutual direction of
the vectors S and 8.
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Fig. 5.19

5.6. Kinetic Energy of a Rotating Body

Let us begin with a consideration of the rotation of a body about a fixed axis, which
we shall call the H-axis (Fig. 5.19). The linear velocity of the elementary mass ;7 is
D7 = l'7 where '7 is the distance from the mass;7 to the H-axis. Consequently, we
get the following expression for the kinetic energy of the 7-th elementary mass:

�k,7 =
;7D

2
7

2
=
1
2
;7l

2'27 .

The kinetic energy of a body is composed of the kinetic energies of its parts:

�k =
∑
7

�k,7 =
1
2
l2

∑
7

;7'
2
7 .

The sum in the right-hand side of this equation is the moment of inertia of the
body �H relative to the axis of rotation. The kinetic energy of a body rotating about
a fixed axis thus equals

�k =
1
2
�Hl

2. (5.46)

Assume that the mass ;7 experiences⁸ the internal force f 7, and the external
force L 7 (see Fig. 5.19). According to Eq. (3.16), these forces do the following work
during the time dB:

d�7 = f 7 · v7 dB + L 7 · v7 dB = f 7 · (8 × r 7) dB + L 7 · (8 × r 7) dB.
Performing a cyclic transposition of the multipliers in the scalar triple products

⁸The resultant force f 7 + L 7 is in a plane perpendicular to the axis of rotation.
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[see Eq. (1.34)] we get
d�7 = 8 · (r 7 × f 7) dB + 8 · (r 7 × L 7) dB = 8 ·Sint,7 dB + 8 ·S 7 dB (5.47)

where Sint,7 is the moment of an internal force relative to point 0, and S 7 is the
similar moment of an external force.

Summation of Eq. (5.47) for all the elementary masses yields the elementary
work done on the body during the time dB:

d� =
∑
7

d�7 = 8

(∑
7

Sint,7

)
dB + 8

(∑
7

S 7

)
dB.

The sum of the moments of the internal forces equals zero [see Eq. (3.117)]. Con-
sequently, designating the total moment of the external forces by S, we get the
expression

d� = 8 ·S dB = l"H dB (5.48)
[we have used Eq. (1.21), taking into account that "l = "H]. Finally, since l dB is
the angle di through which the body turns during the time dB, we have

d� = "H di. (5.49)
The sign of the work depends on that of "H , i.e., on the sign of the projection of
the vector S onto the direction of the vector 8.

Thus, internal forces do noworkwhen a body rotates, the work of the external
forces is determined by Eq. (5.49). We can arrive at Eq. (5.49) by taking advantage
of the fact that the work done by all the forces applied to a body goes to increase
its kinetic energy [see Eq. (3.11)]. Differentiating both sides of Eq. (5.46), we obtain

d�k = �Hl dl = �Hl ¤l dB.
According to Eq. (5.15), �H ¤l = "H , and the product l dB equals di. Hence, substitut-
ing d� for d�k we arrive at Eq. (5.49).

Table 5.1 compares the formulas of mechanics of rotation with similar formu-
las of mechanics of translation (mechanics of a particle). This comparison shows
that in all cases of rotation the part of mass is played by the moment of inertia,
the part of force by the moment of a force, the part of momentum by the angular
momentum, and so on.

We obtained Eq. (5.46) for the case when a body rotates about a stationary axis
fixed in the body. Now let us assume that a body rotates arbitrarily relative to a
fixed point coincidingwith its centre ofmass. We shall rigidly associate a Cartesian
system of coordinates with the body and place its origin at the centre of mass. The
velocity of the 7-th elementary mass is v7 = 8× r 7. Consequently, we can write the
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following expression for the kinetic energy of the body:

�k =
1
2

∑
7

;7D
2
7 =

1
2

∑
7

;7 (8 × r 7)2 =
1
2

∑
7

;7l
2@27 sin

2 i7

where i7 is the angle between the vectors 8 and r 7. Substituting 1 − cos2 i7 for
sin2 i7, and taking into account that l@7 cos i = 8 ·r 7, we have

�k =
1
2

∑
7

;7 [82
· r27 − (8 ·r 7)2]2.

Let us write out the scalar products through the projections of the vectors 8 and
r 7 onto the axes of the coordinate system associated with the body:

�k =
1
2

∑
7

;7

[
(l2F + l2G + l2H) (F27 + G27 + H27 )

−(lFF7 + lG G7 + lHH7) (lFF7 + lG G7 + lHH7)
]

=
1
2

∑
7

;7

[
(l2F + l2G + l2H) (F27 + G27 + H27 )

−l2FF27 − lFlGF7 G7 − lFlHF7H7 − lGlF G7F7 − l2G G27
−lGlH G7H7 − lHlFH7F7 − lHlGH7 G7 − l2H H27

]
.

Finally, combining addends with identical products of the angular velocity com-
ponents and putting these products outside the sums, we get

Table 5.1

Translation Rotation

v = linear velocity 8 = angular velocity
a = ¤v = linear acceleration " = ¤8 = angular acceleration
; = mass �H = moment of inertia
p = ;v = momentum !H = �Hl = angular momentum
L = force S or "H = moment of force
¤p = L ¤R = S

;a = L �UH = "H

�k =
1
2;D

2 �k =
1
2 �l

2 (for a fixed axis of rotation)
d� = �A dA d� = "H di
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�k =
1
2

[
(l2F

∑
7

;7 ( G27 + H27 ) + l2G
∑
7

;7 (F27 + H27 ) + l2H
∑
7

;7 (F27 + G27 )

−lFlG
∑
7

;7F7 G7 − lFlH
∑
7

;7F7H7 − lGlF
∑
7

;7 G7F7

−lGlH
∑
7

;7 G7H7 − lHlF
∑
7

;7H7F7 − lHlG
∑
7

;7H7 G7

]
.

The sums by which the products of the angular velocity components are mul-
tiplied are the components of the inertia tensor [see Eq. (5.41)]. Hence, we have
arrived at the equation

�k =
1
2

[
�FFl

2
F + �FGlFlG + �FHlFlH + �GFlGlF

+�G Gl2G + �GHlGlH + �HFlHlF + �H GlHlG + �HHl2H
]
. (5.50)

This equation can be written in the form

�k =
1
2

∑
7,9=F,G,H

�79l7l9. (5.51)

In summation, the subscripts 7 and 9 are sequentially given the values F, G, H inde-
pendently of each other.

If the axes of a coordinate system associatedwith a body are chosen so that they
coincide with the principal axes of inertia of the body, the centrifugal moments of
inertia will vanish, and Eq. (5.50) will become simplified as follows:

�k =
1
2
(�Fl2F + �Gl2G + �Hl2H). (5.52)

Here �F , �G , �H are the principal moments of inertia of the body. For a spherical
top, these moments have the identical value I so that Eq. (5.52) becomes �k = �l2/2
[comparewith Eq. (5.46)]. When an arbitrary body rotates about one of the principal
axes of inertia, say the H-axis, we have lH = l, lFlG = 0, and Eq. (5.52) transforms
into Eq. (5.46). Thus, the kinetic energy of a rotating body equals half the product of
the moment of inertia and the square of the angular velocity in three cases: (1) for
a body rotating about a fixed axis, (2) for a body rotating about one of the principal
axes of inertia, and (3) for a spherical top. In all other cases, the kinetic energy is
determined by more complicated equations (5.50) or (5.52).
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5.7. Kinetic Energy of a Body in Plane Motion

The plane motion of a body can be represented as the superposition of two mo-
tions—translation with a velocity v0 and rotation about the relevant axis with the
angular velocity8 (see Sec. 5.1). By Eq. (5.1), the velocity of the 7-th elementary mass
of a body is

v7 = v0 + 8 × r 7
where v0 is the velocity of a certain point 0 of the body, and r 7 is the position vector
determining the position of the elementary mass with respect to point 0.

The kinetic energy of the 7-th elementary mass is

�k,7 =
1
2
;7D

2
7 =

1
2
;7 (v0 + 8 × r 7)2.

Squaring the expression in parenthesis, we get

�k,7 =
1
2
;7

[
D20 + 2v0 · (8 × r 7) + (8 × r 7)2

]
.

The vector product of 8 and r 7 has a magnitude equal to l'7, where '7 is the dis-
tance to the mass ;7 from the axis of rotation [see Fig. 1.33 and the text preceding
Eq. (1.100)]. Consequently, the third addend in the brackets equals l2'2

7
. Let us per-

form a cyclic transposition of the multipliers in the second addend [see Eq. (1.34)].
As a result, we obtain

�k,7 =
1
2
;7

[
D20 + 2(v0 × 8) · r 7 + l2'27

]
. (5.53)

To obtain the kinetic energy of a body, we find the sum of Eq. (5.53) for all the
elementary masses, putting the constant factors outside the sum:

�k =
1
2
D20

∑
7

;7 + (v0 × 8) ·
∑
7

;7r 7 +
1
2
l2

∑
7

;7'
2
7 .

The sum of the elementary masses
∑
7 ;7 is the mass of the body;. The expression∑

7 ;7r 7 is the product of the mass of the body and the position vector rC of the
centre of mass of the body. Finally,

∑
7 ;7'

2
7
is the moment of inertia of the body

�0 relative to an axis passing through point 0. We can therefore write that

�k =
1
2
;D20 + ;rC · (v0 × 8) +

1
2
�0l

2. (5.54)

If we take the centre of mass of the body as point 0, the position vector rC will
equal zero, and the second addend will vanish. Consequently, designating by vC
the velocity of the centre of mass, and by �C the moment of inertia of the body
relative to an axis passing through point C, we get the following expression for the
kinetic energy of the body:

�k =
1
2
;D2C +

1
2
�Cl

2. (5.55)
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Fig. 5.20

Thus, the kinetic energy of the body in plane motion consists of the energy of
translation with a velocity equalling that of the centre of mass and the energy of
rotation about an axis passing through the centre of mass of the body.

5.8. Application of the Laws of Dynamics of a Body

The motion of a rigid body is described by two equations ((5.6) and (3.118)) that have
already been given in previous sections:

;aC =
∑

Lext

¤R =
∑

Sext.

The motion of a body is thus determined by the external forces and the moments
of these forces acting on it.

The moments of the forces may be taken relative to any point that is stationary
or moving without acceleration. If we took the moment of the external forces
relative to a point moving with acceleration, we would in essence write Eq. (3.118)
in a non-inertial reference frame. In this case, we must take into consideration
the forces of inertia and their moments apart from the external forces due to the
interaction of the given body with other bodies.

The points of application of the forces acting on a body may be transferred
along the lines of action of the forces because neither the sum of the forces nor
their moments will change when this is done (when a force is transferred along
the line of its action, the moment arm relative to any point remains unchanged).
This permits us to replace several forces with a single one equivalent to them in
its action on a body. For example, the two forces L1 and L2 in one plane (Fig. 5.20)
may be replaced with the force L equivalent to them. The point of application of
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the latter may also be chosen arbitrarily on the direction of its action.
A combination of parallel forces acting on a body may be replaced with their

resultant equal to the sum of all the forces and applied to a point of the body such
that its moment equals the sum of the moments of the separate forces.

Let us find the resultant of the forces of gravity. These forces are applied to all
the elements of a body, the force ;7g acting on the elementary mass ;7. The sum
of these forces is V = ;g, where ; =

∑
7 ;7 is the mass of the body. The total

moment of the forces of gravity relative to a certain point 0 is

S =
∑
7

r 7 × (;7g)

where r 7 is the position vector determining the position of themass;7with respect
to point 0. Transferring the scalar multiplier ;7 from the second member of the
product to the first one and then putting the common factor g outside the sum, we
get

S =

(∑
7

;7r 7

)
× g.

The sum in parentheses equals the product of themass of the body and the position
vector rC of the centre of mass C. Hence,

S = (;r) × g = rC × (;g) = rC × V . (5.56)
Thus, the total moment of the forces of gravity relative to an arbitrary point 0
coincides with the moment of the force ;g applied to point C. Thus, the resultant
of the forces of gravity equals V = ;g and is applied to the centre of mass of the
body. We must note that this holds only when the field of the forces of gravity
is homogeneous within the body [in deriving Eq. (5.56) we considered that g =

constant].
It follows from Eq. (5.56) that the moment of the forces of gravity relative to

the centre of mass equals zero (in this case rC = 0). The point relative to which
the moment of the forces of gravity equals zero is called the centre of gravity of
the body. Thus, when the field of gravity forces is homogeneous within a body, the
centre of gravity coincides with the centre of mass.

For a homogeneous gravitational field, the forces of gravity applied to different
elementary masses have an identical direction and are proportional to ;7. The
forces of inertia produced in a non-inertial reference frame moving in a straight
line relative to inertial frames have the same property. Indeed, in this case, the
forces of inertia applied to the elementary masses ;7 equal −;7a0, where a0 is the
acceleration of the non-inertial frame [see Eq. (4.2)]. By repeating the reasoning
that led us to Eq. (5.56) (here −;7a0 must be substituted for ;g), we can show that
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the resultant of the inertia forces equals −;a0 and is applied to the centre of mass
of the body. It must be stressed that this holds only for reference frames moving
in a straight line.

The moment of the inertia forces relative to the centre of mass equals zero (in
a frame with translational motion). Therefore, when compiling Eq. (3.118) for the
moments taken relative to the centre of mass, the forces of inertia do not have to
be taken into consideration.

Let us find the conditions of equilibriumof a rigid body. A body can remain in a
state of rest if nothing causes the appearance of translation or rotation. According
to Eqs. (5.6) and (3.118), two conditions are essential and sufficient in this case:

(1) the sum of all the external forces applied to a body must equal zero:∑
Lext = 0. (5.57)

(2) the resultant moment of the external forces relative to any point must equal
zero: ∑

Sext = 0. (5.58)
When condition (5.57) is obeyed, from the equality to zero of the sum of the

moments for one point 0 we get the equality to zero of the sum of the moments
relative to any other point 0′. Indeed, assume that for a certain point 0 we have∑

7

S 7 =
∑
7

r 7 × L 7 = 0. (5.59)

Let us take another point 0′whose position relative to 0 is determined by the vector
b. Examination of Fig. 5.21 shows that r′

7
= r 7 − b. Consequently, the sum of the

moments relative to point 0′ is∑
7

S′7 =
∑
7

r′7 × L 7 =
∑
7

(r 7 − b) × L 7 =
∑
7

r 7 × L 7 −
∑
7

b × L 7.

According to Eq. (5.59), the first sum equals zero. Factoring out the constant quan-
tity b in the second sum, we get the expression − (b ×∑

7 L 7) which in view of
Eq. (5.57) also vanishes. Thus, from Eq. (5.57) and condition (5.59) for point 0, we get
condition (5.59) for point 0′.

It must be noted that the vector condition (5.58) is equivalent to three scalar
ones: ∑

"F,ext = 0,
∑

"G,ext = 0,
∑

"H,ext = 0. (5.60)
Thus, the conditions of equilibriumof a rigid body are determined by Eqs. (5.57)

and (5.58), or by Eqs. (5.57) and (5.60).
In conclusion, let us consider an example of the application of the laws of dy-

namics of a rigid body. Assume that a homogeneous cylinder of radius ' and mass
; rolls down an inclined plane (Fig. 5.22) without slipping. The angle of inclination
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Fig. 5.21 Fig. 5.22

of the plane is V and its height is ℎ (ℎ ∼ '). The initial velocity of the cylinder is
zero. We are to find the velocity of the centre of mass and the angular velocity of
the cylinder at the moment when it reaches the horizontal section. We shall give
two variants of the solution.

First Variant. The cylinder will move under the action of three forces—the
force V = ;g, the force of friction L fr, and the force of normal pressure L n̂ (see
Sec. 2.12. The acceleration of the cylinder in the direction of a normal to the plane
is zero. Consequently, the magnitude of the force of normal pressure equals the
normal component of the force V having the magnitude ;6 cos V.

Friction appears between the cylinder and the plane at the points of their con-
tact. In the absence of slipping, these points of the cylinder are stationary (they
form an instantaneous axis of rotation). Hence, the force of friction we are deal-
ing with is a static force of friction. We know from See. 2.10 that the static force
of friction can range from zero to the maximum value �0 that is determined by
the product of the coefficient of friction and the force of normal pressure pressing
the contacting bodies against each other (�0 = 5;6 cos V). In the case under con-
sideration, the force of friction takes on a value such that slipping will be absent.
Slipping will be absent when the cylinder rolls along the plane provided that the
linear velocity of the points of contact vanishes. This will occur, in turn, if the ve-
locity of the centre of mass DC at each moment of time equals the angular velocity
of rotation of the cylinder 8 multiplied by the radius of the cylinder ':

DC = l'. (5.61)
The acceleration of the centre of mass 0C will accordingly equal the angular accel-
eration U multiplied by ':

0C = U'. (5.62)
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If the force of friction needed to obey conditions (5.61) and (5.62) does not exceed
themaximum value �0, then the cylinder will roll down the plane without slipping.
Otherwise rolling without slipping is impossible.

Equation (5.6) in the given case has the form
;aC = ;g + L fr + L n̂.

Projecting it onto the direction of motion, we get
;0C = ;6 sin V − �fr. (5.63)

For a homogeneous cylinder rotating about an axis of symmetry, R = �8.
Therefore, Eq. (3.118) can be written in the form

�U =
∑

"H (5.64)
where H is the axis of the cylinder [see Eq. (5.51)]. In Eq. (5.64) written relative to the
axis of the cylinder, only the moment of the force of friction will differ from zero.
The remaining forces including the resultant of the forces of inertia are directed
through the axis of the cylinder. As a result, their moments relative to this axis
equal zero. Thus, Eq. (5.64) will be written as follows:

�U = ' �fr. (5.65)
Here � is the moment of inertia of the cylinder relative to its axis equal to ;'2/2.

Equations (5.63) and (5.65) contain three unknown quantities, �fr, 0C and U. The
last two of them are related by Eq. (5.62) resulting from the absence of friction. By
solving the system of equations (5.62), (5.63), and (5.65), we shall find (with account
of the fact that � = ;'2/2) the values of the required quantities:

�fr =
1
3
;6 sin V, (5.66)

0C =
2
3
6 sin V, (5.67)

U =
2
3

( 6
'

)
sin V. (5.68)

Now that we know the value of the static force of friction needed for rolling
down of the cylinder without slipping, we can find the condition at which this
rolling is possible. For the cylinder to roll down without slipping, the force (5.66)
must not exceed the maximum value of the static force of friction �0 equal to
5;6 cos V:

1
3
;6 sin V 6 ;6 cos V

whence
tan V 6 35 .
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Consequently, if the slope (tan V) of the plane exceeds the triple value of the static
coefficient of friction between the cylinder and the plane, rolling down cannot
occur without slipping.

From the constancy of 0C [see Eq. (5.67)] it follows that the centre of mass of the
cylindermoveswith uniform acceleration. During the time Br that it rolls down, the
cylinder travels the distance ℎ/sin V. In uniformly acceleratedmotion, the distance,
acceleration, and time are related by the equation A = 0B2/2. Introducing the value
of A, we get

ℎ

sin V
=
1
2
0CB

2
r

whence, introducing the value of 0C from Eq. (5.67), we have

Br =
1

sin V

(
3ℎ
6

)1/2
.

This time, like 0C, does not depend on the mass and radius of the cylinder⁹. It
is determined only by the angle of inclination of the plane V and the difference
between the levels of its edges ℎ.

The velocity of the centre of mass when the cylinder reaches the horizontal
section will be

DC = 0CBr =

(
4
3
6ℎ

)1/2
and the angular velocity of the cylinder will be

l = UBr =
1
'

(
4
3
6ℎ

)1/2
.

We must note that the static force of friction does no work on the cylinder
because the points of the cylinder which this force is applied to are stationary at
each moment of time [see Eq. (3.16)].

We find for the horizontal plane (V = 0) by Eqs. (5.67) and (5.68) that the cylinder
will travel without acceleration if it is first imparted a certain translational velocity
and the corresponding (such that no slipping occurs) angular velocity. The motion
will actually be retarded. This is due to the force of rolling frictionwhich is directed
so that its moment reduces the angular velocity l, while the force itself produces
a corresponding (again such that no slipping will appear) retardation of the centre
of mass. The force of rolling friction does negative work on a rolling body.

In solving the problem on the rolling of a cylinder down an inclined plane, we
disregarded rolling friction.

SecondVariant. Since the force of friction does nowork (we disregard rolling

⁹This holds only for a homogeneous solid cylinder.



166 MECHANICS OF A RIGID BODY

friction), the total energy of the cylinder remains constant. At the initial moment,
the kinetic energy is zero, and the potential energy is ;6ℎ. At the bottom of the
inclined plane, the potential energy vanishes but a kinetic energy appears equal to
[see Eq. (5.55)]:

�k =
;D2C

2
+ �Cl

2

2
.

Since slipping is absent, DC and l are related by the expression DC = l'. Intro-
ducing l = DC/' and �C = ;'2/2 into the expression for the kinetic energy, we
get

�k =
;D2C

2
+
;D2C

4
=
3
4
;D2C.

The total energy at the beginning and end of rolling down the inclined plane
must be the same:

3
4
; D2C = ;6ℎ

whence

DC =

(
4
3
6ℎ

)1/2
and the angular velocity is

l =
DC

'
=

1
'

(
4
3
6ℎ

)1/2
.

Pay attention to how much simpler the second variant of solution is than the
first one.

5.9. Gyroscopes

A gyroscope (or top) is a massive symmetrical body rotating with a great velocity
about an axis of symmetry. We shall call this axis the axis of the gyroscope. It is one
of the principal axes of inertia. Therefore, if it does not turn in space, the angular
momentum is R = �8, where � is the moment of inertia relative to the gyroscope
axis. Let us now assume that the gyroscope axis rotates with a certain velocity
8′. In this case, the resultant rotation of the gyroscope occurs about an axis not
coinciding with an axis of symmetry, and the direction of the vector R does not
coincide with that of the gyroscope axis. If the angular velocity l′ of the axis is
negligibly small in comparison with the angular velocity l of the gyroscope itself,
however (l′ � l), then we may assume that the vector R is approximately equal
to �8 and is directed along the gyroscope axis. In this condition, rotation of the
vector R and rotation of the gyroscope axis will be equivalent. We shall assume in
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Fig. 5.23 Fig. 5.24

the following that the condition l′ � l is obeyed.
When an attempt ismade to turn the gyroscope axis, a distinctive phenomenon

is observed called the gyroscopic effect: under the action of forces that ought to
cause rotation of the gyroscope axis 00 about straight line 0′0′ (Fig. 5.23), the axis
turns about straight line 0′′0′′ (axis 00 and straight line 0′0′ are in the plane of
the drawing, and straight line 0′′0′′ and the forces L1 and L2 are at right angles to
this plane). The behaviour of the gyroscope, which seems unnatural at first sight,
completely conforms with the laws of rotational dynamics. Indeed, the moment
of the forces L1 and L2 is directed along straight line 0′0′. During the time dB, the
angular momentum of the gyroscope R receives the increment dR = S dB, which
has the same direction as S. After the time dB elapses, the angular momentum of
the gyroscope will equal the resultant R′ = R + dR in the plane of the figure. The
direction of the vector R′ coincides with the new direction of the gyroscope axis.
Thus, the latter will turn about straight line 0′′0′′ through a certain angle di. It
can be seen from Fig. 5.23 that di = |dR|/! = " dB/!. Hence, it follows that the
gyroscope axis turned to its new position with the angular velocity l′ = di/dB =
"/!. Let us write this relation in the form" = l′!. The vectors S, R and 8′ are
mutually perpendicular (the vector 8′ is directed along straight line 0′′0′′ toward
us). The relation between them can therefore be written in the form

S = 8′ × R. (5.69)
We have obtained this equation for the casewhen the vectors8′ and R aremutually
perpendicular. It also holds, however, in the most general case. A glance at Fig. 5.24
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Fig. 5.25 Fig. 5.26

shows that when the gyroscope axis turns about the vector 8′ through the angle
di the vector R receives an increment whose magnitude is |dR| = ! sin U di. At
the same time |dR| = " dB. Thus, ! sin U di = " dB, whence " = l′! sin U. It is
easy to see with the aid of Fig. 5.24 that in this case Eq. (5.69) holds (the vectors 8′

and R are in the plane of the figure, the vector dR is directed beyond the drawing
and is therefore depicted by a circle with a cross in it). We remind our reader that
Eq. (5.69) is correct only if l′ � l.

When attempts aremade to cause the axis of a gyroscope to turn in a givenway,
the so-called gyroscopic forces are set up owing to the gyroscopic effect. These
forces act on the bearings in which the gyroscope axis rotates. For example, if
gyroscope axis 00 is forcibly turned about straight line 0′0′ (Fig. 5.25), the gyroscope
axis tends to turn about straight line 0′′0′′. To prevent this rotation, the forces
L ′1 and L ′2 acting from the side of the bearings must be applied to the gyroscope
axis. According to Newton’s third law, the gyroscope axis will act on the bearings
with the forces L1 and L2, and the latter are exactly the gyroscopic forces. Upon
forced turning of the gyroscope axis with the angular velocity 8′, the moment of
the forces with which the bearings act on the axis is determined by Eq. (5.69). The
moment of the gyroscopic forces with which the axis acts on the bearings is

S′ = R′ × 8. (5.70)
Let us assume that the axis of a gyroscope is fixed in ring ' that can freely turn

in frame Fr (Fig. 5.26). Let us turn the frame about an axis in its plane with the
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Fig. 5.27

angular velocity 8′. In this case, as we have found out, a moment of gyroscopic
forces determined by Eq. (5.70) is produced that acts on the ring. This moment will
cause the ring to turn in the frame in the direction indicated by the arrow until
the gyroscope axis becomes arranged in the direction of the axis of rotation of the
frame and the moment (5.70) vanishes. The direction of rotation of the gyroscope
itself and the direction in which the frame turns will coincide. When R and 8′ are
directed oppositely, the moment (5.70) also vanishes. The corresponding position
of the gyroscope axis, however, will be unstable—upon the slightest deviation of
the angle between R and 8′ from 180°, the momentS′ will be set up that will turn
the axis until this angle becomes equal to zero.

Now let us assume that the frame turns with the angular velocity 8′ about an
axis not in its plane (Fig. 5.27). In the position of the ring at which the angular
momentum of the gyroscope R is perpendicular to 8′ (Fig. 5.27a), the vector S′

has the direction shown in the figure. The componentS′⊥ of this vector causes the
ring to turn in the frame, and as a result the angle between the vectors R and 8′

will diminish. The componentS′‖ tends to misalign the ring relative to the frame.
When the ring occupies a position such that the angle between the vectors R and
8′ takes on the smallest possible value (Fig. 5.27b), the component S′⊥ will vanish
because in this case the moment of the gyroscopic forces S′ is in the plane of the
ring; this moment cannot produce rotation of the ring in the frame. Thus, under
the action of gyroscopic forces, the ring occupies such a position in the frame in
which the angle between the gyroscope axis and the axis of rotation of the frame
is minimum.

An instrument called the gyrocompass (gyroscopic compass) is based on the
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Fig. 5.28 Fig. 5.29

behaviour of a gyroscope described above. This instrument is a gyroscope whose
axis can freely turn in a horizontal plane. The Earth’s daily rotation causes the
axis of the gyrocompass to arrange itself in a position such that the angle between
this axis and the Earth’s axis of rotation will be minimum (Fig. 5.28). In this po-
sition, the axis of the gyrocompass will be in a meridian plane and, consequently,
line up in a north-south direction. A gyrocompass advantageously differs from its
magnetic pointer counterpart in that no corrections have to be introduced into its
readings for the so-called magnetic declination (the angle between the magnetic
and the geographic meridians). Another advantage is that no measures have to be
taken to compensate for the action on the pointer of ferromagnetic objects near
the compass (for example, the steel hull of a ship).

Assume that the axis of a gyroscope can freely turn about point 0 (Fig. 5.29). Let
us consider the behaviour of such a gyroscope in the field of forces of gravity. The
magnitude of the moment of the forces applied to the gyroscope is

" = ;6: sin U (5.71)
where; is the mass of the gyroscope, : is the distance from point 0 to the centre of
mass of the gyroscope and U is the angle made by the gyroscope axis with a vertical
line.

The vector S is perpendicular to the vertical plane passing through the gyro-
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scope axis (this plane is shaded in Fig. 5.29).
Under the action of the momentS, the angular momentum R changes during

the time dB by the increment dR = S dB perpendicular to the vector R. The amount
by which the vector R changes upon receiving the increment dR corresponds to
turning of the gyroscope axis such that the angle a does not change. The vertical
plane passing through the gyroscope axis turns through the angle di.

The vector S turns through the same angle in a horizontal plane. As a result,
when the time dB elapses, the vectors R and S will have the same mutual arrange-
ment as at the initial moment.

During the next moment dB, the vector R again receives the increment dR that
is perpendicular to the new direction of the vector R setting in after the preceding
elementary turn, etc. As a result, the gyroscope axis will rotate about the vertical
axis passing through point 0 with the angular velocity l′. It will describe a cone
with an apex angle of 2U (compare with Fig. 5.24). (When U = c/2, the cone degen-
erates into a plane.) The vector R will change only in direction. Its magnitude will
be constant because the elementary increments dRwill always be perpendicular to
the vector R¹⁰.

Thus, in the field of forces of gravity, the axis of a gyroscope with a fixed point
rotates about a vertical line, describing a cone. Suchmotion of a gyroscope is called
precession. We can find the angular velocity l′ of precession ifwe take into account
that by Eq. (5.69)" = l′! sin U. Equating this value to Eq. (5.71), we get l′! sin U =
;6: sin U, whence

l′ =
;6:

!
=
;6:

�l
. (5.72)

It follows from Eq. (5.72) that the velocity of precession does not depend on the
angle of inclination of the gyroscope axis with respect to a vertical line (on the
angle U).

We have considered the approximate theory of the gyroscope. According to the
strict theory, rotation of the axis about a vertical line is accompanied by oscillations
of the axis in a vertical plane. The latter are attended by changes in the angle U
ranging from U1 to U2. This wobbling of the axis is called nutation. Depending on
the initial conditions, the end of a gyroscope axis draws one of the curves depicted
in Fig. 5.30 on an imaginary spherical surface. If, for example, after positioning the
axis at the angle U1, we make the gyroscope rotate and then release the axis gently,
the latter will first lower while rotating about the vertical line. After reaching the

¹⁰We can find similar behaviour in the velocity vector when a point moves uniformly along a
circle. The vector v receives the increment dv = an̂ dB (an̂ = constant) during the time dB. As a
result, the direction of the vector v changes, while its magnitude remains constant.
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Fig. 5.30 Fig. 5.31

angle U2, the axis will begin to rise, and so on (this case is shown in Fig. 5.30b).
By imparting an initial impetus of a quite definite magnitude and direction to a

gyroscope, we can achieve precession of its axis without nutation. Such precession
is defined as regular. The amplitude of nutation diminishes with an increasing gy-
roscope velocity of rotation. Nutation is also absorbed by friction in the support.
This is why nutation is often unnoticeable in practice. Precession that is only ap-
proximately regular is called pseudoregular.

If point 0 is at the centre of mass of a gyroscope (see Fig. 5.29), the moment of
the force of gravity becomes equal to zero, and we get the so-called free symmet-
rical top. Owing to the law of conservation, the angular momentum of such a top
will change neither in magnitude nor in direction. If we rotate the top about its
axis of symmetry, the vectors R and 8 will have the same direction which remains
constant for an infinitely long time. If, however, the top is rotated about an axis
not coinciding with any of its principal axes of inertia, the vectors R and 8 will
not coincide (Fig. 5.31). The relevant calculations give us the following results. The
vector 8 remains constant in magnitude and precesses about the direction of the
vector R describing a cone. At the same time, the axis of symmetry H of the top
precesses, the vectors R and 8 and the H-axis constantly being in one plane. The
top rotates about the H-axis with the angular velocity lH = !H/�H , where !H is the
projection of the vector R onto the H-axis, and �H is the moment of inertia of the
top relative to this axis. The angular velocity of precession is lpr = !/� , where � is
the identical value of the moments of inertia �F and �G .



173

Chapter 6

UNIVERSAL GRAVITATION

6.1. Law of Universal Gravitation

All bodies in nature mutually attract one another. The law which this attraction
obeys was established by Newton and is called the law of universal gravitation.
This law states: the force with which two point particles attract each other is propor-
tional to their masses and inversely proportional to the square of the distance between
them:

� = �
;1;2

@2
. (6.1)

Here� is a constant of proportionality called the gravitational constant. The force
is directed along the straight line passing through the interacting particles (Fig. 6.1).

The force with which the second particle attracts the first one can be written
in the vector form as follows:

L12 = �
;1;2

@2
ê12. (6.2)

The symbol ê12 stands for a unit vector directed from the first particle to the
second one (see Fig. 6.1). Substituting the vector ê21 for the vector ê12 in Eq. (6.2),
we get the force L21 acting on the second particle.

To find the force of interaction of extended bodies, theymust be divided into el-
ementary masses J;, each of which can be assumed to be a point particle (Fig. 6.2).
According to Eq. (6.2), the 7-th elementary mass of body 1 is attracted to the 9-th
elementary mass of body 2 with the force

L 79 = �
J;7J;9

@2
79

ê79 (6.3)

where @79 is the distance between the elementary masses.
Summation of Eq. (6.3) over all the values of the subscript 9 gives the force
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Fig. 6.1 Fig. 6.2

exerted by body 2 on the elementary mass J;7, belonging to body 1:

L 72 =
∑
9

�
J;7J;9

@2
79

ê79. (6.4)

Finally, summation of Eq. (6.4) over all the values of the subscript 7, i.e., summation
of the forces applied to all the elementary masses of the first body gives the force
exerted by body 2 on body 1:

L12 =
∑
7

∑
9

�
J;7J;9

@2
79

ê79. (6.5)

Summation is performed over all the values of the subscripts 7 and 9. Conse-
quently, if body 1 is divided into #1, and body 2 into #2 elementary masses, then
the sum (6.5) will contain #1#2 addends.

In practice, the summation according to Eq. (6.5) consists in integration and,
generally speaking, is a very complicated mathematical problem. If the interact-
ing bodies are homogeneous and have a regular shape, the calculations are greatly
simplified. In particular, when the interacting bodies are homogeneous¹ spheres,
calculation by Eq. (6.5) leads to Eq. (6.2), ;1 and ;2 now being the masses of the
spheres, @ the distance between their centres, and ê12 a unit vector directed from
the centre of the first sphere to that of the second one. The spheres thus interact
like point particles of masses equal to those of the spheres and situated at their
centres.

If one of the bodies is a homogeneous sphere of a very great radius (for example,
the Earth), while the second body can be considered as a point particle, then their
interaction is described by Eq. (6.2) in which @ stands for the distance from the
centre of the sphere to the particle (this statement will be proved in the following
section).

The dimension of the gravitational constant in accordance with Eq. (6.1) is

[�] = [�] [@
2]

[;2] =
("!/)2)!2

"2 = !3"−1)−2.

The numerical value of� was determined by measuring the force with which two

¹It is sufficient for the distribution of the mass within the limits of each sphere to have central
symmetry, i.e., for the density to be a function only of the distance from the centre of the sphere.
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Fig. 6.3

bodies of known mass attract each other. Great difficulties appear in such mea-
surements because the forces of attraction are extremely small for bodies whose
masses can be measured directly. For example, two bodies each having a mass of
100 kg and one metre apart interact with a force of the order of 10−6N, i.e., about
10−4 gf.

The first successful attempt to determine � was its measurement carried out
by Henry Cavendish (1731-1810) in 1798. He used the very sensitive torsion balance
method (Fig. 6.3). Two lead spheres ; (each of mass 0.729 kg) fastened to the ends
of a light rod were placed near symmetrically arranged spheres " (each of mass
158 kg). The rod was suspended on an elastic torsion fibre. Twisting of the lat-
ter was measured, and its magnitude showed the force of attraction between the
spheres. The top end of the fibre was fastened in an adjusting head whose turning
made it possible to change the distance between the spheres ; and ". The value

� = 6.670 × 10−11m3 kg−1 s−2 (or Nm2 kg−2)
is considered to be themost accurate of all the values determined in different ways.

If in Eq. (6.1) we assume that ;1, ;2, and @ equal unity, then the force numer-
ically equals �. Thus, two spheres each having a mass of 1 kg whose centres are
1m apart attract each other with a force of 6.670 × 10−11N.

6.2. Gravitational Field

Gravitational interaction is carried out through a gravitational field. Every body
changes the properties of the space surrounding it—it sets up a gravitational field
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in this space. The fieldmanifests itself in that another body placed in it experiences
a force. The “intensity” of a gravitational field can obviously be assessed accord-
ing to the magnitude of the force acting at a given point on a body of unit mass.
Accordingly, the quantity

g′ =
L

;
(6.6)

is called the gravitational intensity, or the gravitationalfieldvector. In Eq. (6.6),
L is the gravitational force acting on a point particle of mass ; at a given point of
the field.

The dimension of g′ coincides with that of acceleration. The intensity of the
gravitational field near the Earth’s surface equals the acceleration of free fall g (with
an accuracy up to the correction due to the Earth’s rotation, see Sec. 4.2).

It is easy to conclude from Eq. (6.2) that the intensity of the field set up by a
point particle of mass ; is

g′ = −�;
@2
ê@ (6.7)

where ê@ is the unit vector of the position vector drawn from the particle to the
given point of the field, and @ is the magnitude of this position vector.

Assume that a gravitational field is produced by a point particle of mass; fixed
at the origin of coordinates. Hence, the following forcewill act on a particle ofmass
;′ at a point with the position vector r:

L = g′;′ = −�;;
′

@2
ê@ (6.8)

[compare with Eq. (3.120)]. We showed in Sec. 3.13 that the potential energy of the
particle ;′ is determined in this case by the equation

�p = −�
;;′

@2
(6.9)

(the potential energy is assumed to vanish when @ → ∞). Equation (6.9) can also
be interpreted as the mutual potential energy of the point particles ; and ;′.

Inspection of Eq. (6.9) shows that to each point of the field produced by the par-
ticle; there corresponds a definite value of the potential energy which the particle
;′ has in this field. Consequently, the field can be characterized by the potential
energy which a particle of mass ;′ = 1 has at the given point. The quantity

i =
�p

;′
(6.10)

is called the potential of the gravitational field. In this equation, �p is the po-
tential energy which a point particle of mass ;′ has at a given point of the field.

Knowing the potential of a field, we can calculate the work done on the par-
ticle ;′ by the forces of the field when moving it from position 1 to position 2.
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Fig. 6.4

According to Eq. (3.30), this work is
�12 = �p,1 − �p,2 = ;′(i1 − i2). (6.11)

According to Eqs. (6.6) and (6.10), the force acting on the particle ;′ is L =

;′g′, and the potential energy of this particle is �p = ;′i. By Eq. (3.31), we have
L = −∇�p, i.e., ;′g′ = −∇(;′i). Putting the constant ;′ outside the gradient
sign and then cancelling this constant, we arrive at a relation between the intensity
and potential of a gravitational field:

g′ = −∇i. (6.12)
Let us find an expression for the mutual potential energy of a homogeneous

spherical layer and a point particle of mass ;. We shall consider two cases cor-
responding to the particle being outside and inside the layer, and shall begin with
the former one (Fig. 6.4a). Let us separate from the layer a ring whose edges cor-
respond to the values of the angle \ and \ + d\. The radius of this ring is 0 sin \,
and its width is a d\ (here 0 is the radius of the layer). Hence, the area of the ring
is determined by the expression 2c02 sin \ d\. If the thickness of the layer is d0
and its density is d, then the mass of the ring is 2c d02 d0 sin \ d\. All the points of
the ring are at the same distance @′ from ;. Consequently, by Eq. (6.9), the mutual
potential energy of the ring and the mass ; is determined by the expression

d�p = −�
2c d02 d0 sin \ d\ ;

@′
. (6.13)

To obtain the potential energy of the entire spherical layer and the mass ;, we
must integrate Eq. (6.13) with respect to the angle \ within the limits from 0 to c .
Here the variable @′ varieswithin the limits from @−0 to @+0, where @ is the distance
from the centre of the layer 0 to ;. Equation (6.13) contains two related variables,
namely, 0 and @′. We must exclude one of these variables prior to integration. The
latter is simplified if we exclude the variable \. We can obtain the relation between



178 UNIVERSAL GRAVITATION

\ and @′ by using the theorem of cosines. Inspection of Fig. 6.4 shows that
@′2 = 02 + @2 − 20@ cos \.

Differentiation of this expression yields
2@′ d@′ = 20@ sin \ d\.

Hence, sin \ d\ = (@′/0@) d@′. Making such a substitution in Eq. (6.13), we get

d�p = −�
2c d0 d0 ; d@′

@
.

Integration with respect to @′ within the limits from @′1 = @ − 0 to @′2 = @ + 0 yields

d�p,lay = −�
2c d0 d0 ;

@

∫ @+0

@−0
d@′ = −�4c d02 d0 ;

@
. (6.14)

The expression 4c02 d0 gives the volume of the layer, and 4c d02 d0 its mass d".
Thus, the mutual potential energy of the sphere layer and the mass ; is

d�p,lay = −�
d";

@
(6.15)

where @ is the distance from the centre of the layer to ;.
All our calculations remain the same for the case when the mass is inside the

layer (see Fig. 6.4b). Only the integration limits in Eq. (6.14) will differ because @′

changes in this case from @′1 = @ − 0 to @′2 = @ + 0. Consequently,

d�′p,lay = −�
2c d0 d0 ;

@

∫ 0+@

0−@
d@′ = −�4c d0 d0 ;

= −�4c d02 d0 ;
0

= −�d";

0
. (6.16)

Hence, in this case the potential energy is the same for all @′s and equals the value
obtained in Eq. (6.15) for @ = 0.

Equation (6.15) can be interpreted as the potential energy of the particle ; in
the field set up by a sphere layer of mass d". The derivative of this energy with
respect to @ taken with the opposite sign equals the projection onto the direction @
of the force acting on the particle:

d�@ = −
∂�p

∂@
= −�d";

@2
. (6.17)

The minus sign indicates that the force is directed toward the diminishing of @, i.e.,
to the centre of the layer.

It follows from Eq. (6.17) that the sphere layer acts on the particle with the same
force that would be exerted on it by a point particle of a mass equal to that of the
layer and placed at the centre of the latter.

Equation (6.16) does not depend on the coordinates of a particle. Therefore, the
gradient of this function vanishes for all @′s less than 0. Thus, no force acts on a
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particle inside the layer. Every element of the layer naturally exerts a certain force
on the particle, but the sum of the forces exerted by all the elements of the layer
equals zero.

Now let us consider a system consisting of a homogeneous sphere of mass "
and a point particle of mass ;. Let us divide the sphere into layers of mass d".
Each layer acts on the particle with a force determined by Eq. (6.17). Summation
of this expression over all the layers gives the force exerted on the particle by the
sphere:

�@ =

∫
d�@ = −

∫
�
d";

@2
= −�";

@2
. (6.18)

The action of the sphere on the particle is equivalent to the action of a point particle
of a mass equal to that of the sphere and placed at its centre (see the preceding
section).

If we take a sphere with a spherical space inside, then no force will act on a
particle in this space.

Summation of Eq. (6.15) over all the layers of a solid or a hollow sphere yields
the mutual potential energy of a particle and a sphere:

�p = −�
";

@2
. (6.19)

Here" is the mass of the sphere,; is the mass of the particle, and @ is the distance
from the particle to the centre of the sphere.

It follows from Eqs. (6.18) and (6.19) that the gravitational field produced by a
homogeneous sphere is equivalent (outside the sphere) to the field produced by a
point particle of the same mass at the centre of the sphere.

Let us consider two homogeneous spheres of masses "1 and "2. The second
sphere experiences the same action on the part of the first one as would be exerted
by a point particle of mass "1 at the centre of the first sphere. According to New-
ton’s third law, the corresponding force is equal in magnitude to the force that the
second sphere would exert on the particle "1. By Eq. (6.18), the magnitude of this
force is �"1"2/@2. We have thus proved that homogeneous spheres interact like
point particles at their centres.

6.3. The Equivalence Principle

Mass comes up in two different laws—in Newton’s second law and in the law of
universal gravitation. In the former case, it characterizes the inertial properties of
bodies, and in the latter their gravitational properties, i.e., the ability of bodies to
attract one another. In this connection, the question arises whether we ought to
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distinguish the inertial mass ;in and the gravitational mass ;g.
This question can be answered only by experiments. Let us consider the free

falling of bodies in a heliocentric reference frame. Any body near the Earth’s sur-
face experiences a force of attraction to the Earth that by Eq. (6.18) is

� = �
;g"E

'2E
where ;g is the gravitational mass of a given body,"E is the gravitational mass of
the Earth, and 'E is the radius of the Earth.

This force causes the body to acquire the acceleration 0 (but not 6, see Sec. 4.2)
that must equal the force � divided by the inertial mass of the body ;in:

0 =
�

;in
= �

"E

'2E

;g

;in
. (6.20)

Experiments show that the acceleration 0 is the same for all bodies (it was
shown in Sec. 4.2 that the identical values of 0 follow from the identical values
of 6). The factor�("E/'2E) is also the same for all bodies. Consequently, the ratio
;g/;in is the same for all bodies too. All other experiments in which the differ-
ence between the inertial and the gravitational masses could manifest itself lead to
a similar result.

We shall describe the experiment of R. Eötvös, which he began in 1887 and con-
tinued over 25 years, as an example of such experiments. Eötvös proceeded from
the circumstance that a body at rest near the Earth’s surface, apart from the re-
action of its support, experiences the gravitational force Lg directed toward the
Earth’s centre and also the centrifugal force of inertia Lcf directed perpendicularly
to the Earth’s axis of rotation (Fig. 6.5—this figure is not drawn to scale—the mag-
nitude of the centrifugal force is two orders smaller than that of the gravitational
force, see Sec. 4.2). The gravitational force is proportional to the gravitational mass
of a body ;g:

Lg = ;gg
′

(g′ is the gravitational intensity). The centrifugal force of inertia is proportional
to the inertial mass ;in. According to Eq. (4.7), its magnitude is determined by the
expression

�cf = ;inl
2'E cos i

where i is the latitude of the locality. It follows from Fig. 6.5 that the magnitude of
the vertical component of the centrifugal force of inertia is

�vert = �cf cos i = ;inl
2'E cos2 i = �;in.

We have introduced the symbol � = l2'E cos2 i. Eötvös ran his experiment at the
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Fig. 6.5 Fig. 6.6

latitude of i = 45°. In this case the coefficient � is about one-hundredth of 6′.
The magnitude of the horizontal component of the force �cf is
�hor = �cf sin i = ;inl

2'E cos i sin i = �;in

where � = l2'E cos i sin i (for i = 45°, the values of the coefficients A and B
coincide).

Eötvös suspended a rod with bodies fastened to its ends on an elastic thread
(Fig. 6.6). The bodies were of different materials, but their masses were as equal as
possible. A mirror was attached to the bottom part of the thread. The beam from
the light source reflected from the mirror struck the cross hairs of a telescope. The
arms :′ and :′′were selected so that the rodwas in equilibrium in the vertical plane.
The condition for this equilibrium is as follows:

(;′g6′ − ;′in�):′ = (;′′g 6′ − ;′′in�):′′. (6.21)
The instrumentwas arrangedwith the rod perpendicular to the plane of themerid-
ian (see Fig. 6.6). In this case, the horizontal components of the centrifugal force of
inertia set up a twisting moment equal to

"t = ;
′
in�:

′ − ;′′in�:′′. (6.22)
Eliminating the arm :′′ from Eqs. (6.21) and (6.22), we can arrive at the following
equation after simple transformations:

"t = ;
′
in�:

′
[
1 −
(;′g/;′in)6′ − �
(;′′g /;′′in)6′ − �

]
.

It can be seen from this equation that when the ratio of the gravitational and inertia
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Fig. 6.7

masses is the same for both bodies, the moment twisting the thread must vanish. If
the ratio ;g/;in for the first and second bodies is not the same, the twisting mo-
ment differs from zero. In this case when the entire instrument is turned through
180°, the twisting moment would reverse its sign and the light spot would move
from the cross hairs of the telescope (Fig. 6.7). Eötvös compared eight different
bodies (including a wooden one) with a platinum body taken as the standard and
discovered no twisting of the thread. This gave him the grounds to state that the
ratio ;g/;in for these bodies is identical with an accuracy of 10−8.

In 1961-1964, R. Dicke improved Eötvös’s method. He used the Sun’s gravita-
tional field and the centrifugal force of inertia due to the Earth’s orbital motion for
producing the twisting moment. As a result of his measurements, he arrived at the
conclusion that the ratio ;g/;in is the same for the studied bodies with an accu-
racy of 10−11. Finally, in 1971, V. Braginsky and V. Panov obtained the constancy of
the ratio with an accuracy up to 10−12.

Thus, all the experimental facts indicate that the inertial and gravitationalmasses
of all bodies are strictly proportional to each other. This signifies that these masses
become identical when the units are selected properly. This is why physicists sim-
ply speak of mass. Albert Einstein based his general theory of relativity on the
gravitational and inertial masses being identical.

We have already noted in Sec. 4.1 that the forces of inertia are similar to gravita-
tional forces—both are proportional to the mass of the body which they are acting
on. We have indicated there that if we are in a closed cab, no experiments will help
us to establish what the action of the force ;g is due to—whether it is due to the
cab moving with the acceleration −g, or to the fact that the stationary cab is near
the Earth’s surface. This statement forms the content of the so-called equivalence
principle.
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The identical nature of inertial and gravitational masses is the result of the
equivalence of forces of inertia and gravitational forces.

It must be noted that from the very beginning we assumed in Eq. (6.1) that the
mass coincides with the inertial mass of bodies, and we therefore determined the
numerical value of � assuming that ;g/;in. We can thus write Eq. (6.20) in the
form

0 = �
"E

'2E
. (6.23)

Equation (6.23) permits us to determine the mass of the Earth"E. Use of the mea-
sured values of 0, 'E and � in it gives the value of 5.98 × 1024 kg for the Earth’s
mass.

Further, knowing the radius of the Earth’s orbit 'orb and the time ) of one
complete revolution of the Earth about the Sun, we can find the Sun’s mass "S.
The Earth’s acceleration equal to l2'orb (the angular velocity l = 2c/) ) is due to
the force with which the Sun attracts the Earth. Hence,

"El
2'orb = �

"E"S

'2orb
whence we can calculate the Sun’s mass.

The masses of other celestial bodies were determined in a similar way.

6.4. Orbital and Escape Velocities

To travel about the Earth in a circular orbit with a radius differing only slightly
from the Earth’s radius 'E, a body must have a definite velocity D1. Its value can be
found from the condition of equality of the product of the mass of the body and
its acceleration to the force of gravity acting on the body:

;
;2

1

'E
= ;6.

Hence,
D1 = (6'E)1/2. (6.24)

Consequently, for a body to become a satellite of the Earth, it must be given the
velocity D1 called the tangential or orbital velocity (D1 is also sometimes called
the first cosmic velocity). Introduction of the values of 6 and 'E gives the fol-
lowing value for the orbital velocity:

D1 = (6'E)1/2 = (9.8 × 6.4 × 106)1/2 ≈ 8 × 103ms−1 = 8 km s−1.
A body having the velocity D1 will not fall onto the Earth. This velocity, how-

ever, is not sufficient for the body to leave the sphere of the Earth’s attraction, i.e.,
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to travel away from the Earth over a distance such that its attraction to the Earth
stops playing a significant part. The velocity D2 required for this purpose is called
the escape velocity (the second cosmic velocity).

To find the escape velocity, we must calculate the work that must be done
against the forces of the Earth’s attraction for moving a body from the Earth’s sur-
face to infinity. When a body moves away, the forces of the Earth’s attraction do
the following work on it:

�′ = �p,init − �p,fin.
According to Eq. (6.19), the initial potential energy is

�p,init = −�
"E;

'E
.

and the final potential energy is zero. Thus,

�′ = −�"E;

'E
.

The work � that must be done against the forces of the Earth’s attraction equals
the work �′ taken with the opposite sign, i.e.

� = �
"E;

'E
. (6.25)

Disregarding the difference between the force of gravity ;6 and the force of
gravitational attraction of a body to the Earth, we can write that

;6 = �
"E;

'2E
.

Hence,

�
"E;

'E
= ;6'E.

Consequently, the work (6.25) can be written in the form
� = ;6'E. (6.26)

A body leaving the Earth does this work at the expense of its store of kinetic
energy. For this store of energy to be sufficient for doing the work (6.26), the body
must be projected from the Earth’s surface with a velocity D not lower than the
value D2 determined by the condition

;D22

2
= ;6'E

whence
D2 = (26'E)1/2. (6.27)

It is exactly the velocity D2 that is the escape velocity from the Earth, or the second
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cosmic velocity. A comparison of Eqs. (6.27) and (6.24) shows that this velocity is√
2 times greater than the orbital one. Multiplying 8 km s−1 by

√
2, we get the

approximate value of 11 km s−1 by D2.
It must be noted that the required magnitude of the velocity does not depend

on the direction in which a body is launched from the Earth. This direction only
affects the shape of the trajectory alongwhich the body travels away from theEarth.

To leave the solar system, a body must overcome the forces of attraction to the
Sun in addition to the Earth’s attraction. The velocity of launching a body from
the Earth’s surface needed for this purpose is called the escape velocity from the
solar system, the space velocity, or the third cosmic velocity D3. The velocity
D3 depends on the direction of launching. When a body is launched in the direction
of orbital motion of the Earth, this velocity is minimum and is about 17 km s−1 (in
this case the body’s velocity relative to the Sun is the sum of its velocity relative
to the Earth and the velocity with which the Earth is travelling about the Sun).
When a body is launched in a direction opposite to that of the Earth’s rotation,
D3 ≈ 73 km s−1.

The orbital and escape velocities were reached for the first time in the USSR.
OnOctober 4, 1957, the first successful launching of an artificial satellite of the Earth
in the history of mankind was carried out in the Soviet Union. A second advance
occurred on January 2, 1959. This day saw the launching from Soviet soil of a space-
ship that escaped from the sphere of the Earth’s attraction and became the first
artificial planet of our solar system. On April 12, 1961, the first flight of a man into
outer spacewas accomplished in the Soviet Union. The first Soviet cosmonaut Yuri
Gagarin completed a flight around the Earth and landed successfully.





187

Chapter 7

OSCILLATORYMOTION

7.1. General

Oscillations are defined as processes distinguished by a certain degree of repetition.
For example, the swings of a clock pendulum, the vibrations of a string or the leg
of a tuning fork, and the voltage across the plates of a capacitor in a radio receiver
circuit have this property of repetition.

Depending on the physical nature of the repeating process, we distinguish me-
chanical, electromagnetic, sound, and other oscillations. In the present chapter, we
shall deal with mechanical oscillations.

Oscillations (vibrations) are widespread in nature and engineering. They often
have a negative influence. The oscillations of a railway bridge due to the impacts
imparted to it by the wheels of a train passing over the rail joints, the vibrations
of a ship’s hull caused by rotation of the propeller, the vibrations of the wings of
an aircraft are all processes that may have catastrophic consequences. The task in
such cases is to prevent the setting up of oscillations or at any rate to prevent them
from reaching dangerous magnitudes. Oscillatory processes are also at the very
foundation of various branches of engineering. For instance, radio engineering
owes its very existence to oscillatory processes. Depending on the nature of the
action on an oscillating system, we distinguish free (or natural) oscillations, forced
oscillations, auto-oscillations, and parametric oscillations.

Free or natural oscillations occur in a system left alone after an impetus was
imparted to it or it was brought out of the equilibrium position. An example are the
oscillations of a ball suspended on a string (a pendulum). To initiate oscillations,
we may either push the ball or move it to a side and release it.

In forced oscillations, the oscillating system is acted upon by an external pe-
riodically changing force. An example here are the oscillations of a bridge set up
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when people walking in step pass over it.
Auto-oscillations, like forced ones, are attended by the action of external

forces on the oscillating system, but the moments of time when these actions are
exerted are set by the oscillating system itself—the latter controls the external ac-
tion. Examples of an auto-oscillating system are clocks in which a pendulum re-
ceives pushes at the expense of the energy of a lifted weight or a coiled spring, and
these pushes occur when the pendulum passes through its middle position.

In parametric oscillations, external action causes periodic changes in a pa-
rameter of a system, for instance, in the length of a thread on which an oscillating
ball is suspended.

Harmonic oscillations are the simplest ones. These are oscillations when
the oscillating quantity (for example, the deflection of a pendulum) changes with
time according to a sine or cosine law. This kind of oscillations is especially im-
portant for the following reasons: first, oscillations in nature and engineering are
often close to harmonic ones in their character, and, second, periodic processes
of a different form (with a different time dependence) can be represented as the
superposition of several harmonic oscillations.

7.2. Small-Amplitude Oscillations

Let us consider a mechanical system whose position can be set with the aid of a
single quantity which we shall designate F. The system is said to have one degree
of freedom in such cases. The angle measured from a certain plane, or the distance
measured along a given curve, in particular a straight line, etc. may be the quantity
F determining the position of the system. The potential energy of the system will
be a function of the single variable F: �p = �p(F). Assume that the system has a
position of stable equilibrium. In this position, the function �p(F) has a minimum
(see Sec. 3.9). We shall measure the coordinate F and the potential energy �p from
the position of equilibrium. Hence �p(0) = 0.

Let us expand the function �p(F) in a power series and consider only small-
amplitude oscillations, so that the higher powers of Fmay be disregarded. Accord-
ing to the Maclaurin theorem

�p(F) = �p(0) + �′p(0) F +
1
2
�′′p (0) F2

(owing to the small value of F we disregard the remaining terms). Since �p(F) at
F = 0 has a minimum, then �′p(0) equals zero, and �′′p (0) is positive. In addition,
according to our condition, �p(0) = 0. Let us introduce the symbol �′′p (0) = 9
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Fig. 7.1

(where 9 > 0). Hence,

�p(F) =
1
2
9F2. (7.1)

Equation (7.1) is identical with Eq. (3.78) for the potential energy of a deformed
spring. Using Eq. (3.32), let us find the force acting on the system:

�F = −
∂�p

∂F
= −9F. (7.2)

This equation gives the projection of the force onto the direction F. In the
following, we shall omit the subscript F in designating the force, i.e., we shall write
Eq. (7.2) in the form � = −9F.

Equation (7.2) is identical with Eq. (2.26) for the elastic force of a deformed
spring. This is why forces of the kind shown by Eq. (7.2) regardless of their nature,
are called quasi-elastic. It is easy to see that a force described by Eq. (7.2) is al-
ways directed toward the position of equilibrium. The magnitude of the force is
proportional to the deviation of the system from its equilibrium position. A force
having such properties is sometimes defined as a restoring force.

Let us consider as an example a system consisting of a ball ofmass; suspended
on a spring whose mass may be ignored in comparison with ; (Fig. 7.1). In the
equilibrium position, the force ;6 is balanced by the elastic force 9J:0:

;6 = 9J:0 (7.3)
(J:0 is the elongation of the spring). We shall characterize the displacement of the
ball from its equilibrium position by the coordinate F with the F-axis directed ver-
tically downward and the zero of the axis coinciding with the position of equilib-
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Fig. 7.2

rium of the ball. If we shift the ball to the position characterized by the coordinate
F, then the elongation of the spring will become equal to J:0+F, and the projection
of the resultant force onto the F-axis will acquire the value � = ;6 − 9(J:0 + F).
Taking into account condition (7.3), we find that

� = −9F. (7.4)
Thus, in the example considered, the resultant of the force of gravity and of the
elastic force has the nature of a quasi-elastic force.

Let us impart the displacement F = 0 to the ball and then leave the system
alone. Under the action of the quasi-elastic force, the ball will move toward its
equilibrium position with the constantly growing velocity D = ¤F: The potential
energy of the system will diminish (Fig. 7.2), but a constantly growing kinetic en-
ergy �k = ; ¤F2/2 will appear instead (we disregard the mass of the spring).

Arriving at its equilibrium position, the ball continues to move by inertia. This
motion will be retarded and will stop when the kinetic energy completely trans-
forms into potential energy, i.e., when the displacement of the ball becomes equal
to −0. Next the same process will repeat when the ball moves in the reverse direc-
tion. If friction is absent in the system, its energy should be conserved, and the ball
will move within the limits from F = 0 to F = −0 for an infinitely long time.

The equation of Newton’s second law for the ball is
; ¥F = −9F. (7.5)

Introducing the symbol

l20 =
9

;
(7.6)

we can transform Eq. (7.5) as follows:
¥F + l20F = 0. (7.7)
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Since 9/; > 0, then l0 is a real quantity.
Thus, in the absence of forces of friction, motion under the action of a quasi-

elastic force is described by the differential equation (7.7).
Any real oscillatory system contains resistance or damping forceswhose action

leads to diminishing of the energy of the system. If the depletion of the energy
is not replenished as a result of the work of external forces, the oscillations will
be damped. In the simplest and also the most frequently encountered case, the
damping force �∗ is proportional to the magnitude of the velocity:

�∗F = −@ ¤F. (7.8)
Here @ is a constant called the resistance coefficient. The minus sign is due to the
circumstance that the force L∗ and the velocity v have opposite directions, conse-
quently, their projections onto the F-axis have opposite signs.

The equation of Newton’s second law when damping forces are present has
the form

; ¥F = −9F − @ ¤F. (7.9)
Introducing the notation

2V =
@

;
(7.10)

and using Eq. (7.6), we can write Eq. (7.9) as follows:
¥F + 2V ¤F + l20F = 0. (7.11)

This differential equation describes the damping oscillations of a system.
The oscillations described by Eqs. (7.7) and (7.11) are free (or natural): a system

brought out of its equilibrium position or having received an impetus performs
oscillations when left alone. Now assume that an oscillatory system experiences
an external force that changes with time according to a harmonic law:

�F = �0 cos lB. (7.12)
In this case, the equation of Newton’s second law has the form

; ¥F = −9F − @ ¤F + �0 cos lB.
Using Eqs. (7.6) and (7.10), let us write this equation as follows:

¥F + 2V ¤F + l20F = 50 cos lB (7.13)
where

50 =
�0

;
. (7.14)

Equation (7.13) describes forced oscillations.
We have established that when studying various kinds of oscillations we are
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confronted with the need to solve differential equations of the form
¥F + 0 ¤F + 1F = 5 (B) (7.15)

where 0 and 1 are constants, and 5 (B) is a function of B. An equation such as (7.15) is
called a linear differential equation with constant coefficients. For Eq. (7.7),
we have 0 = 0 and 1 = l20 and for Eq. (7.11), we have 0 = 2V and 1 = l20. In both
cases, the function 5 (B) identically equals zero: 5 (B) ≡ 0. For forced oscillations,
5 (B) = 50 cos lB.

The solution of Eq. (7.15) is greatly facilitated if we pass over to complex quan-
tities. This is why we shall stop to briefly treat complex numbers and methods of
solving linear differential equations with constant coefficients.

7.3. Complex Numbers

The complex number H is defined as a number of the kind
H = F + 7 G (7.16)

where F and G are real numbers, and 7 is imaginary unity (72 = −1). The number
F is called the real part of the complex number H. This is written symbolically¹
in the form F = <{H}. The number G is the imaginary part of H (symbolically
G = ={H}). The number

H∗ = F − 7 G (7.17)
is called the complex conjugate of the number F + 7 G.

The real number F can be depicted by a point on the F-axis. The complex num-
ber H can be depicted by a point on a plane with the coordinates F and G (Fig. 7.3).
Each point of the plane corresponds to a complex number H. Consequently, a com-
plex number can be given in the form of Eq. (7.16) with the aid of the Cartesian
coordinates of the relevant point. The same number, however, can be given with
the aid of the polar coordinates d and i. The following relations exist between the
two pairs of coordinates:{

F = d cos i, G = d sin i,

d =
(
F2 + G2

)1/2
, i = arctan

G

F
.

(7.18)

The distance from the origin of coordinates to the point depicting the number
H is called the absolute value or modulus of the complex number (its symbol is
|H |). It is obvious that

|H | = d =
(
F2 + G2

)1/2
. (7.19)

¹Another form of symbolically represent the real and imaginary parts of a complex number is:
Re{H} and Im{H}.
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Fig. 7.3

The quantity i is called the argument of the complex number H.
With a view to Eqs. (7.18), we can write a complex number in the trigonometric

form:
H = d(cos i + 7 sin i). (7.20)

Two complex numbers H1 = F1 + 7 G1 and H2 = F2 + 7 G2 are considered to equal
each other if their real and imaginary parts are separately equal, namely,

H1 = H2 if F1 = F2 and G1 = G2. (7.21)
The moduli of two equal complex numbers are identical, while their arguments
can differ only in an addend that is a multiple of 2c :

d1 = d2, i1 = i2 ± 29c (7.22)
where 9 is an integer.

Examination of Eqs. (7.16) and (7.17) shows that when H∗ = H, the imaginary part
of H vanishes, i.e., the number H is a pure real number. Thus, the condition for the
number H being real can be written in the form

H∗ = H. (7.23)
The relation
47i = cos i + 7 sin i (7.24)

is proved in mathematics and is called the Euler formula. Substituting −i for i
in this equation and bearing in mind that cos(−i) = cos i and sin(−i) = −A7<i
we get

4−7i = cos i − 7 sin i. (7.25)
Let us summate Eqs. (7.24) and (7.25) and solve the resulting equation relative

to cos i. We obtain

cos i =
1
2

(
47i + 4−7i

)
. (7.26)
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Subtraction of Eq. (7.25) from (7.24) yields sin i =
(
47i + 4−7i

)
/27.

Equation (7.24) can be used towrite a complex number in the exponential form:

H = d47i (7.27)
[see Eq. (7.20)]. The complex conjugate number in the exponential form is

H∗ = d4−7i. (7.28)
In the addition of complex numbers, their real and imaginary parts are added sep-
arately:

H1 + H2 = (F1 + F2) + 7( G1 + G2). (7.29)
It is convenient to multiply complex numbers by taking them in the exponen-

tial form:
H = H1H2 = d14

7i1 d24
7i2 = d1d24

7(i1+i2 . (7.30)
The moduli of the complex numbers in this case are multiplied, and the arguments
are added:

d = d1d2, i = i1 + i2. (7.31)
Complex numbers are divided in a similar way:

H =
H1

H2
=
d14

7i1

d247i2
=
d1

d2
47(i1−i2 . (7.32)

It is a simple matter to find from Eqs. (7.27) and (7.28) that
HH∗ = d2 (7.33)

(the square of themodulus of a complex number equals the product of this number
and its complex conjugate).

7.4. Linear Differential Equations

An equation of the kind
¥F + 0 ¤F + 1F = 5 (B) (7.34)

where 0 and 1 are constants, and 5 (B) is a given function of B, is called a linear
differential equation of the second order with constant coefficients. The
constants 0 and 1may also be zero.

If the function 5 (B) is identically equal to zero [5 (B) ≡ 0], the equation is called
homogeneous, otherwise it is called non-homogeneous. A homogeneous equa-
tion has the form

¥F + 0 ¤F + 1F = 0. (7.35)
The solution of any second-order differential equation (i.e., with a secondderiva-

tive as the senior term) contains two arbitrary constants �1 and �2. This can be
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understood in view of the circumstance that a function is determined from its sec-
ond derivative by double integration. An integration constant appears upon each
integration. Let us consider as an example the equation

¥F = 0. (7.36)
Integration of this equation yields ¤F = �1. Repeated integration results in the
function

F = �1B + �2. (7.37)
It is easy to see that the function (7.37) satisfies Eq. (7.36) with any values of the
constants �1 and �2.

Assigning definite values to the constants�1 and�2, we get the so-called par-
tial solution of a differential equation. For example, the function 5B + 3 is one of
the partial solutions of Eq. (7.36).

The multitude of all the partial solutions without any exception is called the
general solution of a differential equation. The general solution of Eq. (7.36) has
the form of Eq. (7.37).

It is proved in the theory of linear differential equations that if F1 and F2 are
linearly independent² solutions of the homogeneous equation (7.35), then the gen-
eral solution of this equation can be represented in the form

F = �1F1 + �2F2 (7.38)
where �1 and �2 are arbitrary constants.

Assume that Fn(B, �1, �2) is the general solution of the non-homogeneous equa-
tion (7.34) (the arbitrary constants �1 and �2 are parameters in this solution), and
Fn(B) is one of the partial solutions of the same equation (it contains no arbitrary
constants). We shall introduce the notation

F(B, �1, �2) = Fn(B, �1, �2) − Fn(B).
The general solution of the non-homogeneous equation can therefore be written
in the form

Fn(B, �1, �2) = Fn(B) + F(B, �1, �2). (7.39)
The function (7.39) satisfies Eq. (7.34) at any values of the constants�1 and�2. Con-
sequently, we can write the relation

¥Fn(B) + ¥F(B, �1, �2) + 0 ¤Fn(B) + 0 ¤F(B, �1, �2) + 1Fn(B) + 1F(B, �1, �2) = 5 (B).
Grouping of the addends yields
¥F(B, �1, �2)+0 ¤F(B, �1, �2)+1F(B, �1, �2)+ [ ¥Fn(B)+0 ¤Fn(B)+1Fn(B)] = 5 (B). (7.40)

²The functions F1 and F2 are called linearly independent if the relation U1F1+U2F2 = 0 is obeyed
only when U1 and U2 equal zero.
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The partial solution Fn(B) also satisfies Eq. (7.34). Consequently, the expres-
sion in brackets in the left-hand side of Eq. (7.40) equals the right-hand side of this
equation. It thus follows that the function F(B, �1, �2) must satisfy the condition

¥F(B, �1, �2) + 0 ¤F(B, �1, �2) + 1F(B, �1, �2) = 0
i.e., it is the general solution of the homogeneous equation (7.35). We have therefore
arrived at a very useful theorem: the general solution of a non-homogeneous equation
equals the sum of the general solution of the corresponding homogeneous equation and
a partial solution of the non-homogeneous equation:

Fgen,non-hom = Fgen,hom + Fpart,non-hom. (7.41)
Linear homogeneous differential equations with constant coefficients are solved
using the substitution

F(B) = 4_B (7.42)
where _ is a constant quantity. Differentiation of the function (7.42) yields

¤F(B) = _4_B , ¥F(B) = _24_B . (7.43)
The introduction of Eqs. (7.42) and (7.43) into (7.35) results in the following equation,
after the factor 4_B differing from zero is cancelled out:

_2 + 0_ + 1 = 0. (7.44)
This equation is called a characteristic one. Its roots are the values of _ at which
the function (7.42) satisfies (7.35).

If the roots of Eq. (7.44) do not coincide (_1 ≠ _2) the functions 4_1B and 4_2B will
be linearly independent. Consequently, according to Eq. (7.38), the general solution
of Eq. (7.35) can be written as follows:

F = �14
_1B + �24

_2B . (7.45)
It can be shown that when _1 = _2 = _ the general solution of Eq. (7.35) is as
follows:

F = �14
_B + �2B4

_B . (7.46)
Assume that the coefficients 0 and 1 are real, while the function in the right-

hand side of Eq. (7.34) is complex. Writing this function in the form 5 (B) + 7i(B), we
arrive at the equation:

¥H + 0 ¤H + 1H = 5 + 7i (7.47)
(we have used the symbol H to denote the required function). The solution of this
equation will evidently be complex. Writing the solution in the form H(B) = F(B) +
7 G(B), we shall introduce it into Eq. (7.47). The result will be

¥F + 7 ¥G + 0 ¤F + 07 ¤G + 1F + 17G = 5 + 7i. (7.48)
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When complex numbers are equal to each other, their real and imaginary parts
equal each other separately [see Eq. (7.21)]. Hence, Eq. (7.48) breaks up into two
separate equations:

¥F + 0 ¤F + 1F = 5 (B), ¥G + 0 ¤G + 1G = i (7.49)
the first of which coincides with Eq. (7.34). This property of Eq. (7.48) allows us to
use the following procedure that sometimes facilitates calculations quite signifi-
cantly. Let us assume that the right-hand side of Eq. (7.34) we are solving is real. By
adding an arbitrary imaginary function to it, we reduce the equation to the form
of Eq. (7.47). After next finding the complex solution of the equation, we take its
real part. It will be the solution of the initial equation [Eq. (7.34)].

7.5. Harmonic Oscillations

Let us consider oscillations described by the equation
¥F + l20F = 0. (7.7 revisited)

Such oscillations are performed by a body of mass ; experiencing only the quasi-
elastic force � = −9F. The coefficient of F in Eq. (7.7) has the value

l20 =
9

;
.. (7.6 revisited)

Using the expression F = 4_B [see Eq. (7.42)] in Eq. (7.7), we arrive at the charac-
teristic equation

_2 + l20 = 0. (7.50)
This equation has imaginary roots: _1 = +7l0 and _2 = −7l0. According to
Eq. (7.45), the general solution of Eq. (7.7) has the form

F = �147l0B + �24−7l0B (7.51)
where �: and �2 are complex constants.

The function F(B) describing the oscillation must be real. For this end, the
coefficients �: and �2 in Eq. (7.51) must be selected so as to observe the condition
[see Eq. (7.23)]:

�∗14−7l0B + �∗247l0B = �147l0B + �24−7l0B (7.52)
[we have equated expression (7.51) to its complex conjugate]. Equation (7.52) will
be obeyed if �1 = �∗2 (in this case �2 = �∗1). Let us write the coefficients �: and
�2 satisfying this condition in the exponential form [see Eq. (7.17)], denoting their
modulus by �/2 and their argument by U:

�1 =
�

2
47U , �2 =

�

2
4−7U . (7.53)
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Fig. 7.4

Introduction of these expressions into Eq. (7.51) yields

F =
�

2

[
47(l0B+U) + 4−7(l0B+U)

]
= � cos(l0B + U) (7.54)

[see Eq. (7.26)]. Thus, the general solution of Eq. (7.49) is
F = � cos(l0B + U) (7.55)

where � and U are arbitrary constants³.
Thus, the displacement F changes with time according to a cosine law. Con-

sequently, the motion of the system experiencing the action of a force of the kind
� = −9F is a harmonic oscillation.

A graph of the harmonic oscillation, i.e., one of the function (7.55), is shown
in Fig. 7.4. The time B is laid off along the horizontal axis, and the displacement
F along the vertical one. Since a cosine varies from −1 to 1, then the values of F
range from −� to �.

The maximum deviation of a system from its equilibrium position is called the
amplitude of oscillation. The amplitude � is a constant positive quantity. Its value
is determined by the magnitude of the initial deviation or push that brought the
system out of the equilibrium position.

The cosine argument (l0B + U) is called the phase of oscillation. The constant
U is the value of the phase at the moment B = 0 and is called the initial phase of
oscillation. The constant U will change when the moment from which we begin to
measure the time is changed. Hence, the value of the initial phase is determined by
when we begin to measure the time. Since the value of F does not change when

³The solution of Eq. (7.7) can be written in two other ways. Let us transform Eq. (7.55) accord-
ing to the formula for the cosine of a sum: F = �(cos U cos l0B − sin U sin l0B), and introduce the
notation 21 = � cos U and 22 = −� sin U. The function F(B) can therefore be written in the form
F = 21 cos l0B + 22 sin l0B, where 21 and 22 are arbitrary constants. Finally, using Eq. (7.24), we can
write Eq. (7.55) as follows: F = <

{
�47(l0B+U)

}
.
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a whole number of 2c ’s is added to or subtracted from the phase, we can always
ensure that the initial phase will be less than c in magnitude. This is why only
values of U within the limits from −c to +c are usually considered.

Since a cosine is a periodic function with the period 2c , different states⁴ of
a system performing harmonic oscillations repeat during the time interval ) in
which the phase of oscillation receives an increment equal to 2c (Fig. 7.4). The
interval ) is called the period of oscillation. It can be found from the condition
|l0(B + )) + U | = |l0B + U | + 2c , whence

) =
2c
l0
. (7.56)

The number of oscillations in unit time is called the frequency of oscillation a.
It is quite evident that the frequency a is related to the duration of one oscillation
) by the expression

a =
1
)
. (7.57)

The unit of frequency is the frequency of oscillations whose period is 1 s. This unit
is called the hertz (Hz). A frequency of 103Hz is called a kilohertz (kHz), and of
106Hz a megahertz (MHz).

It follows from Eq. (7.56) that

l0 =
2c
)
. (7.58)

Thus, l0 is the number of oscillations in 2c seconds. The quantity l0 is called the
circular or cyclic frequency. It is related to the conventional frequency a by the
expression

l0 = 2ca. (7.59)
Time differentiation of Eq. (7.55) yields an expression for the velocity:

D = ¤F = −�l0 sin(l0B + U) = �l0 cos
(
l0B + U +

c

2

)
. (7.60)

Examination of Eq. (7.60) shows that the velocity also changes according to a har-
monic law, the amplitude of the velocity being �l0. It follows from a comparison
of Eqs. (7.55) and (7.60) that the phase of the velocity is in advance of that of the
displacement by c/2.

Time differentiation of Eq. (7.60) yields an expression for the acceleration:
0 = ¥F = −�l20 cos(l0B + U) = �l20 cos(l0B + U + c). (7.61)

It can be seen fromEq. (7.61) that the acceleration and the displacement are opposite
in phase. This signifies that when the displacement reaches its maximum positive

⁴We remind our reader that the state of a mechanical system is characterized by the values of the
coordinates and the velocities of the bodies forming the system.
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Fig. 7.5

value, the acceleration reaches its maximum negative value, and vice versa.
Figure 7.5 compares graphs for the displacement, velocity, and acceleration.
A particular oscillation is characterized by definite values of the amplitude �

and the initial phase U. The values of these quantities for a given oscillation can be
determined from the initial conditions, i.e., from the values of the deviation F0 and
the velocity D0 at the initial moment. Indeed, assuming in Eqs. (7.55) and (7.60) that
B = 0, we get two equations:

F0 = � cos U, D0 = −�l0 sin U
from which we find that

� =

(
F20 +

D20

l20

)1/2
, (7.62)

tan U = − D0

F0l0
. (7.63)

Equation (7.63) is satisfied by two values of U within the interval from −c to +c .
That value must be taken which gives the correct signs of cosine and sine.

A quasi-elastic force is conservative. Therefore, the total energy of a harmonic
oscillationmust remain constant. In the course of oscillations, kinetic energy trans-
forms into potential energy, and vice versa. At themoments ofmaximumdeviation
from the equilibrium position, the total energy � consists only of potential energy,
which reaches its maximum value �p,max:

� = �p,max =
9�2

2
. (7.64)

When the system passes through its equilibrium position, the total energy consists
only of kinetic energy, which at these moments reaches its maximum value �k,max:

� = �k,max =
;D2max

2
=
;�2l20

2
(7.65)
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Fig. 7.6

(it was shown above that the velocity amplitude is �l0). Equations (7.64) and (7.65)
equal each other because by Eq. (7.6) we have ;l20 = 9.

Let us see how the kinetic and potential energies of harmonic oscillations change
with time. The kinetic energy is [see Eq. (7.60) for ¤F]

�k =
; ¤F2
2

=
;�2l20

2
sin2(l0B + U). (7.66)

The potential energy is expressed by the equation

�p =
9F2

2
=
9�2

2
cos2(l0B + U). (7.67)

Adding Eqs. (7.66) and (7.67) and bearing in mind that ;l20 = 9, we get a formula
for the total energy:

� = �k + �p =
9�2

2
=
;�2l20

2
(7.68)

[comparewithEqs. (7.64) and (7.65)]. Thus, the total energy of a harmonic oscillation
is indeed constant.

Using formulas of trigonometry, we can write the expressions for �k and �p
as follows:

�k = � sin2(l0B + U) = �

{
1
2
− 1
2
cos[2(l0B + U)]

}
(7.69)

�p = � cos2(l0B + U) = �

{
1
2
+ 1
2
cos[2(l0B + U)]

}
(7.70)

where � is the total energy of the system. A glance at these equations shows that
�k and �p change with a frequency of 2l0, i.e., with a frequency twice that of the
harmonic oscillations. Figure 7.6 compares graphs for F, �k and �p.

It is known that the mean value of sine square and of cosine square equals
one-half. Hence, the mean value of �k coincides with that of �p and equals �/2.
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Fig. 7.7

7.6. The Pendulum

Physicists understand a pendulum to be a rigid body performing oscillations about
a fixed point or axis under the acting of the force of gravity.

A mathematical or simple pendulum is defined as an idealized system consist-
ing of a weightless and unstretchable string on which a mass concentrated at one
point is suspended. A sufficiently close approximation to a simple pendulum is a
small heavy sphere suspended on a long thin thread.

We shall characterize the deviation of a pendulum from its equilibrium posi-
tion by the angle i made by the thread with a vertical line (Fig. 7.7). Deviation of
a pendulum from its equilibrium position is attended by the appearance of a rota-
tional moment (torque) " whose magnitude is ;6: sin i (here ; is the mass and :
is the length of the pendulum). Its direction is such that it tends to return the pen-
dulum to its equilibrium position, and is similar in this respect to a quasi-elastic
force. Therefore, opposite signs must be assigned to the moment " and the an-
gular displacement i⁵, as is done to the displacement and the quasi-elastic force.
Hence, the expression for the rotational moment has the form

" = −;6: sin i. (7.71)
Let us write an equation for the dynamics of rotation of a pendulum. Denoting

⁵Considering i as a vector related to the direction of rotation by the right-hand screw rule (this
is permissible at small values of i), the opposite signs of " and i can be explained by the fact that
the vectors S and > have opposite directions (Fig. 7.7).
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the angular acceleration by ¥i and taking into account that the moment of inertia
of a pendulum is ;:2 we get

;:2 ¥i = −;6: sin i.
This equation can be transformed as follows:

¥i + 6
:
sin i = 0. (7.72)

Let us consider only small-amplitude oscillations. We can thus assume that
sin i ≈ i. Introducing, in addition, the notation

6

:
= l20 (7.73)

we arrive at the equation
¥i + l20i = 0 (7.74)

similar to Eq. (7.7). Its solution has the form
i = � cos(l0B + U). (7.75)

Consequently, in small-amplitude oscillations, the angular displacement of a sim-
ple pendulum changes with time according to a harmonic law.

Equation (7.73) shows that the frequency of oscillations of a simple pendulum
depends only on its length and on the acceleration of the force of gravity and does
not depend on the mass of the pendulum. Equation (7.56) after (7.73) is introduced
into it gives the expression for the period of oscillations of a simple pendulum
known from school days:

) = 2c
(
:

6

)1/2
. (7.76)

By solving Eq. (7.72), we can obtain the following formula for the period of
oscillations:

) = 2c
(
:

6

)1/2 {
1 +

(
1
2

)2
sin2

�

2
+

(
1
2
× 3
4

)2
sin4

�

2
+ . . .

}
. (7.77)

where � is the amplitude of the oscillations, i.e., the greatest angle through which
a pendulum deflects from its equilibrium position.

If an oscillating body cannot be treated as a point particle, the pendulum is
called a physical one. When the pendulum deviates from its equilibrium position
by the angle i, a rotational moment (torque) appears that tends to return the pen-
dulum to its equilibrium position. This moment is

" = −;6: sin i (7.78)
where ; is the mass of the pendulum and : is the distance between the suspension
point 0 and the centre of mass C of the pendulum (Fig. 7.8). The minus sign has the



204 OSCILLATORY MOTION

Fig. 7.8

same meaning as in Eq. (7.71).
Denoting the moment of inertia of a pendulum relative to the axis passing

through the point of suspension by the symbol � , we can write:
� ¥i = −;6: sin i. (7.79)

For small-amplitude oscillations, Eq. (7.79) transforms into Eq. (7.74) that we al-
ready know:

¥i + l20i = 0.
Here l20 stands for the following quantity:

l20 =
;6:

�
. (7.80)

It follows from Eqs. (7.74) and (7.80) that with small displacements from the
equilibrium position, a physical pendulum performs harmonic oscillations whose
frequency depends on themass of the pendulum, themoment of inertia of the pen-
dulum relative to the axis of rotation, and the distance between the latter and the
centre of mass of the pendulum. According to Eq. (7.80), the period of oscillation
of a physical pendulum is determined by the expression

) = 2c
(
�

;6:

)1/2
. (7.81)

A comparison of Eqs. (7.76) and (7.81) shows that amathematical pendulumof length

:r =
�

;:
(7.82)



Vector Diagram 205

will have the same period of oscillations as the given physical pendulum. The quan-
tity (7.82) is called the reduced length of the physical pendulum. Thus, the reduced
length of a physical pendulum is the length of a simple pendulum whose period of
oscillations coincides with that of the given physical pendulum.

The point on the straight line joining the point of suspension to the centre
of mass at a distance of the reduced length from the axis of rotation is called the
centre of oscillation of the physical pendulum (see point 0′ in Fig. 7.8). It can
be shown (we invite our reader to do this as an exercise) that when a pendulum is
suspended by its centre of oscillation 0′, its reduced length and, consequently, its
period of oscillations will be the same as initially. Hence, the point of suspension
and the centre of oscillation are interchangeable: when the point of suspension is
transferred to the centre of oscillation, the previous point of suspension becomes
the new centre of oscillation. This property underlies the determination of the
acceleration of free fall with the aid of the so-called reversible pendulum. The latter
has two parallel knife edges fastened near its ends by which it can be suspended in
turn. Heavy weights can be moved along the pendulum and be fastened to it. The
weights are adjusted to ensure the pendulum having the same period of oscillations
when suspended by any of the knife edges. In this case, the distance between the
knife edges will be :r. By measuring the period of oscillations of the pendulum and
knowing :, we can find the acceleration of free fall 6 by the equation

) = 2c
(
:r

6

)1/2
.

7.7. Vector Diagram

The solution of a number of problems, particularly the addition of several oscilla-
tions of the same direction (or, which is the same the addition of several harmonic
functions) is considerably facilitated and becomes clear if we depict oscillations
graphically in the form of vectors in a plane. The result obtained is called a vector
diagram.

Let us take an axis which we shall denote by the symbol F (Fig. 7.9). From point
0 on the axis we shall lay off a vector of length �making the angle U with the axis.
If we rotate this vector with the angular velocity l0, then the projection of the end
of the vector will move along the F-axis within the limits from −� to +�. The
coordinate of this projection will change with time according to the law

F = � cos(l0B + U).
Consequently, the projection of the tip of the vector onto the axis will perform a
harmonic oscillationwith an amplitude equal to the length of the vector, an angular
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frequency equal to the angular velocity of the vector, and an initial phase equal to
the angle formed by the vector with the axis at the initial moment.

It follows from the above that a harmonic oscillation can be given with the aid
of a vector whose length equals the amplitude of the oscillation, while the direction
of the vector makes an angle with the F-axis that equals the initial phase of the
oscillation.

Let us consider the addition of two harmonic oscillations of the same direction
and the same frequency. The displacement F of the oscillating bodywill be the sum
of the displacements F1 and F2, which can be written as follows:

F1 = �1 cos(l0B + U1), F2 = �2 cos(l0B + U2). (7.83)
Let us represent both oscillations with the aid of the vectors G1 and G2 (Fig. 7.10).
We shall construct the resultant vector G according to the rules of vector addition.
It is easy to see that the projection of this vector onto the F-axis equals the sum of
the projections of the vectors being added:

F = F1 + F2.
Consequently, the vector G is the resultant oscillation. This vector rotates with the
same angular velocity as the vectors G1 and G2 so that the resultant motion will be
a harmonic oscillation with the frequency l0, amplitude �, and the initial phase U.
It can be seen from the construction that

�2 = �21 + �22 − 2�1�2 cos[c − (U2 − U1)]
= �21 + �22 − 2�1�2 cos(U2 − U1), (7.84)

tan U =
�1 sin U1 + �2 sin U2
�1 cos U1 + �2 cos U2

. (7.85)

Thus, the representation of harmonic oscillations by means of vectors makes
it possible to reduce the addition of several oscillations to the operation of vector
addition. This procedure is especially useful in optics, for example, where the light
oscillations at a point are determined as the result of the superposition of many
oscillations arriving at the given point from different sections of a wavefront.

Equations (7.84) and (7.85) can naturally be obtained by summation of Eqs. (7.83)
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and the corresponding trigonometric transformations. But the way we have used
to obtain these equations is distinguished by its great simplicity and clarity.

Let us analyse Eq. (7.84) for the amplitude. If the difference between the phases
of both oscillations U2 − U1 vanishes, the amplitude of the resulting oscillation
equals the sum of �1 and �2. If the phase difference U2 − U1 equals +c or −c ,
i.e., both oscillations are in counterphase, then the amplitude of the resulting os-
cillation equals |�1 − �2 |.

If the frequencies of the oscillations F1 and F2 are not the same, the vectors
G1 and G2 will rotate with different velocities. In this case, the resultant vector G
pulsates inmagnitude and rotates with a varying velocity. Consequently, the resul-
tant motion in this case will be a complex oscillating process instead of a harmonic
oscillation.

7.8. Beats

Of special interest is the case when two harmonic oscillations of the same direction
being added differ only slightly in frequency. We shall now show that the resultant
motion in these conditions can be considered as a harmonic oscillation with a pul-
sating amplitude. Such oscillations are called beats.

Let l stand for the frequency of one of the oscillations and l + Jl for that of
the second one. According to our conditions, Jl � l. We shall assume that the
amplitudes of both oscillations are the same and equal �. To avoid unnecessary
complications in our formulas, we shall consider that the initial phases of both
oscillations equal zero. The equations of the oscillations will thus become

F1 = � cos lB, F2 = � cos(l + Jl)B.
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By summing these expressions and using the trigonometric formula for the sum of
cosines, we get

F = F1 + F2 =
[
2� cos

(
Jl

2
B

)]
cos lB (7.86)

(in the second multiplier we disregard the term Jl/2 in comparison with l). A
graph of the function (7.86) is shown in Fig. 7.11a. The graph has been plotted for
l/Jl = 10.

The multiplier in parentheses in Eq. (7.86) changes much more slowly than the
second multiplier. Owing to the condition Jl � l, the multiplier in parentheses
does not virtually change during the time in which the multiplier cos lB performs
several complete oscillations. This gives us the grounds to consider the oscilla-
tion (7.86) as a harmonic oscillation of frequency l whose amplitude changes ac-
cording to a periodic law. The multiplier in parentheses cannot be an expression
of this law because it changes within the limits from −2� to +2�whereas the am-
plitude by definition is a positive quantity. A graph of the amplitude is shown in
Fig. 7.11b. The analytic expression of the amplitude obviously has the form

amplitude =
����2� cos (

Jl

2
B

)���� . (7.87)

The function (7.87) is a periodic function with a frequency double that of the
expression inside the magnitude sign (see Fig. 7.12 comparing graphs of the cosine
and its magnitude), i.e., with a frequency of Jl. Thus, the frequency of pulsations
of the amplitude—it is called the frequency of the beats—equals the difference
between the frequencies of the oscillations being added.

We must note that the multiplier 2� cos(JlB/2) not only determines the am-
plitude, but also affects the phase of the oscillations. This is manifested, for exam-
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ple, in that the deflections corresponding to adjacent peaks of the amplitude have
opposite signs (see points M1 and M2 in Fig. 7.11a).

7.9. Addition of Mutually Perpendicular Oscillations

Assume that a point particle can oscillate both along the F-axis and along the G-
axis perpendicular to it. If we induce both oscillations, the particle will move along
a certain, generally speaking, curved trajectory whose shape depends on the phase
difference between the two oscillations.

Let us choose the beginning of counting time so that the initial phase of the first
oscillation equals zero. The equations of the oscillations will therefore be written
as follows:

F = � cos lB, G = � cos(lB + U) (7.88)
where U is the difference between the phases of the two oscillations.

Equations (7.88) describe the trajectory along which a body participating in
both oscillations moves and are given in the parametric form. To obtain an equa-
tion of the trajectory in the conventional form, we must exclude the parameter B
from Eqs. (7.88). It follows from the first of the Eqs.(7.88) that

cos lB =
F

�
. (7.89)

Hence,

sin lB =
(
1 − F2

�2

)1/2
. (7.90)

Now let us expand the cosine in the second of the Eqs. (7.88) according to the for-
mula for the cosine of a sum, using instead of cos lB and sin lB their values from
Eqs. (7.89) and (7.90). As a result we get

G

�
=
F

�
cos U − sin U

(
1 − F2

�2

)1/2
.

This equation after simple transformations can be given the form
F2

�2
+ G

2

�2
− 2FG
��

cos U = sin2 U. (7.91)

It is known from analytical geometry that Eq. (7.91) is the equation of an el-
lipse whose axes are oriented arbitrarily relative to the coordinate axes F and G.
The orientation of the ellipse and the dimensions of its semiaxes depend in a quite
complicated way on the amplitudes � and � and the phase difference U.

Let us study the shape of the trajectory in some particular cases.
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Fig. 7.13 Fig. 7.14

1. The phase difference a equals zero. In this case, Eq. (7.91) becomes( F
�
− G

�

)2
= 0

whence we get an equation of a straight line:

G =
�

�
F. (7.92)

The oscillating particle moves along this straight line, its distance from the
origin of coordinates being @ =

√
F2 + G2. Introducing into this equation

the expressions (7.88) for F and G and taking into account that 0 = 0, we get
the law of the change in @ with time:

@ =
(
F2 + G2

)1/2 cos lB. (7.93)
It follows from Eq. (7.93) that the resultant motion is a harmonic oscilla-
tion along the straight line (7.92) with the frequency l and the amplitude√
�2 + �2 (Fig. 7.13).

2. The phase difference a equals ±c . Equation (7.91) has the form( F
�
+ G
�

)2
= 0

whence we find that the resultant motion is a harmonic oscillation along a
straight line (Fig. 7.14):

G = −�
�
F.

3. When U = ±c/2, Eq. (7.91) becomes
F2

�2
+ G

2

�2
= 1 (7.94)

i.e., it becomes the equation of an ellipse reduced to the coordinate axes, the
semiaxes of the ellipse being equal to the corresponding amplitudes of the
oscillations. When the amplitudes � and � are equal, the ellipse degenerates
into a circle.
The cases U = +c/2 and U = −c/2 differ in the direction of motion along
the ellipse or circle. If U = +c/2, Eqs. (7.88) can be written as follows:

F = � cos lB, G = −� sin lB. (7.95)
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Fig. 7.15 Fig. 7.16

At the moment B = 0, the body is at point 1 (Fig. 7.15). At the following mo-
ments, the coordinate F diminishes, while the coordinate G becomes nega-
tive. Consequently, the motion is clockwise.
When U = −c/2, the equations of the oscillations become

F = � cos lB, G = � sin lB. (7.96)
Hence we can conclude that the motion is counter-clockwise.

It follows from the above that uniform motion along a circle of radius ' with
the angular velocity l can be represented as the sumof twomutually perpendicular
oscillations:

F = ' cos lB, G = ±' sin lB (7.97)
(the plus sign in the expression for G corresponds to counter-clockwise motion,
and the minus sign to clockwise motion).

When the frequencies of mutually perpendicular oscillations differ by a very
small value Jl, they can be considered as oscillations of an identical frequency, but
with a slowly changing phase difference. Indeed, the equations of the oscillations
can be written as follows:

F = � cos lB, G = � cos[lB + (JlB + U)]
and the expression JlB+U can be considered as the phase difference slowly chang-
ing with time according to a linear law.

The resultantmotion in this case occurs along a slowly changing curve thatwill
sequentially take on a shape corresponding to all the values of the phase difference
from −c to +c .

If the frequencies of mutually perpendicular oscillations are not identical, then
the trajectory of the resultant motion has the shape of rather intricate curves called
Lissajous figures. Figure 7.16 shows one of the simple trajectories obtained at a
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Fig. 7.17 Fig. 7.18

frequency ratio of 1:2 and a phase difference of c/2. The equations of the oscilla-
tions have the form

F = � cos lB, G = � cos
(
lB + c

2

)
.

During the time the particle manages to move from one extreme position to the
other along the F-axis, it will be able to leave its zero position, reach one extreme
position on the G-axis, then the other one, and return to its zero position.

With a frequency ratio of 1:2 and a phase difference of zero, the trajectory
degenerates into an open curve (Fig. 7.17) along which the particle moves to and
fro.

The closer to unity is the rational fraction expressing the ratio of the frequen-
cies of the oscillations, the more intricate is the Lissajous figure. Figure 7.18 shows
as an example a curve for the frequency ratio of 3:4 and the phase difference c/2.

7.10. Damped Oscillations

Damped oscillations are described by Eq. (7.11):
¥F + 2V ¤F + l20F = 0

where, by Eqs. (7.10) and (7.6),

2V =
@

;
, l20 =

9

;
.

Here @ is the resistance coefficient, i.e., the coefficient of proportionality between
the velocity F and the force of resistance, and 9 is the quasi-elastic force coefficient.
Wemust note that l0 is the frequencywithwhich free oscillationswould take place
in the absence of resistance of the medium (when @ = 0). This frequency is called
the natural frequency of the system.

Introduction of the function F = 4_B into Eq. (7.11) leads to the characteristic
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Fig. 7.19

equation
_2 + 2V_ + l20 = 0. (7.98)

The roots of this equation are

_1 = −V +
(
V2 − l20

)1/2
, _2 = −V −

(
V2 − l20

)1/2
. (7.99)

When the damping is not too great (at V < l0) the radicand will be negative.
Let us write it in the form (7l)2, where l is a real quantity equal to

l =
(
V2 − l20

)1/2
. (7.100)

Here, the roots of the characteristic equation will be as follows:
_1 = −V + 7l, _2 = −V − 7l. (7.101)

By Eq. (7.38), the general solution of Eq. (7.11) will be the function

F = �14
(−V+7l)B + �24

(−V−7l)B = 4VB
(
�14

7lB + �24
−7lB

)
.

The expression in parentheses is similar to Eq. (7.51). It can therefore be written
in a form similar to Eq. (7.55). Thus, when damping is not too great, the general
solution of Eq. (7.11) has the form

F = �04
VB cos(lB + U). (7.102)

Here �0 and U are arbitrary constants, and l is a quantity determined by Eq. (7.100).
Figure 7.19 gives a graph of the function (7.102). The dash lines show the limits
confining the displacement F of the oscillating particle.

In accordance with the kind of the function (7.102), the motion of the system
can be considered as a harmonic oscillation of frequency lwith an amplitude vary-
ing according to the law �(B) = �04

−VB . The upper dash curve in Fig. 7.19 depicts
the function �(B), the quantity �0 being the amplitude at the initial moment of
time. The initial displacement F0, apart from �0, also depends on the initial phase
U: F0 = �0 cos U.
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The rate of damping of oscillations is determined by the quantity V = @/(2;)
defined as the damping factor. Let us find the time g during which the amplitude
diminishes 4 times. By definition, 4−Vg = 4−1, whence Vg = 1. Consequently, the
damping factor is the reciprocal of the time interval during which the amplitude
diminishes 4 times.

According to Eq. (7.56), the period of damped oscillations is

) =
2c(

l20 − V2
)1/2 . (7.103)

When the resistance of the medium is insignificant, the period of oscillations vir-
tually equals )0 = 2c/l0. The period of oscillations grows with an increasing
damping factor.

The followingmaximum displacements to either side (for example �′, �′′, �′′′,
etc. in Fig. 7.19) form a geometrical progression. Indeed, if �′ = �04

−VB , then
�′′ = �04

−V (B+)) = �′4−V) , �′′′ = �04
[−V (B+2)) ] = �′′4−V) , etc. In general, the

ratio of the values of the amplitudes corresponding to moments of time differing
by a period is

�(B)
�(B + )) = 4

V) .

This ratio is called the damping decrement, and its logarithm is called the loga-
rithmic decrement:

_ = ln
[

�(B)
�(B + ))

]
= V) (7.104)

[do not confuse with the constant _ in Eqs. (7.98) and (7.101)].
To characterize an oscillatory system, the logarithmic decrement _ is usually

used. Expressing V through _ and ) in accordance with Eq. (7.104), we can write
the law of diminishing of the amplitude with time in the form

� = �0 exp
(
− _
)
B

)
. (7.105)

In the interval during which the amplitude diminishes 4 times, the systemmanages
to complete #4 = g/) oscillations. We find from the condition exp(−_B/)) =
exp(−1) that _B/) = 1. Hence the logarithmic decrement is the reciprocal of the
number of oscillations completed during the interval in which the amplitude di-
minishes 4 times.

An oscillatory system is often also characterized by the quantity

& =
c

_
= c#4 (7.106)

called the quality, or simply the &, of the system. As can be seen from its defini-
tion, the quality is proportional to the number of oscillations #4 performed by the
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Fig. 7.20

system in the interval g during which the amplitude of the oscillations diminishes
4 times.

We established in Sec. 7.5 that the total energy of an oscillating system is pro-
portional to the square of the amplitude [see Eq. (7.68)]. Accordingly, the energy of
the system in damped oscillations diminishes with time according to the law

� = �04
−2VB (7.107)

(�0 is the value of the energy at B = 0). Time differentiation of this expression gives
the rate of growth of the system’s energy:

d�
dB

= −2V�04−2VB = −2V�.
By reversing the signs, we find the rate of diminishing of the energy:

−d�
dB

= 2V�. (7.108)

If the energy changes only slightly during the time equal to a period of oscillations,
the reduction of the energy during a period can be found by multiplying Eq. (7.108)
by ) :

−J� = 2V)�
(we remind our reader that J� stands for the increment, and −J� for the decre-
ment of the energy). Finally, taking into consideration Eqs. (7.104) and (7.106), we
arrive at the relation

�

(−J�) =
&

2c
(7.109)

from which it follows that upon slight damping of oscillations, the quality with an
accuracy up to the factor 2c equals the ratio of the energy stored in the system at
a given moment to the decrement of this energy during one period of oscillations.

It follows from Eq. (7.103) that a growth in the damping factor is attended by an
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increase in the period of oscillations. At V = l0, the period of oscillations becomes
infinite, i.e., the motion stops being periodic.

At V > l0, the roots of the characteristic equation become real [see Eq. (7.99)],
and the solution of the differential equation (7.11) is equal to the sum of two expo-
nents:

F = �14
−_1B + �24

−_2B .

Here �1 and �2 are real constants whose values depend on the initial conditions
(on F0 and D0 = ¤F0). The motion is therefore aperiodic—a system displaced from
its equilibrium position returns to it without performing oscillations. Figure 7.20
shows two possible ways for a system to return to its equilibrium position in ape-
riodic motion. How the system arrives at its equilibrium position depends on the
initial conditions. The motion depicted by curve 2 is obtained when the system
begins to move from the position characterized by the displacement F0 to its equi-
librium position with the initial velocity D0 determined by the condition

|D0 | > |F0 |
[
V +

(
V2 + l20

)1/2]
. (7.110)

This condition will be obeyed when a system brought out of its equilibrium po-
sition is given a sufficiently strong impetus toward it. If after displacing a system
from its equilibrium position we release it without an impetus (i.e., with D0 = 0)
or impart to it an impetus of insufficient force [such that D0 is less than the value
determined by the condition (7.110)], the motion will occur according to curve 1 in
Fig. 7.20.

7.11. Auto-Oscillations

The energy of a system in damped oscillations is used to overcome the resistance
of the medium. If this decrease of energy is replenished, the oscillations will be-
come undamped. The energy of a system can be replenished at the expense of
impetuses from outside, but they must be imparted to the system in step with its
oscillations, otherwise they may weaken the latter and even stop them. An oscil-
lating system can be made to control the external action itself, ensuring agreement
between the impetuses imparted to it and its motion. Such a system is called an
auto-oscillating one, and the undamped oscillations it performs are called auto-
oscillations.

Let us consider a clock mechanism as an example of an auto-oscillatory sys-
tem. The clock pendulum is fitted onto the same axis as a bent lever-the anchor
(Fig. 7.11). The ends of the anchor carry projections of a special shape called pallets.
The toothed escape wheel is acted upon by a chain with a weight or a wound up
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Fig. 7.21

spring that tends to turn it clockwise. During the major part of the time, however,
one of the wheel’s teeth bears against the side face of a pallet, the latter sliding
along the tooth’s surface when the pendulum oscillates. Only when the pendulum
is near its middle position do the pallets stop being in the way of the teeth, and
the escape wheel turns, pushing the anchor by means of a tooth whose tip slides
along the chamfered end of a pallet. During a complete cycle of pendulum oscilla-
tions (during a period), the escape wheel turns through two teeth, and each of the
pallets receives a push. These pushes, performed at the expense of the energy of
a lifted weight or a wound up spring, are exactly what replenishes the decrease in
the energy of the pendulum due to friction.

7.12. Forced Oscillations

When the driving force changes according to a harmonic law, the oscillations are
described by the differential equation:

¥F + 2V ¤F + l20F = 50 cos lB (7.111)
[see Eq. (7.13)]. Here V is the damping factor, l0 is the natural frequency of the
system [see Eqs. (7.6), (7.10)], 50 = �0/; (�0 is the amplitude of the driving force),
and l is the frequency of the force.

Equation (7.111) is a non-homogeneous one. According to the theorem (7.41), the
general solution of a non-homogeneous equation equals the sum of the general so-
lution of the corresponding homogeneous equation and the partial solution of the
non-homogeneous one. We already know the general solution of a homogeneous
equation [see the function (7.102), which is the general solution of Eq. (7.11)]. It has
the form

F = �4−VB cos(l′B + U) (7.112)
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where l′ =
(
l20 − V2

)1/2, and �0 and U are arbitrary constants⁶.
It remains for us to find the partial (containing no arbitrary constants) solution

of Eq. (7.111). We shall use the procedure described at the end of Sec. 7.4 for this
purpose. Let us add the imaginary function 750 sin lB to the function in the right-
hand side of Eq. (7.111). After this, we can write the right-hand side in the form
50 exp(7lB) [see Eq. (7.24)]. We thus arrive at the equation

¥F + 2V ¤F + l20F = 504
7lB . (7.113)

It is easier to solve this equation than Eq. (7.111) because it is simpler to differentiate
and integrate an exponent than trigonometric functions.

We shall try to find the partial solution of Eq. (7.113) in the form
F̂ = �̂47lB (7.114)

where �̂ is a complex number. The function (7.114) is also complex, which has been
indicated by capping the F. Time differentiation of this function yields

dF̂
dB

= 7l�̂47lB ,
d2 F̂
dB2

= −l2 �̂47lB . (7.115)

Introduction of Eqs. (7.114) and (7.115) into Eq. (7.113) and cancelling off the common
factor 47lB give the algebraic equation

−l2 �̂ + 27Vl�̂ + l2 �̂ = 50.

Hence,

�̂ =
50(

l20 − l2
)
+ 27Vl

. (7.116)

We have found the value of �̂ at which the function (7.114) satisfies Eq. (7.113). Let
us write the complex number in the denominator in the exponential form:(

l20 − l2
)
+ 27Vl = d47i. (7.117)

By Eqs. (7.18), we have

d =

[ (
l20 − l2

)2 + 4V2l2] , i = arctan
(

2Vl
l20 − l2

)
. (7.118)

Substitution of the denominator in Eq. (7.116) in accordance with Eq. (7.117)
yields

�̂ =
50

d47i
=
50

d
4−7i.

Introduction of this value of �̂ into (7.114) gives the partial solution of Eq. (7.113):

F̂ =
50

d
4−7i47lB =

50

d
47(lB−i) .

⁶The symbol l without a prime stands for the frequency of the driving force.
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Finally, by taking the real part of this function, we get the partial solution of Eq. (7.111):

F =
50

d
cos(lB − i).

Introduction of the values of 50, and also of the values of d and i from Eqs. (7.118),
gives the final expression

F =
�0/;[ (

l20 − l2
)2 + 4V2l2] cos

[
lB − arctan

(
2Vl

l20 − l2

)]
. (7.119)

We must note that the function (7.119) contains no arbitrary constants.
Let us obtain a partial solution of Eq. (7.111) in another way with the aid of a

vector diagram. We shall assume that the partial solution of Eq. (7.111) has the form

F = � cos(lB − i). (7.120)
Hence,

¤F = −l� sin(lB − i) = l� cos
(
lB − i + c

2

)
(7.121)

¥F = l2� cos(lB − i) = l2� cos(lB − i + c). (7.122)
The use of Eqs. (7.120)-(7.122) in Eq. (7.111) yields

l2� cos(lB−i+c)+2Vl� cos
(
lB − i + c

2

)
+l2� cos(lB−i) = 50 cos lB. (7.123)

It follows from Eq. (7.123) that the constants � and i must have values such
that the harmonic function 50 cos lBwill equal the sum of the three harmonic func-
tions in the left-hand side of the equation. If we depict the function l20� cos(lB −
i) by a vector of length l20� directed to the right (Fig. 7.22), then the function
2Vl� cos(lB−i+c/2) will be depicted by a vector of length 2Vl� turned counter-
clockwise relative to the vector l20� through the angle c/2 (see Sec. 7.7), and the
function l2� cos(lB − i + c) by a vector of length l20� turned through the angle
c relative to the vector l20�. For Eq. (7.123) to be satisfied, the sum of the three
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Fig. 7.23

enumerated vectors must coincide with the vector depicting the function 50 cos lB.
Inspection of Fig. 7.22a shows that such coincidence is possible only at a value of
the amplitude � determined by the condition(

l20 − l2
)2
�2 + 4V2l2�2 = 5 20

whence,

� =
�0/;[ (

l20 − l2
)2 + 4V2l2] (7.124)

(we have replaced 50 with the ratio �0/;). Figure 7.22a corresponds to the case
when l < l0. We get the same value of � from Fig. 7.22b corresponding to the case
when l > l0.

Figure 7.22 also allows us to obtain the value of i showing the lagging in phase
of the forced oscillation (7.120) behind the driving force producing it. It can be seen
from the figure that

tan i =
2Vl

l20 − l2
. (7.125)

Using the values of � and i determined by Eqs. (7.124) and (7.125) in Eq. (7.120), we
get the function (7.119).

Function (7.119) when added to Eq. (7.112) gives the general solution of Eq. (7.111)
describing the behaviour of the system upon forced oscillations. Addend (7.112)
plays an appreciable part only in the initial stage of the process, during the so-
called setting in of the oscillations (Fig. 7.23). With the passage of time, owing to
the exponential factor 4−VB , the part played by addend (7.112) diminishes to a greater
and greater extent, and after sufficient time elapses it may be disregarded, retaining
only addend (7.119) in the solution.

Thus, function (7.119) describes steady-state forced oscillations. They are har-



Forced Oscillations 221

monic oscillations with a frequency equal to that of the driving force. The ampli-
tude (7.124) of the forced oscillations is proportional to that of the driving force. The
amplitude of a given oscillatory system (determined by l0 and V) depends on the
frequency of the driving force. Forced oscillations lag in phase behind their driving
force; the lagging i also depends on the frequency of the force [see Eq. (7.125)].

As a result of the amplitude of forced oscillations depending on the frequency
of the driving force, the amplitude of the oscillations reaches a maximum value at a
definite frequency for the given system. The oscillatory system responds especially
to the action of the driving force at this frequency. This phenomenon is called
resonance, and the corresponding frequency—the resonance frequency.

To determine the resonance frequency lres we must find the maximum of the
function (7.124) or, which is the same, the minimum of the expression inside the
radical in the denominator. Differentiating this expression with respect to l and
equating it to zero, we get the condition determining lres:

−4
(
l20 − l2

)
l + 8V2l = 0. (7.126)

Equation (7.126) has three solutions: l = 0 and l = ±
(
l20 − 2V2

)1/2. The
solution equal to zero corresponds to a maximum of the denominator. Of the
remaining two solutions, the negative one must be discarded as being deprived of
a physical meaning (the frequency cannot be negative). We thus get a single value
for the resonance frequency:

lres =
(
l20 − 2V2

)1/2
. (7.127)

Using this value of the frequency in Eq. (7.124), we get an expression for the ampli-
tude in resonance:

�res =
�0/;

2V
(
l20 − V2

)1/2 . (7.128)

It follows from Eq. (7.128) that the amplitude in resonance would become equal to
infinity in the absence of resistance of the medium. By Eq. (7.127), the resonance
frequency in such conditions (at V = 0) coincides with the natural frequency of
oscillations of the system l0.

The dependence of the amplitude of forced oscillations on the frequency of
the driving force (or, which is the same, on the frequency of oscillations) is shown
graphically in Fig. 7.24. The separate curves correspond to different values of the
parameter V. According to Eqs. (7.127) and (7.128), the peak of a given curve is
higher and further to the right with decreasing values of V. The expression for
the resonance frequency becomes imaginary upon very great damping (such that
2V2 > l20). This signifies that no resonance is observed in these conditions—
the amplitude of forced oscillations monotonously diminishes with increasing fre-
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Fig. 7.24

quency (see the lower curve in Fig. 7.24). The curves shown in Fig. 7.24 correspond-
ing to different values of the parameter V are called resonance curves.

We can add the following remarks with respect to resonance curves. When l
tends to zero, all the curves arrive at the same limiting value equal to �0/(;l20),
i.e., �0/9, differing from zero. This value is the displacement from the equilibrium
position received by the system under the action of a constant force of magnitude
�0. When l tends to infinity, all the curves asymptotically tend to zero because
at a high frequency the force changes its direction so rapidly that the system does
not manage to become displaced from its equilibrium position. Finally, we must
note that diminishing of V is attended by a greater change in the amplitude with
the frequency near resonance and by a sharper “peak”.

It follows from Eq. (7.128) that with small damping (i.e., when V � l0), the
amplitude in resonance is

�res ≈
�0/;
2Vl

.

Let us divide this expression by the displacement F0 from the equilibrium position
under the action of the constant force �0 equal to �0/(;l20). The result is

�res

F0
≈ l0

2V
=

2c
2V)

=
c

_
= & (7.129)

[see Eq. (7.106)]. Thus, the quality & shows how many times the amplitude at the
moment of resonance exceeds the displacement of the system from its equilibrium
position under the action of a constant force of the same magnitude as the ampli-
tude of the driving force (this holds only with slight damping).

Inspection of Fig. 7.22 shows that forced oscillations lag in phase behind their
driving force; this lagging ranges from 0 to c . The dependence of i on l at various
values of V is shown in Fig. 7.25. The value i = c/2 corresponds to the frequency
l0. The resonance frequency is lower than the natural one [see Eq. (7.127)]. Hence, at
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the moment of resonance, i < c/2. When the damping is insignificant, lres ≈ l0,
and we may assume that in resonance i = c/2.

The phenomenon of resonancemust never be forgotten in designingmachines
and various structures. The natural frequency of oscillations of such equipment
and facilities must not be close to the frequency of possible external actions. For
example, the natural frequency of vibrations of a ship’s hull or an aeroplane’s wings
must greatly differ from the frequency of the vibrations that might be produced
by rotation of the propeller. Otherwise vibrations will appear that may cause a
catastrophe. Cases are known when bridges collapsed owing to the marching of
columns of soldiers over them. The reason was that the natural frequency of os-
cillations of the bridge was close to the frequency of the soldier’s steps.

The phenomenon of resonance, at the same time, is often very useful, especially
in acoustics, radio engineering, etc.

7.13. Parametric Resonance

In the case dealt with in the preceding section, a driving force applied from outside
produced a direct displacement of a system from its equilibrium position. Another
kind of external action is known to exist by means of which great oscillations can
be imparted to a system. This kind of action consists in periodically changing a pa-
rameter of the system in stepwith its oscillations, owing towhich the phenomenon
is called parametric resonance.

Let us take as an example a simple pendulum—a ball on a thread. If we period-
ically change the length : of the pendulum, increasing it when the pendulum is at
its extreme positions and decreasing it when the pendulum is at its middle position
(Fig. 7.26), then the pendulum starts swinging violently. The energy of the pendu-
lum here grows at the expense of the work done by the force acting on the thread.
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Fig. 7.26

The force tensioning the thread is not constant when the pendulum oscillates: it is
smaller at the extreme positions when the velocity vanishes, and is greater at the
middle position when the velocity of the pendulum is maximum. Consequently,
the negative work of the external force upon elongation of the pendulum is smaller
in magnitude than the positive work done upon shortening of the pendulum. As a
result, the work done by the external force during a period is greater than zero.
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Chapter 8

RELATIVISTIC MECHANICS

8.1. The Special Theory of Relativity

It was noted in Sec. 2.1 that Newtonian mechanics holds only for bodies travelling
with speeds that are much lower than the speed of light in a vacuum (this speed is
denoted by the symbol 2). To describe motion at speeds comparable with 2, Albert
Einstein advanced relativistic mechanics, i.e., mechanics taking the requirements
of the special theory of relativity into account.

The special theory of relativity presented byEinstein in 1905 is a physical theory
of space and time¹. The foundation of this theory is formed by twopostulates called
Einstein’s principle of relativity and the principle of constancy of the speed
of light.

Einstein’s principle of relativity is an extension of Galileo’ mechanical princi-
ple (see Sec. 2.7 to all physical phenomena without any exception. According to
this principle, all laws of nature are the same in all inertial reference frames. The
unchanged form of an equation when the coordinates and time of one reference
frame are replaced in it with the coordinates and time of another frame is called
the invariance of the equation. The principle of relativity can therefore be formu-
lated as follows: the equations expressing the laws of nature are invariant with respect
to transformations of coordinates and time from one inertial reference frame to another.

The principle of constancy of the speed of light states that the speed of light in a
vacuum is the same in all inertial reference frames and does not depend on the motion
of the sources and receivers of light.²

¹In 1915, Einstein presented the fundamentals of the general theory of relativity, which is the
theory of gravitation.

²The experiment performed by A. Michelson and E. Morley confirming the validity of this prin-
ciple will be described in the second volume of our course.
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Fig. 8.1

Anumber of important conclusions relating to the properties of space and time
follow from the above postulates. Space and time were considered independently
of each other in Newtonian mechanics. Newton considered that absolute space
and absolute time exist. He defined absolute space as a container of articles that
always remains the same and stationary and that bas no relation to anything ex-
ternal. Newton wrote about time that absolute, true, or mathematical time flows
uniformly without any relation to anything external by itself and owing to its in-
ternal nature. Accordingly, it was considered absolutely obvious that two events
occurring simultaneously in one reference frame will also be simultaneous in all
other reference frames. It is easy to see, however, that the latter statement contra-
dicts the principle of the constancy of the speed of light.

Let us take two bodies K and K′ forming inertial reference frames together
with their corresponding clocks. Assume that body K′ moves relative to body K
with the velocity v0 directed along the straight line passing through the centres of
the bodies (Fig. 8.1). Let us put two bodies M and N on this line. The bodies are
at equal distances from body K′ and are rigidly joined to it. These bodies move
relative to body K with the velocity v0, and are at rest relative to body K′. Let us
consider the same process in both frames, namely, the emission of a light signal
from the centre of body K′ and its reaching bodies M and N. The speed of light in
all directions is the same and equals 2. Hence, in the reference frame K′, the signal
will reach bodies M and N at the same moment B′.

In the reference frame K, light also propagates in all directions with the speed
2. In this frame, M moves toward the light signal. Body N moves in the same
direction as the signal. Consequently, the signal reachesM before it reaches N, and
therefore BM < BN. Thus, the events that were simultaneous in the frame K′ will
not be simultaneous in the frame K. Hence, it follows that time flows differently in
different reference frames.

To describe an event in a reference frame, we must indicate the place and the
moment at which it occurs. This task can be coped with if we set up equally spaced
coordinate marks in space and put a clock at each mark that will permit us to de-
termine the moment at which the event occurs at the given place. The coordinate
marks can be made by transferring a unit scale. Any system performing a periodi-
cally repeating process can be used as a clock. To compare the moments at which
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two events occur at different points of space, we must see that the clocks at these
points are synchronized.

It would seem possible to synchronize the clocks by first placing them next to
one another, and then, after comparing their readings, by transferring them to the
corresponding points of space. Such a method must be rejected, however, because
we do not know how the transfer of the clocks from one place to another will
affect their running. We must therefore first put the clocks at their relevant places
and only then compare their readings. This can be done by sending a light signal
from one clock to the others³. Assume that a light signal is sent from point A at
the moment B1 (according to the clock at A). The signal is reflected from a mirror
at point B and returns to A at the moment B2. The clock at B should be considered
synchronized with the one at A if at the moment when the signal reaches it the
clock at B shows the time B equal to (B1 + B2)/2. This procedure must be performed
for all the clocks arranged at the different points of the frame K. The events at A
and B will be considered simultaneous in the frame K if the readings of the clocks
at A and B corresponding to them coincide.

All the clocks in the frame K′ and in any other inertial reference frame are syn-
chronized in a similar way. The speed of the light signal used for synchronization
is the same in all the inertial reference frames. This explains why it is a light signal
that is chosen as the signal for clock synchronization. The speed of light was found
to be the limit. No signal, no action of one body on another can propagate with a
speed exceeding that of light in a vacuum. This is the reason for light having the
same speed in a vacuum in all reference frames. According to the principle of rela-
tivity, the laws of nature in all inertial frames must be identical. The circumstance
that the speed of a signal cannot exceed a limiting value is also a law of nature.
Hence, the value of the limiting speed must be the same in all reference frames.

The constancy of the speed of light results in space and time being mutually
related, forming a single space-time. This relation can be depicted especially clearly
with the aid of an imaginary four-dimensional space along three axes of which the
space coordinates F, G, H are laid off, and along the fourth axis the time B, more
exactly the time coordinate 2B proportional to B and having the same dimension as
the space coordinates.

An event (for instance, the decay of a particle) is characterized by the place
where it occurred (by the coordinates F, G, H) and by the time B when it occurred.
Thus, a point with the coordinates F, G, H, 2B corresponds to an event in our imagi-
nary four-dimensional space. This point is called theworld point. A line called the
world line corresponds to any particle (even a stationary one) in four-dimensional

³The checking of clocks according to radio signals is in essence such synchronization.
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space (for a particle at rest it has the form of a straight line parallel to the 2B-axis).
Thus, space and time are parts of a single whole. But time differs qualitatively

from space. This manifests itself in that our imaginary four-dimensional space
differs in its properties from the conventional three-dimensional space. The latter
has Euclidean metric. This signifies that the square of the distance J: between two
points equals the sum of the squares of the coordinate differences:

J:2 = JF2 + JG2 + JH2.
The square of the “distance” between two world points (this distance is called

an interval and is designated by the symbol JA) is determined by the equation
JA2 = 22JB2 − JF2 − JG2 − JH2 (8.1)

(the properties of an interval are treated in Sec. 8.4).
Spaces for which the square of the distance is determined by a formula such

as (8.1) are called pseudo-Euclidean. The qualitative distinction between time and
space manifests itself in that the square of the time coordinate and the squares of
the space coordinates enter Eq. (8.1) with different signs.

A distinctive part in the special theory of relativity is played by quantities that
are invariant with respect to the transformations of the coordinates and time
from one inertial reference frame to another (in other words, quantities having the
same numerical value in all inertial reference frames). We know one such quantity,
namely, the speed of light in a vacuum. We shall show in Sec. 8.4 that the interval
defined by Eq. (8.1) is also an invariant.

A distinctive part is also played by equations and relations that are invariant
with respect to the transformations indicated above (i.e., having the same form
in all inertial reference frames). For example, the relativistic expressions for the
momentum and energy are determined so that the laws of conservation of these
quantities are not violated when transferring to another inertial reference frame.
We shall acquaint ourselves with a number of invariant quantities and relations in
our further treatment.

8.2. Lorentz Transformations

Let us consider two inertial reference frames K and K′ (Fig. 8.2). Assume that the
frame K′moves relative to the frame K with the velocity v0⁴. Let us direct the axes

⁴We remind our reader that the name inertial is used to designate a reference frame relative to
which a free particle moves without acceleration (see Sec. 2.2). In Sec. 2.7, we showed on the basis
of the Galilean transformation that the frame K′ moving relative to the inertial frame K with the
constant velocity v0 is also inertial, in turn. In relativistic mechanics, the Galilean transformations
have to be replacedwith other ones that agreewith the principle of the constancy of the speed of light.
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Fig. 8.2

F and F′ along the vector v0, and assume that the axes G and H are parallel to the
axes G′ and H′, respectively.

Owing to the principle of relativity, the frames K and K′ have absolutely equal
rights. Their only formal distinction is that the F-coordinate of origin 0′ of the
frame K′ measured in the frame K changes according to the law

F0′ = D0B (8.2)
whereas the F′-coordinate of origin 0 of the frame K measured in the frame K′

changes according to the law
F′0 = −D0B′. (8.3)

This distinction is due to the fact that we have chosen identical directions of the
axes F and F′, but the frames K and K′move in opposite directions relative to each
other. Hence, the projection of the relative velocity of the frame K onto the F-axis
is v0, and that of the frame K′ onto the F′-axis is −v0.

In non-relativistic mechanics, we used the Galilean transformation (2.9) to pass
over from the coordinates and time of one inertial reference frame to the coordi-
nates and time of another inertial frame. The rule of velocity addition v = v′ + v0
[see Eq. (2.21)] follows from these transformations. This rule contradicts the prin-
ciple of constancy of the speed of light. Indeed, if in the frame K′ a light signal
propagates in the direction of the vector v0 with the velocity 2, then according to
Eq. (2.21) in the frame K the velocity of the signal will be 2 + D0, i.e., it will exceed
2. Hence, it follows that the Galilean transformations must be replaced with other
formulas. It is not difficult to find the latter.

In themost general form, the transformations of the coordinates and time from

It is clear, however, that no matter what the law of transformation is when passing from the frame
K to the frame K′ moving relative to it with the constant velocity v0 , if the velocity v of a particle
in the frame K is constant, then its velocity v′ in the frame K′ will also be constant. Consequently,
in relativistic mechanics too, the frame K′ moving with a constant velocity v0 relative to the inertial
frame K will also be inertial.
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the frame K′ to the frame K are as follows:{
F = 51(F′, G′, H′, B′), G = 52(F′, G′, H′, B′),
H = 53(F′, G′, H′, B′), B = 54(F′, G′, H′, B′).

(8.4)

It follows from the uniformity of time and space that Eqs. (8.4) should be linear, i.e.,
have the form

F = U1F
′ + U2 G′ + U3H′ + U4B′ + U5 (8.5)

and so on, where U1, U2, . . . are constants. Accordingly
dF = U1 dF′ + U2 dG′ + U3 dH′ + U4 dB′ (8.6)

and so on.
Indeed, according to Eqs. (8.4)

dF =
∂51
∂F′

dF′ + ∂52
∂G′

dG′ + ∂53
∂H′

dH′ + ∂54
∂B′

dB′ (8.7)

...
...

...
...

...
...

...

If we take the arbitrarily chosen values dF′, dG′, dH′, dB′ for the point F′1, G
′
1, H
′
1, B
′
1,

then upon introducing into Eqs. (8.7) the values of the derivatives at the given point,
we get a certain value dF1 for dF. Owing to the uniformity of space and time,
however, for any other point F′2, G

′
2, H
′
2, B
′
2 at the same values dF′, dG′, dH′, dB′ we

should get the same value for dF as for the first point, i.e., we should have dF2 =

dF1. The same should hold for dG, dH, and dB. Since dF′, dG′, dH′, dB′ were chosen
absolutely arbitrarily, this requirement can be observed only if the derivatives of
∂51/∂F′, etc. do not depend on the coordinates, i.e., are constants. Hence follows
Eq. (8.6), and then also Eq. (8.5).

With the choice of the coordinate axes shown in Fig. 8.2, the plane G = 0 co-
incides with the plane G′ = 0 and the plane H = 0 with the plane H′ = 0. It thus
follows that, for example, the coordinates G and G′ must become equal to zero si-
multaneously regardless of the values of the other coordinates and time. Therefore,
G and G′ can be related only by expressions of the kind

G = Y G′

where Y is a constant. Owing to the frames K andK′ having equal rights, the reverse
relation must hold, i.e.,

G′ = Y G

with the same value of the constant Y as in the first case. Multiplication of these
two equations yields Y2 = 1, whence Y = ±1. The plus sign corresponds to the axes
G and G′ having the same directions, and the minus sign to their having opposite
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directions. Giving the axes the same direction, we get
G = G′. (8.8)

Similar reasoning yields
H = H′. (8.9)

Now let us turn to finding the transformations for F and B. It can be seen from
Eqs. (8.8) and (8.9) that the values of G and H do not depend on F′ and B′. Hence, the
values of F′ and B′ cannot depend on G and H, correspondingly, the values of F and
B cannot depend on G′ and H′. Thus, F and B can be linear functions of only F′ and
B′.

The origin of coordinates 0 of the frame K has the coordinate F = 0 in the
frame K and F′ = −D0B′ in the frame K′ [see Eq. (8.3)]. Consequently, the expression
(F′ + D0B′) must vanish simultaneously with the coordinate F. For this to occur,
the linear transformation should have the form

F = W (F′ + D0B′) (8.10)
where W is a constant.

Similarly, the origin of coordinates 0′ of the frame K′ has the coordinate F′ = 0
in the frame K′ and F = D0B in the frame K [see Eq. (8.2)]. Hence,

F′ = W (F − D0B) (8.11)
It follows from the frames K and K′ having equal rights that the constant of pro-
portionality in both cases should be the same.

We shall use the principle of constancy of the speed of light to find the constant
G. Let us begin to count the time in both frames from the moment when their
origins of coordinates coincide. Assume that at the moment B = B′ = 0 a light
signal is sent in the direction of the axes F and F′ that causes a flash of light to
appear on a screen at a point with the coordinate F in the frame K and with the
coordinate F′ in the frame K′. This event (flash) is described by the coordinate F
and the moment B in the frame K, and by the coordinate F′ and the moment B′ in
the frame K′, and

F = 2B, F′ = 2B′.

Using these values of F and F′ in Eqs. (8.10) and (8.11), we get
2B = W (2B′ + D0B′) = W (2 + D0)B′,
2B′ = W (2B − D0B) = W (2 − D0)B.

Multiplication of these two equations yields

W =
1[

1 −
(
D20/22

) ]1/2 . (8.12)
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Introduction of this value into Eq. (8.10) gives

F =
F + D0B′[

1 −
(
D20/22

) ]1/2 . (8.13)

Equation (8.13) allows us to find the value of F according to known values of
F′ and B′. To obtain an equation allowing us to find the value of B according to the
known values of F′ and B′, let us delete the coordinate F from Eqs. (8.10) and (8.11)
and solve the resulting expression relative to B. We obtain

B = W

[
B′ + F

′

D0

(
1 − 1

W2

)]
.

Substituting for W its value from Eq. (8.12), we have

B =
B′ + (D0/22)F′[
1 −

(
D20/22

) ]1/2 . (8.14)

The combination of Eqs. (8.8), (8.9), (8.13), and (8.14) is called Lorentz transfor-
mations. If we use the generally adopted symbol

V =
D0

2
(8.15)

then the Lorentz transformations acquire the form

F =
F + V2B′

(1 − V2)1/2
, G = G′, H = H′, B =

B′ + (V/2)F′

(1 − V2)1/2
. (8.16)

Equations (8.16) allow us to pass over from coordinates and time measured in
the frame K′ to those measured in the frame K (in short, to pass over from the
frame K′ to the frame K). If we solve Eqs. (8.16) relative to the primed quantities,
we get the equations for transformation from the frame K to K′:

F′ =
F − V2B
(1 − V2)1/2

, G′ = G, H′ = H, B′ =
B − (V/2)F
(1 − V2)1/2

. (8.17)

As should be expected with a view to the equal rights of the frames K and K′,
Eqs. (8.17) differ from their counterparts (8.16) only in the sign of V, i.e., of D0.

It is easy to understand that when D0 � 2 (i.e., V � 1), the Lorentz transforma-
tions become the same as the Galilean ones [see Eqs. (2.19)]. The latter thus retain
their importance for speeds that are small in comparison with the speed of light in
a vacuum.

When D0 > 2, Eqs. (8.16) and (8.17) for F, B, F′, and B′ become imaginary. This
agrees with the fact that motion at a speed exceeding that of light in a vacuum is
impossible. It is impossible even to use a reference frame moving with the speed 2
because when D0 = 2, we get zero in the denominators of the equations for F and B.

The Lorentz transformations have an especially simple and symmetrical form
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if we write them for F and (2B) instead of for F and B, i.e., for quantities of the same
dimension. In this case, Eqs. (8.16) have the form

F =
F′ + V(2B) ′

(1 − V2)1/2
, G = G′, H = H′, B =

(2B) ′ + VF′

(1 − V2)1/2
. (8.18)

It is simple to memorize Eqs. (8.18) by bearing in mind that the first of them
differs from the “obvious” equation F = F′ + D0B′ in containing in its denominator
the expression

(
1 − V2

)1/2 characteristic of relativistic formulas. The last equation
is obtained from the first one if we change the places of F′ and 2B′.

8.3. Corollaries of the Lorentz Transformations

A number of corollaries follow from the Lorentz transformations that are unusual
from the viewpoint of Newtonian mechanics.

Simultaneity of Events in Different Reference Frames. Assume that two
events occur simultaneously in the frame K at points with the coordinates F1 and
F2 and at the moment B1 = B2 = 1. According to the last of the equations (8.17), the
moments

B′1 =
1 − (V/2)F1
(1 − V2)1/2

, B′2 =
1 − (V/2)F2
(1 − V2)1/2

will correspond to these events in the frame K′. Examination of these equations
shows that if the events occur at different points of space (F1 ≠ F2) in the frame
K, then they will not be simultaneous in the frame K′ (B′1 ≠ B′2). The sign of the
difference B′2 − B′1 is determined by that of the expression (V/2) (F1 − F2). Conse-
quently, in different frames K′ (with different V’s), the difference B′2 − B′1 will vary in
magnitude and may differ in sign. This signifies that in some frames event 1 will
precede event 2, whereas in others, on the contrary, event 2 will precede event 1. It
must be noted that what has been said above relates only to events between which
there is no causal relationship. Causally related events (for example, the throwing
of a stone and its falling onto the Earth) will not be simultaneous in any reference
frame, and in all frames the event that is the cause will precede the effect. This will
be treated in greater detail in the following section.

The Length of Bodies in Different Frames. Let us consider a rod arranged
along the F′-axis and at rest relative to the reference frame K′ (Fig. 8.3). Its length in
this frame is :0 = F′2 − F′1 where F′1 and F′2 are the coordinates of the rod ends that
do not change with the time B′. The rod travels with the velocity D = D0 relative to
the frame K. To determine its length in this frame, we must note the coordinates of
the rod ends F1 and F2 at the samemoment B1 = B2 = 1. Their difference : = F2−F1
will give the length of the rod measured in the frame K. To find the relationship
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Fig. 8.3

between :0 and :, we must take the equation of the Lorentz transformations that
contains F′, F, and B, i.e., the first of the equations (8.17). Substituting D0/2 for V in
this equation, we obtain

F′1 =
F1 − D01[

1 −
(
D20/22

) ]1/2 , F′2 =
F2 − D01[

1 −
(
D20/22

) ]1/2
whence

F′2 − F′1 =
F2 − F1[

1 −
(
D20/22

) ]1/2 .
Using the symbols : and :0 and also replacing the relative velocity of the reference
frames D0 with the velocity D of the rod the frame K that equals it, we arrive at the
expression

: = :0

(
1 −

D20

22

)1/2
. (8.19)

Thus, the length of the rod : measured in a frame relative to which it is moving
is shorter than the length :0 measured in the frame relative to which the rod is at
rest.⁵

If a rod of length :0 = F2−F1 is at rest relative to the frameK, then to determine
its length in the frame K′ we must note the coordinates of its ends F′1 and F

′
2 at the

same moment B′1 = B′2 = 1. The difference : = F′2 − F′1 gives the length of the rod
in the frame K′ relative to which it is moving with the velocity D. Using the first of
the equations (8.16), we again arrive at Eq. (8.19).

It must be noted that the dimensions of the rod are identical in all the reference
frames in the direction of the axes G and H.

Thus, inmoving bodies, their dimensions contract in the direction of theirmo-
tion the greater, the higher is the velocity. This phenomenon is called the Lorentz
(or Fitzgerald) contraction. It is interesting to note that the change in the shape

⁵The length :0 measured in the frame relative to which the rod is at rest is called the proper
length of the rod.
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of bodies even at velocities comparable with 2 cannot be detected visually (or in a
photograph). The reason is very simple. When observing visually or photograph-
ing a body, we register light pulses from different points of the body that reach the
retina of our eye or the photographic plate simultaneously. These pulses, however,
are not emitted simultaneously. The pulses from the more remote sections were
emitted before those from the nearer sections. Thus, if the body is moving, a dis-
torted image of it is formed on the retina of the eye or on the photograph. The
relevant calculations show that this distortion will result in compensation of the
Lorentz contraction⁶ so that the bodies seem to be only turned instead of distorted.
Consequently, a spherically shaped body even at high velocities will be perceived
visually as a body with a spherical configuration.

Length of TimeBetween Events. Let us suppose that two events occur at the
same point of the frame K′. The coordinate F′1 = 0 and the moment B′1 correspond
to the first event in this frame, and the coordinate F′2 = 0 and the moment B′2 to
the second one. According to the last of the equations (8.16), the moments corre-
sponding to these events in the frame K will be (we have introduced D0/2 instead
of V)

B1 =
B′1 + (D0/2)20[
1 −

(
D20/22

) ]1/2 , B2 =
B′2 + (D0/22)0[
1 −

(
D20/22

) ]1/2 .
Hence,

B2 − B1 =
B′2 − B′2[

1 −
(
D20/22

) ]1/2 .
Introducing the notation B2 − B1 = JB and B′2 − B′1 = JB′ , we get the equation

JB =
JB′[

1 −
(
D20/22

) ]1/2 (8.20)

that relates the lengths of time between two events measured in the frames K and
K′. We remind our reader that in the frame K′ both events occur at the same point,
i.e., F′1 = F

′
2.

Assume that both events occurwith the same particle that is at rest in the frame
K′ and ismoving relative to the frameKwith the velocity D = D0. Therefore, JB′ can
be interpreted as the length of time measured on a clock that is stationary relative
to the particle, or, in otherwords, measured on a clock that ismoving togetherwith
the particle (we have in mind motion relative to the frame K). The time measured
on a clock moving together with a body is called the proper time of this body and

⁶If there were no Lorentz contraction, rapidly moving bodies ought to seem extended in the
direction of their motion.
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is usually denoted by the symbol g. Thus, JB′ = Jg. We can thus write Eq. (8.20) as
follows:

Jg = JB
[
1 −

(
D2/22

) ]1/2 (8.21)
(we have replaced the relative velocity of the reference frames D0 with the velocity
of the particle D equal to it).

Equation (8.21) relates the proper time of a body g to the time B read on a clock
of a reference frame relative to which the body is moving with the velocity D (this
clock itself is moving relative to the body with the velocity −D).

A glance at Eq. (8.21) shows that the proper time is always smaller than the time
measured on a clock moving relative to a body (in the latter case the effect called
time dilation is observed). We shall show in the following section that the proper
time is an invariant (i.e., is identical in all reference frames).

Considering the events occurring with the particle in the frame K, we can de-
fine JB as the length of time measured on a stationary clock, and Jg as the length
of time measured on a clock moving with the velocity D. By Eq. (8.21), we have
Jg < JB. We can therefore say that the moving clock runs slower than the clock at
rest (it must not be forgotten that in all respects except for their velocity the clocks
are absolutely identical).

Equation (8.21) has been directly confirmed experimentally. Cosmic rays con-
tain particles called mu-mesons or muons. These particles are unstable and decay
spontaneously into an electron (or positron) and two neutrinos. The mean lifetime
of muons measured in conditions when they are stationary (or are moving with a
low velocity) is about 2 × 10−6 s. It would seem that even when travelling with the
speed of light, muons could cover a distance of only about 600m. As observations
show, however, muons are formed in cosmic rays at an altitude of from 20 km to
30 km, and a considerable number of them manage to reach the Earth’s surface.
The explanation is that 2 × 10−6 s is the proper lifetime of a muon, i.e., time mea-
sured on a clock travelling together with it. The time according to the clock of an
observer on the Earth will be much greater [see Eq. (8.21); D of a muon is close to
2]. It is therefore not surprising that the observer registers a distance travelled by
a muon much greater than 600m. We must note that from the position of an ob-
server travelling together with a muon, the distance it covers to the Earth’s surface
contracts to 600m [see Eq. (8.19)], so that the muon manages to travel this distance
in 2 × 10−6 s.
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8.4. Interval

We pointed out in Sec. 8.1 that a world point with the coordinates 2B, F, G, H can be
associated with every event in imaginary four-dimensional space. Let one event
have the coordinates 2B1, F1, G1, H1 and another the coordinates 2B2, F2, G2, H2. We
shall introduce the notation B2 − B1 = JB, F2 − F1 = JF, etc.

We remind our reader that owing to the qualitative distinction between time
and space, the square of the difference between the time coordinates (2JB)2 and the
squares of the differences between the space coordinates JF2, JG2, JH2 enter the
expression for the square of the “distance” between events (more exactly, between
the world points corresponding to the events) with opposite signs:

JA2 = 22JB2 − JF2 − JG2 − JH2. (8.22)
The quantity JA determined by this equation is defined as the interval between
events.

Introducing the distance J: =
(
JF2 + JG2 + JH2

)1/2 between the points of
conventional three-dimensional space at which the events being considered oc-
curred, the expression for the interval can be written in the form

JA =
(
22JB2 − J:2

)1/2
. (8.23)

It is easy to convince ourselves that the interval between two given events is
the same in all inertial reference frames. It is exactly this circumstance that served
as the grounds to consider it the analogue of the distance J: between two points in
conventional three-dimensional space (J: does not change its value when we pass
over from one three-dimensional reference frame to another).

Assume that in the reference frame K the square of the interval is determined
by Eq. (8.22). The square of the interval between the same events in the frame K′ is

JA′2 = 22JB′2 − JF′2 − JG′2 − JH′2. (8.24)
By Eqs. (8.17)

JF′ =
JF − V2JB
(1 − V2)1/2

, JG′ = JG, JH′ = JH, JB′ =
JB − (V/2)JF
(1 − V2)1/2

.

Introducing these values into Eq. (8.24), after simple transformations we find that
JA′2 = 22JB2 − JF2 − JG2 − JH2, i.e., that

JA′2 = JA2.

The interval is thus invariant with respect to a transition from one inertial
reference frame to another. We saw in the preceding section that the lengths of
time JB and lengths J: are not invariant with respect to such a transition. Hence,
each of the addends forming the quantity JA2 = 22JB2− J:2 changes in a transition
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from one frame to another; the quantity JA2 itself remains unchanged.
The interval between two events occurring with a particle is in a simple re-

lation with the length of the proper time between these events. By Eq. (8.21), the
length of the proper time Jg is related to the time JB measured on a clock of the
frame relative to which the particle is travelling with the velocity D by the expres-
sion

Jg = JB

(
1 − D

2

22

)
.

Let us transform this equation as follows:

Jg =
1
2

[
22JB2 − (DJB)2

]1/2
=
1
2

(
22JB2 − J:2

)1/2
.

Here J: = DJB is the distance travelled by the particle during the time JB. A com-
parison with Eq. (8.23) shows that

Jg =
1
2
JA (8.25)

where JA is the interval between events separated by the time Jg.
It follows from Eq. (8.25) that the length of the proper time is proportional to

the interval between events. The interval is an invariant. Consequently, the proper
time is also an invariant, i.e., does not depend on the reference frame in which the
motion of a given body is being observed.

According to Eq. (8.23), the interval may be real (if 2JB > J:) or imaginary (if
2JB < J:). In a particular case, the interval may equal zero (if 2JB = J:). The last
case occurs for events consisting in the emission of a light signal from the point
F1, G1, H1 at the moment B1 and in the arrival of this signal at the point F2, G2, H2 at
the moment B2. Since here J: = 2JB, the interval between the events equals zero.

Owing to its invariance, an interval that is real (or imaginary) in a reference
frame K will be real (or imaginary) in any other inertial frame K′.

For a real interval, we have
22JB2 − J:2 = 22JB2 − J:′2 > 0.

It can be seen from this expression that we can find a frameK′ in which J:′ = 0, i.e.,
both events will coincide in space. No reference frame exists, however, in which
JB′ = 0 (the interval would become imaginary at such a value of JB′). Thus, events
separated by a real interval cannot become simultaneous in any reference frame.
For this reason, real intervals are called timelike.

We must note that events occurring with the same particle (we have in mind a
particle with a rest mass differing from zero) can be separated only by a timelike
interval. Indeed, the velocity of such a particle D is always lower than 2. Hence, the
path J: travelled by the particle is less than 2JB, whence it follows that JA2 > 0.
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According to the last of the equations (8.17), we have

JB′ =
JB − (V/2)JF
(1 − V2)1/2

. (8.26)

If JF and JF separate events occurring with the same particle, then JF/JB gives
the component DF of the particle’s velocity. Therefore, Eq. (8.26) in this condition
can be written in the form

JB′ =
JB − (V/2) (JF/JB)JB

(1 − V2)1/2
=

JB

(1 − V2)1/2
(
1 − V DF

2

)
.

Since both V = D0/2 and DF/2 are less than unity, the quantity in parentheses in
the right-hand side of the equation is positive for all frames K′. Hence, it follows
that JB′ and JB have the same signs. This signifies that two events occurring with
a particle take place in the same sequence in all frames. For example, the birth of a
particle in all reference frames precedes its decay.

For an imaginary interval, we have
22JB2 − J:2 = 22JB′2 − J′2 > 0.

This shows that we can find a frame K′ in which JB′ = 0, i.e., both events occur at
the same moment B′. No reference frame exists, however, in which we would have
J:′ = 0 (the interval would be real with such a value of J:′). Thus, events separated
by an imaginary interval cannot coincide in space in any reference frame. For this
reason, imaginary intervals are called spacelike.

The distance J: between points at which events separated by a spacelike inter-
val occur exceeds 2JB. Therefore, these events cannot in any way affect each other,
i.e., cannot be causally related to each other (we remind our reader that no actions
exist which propagate at a velocity exceeding 2).

Causally related events can be separated only by a timelike or a zero interval.

8.5. Transformation and Addition of Velocities

Let us consider the motion of a point particle. The position of the particle in the
frameK is determined at eachmoment B by the coordinates F, G, H. The expressions

DF = dF/dB, DG = dG/dB, DH = dH/dB
are the projections of the vector of the particle’s velocity relative to the frame K
onto the axes F, G, H. The position of the particle in the frame K′ is characterized at
each moment B′ by the coordinates F′, G′, H′. The projections of the vector of the
particle’s velocity relative to the frame K′ onto the axes F′, G′, H′ are determined
by the expressions

D′F = dF′/dB′, D′G = dG′/dB′, D′H = dH′/dB′.
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From Eqs. (8.16), we have

dF =
dF′ + D0dB′(
1 − D20/22

)1/2 , dG = dG′, dH = dH′, dB =
dB′ + (D0/22)dF′(
1 − D20/22

)1/2
(we have replaced V with D0/2). Dividing the first three equations by the fourth one,
we get formulas for transformation of the velocities when passing over from one
reference frame to another:

DF =
D′F + D0

1 − D0D′F/22
, DG =

D′G
(
1 − D20/22

)1/2
1 − D0D′F/22

, DH =
D′H

(
1 − D20/22

)1/2
1 − D0D′F/22

. (8.27)

When D0 � 2, equations (8.27) become the same as the velocity addition equa-
tions (2.20) of classical mechanics.

It is simple to obtain expressions for velocities in the frame K′ through the
velocities in the frame K from Eqs. (8.17):

D′F =
DF − D0

1 − D0DF/22
, D′G =

DG
(
1 − D20/22

)1/2
1 − D0DF/22

, D′H =
DH

(
1 − D20/22

)1/2
1 − D0DF/22

. (8.28)

These equations differ from equations (8.27) only in the sign before D0. This result
could naturally be predicted.

If a body is travelling parallel to the F-axis, its velocity D relative to the frame
K coincides with DF , and its velocity D′ relative to the frame K′ coincides with D′F .
In this case, the law of velocity addition has the form

D =
D′ + D0

1 + D0D′/22
. (8.29)

Assume that the velocity D′ equals 2. Hence, Eq. (8.29) gives us the following value
for D:

D =
2 + D0

1 + D02/22
= 2.

This result is not surprising because the Lorentz transformations (and, consequently,
the velocity addition equations too) are based on the assertion that the speed of light
is the same in all reference frames. Assuming in Eq. (8.29) that D′ = D0 = 2, we also
get a value of 2 for D. Thus, if the velocities D′ and D0 being added do not exceed 2,
then the resultant velocity D also cannot exceed 2.

8.6. Relativistic Expression for the Momentum

Newton’s equations are invariant with respect to the Galilean transformations (see
Sec. 2.7). They are not invariant, however, with respect to the Lorentz transforma-
tions. In particular, the law of momentum conservation (see Sec. 3.10) following
from Newton’s laws is not invariant with respect to the Lorentz transformations.
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Fig. 8.4

To convince ourselves in the truth of this statement, let us see what a completely
inelastic collision of two identical balls of mass ; is like in the frames K and K′

(Fig. 8.4).
Assume that the balls are moving toward each other in the frame K along the

F-axis with velocities identical in magnitude whose projections onto the F-axis
are DF1 = D0 and DF2 = −D0 (D0 is the relative velocity of the frames K and K′). In
these conditions, the balls will be at rest after colliding: DF1 = DF2 = 0. Thus, the
total momentum of the system both before and after the collision equals zero—the
momentum in the frame K is conserved.

Let us now consider the same process in the frame K′. Using the first of the
equations (8.28), we find for the velocities of the balls before they collide the values
DF1′ = 0 and DF2′ = −2D0/(1+ D20/22), and for the velocities of the balls after they
collide the same value 2′

F1 = DF2′ = −D0. Therefore, the total momentum before
the collision is −2;D0/(1 + D20/22), and after the collision is −2;D0. If D0 � 2,
the momentum of the system before and after the collision is virtually the same.
When the balls are travelling with a great velocity D0, however, the difference be-
tween the initial and the final momenta becomes quite appreciable. Thus, using
the Newtonian expression for the momentum, we arrived at the conclusion that
the momentum does not seem to be conserved in the frame K′. One of the funda-
mental laws of mechanics—the law of momentum conservation—is not invariant
with respect to the Lorentz transformations in the Newtonian formulation.

It can be shown that the law of momentum conservation will be invariant with
respect to the Lorentz transformations at any velocities if we substitute the proper
time of a particle g for the time B in the classical expression

p = ;v = ;
dr
dB
. (8.30)

Consequently, the relativistic expression for the momentum has the form

p = ;
dr
dg
. (8.31)

When D � 2, the length of the proper time of a particle dg does not virtually differ
from the length dB measured according to the clock of the frame in which the mo-
tion of the particle is being considered [see Eq. (8.21)]. Hence, Eq. (8.31) transforms
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into the classical expression (8.30).
Remember that dr in Eq. (8.31) is the displacement of the particle in the refer-

ence frame in which the momentum p is determined, whereas the length of time
dg is determined on a clock travelling together with the particle.

We get an expression for the momentum through the time B of the frame of
reference relative to which the motion of bodies is being observed. By Eq. (8.21), we
have dg = dB

(
1 − D2/22

)1/2, where D is the velocity of the body. This substitution
in Eq. (8.31) yields

p =
;

(1 − D2/22)1/2
dr
dB

or, since dr/dB = v:

p =
;v

(1 − D2/22)1/2
. (8.32)

The mass; in Eq. (8.32) is invariant and, consequently, does not depend on the
velocity of the body.

It can be seen from Eq. (8.32) that the velocity dependence of the momentum
is more complicated than is assumed in Newtonian mechanics. When D � 2,
Eq. (8.32) transforms into the Newtonian expression p = ;v.

We must note that Eq. (8.32) permits the following interpretation to be made,
which is gradually losing favour. The momentum, as in Newtonian mechanics,
equals the product of the mass of a body and its velocity:

p = ;rv. (8.33)
The mass of a body, however, is not a constant invariant quantity, but depends on
the velocity according to the law

;r =
;

(1 − D2/22)1/2
. (8.34)

In this interpretation, the invariant mass ; is called the rest mass (it is often de-
noted by the symbol ;0). The non-invariant mass ;r depending on the velocity is
called the relativistic mass.

8.7. Relativistic Expression for the Energy

Newton’s second law states that the time derivative of the momentum of a parti-
cle (point particle) equals the resultant force acting on the particle [see Eq. (2.10)].
The equation of the second law is invariant relative to the Lorentz transforma-
tions if by the momentumwe understand the quantity (8.32). Hence, the relativistic
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expression of Newton’s second law has the form

d
dB

[
;v

(1 − D2/22)1/2

]
= L . (8.35)

It should be borne in mind that the equation ;a = L cannot be used in the
relativistic case, the acceleration a and the force L , generally speaking, being non-
collinear.

We shall note that neither themomentumnor the force are invariant quantities.
Equations for the transformation of the momentum components when passing
over from one inertial reference frame to another will be obtained in the following
section. We give the equations for transformation of the force componentswithout
deriving them:

�F =
� ′F + (V/2)L ′ · v′

1 + V(D′F/2)
, �G =

� ′G
(
1 − V2

)1/2
1 + V(D′F/2)

, �H =
� ′H

(
1 − V2

)1/2
1 + V(D′F/2)

(8.36)

(here V = D0/2 and v′ is the velocity of a particle in the frame K’). If in the frame K′

the force L ′ acting on a particle is perpendicular to the velocity of the particle v′,
the scalar product L ′·v′ equals zero, and the first of the equations (8.36) is simplified
as follows

�F =
� ′F

1 + V(D′F/2)
. (8.37)

To find the relativistic expression for the energy, let us proceed in the same way
as we did in Sec. 3.2. We shall multiply Eq. (8.35) by the displacement of a particle
dA = v dB. The result is

d
dB

[
;v

(1 − D2/22)1/2

]
v dB = L ds.

The right-hand side of this equation gives the work d� done on the particle during
the time dB. We saw in Sec. 3.2 that the work of the resultant of all the forces is spent
on an increment of the kinetic energy of the particle [see Eq. (3.11)]. Consequently,
the left-hand side of the equation should be interpreted as the increment of the
kinetic energy �k of the particle during the time dB. Thus,

d�k =
d
dB

[
;v

(1 − D2/22)1/2

]
· v dB = v · d

[
;v

(1 − D2/22)1/2

]
.

Let us transform the obtained expression, bearing inmind thatv·dv = d(v2/2)



244 RELATIVISTIC MECHANICS

[see Eq. (1.54)]:

d�k = v ·

[
; dv

(1 − D2/22)1/2
+ ;v(v · dv/2

2)
(1 − D2/22)3/2

]
=

; d(D2/2)
(1 − D2/22)3/2

=
;22dD2/22

2 (1 − D2/22)3/2
= d

[
;22

(1 − D2/22)1/2

]
.

Integration of this expression yields

�k =
;22

(1 − D2/22)1/2
+ constant. (8.38)

According to themeaning of kinetic energy, it must vanishwhen D = 0. We thus get
a value of −;22 for the constant. Hence, the relativistic expression for the kinetic
energy of a particle has the form

�k =
;22

(1 − D2/22)1/2
− ;22 = ;22

[
1

(1 − D2/22)1/2
− 1

]
. (8.39)

For small velocities (D � 2), Eq. (8.39) can be transformed as follows:

�k = ;2
2

[
1

(1 − D2/22)1/2
− 1

]
≈ ;22

(
1 + 1

2
D2

22
− 1

)
=
1
2
;D2.

We have arrived at the Newtonian expression for the kinetic energy of a particle.
This is what should be expected because for velocities much smaller than the speed
of light all the equations of relativistic mechanics must transform into the relevant
equations of Newtonian mechanics.

Let us consider a free particle (i.e., one that does not experience the action of
external forces) travelling with the velocity D. We have learned that this particle has
a kinetic energy determined by Eq. (8.39). We have grounds, however (see below),
to ascribe the additional energy equal to

�0 = ;2
2 (8.40)

to a free particle in addition to the kinetic energy (8.39). Thus, the total energy of a
free particle is determined by the expression � = �k + �0 = �k +;22. With a view
to Eq. (8.39), we find that

� =
;22

(1 − D2/22)1/2
. (8.41)

When D = 0, Eq. (8.41) transforms into Eq. (8.40). This is why �0 = ;22 is called
the rest energy. This energy is the internal energy of a particle not associated with
its motion as a whole. Equations (8.40) and (8.41) hold not only for an elementary
particle, but also for a complicated body consisting of many particles. The energy
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�0 of such a body includes, apart from the rest energies of its particles, the kinetic
energy of these particles (due to their motion relative to the body’s centre of mass)
and the energy of their interactionwith one another. The rest energy, like the total⁷
energy (8.41), does not include the potential energy of a body in an external force
field.

Eliminating the velocity D from Eqs. (8.32) and (8.41) [Eq. (8.32) should be taken
in the scalar form], we obtain an expression giving the total energy of a particle
through its momentum p:

� = 2
(
>2 + ;222

)1/2
. (8.42)

When > � ;2, this equation can be written in the form

� = ;22
[
1 +

( >
;2

)2]
≈ ;22

[
1 +

(
1
2
>

;2

)2]
= ;22 + >2

2;
. (8.43)

The expression obtained differs from Newton’s equation for the kinetic energy
�k = >2/(2;) in the addend ;22.

It must be noted that the following equation results from a comparison of
Eqs. (8.32) and (8.41):

p =
�

22
v. (8.44)

We shall explain why the energy (8.41), and not only the kinetic energy (8.39),
should be ascribed to a free particle. Energy according to its meaning must be
a conserved quantity. The relevant treatment shows that when particles collide,
the sum (for the particles) of expressions of the form of Eq. (8.41) is conserved,
whereas the sum of Eqs. (8.39) is not conserved. It is impossible to comply with the
requirement of energy conservation in all inertial reference frames if we do not
include the rest energy (8.40) in the total energy.

In addition, we succeed in forming an invariant, i.e., a quantity that does not
change in the Lorentz transformations, from Eq. (8.41) for the energy and (8.42) for
the momentum. Indeed, it can be seen from Eq. (8.42) that

�2

22
− >2 = ;222 = inv (8.45)

(we remind our reader that the mass ; and speed 2 are invariant quantities). Ex-
periments with fast particles confirm the invariance of the quantity in Eq. (8.45). If
by � in Eq. (8.45) we understand the kinetic energy (8.39), then Eq. (8.45) will not be

⁷We shall note here that the term “total energy” has a different meaning in relativistic mechanics
than in Newtonian mechanics. In the latter, the total energy is defined as the sum of the kinetic and
potential energies of a particle. In relativistic mechanics, by the total energy is meant the sum of the
kinetic and rest energies of a particle.
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invariant.
Let us obtain another expression for the relativistic energy. From Eq. (8.21), we

find that
1

(1 − D2/22)1/2
=

dB
dg

(8.46)

where dB is the time that elapses between two events occurring with a particle and
measured on a clock of the reference frame relative to which the particle is travel-
ling with the velocity D, while dg is the same time measured on a clock travelling
together with the particle (proper time). Using Eq. (8.46) in Eq. (8.41) we get the
expression

� = ;22
dB
dg
. (8.47)

We shall use this equation in the following section.

8.8. Transformations of Momentum and Energy

The total energy � and momentum > are not invariants. Indeed, both quantities
depend on D, while the latter has different values in different reference frames. Let
us see how the energy and momentum transform when we pass over from one
reference frame to another.

Consider an elementary displacement of a particle. Assume that in the refer-
ence frame K this displacement occurs during the time dB, and its components are
dF, dG, dH. In the frame K′, the same displacement occurs during the time dB′, and
its components are dF′, dG′, dH′. According to Eqs. (8.18), the following relations
hold between the lengths of time and the components of the displacement:

dF =
dF′ + V2 dB′

(1 − V2)1/2
, dG = dG′, dH = dH′, 2 dB =

2 dB′ + V dF′

(1 − V2)1/2
.

Let usmultiply these equations by themass of the particle; and divide themby
the proper time of the particle dg corresponding to the lengths of time dB and dB′ (it
should be remembered that the mass and the proper time are invariant quantities,
i.e., have the same value in both frames). As a result, we get

;
dF
dg

=
;(dF′/dg) + V;2(dB′/dg)

(1 − V2)1/2
, ;

dG
dg

= ;
dG′

dg
,

;
dH
dg

= ;
dH′

dg
, ;2

dB
dg

=
;2(dB′/dg) + V;(dF′/dg)

(1 − V2)1/2
.

(8.48)

By Eq. (8.31), we have ; (dF/dg) = >F , ; (dF′/dg) = >′F , ; (dG/dg) = >G , etc.
According to Eq. (8.47), we have;2 (dB/dg) = �/2, and;2 (dB′/dg) = �′/2. Hence,
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Eqs. (8.48) can be written in the form

>F =
>′F + V(�′/2)
(1 − V2)1/2

, >G = >′G , >H = >′H ,
�

2
=
(�′/2) + V>′F
(1 − V2)1/2

. (8.49)

We have obtained equations by means of which the momentum and energy of
a particle are transformed when we pass over from one inertial reference frame to
another. These equations coincide with Eqs. (8.18) used to transform the coordi-
nates and time. To facilitate a comparison, let us write Eqs. (8.18) and (8.49) side by
side:

F =
F′ + V(2B′)
(1 − V2)1/2

, G = G′, H = H′, (2B) = (2B
′) + VF′

(1 − V2)1/2

>F =
>′F + V(�′/2)
(1 − V2)1/2

, >G = >′G , >H = >′H ,
�

2
=
(�′/2) + V>′F
(1 − V2)1/2

.

(8.50)

It follows from the comparison that the components of the momentum behave in
transformations like coordinates, and the energy like time.

The analogy disclosed by Eqs. (8.50) allows us to present the mathematics of
relativistic mechanics in the form of relations between vectors in an imaginary
four-dimensional space (four-vectors). We have already noted in Sec. 8.1 that we
have to ascribe unusual properties to this space which differ from the properties of
the Euclidean space we are accustomed to. In three-dimensional Euclidean space,
the quantity

J:2 = JF2 + JG2 + JH2

is an invariant, i.e., does not change upon rotations of the coordinate axes. Unlike
this, the quantity

22JB2 + JF2 + JG2 + JH2 (8.51)
is not invariant—it is not conserved upon transition from one inertial reference
frame to another (such a transition can be imagined as rotation of the axes in four-
dimensional space). Hence, the quantity (8.51) does not have the properties of the
square of the distance between two world points. We have seen in Sec. 8.4 that
Eq. (8.22), i.e.,

JA2 = 22JB2 − JF2 − JG2 − JH2

is invariant, and it should be considered as the square of the distance between two
points in the four-dimensional space we are interested in⁸.

Having given four-dimensional space such properties, we can consider the
quantities 2B, F, G, H as the components of a four-vector drawn from the origin of

⁸Naturally, we can also consider Euclidean four-dimensional space. The latter is not suitable for
the needs of relativistic mechanics, however.
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coordinates to the given world point. Accordingly, 2JB, JF, JG, JH can be consid-
ered as components of a four-vector—the displacement from one world point to
another. In three-dimensional Euclidean space, other vectors are dealt with (veloc-
ity, acceleration, force, etc.) in addition to the position and displacement vectors,
and for any vector a, the quantity

a2 = 02F + 02G + 02H
is an invariant. The components of any such vector transform upon rotation of the
coordinate axes according to the same equations as the coordinates do.

By analogy with three-dimensional vectors in Euclidean space, we can deter-
mine four-dimensional vectors. A four-dimensional vector or four-vector is de-
fined as a combination of the four quantities 0B , 0F , 0G , 0H that transform according
to the same equations as 2B, F, G, H [see the first line of Eqs. (8.50)]. The “square” of
such a vector should be determined as

02B − 02F − 02G − 02H . (8.52)
Since the components transform in the sameway as the coordinates, expression (8.52)
is invariant with respect to the Lorentz transformations.

Inspection of Eqs. (8.50) shows that the combination of the quantities
�/2, >F , >G , >H (8.53)

forms a four-vector. It is called the energy-momentum vector. An expression
such as (8.52) formed from the components (8.53), aswe have established [see Eq. (8.45)],
is an invariant:(

�

2

)2
− >2F − >2G − >2H = ;222.

8.9. Relation Between Mass and Energy

Using the relativistic mass [see Eq. (8.34)], we can write Eq. (8.41) in the form
� = ;r2

2. (8.54)
It can be seen from this equation that the energy of a body and its relativistic mass
are always proportional to each other. Any change in the energy of a body J�
(except for a change in the potential energy in an external force field) is attended
by a change in the relativistic mass of the body J;r = J�/22, and, conversely, any
change in the relativistic mass J;r is attended by a change in the energy of the
body

J� = 22J;r. (8.55)
This statement is called the law of the relation between the relativistic mass
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and energy⁹.
The proportionality between the relativistic mass and energy leads to the fact

that the statement on the conservation of the total relativistic mass of particles is
the statement on the conservation of the total energy using different words. In
this connection, it is not customary practice to speak of the law of relativistic mass
conservation as of a separate law.

Unlike the relativistic mass, the total rest mass of a system of interacting par-
ticles is not conserved. For example, upon an inelastic collision of two particles
observed in the frame of their centre of mass, the rest mass of the particle formed
is

;Σ = ;1 + ;2 +
�k,1 + �k,2

22

where ;1 and �k,1 are the rest mass and kinetic energy of the first initial particle,
and ;2 and �k,2 are the relevant quantities of the second particle. Thus,

;Σ > ;1 + ;2.

In this case, the kinetic energy of the initial particles transformed into the internal
energy of the formed particle. As a result, the rest mass of this particle exceeded
the sum of the rest masses of the initial particles.

The operation of nuclear power plants is based on the chain reaction of fission
of nuclei of uranium 92U

235 (or plutonium) when they capture slow neutrons <¹⁰.
Fission occurs in various ways. One of the reactions is

92U
235 + < −−−→ 92U

236 −−−→ 55Cs
140 + 37Rb

94 + 2<. (8.56)
After capturing a neutron, a uranium nucleus decays into a caesium nucleus with
the mass number 140 and a rubidium nucleus with the mass number 94. Two
neutrons are also emitted. The total rest mass of uranium-235 and a neutron ex-
ceeds the total rest mass of the particles in the right-hand side of the reaction for-
mula (8.56) by about 4 × 10−28 kg. The internal energy corresponding to this sur-
plus mass and equal to

� = 22J; =
(
3 × 108

)2 × 4 × 10−28 ≈ 4 × 10−11 J
transforms into the kinetic energy of the particles formed (fission fragments) and
into the energy of electromagnetic radiation appearing upon fission.

⁹We sometimes speak of the equivalence of mass and energy having in mind their relation and
proportionality to each other.

¹⁰The symbol 92U
235 stands for the uranium isotope with a mass number of 235. The nucleus of

an atom of this isotope consists of 92 protons and 235 − 92 = 143 neutrons. The symbol < stands
for a neutron.
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8.10. Particles with a Zero Rest Mass

Assuming in Eq. (8.42) that ; equals zero, we get
� = 2>. (8.57)

This equation agrees with Eq. (8.44) only if D = 2. Hence it follows that a particle
having a zero restmass always travelswith the speed of light. Such particles include
a light particle called a photon, and also elementary particles called neutrinos.

The energy of a photon is determined by the equation
� = ℏl (8.58)

where ℏ is Plancks’ constant ℎ divided by 2c , and l is the cyclic frequency [see
Eq. (7.58)].

According to Eqs. (8.57) and (8.58), a photon has the momentum

> =
ℏl

2
. (8.59)

Light is a stream of photons. When light is absorbed or reflected from the surface
of a body, a momentum is imparted to the latter. This manifests itself in the form
of pressure exerted by the light on the body. P. Lebedev succeeded in discovering
and measuring light pressure in 1900. The results of his measurements completely
agreed with Eq. (8.59).

According to Einstein’s general theory of relativity, any object having the en-
ergy � also has the gravitational mass

;g =
�

22

i.e., it should be attracted to other objects. Accordingly, a photon should behave in
a gravitational field like a particle of the gravitational mass

;g =
ℏl

22
. (8.60)

Particularly, when moving vertically upward near the Earth’s surface, a photon
must spend part of its energy on doing work against the forces of gravity equal to

� = ;g6: =
ℏl6:

22

where : is the distance travelled. Accordingly, the initial energy of a photon equal
to ℏl must diminish by

J� = J(ℏl) = ℏl6:

22
.

Hence,

Jl =
l6:

22
.
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We thus get the following expression for the relative reduction in the frequency of
a photon:

Jl

l
=
6:

22
. (8.61)

The change in the frequency of a photonwhen propagating vertically wasmea-
sured in 1959 by the U.S. scientists R. Pound andG. Rebka, Jr. Their result coincided
with that calculated by Eq. (8.61) with an accuracy of 15%. We must note that in the
conditions of their experiment the relative change in the frequency had a negligibly
small value equal to 2 × 10−15.

The effect of the change in the frequency of light when moving away from a
large gravitating mass is called the gravitational red shift. The meaning of this
term will be disclosed in the third volume of the present course.
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Chapter 9

HYDRODYNAMICS

9.1. Streamlines and Flow Tubes. Flow Continuity

Mechanics of continuousmedia exists in addition to themechanics of a point parti-
cle and the mechanics of a rigid body which we treated in preceding chapters. This
science covers hydrodynamics, gas dynamics, the theory of elasticity (some ques-
tions of which were dealt with in Secs. 2.9 and 3.8), and a number of other branches
of science considering a substance as a continuous medium. Hydrodynamics is the
branch of mechanics of continuous media studying the motion of incompressible
liquids and their interaction with solids.

To describe themotion of a liquid, we can set the position of each of its particles
as a function of time. This method of description was worked out by J. Lagrange.
But it is also possible to observe separate points of space instead of liquid particles
and record the velocity with which separate particles of the liquid pass each given
point. The second method is called the Euler method.

The state of motion of a liquid can be determined by indicating the velocity
vector as a function of time for each point of space. The combination of the vectors
v given for all the points of space forms the so-called velocity vector field that
can be depicted as follows. Let us draw lines in a flowing liquid so that a tangent to
them at each point coincides in direction with the vector v (Fig. 9.1). These lines are
called streamlines. We shall agree to draw the streamlines so that their density
(characterized by the ratio of the number of lines J# to the magnitude of the
area J( at right angles to them through which they pass) is proportional to the
magnitude of the velocity at the given place. The pattern of the streamlines will
thus permit us to assess not only the direction, but also themagnitude of the vector
v at different points of space: the streamlines will be closer together where the
velocity is higher and, conversely, farther apart where the velocity is lower.
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Fig. 9.1

Since the magnitude and the direction of the vector vmay change with time at
every point, then the pattern of the streamlines may also change continuously. If
the velocity vector is constant at each point of space, then the flow is called steady.
In steady flow, any particle of a liquid passes a given point of space with the same
value of v. The pattern of the streamlines in steady flow remains unchanged, and
the streamlines in this case coincide with the trajectories of the particles.

A portion of a liquid confined by streamlines is called a flow tube. The vector
v, being at each point tangent to a streamline, will also be tangent to the surface
of the flow tube. Hence, the particles of the liquid in their motion do not intersect
the “walls” of the flow tube.

Let us take a cross section ( of a flow tube (Fig. 9.2) at right angles to the direc-
tion of the velocity. We shall assume that the velocity of the liquid particles is the
same at all points of this section. During the time JB, all the particles whose dis-
tance from ( at the initial moment did not exceed the value DJB will pass through
section (. Consequently, a volume of the liquid equal to (D will pass through sec-
tion ( during the time JB, and a volume of the liquid equal to (D will pass through
it in unit time. Let us take a flow tube so thin that at each section of it the velocity
may be considered constant. If the liquid is incompressible (i.e., its density is the
same everywhere and cannot change), then the amount of liquid between sections
(1 and (2 (Fig. 9.3) will remain constant. Hence, it follows that the volumes of liquid
flowing in a unit time through sections (1 and (2 must be the same:

(1D1 = (2D2

(we remind our reader that the particles of the liquid do not pass through the side
surface of a flow tube).

The above reasoning may be applied to any pair of sections (1 and (2. Conse-
quently, for an incompressible liquid, the quantity (D must be the same for any section
of the same flow tube:

(D = constant. (9.1)
The result obtained forms the content of the theorem on flow continuity.

It can be seen from Eq. (9.1) that when a flow tube has a varying section the
particles of an incompressible liquid will move with acceleration. In a horizontal
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Fig. 9.2 Fig. 9.3

Fig. 9.4

flow tube (Fig. 9.4), this acceleration can be due only to the lack of constancy of
the pressure along the axis of the tube—at places where the velocity is smaller, the
pressure must be greater, and vice versa. The quantitative relation between the
flow velocity and the pressure will be established in the following section.

The theorem on flow continuity can be applied to real liquids and even to gases
when their compressibility may be disregarded. The relevant calculations show
that when fluids flow with velocities lower than the speed of sound, they may be
considered incompressible with a sufficient degree of accuracy.

9.2. Bernoulli’s Equation

When dealing with the motion of liquids, we can often consider that the displace-
ment of some portions of a liquid relative to others is not associated with the ap-
pearance of forces of friction. A liquid in which internal friction (viscosity) is com-
pletely absent is called ideal (or non-viscous).

Let us separate a flow tube of small cross section (Fig. 9.5) in a steadily flowing
ideal liquid. We shall consider the volume of the liquid confined by the “walls”
of the flow tube and by cross sections (1 and (2 perpendicular to the streamlines.
During the time JB, this volume will move along the flow tube. Section (1 will
move to position (′1 having covered the distance J:1, and section (2 will move to
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Fig. 9.5

position (′2 having covered the distance J:2. Owing to flow continuity, the shaded
volumes will be equal: J+1 = J+2 = J+ .

The energy of each liquid particle consists of its kinetic energy and its potential
energy in the field of the Earth’s gravitational forces. Owing to the steady nature
of the flow, a particle that after the time JB is at any point in the unshaded part
of the volume being considered (see, for example, point 0 in Fig. 9.5) has the same
velocity (and, consequently, kinetic energy) as the particle did that was at the same
point at the initial moment. Hence, the energy increment J� of the entire volume
being considered can be calculated as the difference between the energies of the
small shaded volumes J+1 and J+2.

Let us take a flow tube cross section and the lengths J: so small that the same
values of the velocity D, pressure >, and height ℎ can be ascribed to all the points of
each of the shaded volumes. Hence, the energy increment can bewritten as follows:

J� =

(
dJ+D22

2
+ dJ+ 6ℎ2

)
−

(
dJ+D21

2
+ dJ+ 6ℎ1

)
(9.2)

(d is the density of the liquid).
Forces of friction are absent in an ideal liquid. Therefore, the energy incre-

ment (9.2) must equal the work done by the pressure forces on a separated volume.
The forces of pressure on the side surface are perpendicular at each point to the
direction of motion of the particles to which they are applied, consequently, they
do no work. Only the work of the forces applied to sections (1 and (2 differs from
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zero. This work is
� = >1(1J:1 − >2(2J:2 = (>1 − >2)J+. (9.3)

Equating Eqs. (9.2) and (9.3), cancelling J+ , and transferring terms with the
same subscripts to the same side of the equation, we get

dD21

2
+ d6ℎ1 + >1 =

dD22

2
+ d6ℎ2 + >2. (9.4)

Sections (1 and (2 were taken absolutely arbitrarily. We can therefore assert that
the expression dD21/2 + d6ℎ + > has the same value for any section of the flow tube.
In accordance with the assumptions wemade in deriving Eq. (9.4), it becomes quite
accurate only when the cross section ( tends to zero, i.e., when the flow tube con-
tracts into a streamline. Thus, the quantities >, D and ℎ in the left-hand and right-
hand sides of Eq. (9.4) should be considered as relating to two arbitrary points of
the same streamline.

The result obtained can be formulated as follows: the condition
dD2

2
+ d6ℎ + > = constant (9.5)

is observed in a steadily flowing ideal liquid along any streamline. Equation (9.5), or
Eq. (9.4) equivalent to it, is calledBernoulli’s equation, in honour of its discoverer,
the Swiss mathematician Daniel Bernoulli (1700-1782). Although we obtained this
equation for an ideal liquid, it is obeyed sufficiently well for real liquids in which
the internal friction is not very great.

Equation (9.5) acquires the following form for a horizontal streamline:
dD21

2
+ >1 =

dD22

2
+ >2

i.e., the pressure is smaller at the points where the velocity is great (this was already
shown qualitatively in the preceding section).

The diminishing of the pressure at points where the velocity of a flow is greater
underlies the design of a water-jet pump (Fig. 9.6). A water stream is fed into a tube
opening to the atmosphere so that the pressure at the outlet from the tube is atmo-
spheric. The tube has a constriction through which the water flows with a higher
velocity. As a result, the pressure at this spot is below atmospheric. The same pres-
sure sets in the pump chamber surrounding the tube. The chamber communicates
with the tube via an opening in its narrow part. By connecting a vessel to be evac-
uated to the pump chamber, we can pump the air (or some other gas) out of it to
a pressure of the order of 100mmHg. The evacuated air is entrained by the water
stream and carried off into the atmosphere.
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Fig. 9.6

9.3. Flow of a Liquid from a Hole

Let us apply Bernoulli’s equation to the flow of a liquid from a small hole in a wide
open vessel. Let us separate in the liquid a flow tube having the open surface of the
liquid the vessel as one of its cross sections and the hole through which the liquid
flows out¹ as the other one (Fig. 9.7). For each of these sections, the velocity and
the height above an initial datum level may be considered the same. Consequently,
we can apply Eq. (9.4), obtained on this assumption, to these sections. Further, the
pressure in both sections is atmospheric and therefore the same. In addition, the
velocity of the open surface in the wide vessel can be assumed to equal zero. With
a view to everything said above, Eq. (9.4) can be written in the following form for
this case:

d6ℎ1 =
dD2

2
+ d6ℎ2

where D is the velocity of the liquid flowing from the hole. Cancelling > and intro-
ducing ℎ = ℎ1 − ℎ2, i.e., the height of the open surface of the liquid above the hole,
we get D2/2 = 6ℎ, whence

D = (26ℎ)1/2. (9.6)
This formula is known as the Torricelli formula (after the Italian physicist Evan-
gelista Torricelli, 1608-1647).

Thus, the velocity with which a liquid is discharged from a hole at a depth of ℎ

¹More exactly, the cross section of the flow emerging front the hole. If special measures are not
taken, the section of the Dow will be smaller than the hole.
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Fig. 9.7 Fig. 9.8

under an open surface coincides with the velocity which a body acquires in falling
from the height ℎ. Do not forget that this result was obtained on the assumption
that the liquid is ideal. The discharge velocity will be smaller for real liquids, the
difference from the value given by Eq. (9.6) growing with an increasing viscosity of
the liquid.

A stream of liquid discharged from a hole in a vessel (Fig. 9.8) carries alongwith
it during the time JB the momentum Jp = d(DvJB (d is the density of the liquid, (
is the cross-sectional area of the hole, v is the discharge velocity of the flow). This
momentum is imparted to the discharged liquid by the vessel. According to New-
ton’s third law, the vessel receives a momentum equal to Jp from the discharged
liquid during the time JB, i.e., experiences the action of the force

Lr = −
Jp

JB
= −d(Dv. (9.7)

This force is called the reaction of the discharged flow (or the thrust). If our
vessel is placed on a cart, then under the action of the force Lr it will start moving
in the direction opposite to that of the discharged flow.

Let us find the value of the force Lr using Eq. (9.6) for the discharge velocity of
a liquid from a hole:

�r = −d(D2 = 26ℎd(. (9.8)
If, as may seem at first sight, the force Lr coincided in magnitude with the force of
hydrostatic pressure which the liquid would exert on a plug closing the hole, then
�r would equal 6ℎd(. The force Lr is actually double this value. The explanation is
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that the motion of the liquid in the vessel appearing when it is discharged leads to
redistribution of the pressure, and the pressure near the wall opposite the hole is
somewhat greater than near the wall containing the hole.

The operation of jet engines and rockets is based on the reaction or thrust
of a discharged gas stream. Reactive motion, not requiring an atmosphere for its
accomplishment, is used for flights in outer space.

The outstanding Russian scientist and inventor Konstantin Tsiolkovsky (1857-
1935) founded the theory of interplanetary communications. He presented the the-
ory of a rocket’s flight and substantiated the possibility of using jet engines for
interplanetary flights. In particular, Tsiolkovsky worked out the theory of mo-
tion of composite rockets in which each following stage starts functioning after
the preceding stage, having completely used up its fuel, separates from the rocket.
Tsiolkovsky’s ideas were further developed and realized by Soviet scientists and
engineers who ensured the leading role of the Soviet Union in the mastering and
studying of outer space.

9.4. Forces of Internal Friction

An ideal liquid, i.i.e., one without friction, is an abstraction. Viscosity or internal
friction is a property inherent to some extent or other in all real fluids (liquids and
gases). Viscosity manifests itself in that motion set up in a fluid gradually stops
after the action of the reasons causing the motion is discontinued.

Let us consider the following experiment to reveal the laws which forces of
internal friction obey. Two parallel plates whose linear dimensions considerably
exceed the distance 3 between them (Fig. 9.9) are immersed in a liquid. The bottom
plate is held in place, while the top one is brought intomotion relative to the bottom
one with a certain velocity v0. The experiment shows that to move the top plate
with a constant velocity v0, we have to exert on it a quite definite force L that is
constant in magnitude. Since the plate receives no acceleration, this signifies that
the action of this force is balanced by a force equal to it in magnitude and opposite
in direction which is evidently the force of friction acting on the plate when it
moves in the liquid. Let us denote it by L fr.

By varying the velocity of the plate v0, the area of the plates (, and the distance
3 between them, we can find that

�fr = [
D0

3
( (9.9)

where [ is a constant of proportionality depending on the nature and state (for in-
stance, the temperature) of the liquid and called the coefficient of internal fric-
tion or theviscosity of the liquid (gas). Sometimes the quantity [ determined from
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Fig. 9.9

Eq. (9.9) is called the dynamic viscosity as distinct from the kinematic viscosity
a equal to [/d, where d is the density of the fluid—see Sec. 9.5.

The bottom plate upon motion of the top one also experiences the action of
the force L ′fr equal in magnitude to L fr. For the bottom plate to remain stationary,
the force L fr must be balanced with the aid of the force L ′.

Thus, when the two plates immersed in the liquid move relative to each other,
interaction characterized by the force (9.9) appears between them. The plates ob-
viously act on each other through the liquid between the plates, the force of inter-
action being transmitted from one layer of the liquid to another. If at any place in
the gap between the plates we mentally draw a plane parallel to them (see the dash
line in Fig. 9.9), then we can assert that the part of the liquid above this plane acts
on the part of the liquid under it with the force L fr, and the part of the liquid under
the plane, in turn, acts on the part above the plane with the force L fr, the values
of L fr and L ′fr being determined by Eq. (9.9). Thus, Eq. (9.9) determines not only
the force of friction acting on the plates, but also the force of friction between the
parts of the liquid in contact.

If we study the velocity of the liquid particles in different layers, it will be found
to change in the direction H at right angles to the plates (Fig. 9.9) according to a
linear law:

D(H) = D0

3
H. (9.10)

The liquid particles in direct contact with the plates adhere to them, as it were, and
have the same velocity as the plates themselves. By Eq. (9.10),����dDdH ���� = D0

3
. (9.11)

We have used the magnitude sign for the following reason. If we had fastened the
top plate and moved the bottom one (see Fig. 9.9) or had reversed the direction of
the H-axis, the derivative dD/dH would have become negative. The value of D0/3,
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however, is always positive. Hence, for Eq. (9.11) to hold in any case, we must take
the magnitude of dD/dH.

Using Eq. (9.11), we can write Eq. (9.9) as follows:

�fr = [

����dDdH ���� (. (9.12)

This equation determines the magnitude of the force of friction. The quantity
|dD/dH | shows how fast the velocity changes in the direction of the H-axis, and is
the magnitude of the gradient of the magnitude of the velocity (if D depends only
on H, then ∂D/∂F = ∂D/∂G = 0, ∂D/∂H = dD/dH).

We have obtained Eq. (9.12) for the case when the velocity changes according
to a linear law. It was found that this equation also holds for any other law of the
change in the velocity from layer to layer. In this case to determine the force of
friction between two neighbouring layers, we must take the value of |dD/dH | at the
place where the imaginary interface between the layers passes.

Everything said in this section relates to all fluids.
The unit of viscosity in the SI system is the viscosity at which the gradient of

the velocity with a magnitude of 1m s−1 per m leads to the appearance of a force
of internal friction of 1N per m2 of surface of contact of the layers. This unit is
called the pascal-second (Pa s)².

The unit of viscosity in the cgs system is the poise (P) equal to the viscosity at
which the gradient of the velocity with a magnitude of 1 cm s−1 per cm leads to the
appearance of a force of internal friction of 1 dyn per cm2 of surface of contact of
the layers. The unit equal to 10−6 P is called the micropoise (µP). The poise and the
pascal-second are related as follows:

1 Pa s = 10 P.
The viscosity depends on the temperature. The nature of this dependence ap-

preciably differs for liquids and gases. The viscosity of liquids greatly diminishes
with increasing temperature. The viscosity of gases, on the contrary, grows with
increasing temperature. The difference in the behaviour of [ with changes in the
temperature points to the difference in the mechanism of internal friction in liq-
uids and gases.

9.5. Laminar and Turbulent Flows

Two kinds of flow of a liquid (or gas) are observed. In some cases, the liquid sepa-
rates, as it were, into layers that slide relative to one another without mixing. Such

²The pascal is the name given to the unit of pressure in the SI system (1 Pa = 1Nm−2).
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flow is called laminar (from the Latin word “lamina” meaning plate or strip). If
we introduce a coloured stream into a laminar flow, it is retained without being
washed out over the entire length of the flow because the liquid particles in a lam-
inar flow do not pass over from one layer to another. A laminar flow is steady.

With an increase in the velocity or cross-sectional dimensions of a flow, its
nature changes quite appreciably. Vigorous stirring of the liquid appears. Such a
flow is called turbulent. In a turbulent flow, the velocity of the particles at each
given place constantly changes chaotically—the flow is not steady. If we introduce
a coloured stream into a turbulent flow, already at a small distance from the place
of its introduction the coloured liquid will be uniformly distributed over the entire
cross section of the flow.

The British scientist Osborne Reynolds (1842-1912) established that the nature
of a flow depends on the value of the dimensionless quantity

'4 =
d<:

[
(9.13)

where d is the density of the liquid (or gas), D is the average flow velocity (over
the cross section of the pipe), [ is the viscosity of the liquid and : is the dimension
characterizing the cross section, for example, the side of the square with a square
cross section, the radius or diameter with a round section, etc.

The quantity '4 is called theReynoldsnumber. At small values of theReynolds
number, laminar flow is observed. Beginning from a certain definite value of Re
called the critical one, the flow acquires a turbulent nature. If for a round pipe
we take its radius @ as the characteristic dimension, then the critical value of the
Reynolds number (which in this case has the form '4 = dD@/[) equals³ approxi-
mately 1000. The Reynolds number includes the ratio of two quantities depending
on the properties of a liquid-the density d and the viscosity [. The ratio

a =
[

d
(9.14)

is called the kinematic viscosity. In contrast to a, the quantity [ is known as
the dynamic viscosity. Using the kinematic viscosity, we can write the Reynolds
number as follows:

'4 =
D:

a
. (9.15)

The Reynolds number can be used as a dimensionless or similarity number for the
flow of liquids in pipes, channels, etc. The nature of the flow of different liquids
(or gases) in pipes of different cross sections will be absolutely the same if the same

³It is obvious that if we take the diameter of the pipe instead of its radius as the quantity :, we
must double the critical value of '4.
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Fig. 9.10

value of '4 corresponds to each flow.

9.6. Flow of a Liquid in a Round Pipe

When a liquid flows through a round pipe, the velocity is zero at the pipe walls and
maximum at its axis. Assuming the flow to be laminar, let us find the law of the
change in the velocity with the distance @ from the pipe axis.

Let us separate an imaginary cylindrical volume of the liquid of radius @ and
length : (Fig. 9.10). Upon steady flow in a pipe of constant cross section, the veloci-
ties of all the particles of the liquid remain unchanged. Hence, the sum of the exter-
nal forces applied to any volume of the liquid is zero. The bases of the cylindrical
volume being considered experience forces of pressure whose sum is (>1− >2)c@2.
This force acts in the direction of motion of the liquid. In addition, the side sur-
face of the cylinder experiences a force of friction equal to [|dD/d@ |2c@: (we have
in view the value of dD/d@ at the distance @ from the pipe axis). The condition for
steady flow has the form

(>1 − >2)c@2 = [|
dD
d@
|2c@:. (9.16)

The velocity diminishes with an increasing distance from the pipe axis. Con-
sequently, dD/d@ is negative, and |dD/d@ | = −dD/d@. Taking this into account, we
shall transform Eq. (9.16) as follows:

−dD
d@

=
(>1 − >2)@

2[:
.

Separating the variables, we get

dD = − (>1 − >2)
2[:

@ d@.

Integration yields

D = − (>1 − >2)
4[:

@2 + � (9.17)
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Fig. 9.11 Fig. 9.12

The integration constant must be selected so that the velocity will vanish at the
pipe walls, i.e., with @ = ' (' is the pipe radius). From this condition

� =
(>1 − >2)

4[:
'2.

Introduction of the value of � in Eq. (9.17) gives

D(@) = (>1 − >2)
4[:

(
'2 − @2

)
=
(>1 − >2)

4[:
'2

(
1 − @2

'2

)
. (9.18)

The value of the velocity along the axis of the pipe is

D0 = D(0) =
(>1 − >2)

4[:
'2. (9.19)

By using this equation in Eq. (9.18), we can obtain

D(@) = D0
(
1 − @2

'2

)
. (9.20)

Thus, with laminar flow, the velocity changes with an increasing distance from the
axis of a pipe according to a parabolic law (Fig. 9.11).

With turbulent flow, the velocity at each point changes chaotically. With con-
stant external conditions, the average (in time) velocity at each point of the cross
section of a pipe is constant. The profile of the average velocities in turbulent flow
is shown in Fig. 9.12. The velocity changes near the walls of a pipe at a much greater
rate than in laminar flow. In the remaining part of the cross section, the change in
the velocity is smaller.

Assuming the flow to be laminar, let us calculate the rate of flow of the liquid
&, i.e., the volume of liquid flowing through the cross section of a pipe in unit time.
Let us divide the cross section of the pipe into rings with a width of d@ (Fig. 9.13).
In one second, a volume of liquid equal to the product of the ring area 2c@ d@ and
the velocity of the flow at the points at a distance of @ from the pipe axis will pass
through a ring of radius @. With a view to Eq. (9.20) we get

d& = D0

(
1 − @2

'2

)
2c@ d@. (9.21)
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Fig. 9.13

To obtain the rate of flow &, we must integrate Eq. (9.21) with respect to @ within
the limits from zero to ':

& =

∫ '

0
D0

(
1 − @2

'2

)
2c@ d@ =

1
2
c'2D0 =

1
2
(D0 (9.22)

(( is the cross-sectional area of the pipe). Inspection of Eq. (9.22) shows that in a
laminar flow the average value of the velocity (over the cross section) is half the
value of the velocity at the axis of the pipe.

Substituting in Eq. (9.22) the value for D0 from Eq. (9.19), we get the following
formula for the rate of flow:

& =
(>1 − >2)c'4

8[:
. (9.23)

This formula is called the Poiseuille formula. According to it, the flow of a liquid
is proportional to the pressure drop per unit pipe length, to the fourth power of
the pipe radius, and is inversely proportional to the viscosity of the liquid. It must
be remembered that the Poiseuille formula may be applied only for a laminar flow.

Formula (9.23) is used to determine the viscosity of liquids. By passing a liquid
through a capillary of known radius and measuring the pressure drop and the rate
of flow &, we can find [.

9.7. Motion of Bodies in Fluids

Forces whose resultant will be designated by the symbol X (Fig. 9.14) act on a body
upon its motion in a fluid⁴. The force X can be resolved into two components,

⁴We shall note that with a constant velocity of a body relative to a fluid the force acting on the
body, according to Galileo’s principle of relativity, will be the same as when the fluid is moving with
the same velocity relative to the stationary body. Figure 9.14 corresponds to the latter case.
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Fig. 9.14 Fig. 9.15

of which W is directed opposite to the motion of the body (or in the direction of
the flow advancing onto the body), and V at right angles to this direction. The
components W and V are called the drag (or head resistance) and the lift (or
lifting force), respectively. It is obvious that only a drag can act on a body that
is symmetrical relative to the direction of motion, while the lift in this case will
vanish.

Calculations show that the uniform motion of bodies in an ideal fluid should
occur without drag. Having no viscosity, an ideal fluid should slide freely over
the surface of a body, flowing completely around it. Figure 9.15 shows the stream-
lines when an ideal fluid flows around a very long (“infinite”) cylinder. Owing to
complete flowing around the cylinder, the pattern of the streamlines is absolutely
symmetrical both relative to the straight line passing through points A and B and
relative to the straight line passing through points C and D. Hence, the pressure
near points A and B will be the same (and greater than in an undisturbed flow be-
cause the velocity near these points is lower). The pressure near points C and D
will also be the same (and lower than in an undisturbed flow because the velocity
near these points is higher). Consequently, the resultant force of the pressure on
the surface of the cylinder (which in the absence of viscosity could set up a drag)
will evidently vanish. The same result is also obtained for bodies of a different
shape.

Other phenomena are encountered when a body moves in a viscous fluid. In
this case, a very thin layer of the fluid adheres to the body’s surface and moves
together with it as a single whole, carrying along the following layers owing to
friction. The velocity of the layers diminishes with an increasing distance from
the body’s surface and, finally, at a certain distance from the surface the fluid is
virtually undisturbed by the motion of the body. The body is thus surrounded by
a layer of the fluid in which there is a velocity gradient. This layer is called the
boundary one. Friction forces act in it which in the long run are applied to the
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Fig. 9.16 Fig. 9.17

body and lead to the appearance of a drag. But matters are not exhausted here.
The presence of a boundary layer radically changes the nature of the flow of a
fluid around a body. Complete flowing around becomes impossible. The action
of the friction forces in the surface layer causes the flow to break away from the
body’s surface. The result is the appearance of eddies behind the body (see Fig. 9.16
showing the flow of a viscous fluid around a cylinder). The eddies are carried away
by the flow and gradually attenuate owing to friction. The energy of the eddies
is spent for heating the fluid. The pressure in the eddy region formed behind the
body is lowered. Consequently, the resultant of the pressure forces will differ from
zero, this leading in turn to a drag.

The drag thus consists of the friction drag and the pressure drag. With given
cross-sectional dimensions of a body, the pressure drag greatly depends on its
form. For this reason, it is also called the form drag. Bodies with a well stream-
lined drop-shaped form (Fig. 9.17) have the smallest pressure drag. Designers do
everything possible to impart such a form to the fuselage and wings of aircraft, to
the body of motor vehicles, etc.

The ratio between the friction drag and the pressure drag is determined by
the value of the Reynolds number (9.13). Here, : is a characteristic dimension of the
body in question (for example, the radius for a spherical body), and D is the velocity
of the body relative to the fluid.

At small values of '4, the main part is played by the friction drag, so that the
pressure drag may be disregarded. The part of the pressure drag grows more and
more with increasing '4. At great values of '4, pressure forces predominate in the
drag.

When determining the nature of the forces acting on a body in a flow, the
Reynolds number can be used as a similarity number (scale factor) in this case too.
This circumstance is taken advantage of in modelling. For example, a model of
an aeroplane will behave in a gas flow the same as the full-scale counterpart if in
addition to geometrical similarity of the model and the aeroplane, the Reynolds



Motion of Bodies in Fluids 269

Fig. 9.18 Fig. 9.19

number will also be equal for them.
The Stokes Formula. At small values of '4, i.e., at low velocities [and small

:’s, see Eq. (9.13)], the resistance of a medium is due virtually only to the friction
forces. George Stokes (1819-1903) established that the drag force in this case is pro-
portional to the dynamic viscosity [, the velocity D of a body relative to the fluid,
and the characteristic dimension of the body :, i.e.� ∝ [:D (it is assumed that the
distance from the body to the boundaries of the fluid, for example, to the walls of
a vessel confining it, considerably exceeds the dimensions of the body). The pro-
portionality constant depends on the form of the body. For a sphere, if we take
its radius @ as the dimension :, the proportionality constant is 6c . Hence, the drag
force on a sphere in fluids at small velocities, according to the Stokes formula, is

� = 6c[@D. (9.24)
Lift. The viscosity of a fluid is of no significance for the appearance of a lift.

Figure 9.18 shows the streamlines when an ideal fluid flows around a half-cylinder.
Owing to complete flowing around, the streamlines will be symmetrical relative to
straight line CD. The pattern will not be symmetrical, however, relative to straight
line AB. The streamlines are closer together near point C, therefore the pressure
here will be lower than near point D, and the lift V appears. A lift appears similarly
in a viscous fluid.

The force keeping an aeroplane in the air is the lift acting on its wings. The drag
is harmful during the flight of an aeroplane. This is why the wings of an aeroplane
and its fuselage are given a well streamlined shape. The profile of an aerofoil (wing)
must also ensure an adequate lift. The profile shown in Fig. 9.19, found by the
outstanding Russian scientist Nikolai Zhukovsky (1847-1921) is the optimal one for
an aerofoil. Theworks of Zhukovsky and his pupil S. Chaplygin laid the foundation
ofmodern aerodynamics. V. Lenin calledZhukovsky the father of Russian aviation.
Zhukovsky, in particular, derived a formula for determining the lift that is the basis
of all aerodynamic calculations of aeroplanes.
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Chapter 10

GENERAL INFORMATION

10.1. Statistical Physics and Thermodynamics

Molecular physics is a branch of physics studying the structure and properties of
a substance on the basis of the so-called molecular kinetic notions. According to
these notions, any body-solid, liquid, or gaseous—consists of an enormous num-
ber of exceedingly small separate particles—molecules. (Atoms can be considered
as monatomic molecules.) The molecules of a substance are in disordered, chaotic
motion having no predominating direction. Its intensity depends on the tempera-
ture of the substance.

A direct proof of the existence of chaoticmotion ofmolecules is Brownianmo-
tion. This phenomenon consists in that very small (visible only in a microscope)
particles suspended in a fluid are always in a state of continuous chaotic motion
that does not depend on external causes and is a manifestation of the internal mo-
tion of the substance. The Brownian motion of particles is due to their chaotic
collisions with molecules.

The object of themolecular-kinetic theory is to interpret the properties of bod-
ies that are directly observed in experiments (pressure, temperature, etc.) as the
summary result of the action of molecules. It uses the statistical method and is
interested not in the motion of separate molecules, but only in average quantities
characterizing the motion of an enormous combination of particles. This explains
its other name—statistical physics.

Thermodynamics also studies various properties of bodies and changes in the
state of a substance. Unlike themolecular-kinetic theory, however, thermodynam-
ics studies macroscopic properties of bodies and natural phenomena without be-
ing interested in their microscopic picture. Thermodynamics permits us to arrive
at a considerable number of conclusions on how processes go on without taking
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molecules and atoms into consideration and without treating the processes from
a microscopic standpoint.

Thermodynamics is founded on several fundamental laws established as a re-
sult of generalizing a large amount of experimental facts. Consequently, the con-
clusions of thermodynamics have a very general nature.

By considering the changes in the state of a substance from different view-
points, thermodynamics and the molecular-kinetic theory mutually supplement
each other, forming in essence a single entirety.

Turning to the history of the development of molecular-kinetic notions, we
must point out first of all that ideas on the atomistic structure of a substance were
already advanced by the ancient Greeks. These ideas, however, were nothingmore
than a brilliant conjecture. In the 17th century, atomistics again came to the fore-
front, but as a scientific hypothesis instead of a conjecture. This hypothesis was de-
veloped especially greatly in theworks of the outstanding Russian scientistMikhail
Lomonosov (1711-1765). He attempted to give a single picture of all the physical
and chemical phenomena known at his time. He proceeded from the corpuscular
(according to modern terminology—molecular) notion of the structure of mat-
ter. Revolting against the theory of thermogen (a hypothetic thermal liquid whose
content in a body determines the extent of its heating) that prevailed at his time,
Lomonosov saw the “cause of heat” in the rotation of the particles of a body. Thus,
Lomonosov in essence formulated molecular-kinetic ideas.

In the second half of the 19th century and at the beginning of the 20th century,
atomistics became a scientific theory owing to the works of a number of scientists.

10.2. Mass and Size of Molecules

The masses of atoms and molecules are characterized by using quantities known
as the relative atomic mass of an element (the atomic mass in short) and the
relative molecular mass of a substance (the molecular mass). (These quantities
were previously called the atomic weight and the molecular weight, respectively).

The atomic mass (�r) of a chemical element is defined as the ratio of the mass
of an atom of the element to 1/12 of the mass of the atom C12 (this is the symbol
for the carbon isotope with a mass number of 12). The molecular mass ("r) of a
substance is defined as the ratio of the mass of a molecule of the substance to 1/12
of the mass of the atom C12. Their definitions show that the atomic and molecular
masses are dimensionless quantities.

A unit of mass equal to 1/12 of the mass of the atom C12 is called the atomic
mass unit (u). Let us denote the value of this unit expressed in kilogrammes by the
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symbol ;un. Hence, the mass of an atom expressed in kilogrammes will be �r;un,
and the mass of a molecule will be "r;un.

The amount of a substance containing a number of particles (atoms, molecules,
ions, electrons, etc.) equal to the number of atoms in 0.012 kg of the carbon iso-
tope C12 is called a mole (the mole is a basic unit of the SI system). Multiple and
submultiple units are also used such as the kilomole (kmol), the millimole (mmol)
and the micromole (µmol).

The number of particles contained in a mole of a substance is called the Avo-
gadro constant. It was found experimentally that the Avogadro constant is

#A = 6.023 × 1023mol−1. (10.1)
Thus, for example, a mole of copper contains #A atoms of copper, a mole of water
contains #A molecules of water, a mole of electrons contains #A electrons, etc.

The mass of a mole is called the molar mass ". It is evident that " equals the
product of #A and the mass of a molecule "r;un:

" = #A"r;un. (10.2)
For carbonC12, we have" = 0.012 kgmol−1, and themass of an atom is 12;un.

Substitution of these values in Eq. (10.2) yields
0.012 [kg/mol] = #A [mol−1] × 12;un [kg].

Hence,

;un [kg] =
0.001 [kg/mol]
#A [mol−1]

=
0.001

6.023 × 1023

= 1.66 × 10−27 kg = 1.66 × 10−24 g. (10.3)
Hence, the mass of any atom is 1.66 × 10−27�rkg, and the mass of any molecule is
1.66 × 10−27"rkg.

It can be seen from Eq. (10.3) that the product #A;un equals 0.001 kgmol−1.
Introducing this value in Eq. (10.2) we find that

" = 0.001"r kgmol−1 (10.4)
or

" = "r gmol−1. (10.5)
Thus, the mass of a mole expressed in grammes numerically equals the relative
molecular mass. It must be borne in mind, however, that whereas "r is a dimen-
sionless quantity, " has a dimension and is measured in kgmol−1 (or gmol−1).

Now let us assess the size of molecules. It is natural to assume that molecules
in a liquid are quite close to one another. We can therefore approximately find the
volume of one molecule by dividing the volume of a mole of a liquid, for example,
water, by the number of molecules in a mole #A. One mole (i.e., 18 g) of water
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occupies a volume of 18 cm3 = 18 × 10−6m3. Hence, the volume falling to one
molecule is

18 × 10−6

6 × 1023
= 30 × 10−30m3.

It follows that the linear dimensions of water molecules are approximately(
30 × 10−30

)1/3 ≈ 3 × 10−10m = 3 Å.
The molecules of other substances also have dimensions of the order of a few

angstroms. (The angstrom—Å— is a non-system unit of length equal to 10−10m.
It is very convenient in atomic physics.)

10.3. State of a System. Process

We shall call a combination of bodies being considered a system of bodies or
simply a system. An example of a system is a liquid and the vapour in equilibrium
with it. Particularly, a system may consist of one body.

Any system can be in different states distinguished by their temperature, pres-
sure, volume, etc. Such quantities characterizing the state of a system are called
parameters of state.

A parameter does not always have a definite value. If, for example, the tem-
perature at different points of a body is not the same, then a definite value of the
parameter) cannot be ascribed to the body. In this case, the body is said to be in a
non-equilibrium state. If such a body is isolated fromother bodies and left alone,
then its temperature will level out and take on the same value ) for all points-the
body will pass over into an equilibrium state. This value of) will not change until
the body is brought out of its equilibrium state by external action.

The samemay also occurwith other parameters, for instance, with the pressure
>. If we take a gas confined in a cylindrical vessel closed with a tightly fitted piston
and begin to rapidly move the latter in, then a gas cushion will be formed under
it in which the pressure will be greater than in the remaining volume of the gas.
Consequently, the gas in this case cannot be characterized by a definite value of the
pressure >, and its state will be a non-equilibrium one. If we stop the movement of
the piston, however, then the pressure at different points of the volume will level
out, and the gas will pass over to an equilibrium state.

The process of transition of a system from a non-equilibrium state to an equi-
libriumone is called a relaxationprocess, or simply relaxation. The time needed
for such a transition is called the relaxation time. The relaxation time is defined
as the time in which the initial deviation of a quantity from its equilibrium value
diminishes 4 times, where 4 is the base of natural logarithms. Each parameter of
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Fig. 10.1

a system has its own relaxation time. The greatest of these times plays the part of
the relaxation time of the system.

Thus, by an equilibrium state of a system is meant a state in which all the pa-
rameters of the system have definite values remaining constant as long as is desired
in unchanging external conditions¹.

If we lay off the values of two parameters along coordinate axes, then any equi-
librium state of a system can be depicted by a point on the coordinate plane (see,
for example, point 1 in Fig. 10.1). A non-equilibrium state cannot be depicted in
this way because at least one of the parameters will not have a definite value in this
state.

A process, i.e., a transition of a system from one state to another, is associ-
ated with violation of the equilibrium of the system. Therefore, when a process
occurs in a system, it passes through a sequence of non-equilibrium states. Re-
verting to the process of compressing a gas in a vessel closed with a piston that we
have considered, we can conclude that the violation of equilibrium in moving in
the piston is the greater, the faster the gas is compressed. If we move the piston in
very slowly, equilibrium will be violated insignificantly, and the pressure at differ-
ent points differs only slightly from a certain average value >. In the limit, if the
gas is compressed infinitely slowly, it will be characterized at each moment by a
definite value of the pressure. Consequently, the state of the gas at each moment
in this case is an equilibrium one, and the infinitely slow process will consist of a
sequence of equilibrium states.

A process consisting of a continuous sequence of equilibrium states is called an
equilibrium or a quasistatic one. It follows from what has been said above that
only an infinitely slow process can be an equilibrium one. Real processes, when
they occur sufficiently slowly, can approach an equilibrium one as close as desired.

An equilibrium process can be conducted in the reverse direction. The system

¹When a gas is in an external force field (for example, in the field of the force of gravity), its
equilibrium state will set in at a pressure changing regularly from point to point (see Sec. 10.14).
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will pass through the same states as in the forward process, but in the opposite
sequence. This is why equilibrium processes are also called reversible.

A reversible (i.e., equilibrium) process can be depicted on a coordinate plane
by the relevant curve (see Fig. 10.1). We shall conditionally depict irreversible (i.e.,
non-equilibrium) processes by dash curves.

A process in which a system after a number of changes returns to its initial
state is called a cyclic process or a cycle. The latter is depicted graphically by a
closed curve.

The concepts of an equilibrium state and a reversible process play a great part
in thermodynamics. All the quantitative conclusions of thermodynamics are strictly
applicable only to equilibrium states and reversible processes.

10.4. Internal Energy of a System

The internal energy of a body is defined as the energy of this body less the kinetic
energy of the body as a whole and the potential energy of the body in the external
f01ce field. For example, in determining the internal energy of a mass of gas, we
must not take into consideration the energy of motion of the gas together with the
vessel containing it, and the energy due to the gas being in the field of the Earth’s
gravitational forces.

Hence, the concept of internal energy includes the kinetic energy of the chaotic
motion of molecules, the potential energy of interaction between the molecules,
and the intramolecular energy².

The internal energy of a system of bodies equals the sum of the internal ener-
gies of each of them separately and the energy of interaction between the bodies.
The latter is the energy of intermolecular interaction in a thin layer on the inter-
face between the bodies. This energy is so small in comparison with the energy of
macroscopic bodies that it may be disregarded, and we may consider the internal
energy of a system of macroscopic bodies as the sum of the internal energies of the
bodies forming the system. The internal energy is thus an additive quantity.

The internal energy is a function of state of a system. This signifies that when-
ever a system is in a given state, its internal energy takes on the value characterizing
this state regardless of the previous history of the system. Hence, the change in the
internal energy when a system passes from one state to another will always equal
the difference between the values of the internal energy in these states regardless

²This definition should be treated as a preliminary one. In statistical physics, the concept of
internal energy is defined more precisely. A discussion of this more precise definition is beyond the
scope of a general course in physics.
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of the path followed by the transition. In other words, the change in the internal
energy does not depend on the process or processes that caused the system to pass
from one state to another.

10.5. The First Law of Thermodynamics

The internal energy can change in the main at the expense of two different pro-
cesses: the performance of the work �′ on a body and the imparting of the heat
& to it. The doing of work is attended by the displacement of the external bodies
acting on the system. For example, when we move in the piston closing a vessel
with a gas, the piston when moving does the work �′ on the gas. According to
Newton’s third law, the gas, in turn, does the work � = −�′ on the piston.

The imparting of heat to a gas is not associated with the motion of external
bodies and is therefore not associated with the doing of macroscopic (i.e., relating
to the entire complex of molecules which the body consists of) work on the gas. In
this case, the change in the internal energy is due to the fact that separatemolecules
of the hotter body do work on separate molecules of the colder one. Energy is also
transferred here by radiation. The combination of microscopic (i.e., involving not
an entire body, but separate molecules of it) processes is called heat transfer.

Just as the amount of energy transferred by one body to another is determined
by the work � done by the bodies on each other, the amount of energy transmitted
from one body to another by heat transfer is determined by the amount of heat
& transferred by one body to the other. Thus, the increment of the internal energy
of a systemmust equal the sum of the work �′ done on the system and the amount
of heat & imparted to it:

*2 −*1 = & + �′. (10.6)
Here*1 and*2 are the initial and final values of the internal energy of the system.
It is customary practice to consider the work � (equal to −�′) done by a system
on external bodies instead of the work �′ done by external bodies on the system.
Introducing −� in Eq. (10.6) instead of �′ and solving it relative to &, we have

& = *2 −*1 + �. (10.7)
Equation (10.7) expresses the law of energy conservation and forms the content

of thefirst law of thermodynamics. It can be put inwords as follows: the amount
of heat imparted to a system is spent on an increment of the internal energy of the system
and on the work done by the system on external bodies.

What has been said above does not at all signify that the internal energy of
a system always grows when heat is imparted to it. It may happen that notwith-
standing the transfer of heat to a system, its energy diminishes instead of growing
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(*2 < *1). In this case according to Eq. (10.7), we have � > &, i.e., the system
does work both at the expense of the heat & it has received and at the expense of
its store of internal energy, whose decrement is *1 − *2. It must also be borne in
mind that the quantities & and � in Eq. (10.7) are algebraic ones (& < 0 signifies
that the system actually gives up heat instead of receiving it).

Examination of Eq. (10.7) shows that the amount of heat & can be measured in
the same units as work or energy. In the SI system, the unit of the amount of heat
is the joule.

A special unit called the calorie is also used to measure the amount of heat.
One calorie equals the amount of heat needed to raise 1 g of water from 19.5 ◦C to
20.5 ◦C³. One kilocalorie equals 1000 cal.

It was established experimentally that one calorie is equivalent to 4.18 J. Hence,
one joule is equivalent to 0.24 cal. The quantity � = 4.18 J cal−1 is called the me-
chanical equivalent of heat.

If the quantities in Eq. (10.7) are expressed in different units, then some of them
must be multiplied by the appropriate equivalent. For example, if we express & in
calories and* and � in joules, Eq. (10.7) must be written in the form

�& = *2 −*1 + �
We shall always assume in the following that &, � and * are expressed in the

same units, and write the equation of the first law of thermodynamics in the form
of Eq. (10.7).

In calculating the work done by a system or the heat received by it, we usually
have to divide the process being considered into a number of elementary ones, each
of which corresponds to a very small (infinitely small in the limit) change in the
parameters of the system. Equation (10.7) has the following form for an elementary
process:

J′& = J* + J′� (10.8)
where J′& is the elementary amount of heat, J′� is the elementary work, and J*
is the increment of the internal energy of the system in the course of the given
elementary process.

It is very important to bear inmind that J′& and J′�must never be considered
as increments of the quantities& and �. The change J in a quantity 5 correspond-
ing to an elementary process may be considered as the increment of this quantity
only if

∑
J5 corresponding to the transition from one state to another does not

depend on the path along which the transition occurs, i.e., if the quantity 5 is a

³The calorie defined in this way is the 20-degree calorie. Also used are the 15-degree calorie and
the mean calorie—1/100 the heat needed to raise 1 g of water from 0 ◦C to 100 ◦C.
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function of state. With respect to a function of state, we can speak of its “store” in
each state. For example, we can speak of the store of internal energy that a system
has in different states.

We shall see in the following that the quantity of work done by a system and
the amount of heat it receives depend on the path followed by the system in its
transition from one state to another. Hence, neither& nor � are functions of state,
and for this reason we cannot speak of the store of heat or work that a system has
in different states.

Thus, the symbol Jbefore � and& is given a differentmeaning than that before
* . To stress this circumstance, the J is primed in the former case. The symbol J*
signifies an increment of the internal energy, whereas the symbols J′& and J′�
signify not an increment, but an elementary amount of heat and work.

To perform calculations, we pass over to differentials in Eq. (10.8). The equation
of the first law thus acquires the following form⁴:

d′& = d* + d′�. (10.9)
Integration of Eq. (10.9) over the entire process results in the expression

& = (*2 −*1) + �
that is identical with Eq. (10.7).

We stress again that, for example, the result of integration of d′�must not be
written in the form∫ 2

1
d′� = �2 − �1.

This form would mean that the work done by a system equals the difference be-
tween the values (i.e., the stores) of the work in the second and first states

10.6. Work Done by a Body upon Changes in Volume

The interaction of a given body with bodies in contact with it can be characterized
by the pressure which it exerts on them. We can use pressure to describe the inter-
action of a gas with the walls of a vessel, and also of a solid or a liquid body with
the medium (for example, a gas) surrounding it. The displacement of the points
of application of the interaction forces is attended by a change in the volume of a
body. Hence, the work done by a given body on external bodies can be expressed
through the pressure and changes in the body’s volume. Let us consider the fol-
lowing example to find this expression.

Assume that a gas is confined in a cylindrical vessel closed with a tightly fitting

⁴In Eq. (10.9), d* is a total differential, while d′& and d′� are not total differentials (see Sec. 3.4).
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Fig. 10.2

easily sliding piston (Fig. 10.2). If for some reason or other the gas begins to expand,
it will move the piston and do work on it. The elementary work done by the gas
in moving the piston through the distance Jℎ is

J′� = �Jℎ

where � is the force with which the gas acts on the piston. Substituting for this
force the product of the gas pressure > and the piston area (, we have

J′� = >(Jℎ.

But (Jℎ is the increment of the volume of the gas J+ . Hence, the expression for
the elementary work can be written as follows:

J′� = >J+. (10.10)
The quantity J′� in Eq. (10.10) is obviously an algebraic one. Indeed, in com-

pression of the gas, the directions of the displacement Jℎ and the force � with
which the gas acts on the piston are opposite. Consequently, the elementary work
J′�will be negative. The increment of the volume J+ in this case will also be neg-
ative. Thus, Eq. (10.10) gives a correct expression for the work upon any changes in
the volume of the gas.

If the pressure of the gas remains constant (for this to occur we must simulta-
neously change the temperature in the appropriate direction), the work donewhen
the volume changes from +: to +2 will be

�12 = >(+2 − +1). (10.11)
If a change in the volume is attended by a change in the pressure, then Eq. (10.10)
holds only for sufficiently small J+ ’s. In this case, the work done upon finite
changes in the volume must be computed as the sum of elementary amounts of
work expressed by Eq. (10.10), i.e., by integration:

�12 =

∫ +2

+1

> d+. (10.12)
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Fig. 10.3

The expressions found for the work hold for any changes in the volume of
solid, liquid, and gaseous bodies. Let us consider another example to convince
ourselves that this is true. Let us take a solid body of an arbitrary shape immersed
in a liquid or gaseous medium that exerts on the body the pressure > identical at
all points (Fig. 10.3). Assume that the body expands so that separate elementary
portions of its surface J(7 receive different displacements Jℎ7. Hence, the 7-th
portion does the work J′�7 equal to >J(7Jℎ7. The work done by the body can be
found as the sum of the amounts of work done by separate portions:

J′� =
∑
7

J′�7 =
∑
7

>J(7Jℎ7.

Factoring out of the sum the value of > which is identical for all the portions and
noting that J(7Jℎ7 gives the increment of the body’s volume J+ , we can write that
J′� = >J+ , i.e., in the general case too we arrive at Eq. (10.10).

Let us depict the process of the change in the volume of the body in a >-+
diagram (Fig. 10.4). The area of the shaded strip in the diagram corresponds to the
elementary work J′�7 = >7J+7. It is obvious that the area confined between the
+-axis, the curve > = 5 (+ ), and the perpendiculars erected from points +1 and +2
numerically equals the work done when the volume changes from +1 and +2. The
work done in a cyclic process numerically equals the area enclosed by the curve
(Fig. 10.5). Indeed, the work on path 1-2 is positive and numerically equals the the
whole area under the curve, Area1 + Area2 (we are considering a clockwise cycle).
The work on path 2-1 is negative and numerically equals the unshaded area, Area2.
Hence, the work during a cycle numerically equals the area enclosed by the curve
(shaded area, Area1). It will be positive in the direct cycle (i.e., in one conducted in
the clockwise direction), and negative in the reverse cycle.

It is clear from what has been said in Sec. 10.3 that the equations we have ob-
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Fig. 10.4 Fig. 10.5

tained may be applied only to reversible processes.
Wemust note that by usingEq. (10.10) (with a transition to differentials), Eq. (10.9)

expressing the first law of thermodynamics can be written as follows:
d′& = d* + > d+. (10.13)

10.7. Temperature

We can arrive at a definition of the concept of temperature on the basis of the fol-
lowing reasoning. If contacting bodies are in a state of thermal equilibrium, i.e.,
do not exchange energy by heat transfer, they are said to have the same tempera-
ture. If when thermal contact is established between bodies one of them transmits
energy to the other by heat transfer, then the first body is said to have a higher
temperature than the second one. Many properties of bodies such as their volume
and electrical resistance depend on the temperature. Any of these properties can
be used for a quantitative definition of temperature.

Let us bring the body we have chosen for measuring the temperature (a ther-
mometric body) into thermal equilibrium with melting ice. We shall assume that
the body has a temperature of 0 degrees and shall characterize quantitatively the
property of the body (the temperature feature) which we intend to use for mea-
suring the temperature. Let this feature be the volume of the body. Its value at 0
degrees is +0. Next we shall bring the same body into thermal equilibrium with
water boiling under atmospheric pressure. Now we shall assume that the body in
this state has a temperature of 100 degrees, and shall determine the corresponding
volume +100. Presuming that the temperature feature we have chosen (the volume
in the given example) changes linearlywith the temperature, we can ascribe the fol-
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lowing temperature to the state in which our thermometric body has the volume
V:

B =
+ − +0
+100 − +0

× 100 degrees. (10.14)

The temperature scale established in this way is called, as is known, the Celsius
scale. An expression similar to Eq. (10.14) can also be written for the case when we
use another temperature feature instead of the volume tomeasure the temperature.

After graduating a thermometer in this way, we can use it to measure the tem-
perature by bringing it into thermal equilibriumwith the body whose temperature
we are interested in, and calculating the value of the volume.

Whenwe compare thermometers functioningwith different thermometric bod-
ies (for example, mercury and alcohol) or different temperature features (for exam-
ple, volume and electrical resistance), we find that the readings of these thermome-
ters, which coincide at 0 and 100 degrees owing to their being graduated at these
temperatures, do not coincide at other temperatures. It thus follows that for the
unique definition of a temperature scale, in addition to the way of graduation, we
must also arrive at an agreement on the choice of the thermometric body and the
temperature feature. How this choice is made in establishing the so-called empir-
ical temperature scale will be treated in the following section. Getting ahead, we
shall indicate that the second law of thermodynamics can serve as the basis of a
temperature scale not depending on the properties of the thermometric body (see
Sec. 12.3). This scale is called the thermodynamic temperature scale.

The international practical temperature scale of 1968, formerly called the
Celsius (centigrade) scale is used in engineering and for everyday purposes. Physi-
cists find the absolute scale more convenient. The temperature ) measured ac-
cording to this scale is related to the temperature B according to the Celsius scale
by the equation

) = B + 273.15.
The unit of absolute temperature is the kelvin (K). It was previously called the de-
gree Kelvin (°K). The international practical temperature is measured in degrees
Celsius (◦C). The sizes of the kelvin and the degree Celsius are the same. A tem-
perature of 0 K is referred to as absolute zero, and B = −273.15 ◦C corresponds
to it.

In the following (see Sec.11.5), we shall show that the absolute temperature is
proportional to the mean kinetic energy of translational motion of the molecules
of a substance. This is the physical meaning of absolute temperature.
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10.8. Equation of State of an Ideal Gas

The state of a given mass of a gas is determined by the values of three parameters:
the pressure >, volume + , and temperature) . These parameters are related to one
another according to a definite law so that a change in one of them causes a change
in the others. This relation can be given analytically in the form of the function

� (>, + ,)) = 0. (10.15)
An expression determining the relation between the parameters of a body is

called an equation of state of the body. Hence, Eq. (10.15) is an equation of state of
a given mass of a gas.

A gas, the interaction betweenwhosemolecules is negligibly small, has the sim-
plest properties. Such a gas is called ideal (or perfect). The interaction between
themolecules of any gas becomes negligibly small at a great rarefaction⁵, i.e., at low
densities of the gas. A real gas upon sufficient rarefaction is close in its properties
to an ideal one. Some gases such as air, nitrogen, and oxygen differ only slightly
from an ideal gas even in usual conditions, i.e., at room temperature and atmo-
spheric pressure. Helium and hydrogen are especially close to an ideal gas in their
properties.

Gases at low densities obey the following equation with a good accuracy:
>+

)
= constant. (10.16)

Consequently, this equation is an equation of state of an ideal gas.
According to the law established by Amadeo Avogadro (1776-1856), the moles

of all gases occupy an identical volume in identical conditions (i.e., at the same
temperature and pressure). In particular in the so-called standard conditions,
i.e., at 0 ◦C and a pressure of 1 atm (1.01 × 106 Pa), the volume of a mole of any gas
is 22.4 dm3mol−1 = 22.4 × 10−3m3mol−1. It thus follows that when the amount
of a gas is one mole, the value of the constant in Eq. (10.16) will be the same for
all gases. Denoting the value of this constant corresponding to one mole by the
symbol ', we can write Eq. (10.16) as follows:

>+m = '). (10.17)
We have used the subscript “m”with+ to show that we are dealingwith the volume
occupied by one mole of a gas at the given > and ) . Equation (10.17) is an equation
of state of an ideal gas written for one mole.

The quantity ' is called themolar gas constant. According to Eq. (10.17) and

⁵Rarefaction here means the diminution of the density of the gas. –Ed.
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Avogadro’s law,

' =
>+m

)
=
1.01 × 105 × 22.4 × 10−3

273
Pa ×m3mol−1

K
= 8.31 Jmol−1 K−1.

For practical calculations, it is sometimes convenient to use ' expressed in litre-
atmospheres per mole-kelvin:

' =
1 atm × 22.4 Lmol−1

273K
= 0.0820 L atmmol−1 K−1.

It is a simple matter to pass over from Eq. (10.17) for one mole to an equation
for any mass ;, taking into account that at the same pressure and temperature,
a moles of a gas will occupy a volume a times greater than that occupied by one
mole: + = a+m, Multiplying Eq. (10.17) by a = ;/" (here ; is the mass of the gas
and " the mass of a mole) and introducing + instead of a+m, we get

>+ =
;

"
'). (10.18)

This equation is an equation of state of an ideal gas written for the mass; of a gas.
Equation (10.18) can be given a different form. For this purpose, we shall intro-

duce the quantity

9 =
'

#A
(10.19)

(' is the molar gas constant, and #A is the Avogadro constant). This quantity is
known as the Boltzmann constant. It has a deeper physical meaning than the
constant '. We shall show in Sec. 11.5 that 9 is the constant of proportionality be-
tween the mean energy of thermal motion of a molecule and the absolute temper-
ature. Substitution of the numerical values for ' and #A in Eq. (10.19) yields

9 =
8.31 Jmol−1 K−1

6.023 × 1023mol−1
= 1.38 × 10−23 J K−1.

Let usmultiply and divide the right-hand side of Eq. (10.18) by#A. The equation
can therefore be written in the form

>+ = a#A9).

The product a#A equals the number of molecules # contained in the mass ; of a
gas. Taking this into consideration, we find that

>+ = #9). (10.20)
Now let us divide both sides of Eq. (10.20) by + . Since #/+ = < is the number

of molecules in a unit volume, we arrive at the equation
> = <9). (10.21)

Equations (10.18), (10.20), and (10.21) are different forms of writing the equation
of state for an ideal gas.



288 GENERAL INFORMATION

The ratio of the mass of a gas to the volume it occupies gives the density of the
gas: > = ;/+ . According to Eq. (10.18), the density of an ideal gas is determined by
the expression

d =
">

')
. (10.22)

Thus, the density of an ideal gas is proportional to the pressure and inversely pro-
portional to the temperature.

The simple relation between the temperature and the remaining parameters of
an ideal gas makes it tempting to use it as a thermometric substance. Ensuring a
constant volume and using the pressure of the gas as the temperature feature, we
can obtain a thermometer with an ideally linear temperature scale. In the follow-
ing, we shall call this scale the ideal gas temperature scale.

In practice, according to an international agreement, hydrogen is taken as the
thermometric body. The scale established for hydrogen with the use of Eq. (10.18)
is called the empirical temperature scale.

10.9. Internal Energy and Heat Capacity of an Ideal Gas

Experiments show that the internal energy of an ideal gas depends only on the
temperature:

* = �). (10.23)
Here � is a coefficient of proportionality that remains constantwithin quite a broad
range of temperatures.

The failure of the internal energy to depend on the volume occupied by a gas
indicates that the molecules of an ideal gas do not interact with one another the
overwhelming part of the time. Indeed, if the molecules did interact with one an-
other, the internal energywould contain as an addend the potential energy of inter-
action, and the latter would depend on the mean distance between the molecules,
i.e., on + 1/3.

It must be noted that interaction should take place upon collisions, i.e., when
the molecules come very close to one another. Such collisions are very few in
number in a rarefied gas, however. Each molecule spends the predominating part
of its time in free flight.

The heat capacity of a body is defined as the quantity equal to the amount of heat
that must be imparted to the body to raise its temperature by one kelvin. If the amount
of heat d′& imparted to a body raises its temperature by d) , then its heat capacity
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by definition is

�body =
d′&
d)

. (10.24)

This quantity is measured in joules per kelvin (J K−1).
We shall denote the capacity of a mole of a substance, called the molar heat

capacity, by the symbol �. It is measured in joules per mole-kelvin (J mol−1 K−1).
The heat capacity of a unit mass of a substance is called the specific heat ca-

pacity. We shall use the symbol 2 for it. The quantity 2 is measured in joules per
kilogramme-kelvin (J kg−1 K−1).

The following relation obviously holds between the heat capacity of a mole of
a substance and the specific heat capacity of the same substance:

2 =
�

"
(10.25)

(" is the molar mass).
The value of the heat capacity depends on the conditions in which a body is

heated. The heat capacity for heating at a constant volume or a constant pressure
is of the greatest interest. The heat capacities at constant volume and constant
pressure are designated by �+ and �>, respectively.

When heating occurs at constant volume, a body does no work on external
bodies, and, consequently, according to the first law of thermodynamics [see Eq.
(10.9)], all the heat is spent on the increment of the internal energy of the body:

d′&+ = d*. (10.26)
It can be seen from Eq. (10.26) that the heat capacity of any body at constant volume
is

�+ =

(
∂*

∂)

)
+

. (10.27)

This notation stresses the fact that when differentiating the expression for* with
respect to) , the volume must be considered constant. For an ideal gas,* depends
only on ) , and Eq. (10.27) can be written in the form

�+ =
d*m

d)
(to obtain the molar heat capacity of a gas, we must take the internal energy of a
mole).

Equation (10.23) for one mole of a gas has the form*m = �m) . Differentiating
it with respect to ) , we find that �+ = �m. Thus, the expression for the internal
energy of one mole of an ideal gas can be written in the form

*m = �+) (10.28)
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where�+ is a constant quantity—the molar heat capacity of a gas at constant vol-
ume.

The internal energy of an arbitrary mass ; of a gas will equal the internal
energy of one mole multiplied by the number of moles of the gas in the mass ;:

* =
;

"
�+). (10.29)

If a gas is heated at constant pressure, it will expand, doing positive work on
external bodies. Consequently, more heat will be needed to raise the temperature
of the gas by one kelvin in this case than when heating it at constant volume—part
of the heat will be used by the gas to do work. Hence, the heat capacity at constant
pressure must be greater than that at constant volume.

Let us write Eq. (10.13) of the first law of thermodynamics for a mole of a gas:
d′&> = d*m + > d+m. (10.30)

The subscript > of d′& in this expression indicates that heat is imparted to the gas
in conditions when > is constant. Dividing Eq. (10.30) by d) , we get an expression
for the molar heat capacity of a gas at constant pressure:

�> =
d*m

d)
+ >

(
∂+m
∂)

)
>

. (10.31)

The addend d*m/d) equals, as we have seen, the molar heat capacity of a gas at
constant volume. Therefore, Eq. (10.31) can be written as follows:

�> = �D + >
(
∂+m
∂)

)
>

. (10.32)

The quantity (∂+m/∂))> is the increment of the volume of a mole when the
temperature is raised by one kelvin obtained with > being constant. According to
the equation of state (10.17), we have +m = ')/>. Differentiating this expression
with respect to ) provided that > = constant, we find(

∂+m
∂)

)
>

=
'

>
.

Finally, using this result in Eq. (10.32), we get
�> = �D + '. (10.33)

Thus, the work done by a mole of an ideal gas when its temperature is raised
by one kelvin at constant pressure equals the molar gas constant. It must be noted
that Eq. (10.33) has been obtained by using an equation of state for an ideal gas and,
consequently, holds only for an ideal gas.
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The quantity

W =
�>

�+
(10.34)

is a quantity characterizing every gas. For monatomic gases, its value is close to
1.67, for biatomic gases to 1.4, for triatomic gases to 1.33, etc. In the following
(see Sec. 11.5), we shall see that the value of W is determined by the number and the
nature of the degrees of freedom of the molecule.

Substituting for �> in Eq. (10.34) its value from Eq. (10.33), we have

W =
�+ + '
�+

= 1 + '

�+
whence

�+ =
'

1 − W . (10.35)

Using this value of �+ in Eq. (10.29), we get the following expression:

* =
;

"

(
')

W − 1

)
. (10.36)

Comparison with Eq. (10.18) gives still another expression for the internal energy
of an ideal gas:

* =

(
1

W − 1

)
>+. (10.37)

10.10. Equation of Adiabat of an Ideal Gas

In the course of a process, a gas, in addition to an equation of state, obeys another
condition determined by the nature of the process. For example, the condition
> = constant is observed in the so-called isobaric process. The condition + =

constant holds in an isochoric process. Finally, in an isothermal process, ) =

constant. For an ideal gas, the condition) = constant is equivalent to the condition

>+ = constant. (10.38)
Equation (10.38) is called the equation of an isotherm of an ideal gas, and the curve
determined by this equation is named an isotherm.

A process going on without heat exchange with the surroundings is called adia-
batic. Let us find an equation relating the parameters of an ideal gas in an adiabatic
process. Introducing Eq. (10.29) for d* of an ideal gas into Eq. (10.13) of the first law
of thermodynamics, we obtain

d′& =
;

"
�+ d) + > d+.
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Since for an adiabatic process we have d′& = 0, the following condition must be
observed:

;

"
�+ d) + > d+ = 0. (10.39)

Now let us express > through+ and) in accordance with the equation of state
for an ideal gas (10.18):

> =
;

"

')

+
and introduce this expression into Eq. (10.39). As a result, after cancelling the factor
;/" differing from zero, we get

�+ d) + ')
d+
+

= 0.

Let us transform the above expression as follows:
d)
)
+ '

�+

d+
+

= 0.

This expression can be written in the form

d
(
ln) + '

�+
ln+

)
= 0

whence it follows that in an adiabatic process

ln) + '

�+
ln+ = constant. (10.40)

In accordancewith Eq. (10.35), the ratio '/�+ can be replacedwithy W−1, where
W = �>/�+ . Making this substitution in Eq. (10.40) and converting to a power, we
get

)+ W−1 = constant. (10.41)
This equation is an equation of an adiabat of an ideal gas in variable ) and + .

We can pass over from this equation to one in variable > and + by replacing ) in
it with > and + in accordance with the equation of state for an ideal gas (10.18):

) =
"

;

>+

'
.

Using this expression in Eq. (10.41) and taking into account that ;, " and ' are
constants, we get

>+ W = constant. (10.42)
[The values of the constants in Eqs. (10.40)-(10.42) are obviously different.]

Expression (10.42) is an equation of an adiabat of an ideal gas in variable > and
+ . It is also called the Poisson equation.

It follows from a comparison of the adiabat equation (10.42) with the isotherm



Equation of Adiabat of an Ideal Gas 293

Fig. 10.6

equation (10.38) that an adiabat is steeper than an isotherm. Let us calculate d>/d+
for an isotherm and an adiabat at the same point with the coordinates > and +
(Fig. 10.6). Differentiation of Eq. (10.38) yields

> d+ + + d> = 0
whence for an isotherm we obtain

d>
d+

= − >
+
. (10.43)

Differentiation of Eq. (10.42) yields
>W+ W−1 d+ + + W d> = 0

whence
d>
d+

= −W >
+
.

Thus, the slope of an adiabat is W times greater than that of an isotherm.
We assumed in all our reasoning that the state of a gas at each moment is char-

acterized by definite values of the parameters > and ) , i.e., in other words, that the
adiabatic process being considered is reversible. We know that only a very slow
process can be reversible. At the same time, since nature knows of no substances
that do not conduct heat absolutely, the amount of heat exchanged by a systemwith
its surroundings will be the smaller, the shorter is the time taken by a process.

Thus, only fast processes can be close to an adiabatic one. An example of such
a process are the compression and expansion occurring at each point of a gas in
which a sound wave is propagating. Notwithstanding the fact that within the con-
fines of a large volume the state of the gas is not an equilibrium one (> and ) are
different at different points), the behaviour of the gas within the limits of each suf-
ficiently small volume is quite satisfactorily described by Eq. (10.42) of an adiabat.
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10.11. Polytropic Processes

Processes in which the heat capacity of a body remains constant are defined as poly-
tropic ones. Thus, the condition which is observed in a polytropic process is

� = constant. (10.44)
Let us find the equation of a polytrope for an ideal gas. We shall write equa-

tion (10.13) of the first law for one mole of gas, substituting� d) for d′& and�+ d)
for d* :

� d) = �+ d) + > d+. (10.45)
This equation includes all three parameters: >, + and ) . One of them can be ex-
cluded with the aid of an equation of state. To obtain an equation of a polytrope
directly in variable > and + , let us exclude ) . For this end, let us differentiate the
equation >+ = ') :

> d+ + + d> = ' d) + . (10.46)
Excluding d) from Eqs. (10.45) and (10.46) and bringing together similar terms, we
get

(� − �+ − ')> d+ + (� − �+ )+ d> = 0. (10.47)
Substituting�> for�+ + ' [see Eq. (10.33)] and dividing Eq. (10.47) by >+ , we arrive
at the differential equation

(� − �>)
d+
+
+ (� − �+ )

d>
>

= 0. (10.48)

The quantities�,�>, and�+ are constants. Therefore, integration of Eq. (10.48)
gives the expression

(� − �>) ln+ + (� − �+ ) ln > = constant. (10.49)
Dividing this expression by � − �+ (which is possible if � ≠ �D) and converting
to a power, we get

>+ < = constant (10.50)
where

< =
� − �>
� − �+

. (10.51)

It is exactly Eq. (10.50) that is the required equation of a polytrope of an ideal
gas for � ≠ �D. The quantity < determined by Eq. (10.51) is called the polytropic
exponent or index.

Let us turn to Eq. (10.49) to establish the nature of a polytropic process when
� = �+ . For this condition, the equation acquires the form (� − �>) ln+ =

constant, whence it follows that + in the course of the process remains constant.



Work of an Ideal Gas in Different Processes 295

Hence, a polytropic process with � = �+ is an isochoric one. This could be fore-
seen because �+ = constant and is the heat capacity at constant volume, i.e., in an
isochoric process. By Eq. (10.51), the polytropic exponent in an isochoric process
equals infinity.

The other processes treated in the preceding section also relate to the category
of polytropic processes. For an isobaric process, we have < = 0 [see Eq. (10.50)], for
an isothermal one < = 1, and, finally, for an adiabatic process < = W . The value of
the polytropic exponent < for these processes are given in Table 10.1.

Solving Eq. (10.51) relative to �, we get an equation for the heat capacity of an
ideal gas in a polytropic process:

� =
<�+ − �>
< − 1 . (10.52)

The introduction of < = W causes Eq. (10.52) to become equal to zero [Eq. (10.35)
must be taken into account in verifying this statement]. Consequently, the heat
capacity of an ideal gas in an adiabatic process equals zero. The heat capacity of all
bodies vanishes in an adiabatic process. This can be seen from the fact that in an
adiabatic process d′& = 0, whereas d) differs from zero.

The introduction of < = 1 causes Eq. (10.52) to equal infinity. Thus, in an
isothermal process, the heat capacity is infinitely great. The explanation is that
in an isothermal process d) = 0, whereas d′& differs from zero.

10.12. Work of an Ideal Gas in Different Processes

The work done by a body on external bodies when it passes from state 1 to state 2
is

�12 =

∫ +2

+1

> d+ (10.53)

[see Eq. (10.12)]. To perform integration, we must express > through + . For this

Table 10.1

Process <

Isobaric 0
Isothermal 1
Adiabatic W

Isochoric ∞
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purpose, we shall use the relation between > and + in different processes.
Equation (10.50) of a polytrope of an ideal gas can be written as follows:
>+ < = >1+

<
1 = >2+

<
2

where >1, +1 and >2, +2 are the values of the pressure and volume of the gas in the
first (initial) and second (final) states, respectively, and > and + are the pressure
and volume in any intermediate state. The above equation allows us to express the
pressure of a gas through its volume and the values of the parameters in the initial
or final state. Taking the former, we have

> =
>1+

<
1

+ <
.

Introduction of this equation into Eq. (10.53) yields

�12 = >1+
<
1

∫ +2

+1

d+
+ <

. (10.54)

Let us first consider the case when < ≠ 1; the integral in Eq. (10.54) for it is∫ +2

+1

d+
+ <

=

(
1

< − 1

) (
1

+ <−1
1
− 1
+ <−1
2

)
.

Using this value of the integral in Eq. (10.54) and performing simple transforma-
tions, we get

�12 =
>1+1

< − 1

[
1 −

(
+1

+2

)<−1]
. (10.55)

This equation can be transformed by taking advantage of the fact that no mat-
ter what process occurs with an ideal gas, its parameters are related by an equation
of state. In particular, this also holds for the initial state:

>1+1 =
;

"
')1. (10.56)

Taking Eq. (10.56) into account, we can write Eq. (10.55) in the form

�12 =
;

"

(
')1

< − 1

) [
1 −

(
+1

+2

)<−1]
. (10.57)

Equations (10.55) and (10.57) give thework done by an ideal gas in any polytropic
process except for an isothermal one [which corresponds to < = 1. In this case,
Eqs. (10.55) and (10.57) become indefinite]. In particular, for an adiabatic process

�12 =

(
>1+1

W − 1

) [
1 −

(
+1

+2

)<−1]
(10.58)
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or

�12 =
;

"

(
')1

W − 1

) [
1 −

(
+1

+2

)<−1]
. (10.59)

To calculate the work of an ideal gas in an isothermal process, let us express
the pressure in Eq. (10.53) through other quantities in accordance with an equation
of state. The result is (we can put ) outside the integral since it is constant):

�12 =
;

"
')

∫ +2

+1

d+
+

=
;

"
') ln

(
+2

+1

)
.

Thus, the work done by an ideal gas in an isothermal process is

�12 =
;

"
') ln

(
+2

+1

)
. (10.60)

In an isobaric process, the work done by any body including an ideal gas, as
can be seen from Eq. (10.53), is

�12 = >(+2 − +1). (10.61)
The same result is obtained if we assume that < = 0 in Eq. (10.55). We shall note in
concluding that the work equals zero in an isochoric process. This holds for any
bodies.

10.13. Van der Waals Gas

We mentioned in Sec. 10.8 that the behaviour of real gases is well described by
Eq. (10.17), i.e.,

>+m = ')

only at low densities, i.e., at not too high pressures and sufficiently high temper-
atures [see Eq. (10.22)]. Considerable deviations from this equation are observed
with an increase in the pressure and a decrease in the temperature. The second
column of Table 10.2 gives the values of the product >+ for the mass of nitrogen
occupying a volume of one litre in standard conditions. These values are given for
different pressures and the same temperature 0 ◦C.

According to Eq. (10.17), the product >+ must remain constant when the tem-
perature does not change. Actually, as can be seen from the table, appreciable devi-
ations are observed at a pressure of about 200 atm. They grow continuously with
increasing pressure and reach over 100% at 1000 atm. These deviations are not
surprising because when the density grows, the volume of the molecules and the
interaction between them begin to play a greater and greater part.

A great variety of equations were proposed to describe the behaviour of gases
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within a broad density range. The one proposed by J. van der Waals is the sim-
plest of them, while giving sufficiently good results. This equation was obtained
by introducing corrections into Eq. (10.17) and has the following form:(

> + 0

+ 2
m

)
(+m − 1) = ') (10.62)

where > is the pressure exerted on the gas from outside (equal to the pressure of the
gas on the walls of the vessel it occupies), and 0 and 1 are van der Waals constants.
Their values differ for different gases and are determined experimentally. If the
pressure is measured in pascals and the volume in cubic metres per mole, then the
constant 0 is in Pam6mol−1, and the constant 1 is in m3mol−1. Sometimes the
constants 0 and 1 are expressed in atmL2 and Lmol−1, respectively.

Owing to the mutual attraction between its molecules, a gas, as it were, is com-
pressed by a greater pressure than the pressure > exerted on it by the walls of the
vessel confining it. The correction 0/+ 2

m characterizes the addition to the external
pressure due to the mutual attraction of the molecules. Molecules have an appre-
ciable action on one another within the limits of small distances called the radius
of molecular action. The force of mutual attraction of two elementary volumes
having dimensions of the order of this radius is proportional both to the number of
molecules contained in one of the volumes and to that in the other volume. Each of
these numbers, in turn, is proportional to the number of molecules in unit volume,
i.e., is inversely proportional to the volume of the gas. These considerations can be
used to explain the circumstance that the correction to the pressure in Eq. (10.62)
has the form 0/+ 2

m.
Since the molecules have a finite volume, the space available for motion of the

molecules is less than the volume of the vessel +m The correction 1 in Eq. (10.62)
characterizes the part of the volume that is not available formotion of themolecules.
In its order ofmagnitude, it equals several total volumes of themolecules contained

Table 10.2

>, [atm] >+ , [atm L]
(
> + 0′

+ 2

)
(+ − 1′), [atm L]

1 1.000 1.000
100 0.994 1.000
200 1.048 1.009
500 1.390 1.014
1000 2.069 0.893
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in a mole of a gas.
Equation (10.62) has been written for one mole of a gas. To go over to an equa-

tion for an arbitrary mass;, we must take into account that amoles of a gas in the
same conditions occupy a volume that is a times greater: + = a+m. Substituting
+/a for +m in Eq. (10.62), we get(

> + a
20

+ 2

) (
+

a
− 1

)
= ').

Multiplying this equation by a and introducing the symbols
0′ = a20, 1′ = a1 (10.63)

we arrive at the van der Waals equation for a moles:(
> + 0′

+ 2

)
(+ − 1′) = a'). (10.64)

The symbols 0′ and 1′ designate the van der Waals constants for a moles. Equa-
tions (10.63) show how they are related to 0 and 1. The constant 0′ is measured in
Pam6, and 1′ in m3.

How much better the van der Waals equation shows the behaviour of gases
than Eq. (10.17) can be seen from the data contained in Table 10.2. The third column
of the table gives the values of the quantity (> + 0′/+ 2) (+ − 1′), which ought to
be constant according to Eq. (10.64), for the same mass of nitrogen for which the
values of >+ are given in the second column. Inspection of the table shows that the
van der Waals equation agrees much better with experimental data than Eq. (10.17).

Since all real gases approach ideal gases in their properties when their density
diminishes, the van der Waals equation in the limit, when the volume tends to
infinity, transforms into Eq. (10.17). We can convince ourselves that this is true by
factoring out > and + in Eq. (10.64):

>+

(
1 + 1

>+

0′

+

) (
1 − 1

′

+

)
= a')

and taking into consideration that the product >+ is approximately constant.
Real gases obey the van der Waals equation only approximately. An imaginary

gas that obeys Eq. (10.62) exactly is called a van der Waals gas.
The internal energy of a van der Waals gas must include, in addition to the

kinetic energy of the molecules, the energy of interaction between them. To find
the internal energy of a van der Waals gas, let us take advantage of the circum-
stance that the work done in the expansion of a gas against the forces of mutual
attraction of the molecules to one another equals the increment of the interaction
energy: d′� = d�p. The forces of mutual attraction between the molecules are
taken into account in Eq. (10.62) with the aid of the addition 0/+ 2

m to the pressure.
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Accordingly, the work against the forces of interaction between the molecules can
be represented in the form (0/+ 2

m) d+m (similarly, the work done by a gas against
the external forces is determined by the expression > d+ ). Thus,

d�p =
0

+ 2
m
d+m.

Integration of this expression shows that

�p = −
0

+m
+ constant. (10.65)

The internal energy of a van der Waals gas depends on both the volume and
the temperature. Hence, the expression for* has the form

* = 5 ()) − 0

+m
[we have included the constant of Eq. (10.65) in 5 ())]. This expression in the limit,
when the volume tends to infinity, must transform into Eq. (10.28) for the internal
energy of an ideal gas. Therefore, 5 ()) = �+) .

Thus, the internal energy of a mole of a van der Waals gas is determined by the
equation

*m = �+) −
0

+m
. (10.66)

The internal energy of a moles will be a times greater:

* = a�+) −
0′

+
(10.67)

(we have taken into consideration that a20 = 0′ and a+m = + ). By Eqs. (10.66)
and (10.67), we can find the approximate values of the internal energy of real gases.

10.14. The Barometric Formula

The atmospheric pressure at the altitude ℎ is due to the weight of the layers of gas
above this altitude. Let > be the pressure at the altitude ℎ. Hence, the pressure at
the altitude ℎ+dℎwill be >+d>. If dℎ is greater than zero, then d>will be less than
zero because the weight of the higher layers of the atmosphere and, therefore, the
pressure, diminish with the altitude. The difference between the pressures > and
> + d> equals the weight of the gas contained in the volume of a cylinder with a
base area of unity and an altitude of dℎ (Fig. 10.7):

> − (> + d>) = d6 dℎ
where d is the density of the gas at the altitude ℎ. Hence,

d> = −d6 dℎ. (10.68)
We indicated in Sec. 10.8 that air differs only slightly from an ideal gas in its
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Fig. 10.7 Fig. 10.8

behaviour in conditions close to standard ones. Therefore, the density of air can
be calculated by Eq. (10.22). The introduction of this equation into Eq. (10.68) yields

d> = −">6

')
dℎ. (10.69)

The quantity" in this equation numerically equals the average molecular mass of
air determined with account taken of the content of nitrogen, oxygen, and other
gases in it. It can be seen from Eq. (10.69) that

d>
>

= −"6

')
dℎ. (10.70)

The temperature) is a function of ℎ. If we know the form of this function, we can
integrate Eq. (10.70) and find how > depends on ℎ. For a constant temperature, i.e.,
for an isothermal atmosphere, integration of Eq. (10.70) leads to the expression

ln(> = −"6ℎ

')
+ ln�

where � is a constant (it is convenient here to denote the integration constant by
ln�). Raising this expression to a power yields

> = � exp
(
−"6ℎ

')

)
.

Introducing ℎ = 0 into this expression, we find that� = >0, where >0 is the pressure
at the altitude ℎ = 0.

Thus, for our assumption on constancy of the temperature, the dependence of
the pressure on the altitude is given by the formula

> = >0 exp
(
−"6ℎ

')

)
. (10.71)

This is the barometric formula. A glance at it shows that the pressure dimin-
ishes with the altitude the more rapidly, the heavier is the gas (the greater is ")
and the lower is the temperature. Figure 10.8 shows two curves corresponding to
Eq. (10.71). They can be interpreted either as corresponding to different "’s (at the
same temperature), or to different ) ’s (at the same values of ").
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Chapter 11

STATISTICAL PHYSICS

11.1. Information from the Theory of Probability

Assume that we have a macroscopic system, i.e., a system formed by an enormous
number of microparticles (molecules, atoms, ions, electrons), in a given state. As-
sume further that a quantity F characteristic of the system can have the discrete
values

F1, F2, . . . , F7, . . . , F9, . . . , FA.

Let us make a very great number # of measurements of the quantity F, bring-
ing the system before each measurement to the same initial state. Instead of per-
forming repeated measurements of the same system, we can take # identical sys-
tems in the same state and measure the quantity F once in all these systems. Such
a set of identical systems in an identical state is called a statistical ensemble.

Assume that #1 measurements gave the result F1, #2 measurements the result
F2,. . . , #7 measurements the result F7 and so on (

∑
7 #7 = # is the number of sys-

tems in the ensemble). The quantity #7/# is defined as the relative frequency of
appearance of the result F7, while the limit of this quantity obtained when # tends
to infinity, i.e.,

%7 = lim
#→∞

#7

#
(11.1)

is called the probability of appearance of the result F7. In the following, in
order to simplify the equations, we shall write the expression for the probability
in the form #7/# , bearing in mind that the transition to the limit is performed at
# →∞.

Since
∑
7 #7 = # , we have∑

7

%7 =
∑
7

#7

#
= 1 (11.2)



304 STATISTICAL PHYSICS

i.e., the sum of the probabilities of all possible results of measurement equals unity.
The probability of obtaining the result F7 or F9 is

%7 or 9 =
#7 + #9

#
=
#7

#
+ #9

#
= %7 + %9.

We have thus arrived at the theorem of summation of probabilities. It states
that

%7 or 9 = %7 + %9. (11.3)
Assume that a system is characterized by the values of two quantities F and G.

Both quantities can take on discrete values whose probabilities of appearance are

% (F7) =
# (F7)
#

, % ( G9) =
# ( G9)
#

.

Let us find the probability % (F7, G9) of the fact that a certain measurement will
give the result F7 for F and G9 for G. The result F7 is obtained in a number of
measurements equal to # (F7) = % (F7)# . If the value of the quantity G does not
depend on that of F, then the result G9 will be obtained simultaneously with F7 in
a number of cases equal to

# (F7, G9) = # (F7)% ( G9) = [% (F7)#]% ( G9)
[# (F7) plays the part of # for G]. The required probability is

% (F7, G9) =
# (F7, G9)

#
= % (F7)% ( G9).

Nowwe have arrived at the theorem ofmultiplication of probabilities accord-
ing to which the probability of the simultaneous occurrence of statistically independent
events equals the product of the probabilities of each of them occurring separately:

% (F7, G9) = % (F7)% ( G9). (11.4)
Knowing the probability of the appearance of different measurement results,

we can find the mean value of all the results. According to the definition of the
mean value

〈F〉 = 1
#

∑
7

#7F7 =
∑
7

%7F7. (11.5)

Let us extend the results obtained to the case when the quantity F characteriz-
ing a system can take on a continuous series of values from zero to infinity. In this
case, the quantity F is said to have a continuous spectrum of values (in the previous
case the spectrum of values was discrete).

Let us take a very small quantity 0 (say, 0 = 10−6) and find the number of
measurements J#0 which give 0 < F < 0, the number J#1 which give 0 < F <

20, . . . , the number J#F for which the result of the measurements is within the
interval from F to F + 0, and so on. The probability of the fact that the result of the
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Fig. 11.1

measurements will be within the interval from zero to a is J%0 = J#0/# , within
the interval from 0 to 20 is J%1 = J#1/# , . . . , within the interval from F to F + 0
is J%F = J#F/# . Let us draw an F-axis and lay off strips of width 0 and of height
J%F/0 upward from it (Fig. 11.1a). We obtain a bar graph or histogram. The area
of the bar whose left-hand edge has the coordinate F is J%F and the area of the
entire histogram is unity [see Eq. (11.2)].

A histogram characterizes graphically the probability of obtaining results of
measurements confinedwithin different intervals ofwidth 0. The smaller thewidth
of the interval 0, the more detailed will the distribution of the probabilities of
obtaining definite values of F be characterized. In the limit when 0 → 0, the
stepped line confining the histogram transforms into a smooth curve (Fig. 11.1b).
The function 5 (F) defining this curve analytically is called a probability distri-
bution function.

In accordance with the procedure followed in plotting the distribution curve,
the area of the bar of width dF (see Fig. 11.1b) equals the probability of the fact that
the result of a measurement will be within the range from F to F + dF. Denoting
this probability by d%F we can write that

d%F = 5 (F) dF. (11.6)
The subscript “x” used with d% indicates that we have in mind the probability for
the interval whose left-hand edge is at the point with the coordinate F. The area
confined by a distribution curve, like that of a histogram, equals unity. This signifies
that ∫

5 (F) dF =

∫
d%F = 1. (11.7)

Integration is performed over the entire interval of possible values of the quantity
F. Equation (11.7) is an analogue of Eq. (11.2).

Knowing the distribution function 5 (F), we can find the mean value of the
results of measuring the quantity F. In d#F = # d%F cases, a result equal to F
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is obtained. The sum of such results is determined by the expression F d#F =

F# d%F . The sum of all the possible results is
∫
F d#F =

∫
F# d%F . Dividing this

sum by the number of measurements # , we get the mean value of the quanity F:

〈F〉 =
∫

F d%F . (11.8)

This equation is an analogue of Eq. (11.5).
Using Eq. (11.6) for d%F in Eq. (11.8), we obtain

〈F〉 =
∫

F5 (F) dF. (11.9)

Similar reasoning shows that the mean value of a function i(F) can be calcu-
lated by the equation

〈i(F)〉 =
∫

i(F)5 (F) dF. (11.10)

For example,〈
F2

〉
=

∫
F25 (F) dF. (11.11)

11.2. Nature of the Thermal Motion of Molecules

If a gas is in equilibrium, its molecules move absolutely without order, chaotically.
All the directions of motion are equally probable, and none of them can be given
preference over others. The velocities of the molecules may have the most diverse
values. Upon each collision with other molecules, the magnitude of the velocity
or speed of a given molecule should, generally speaking, change. It may grow or
diminish with equal probability.

The velocities of molecules change by chance upon collisions. A molecule in
a series of consecutive collisions may receive energy from its collision partners,
and as a result its energy will considerably exceed the mean value 〈Y〉. Even if
we imagine the absolutely fantastic case, however, in which all the molecules of a
gas give up their energy to a single molecule and stop moving, the energy of this
molecule, and consequently its velocity too, will still be finite. Thus, the velocity
of molecules of a gas cannot have values beginning with a certain Dmax and ending
with infinity. Taking into consideration that processes which would lead to the
concentration of a considerable portion of the total energy of all the molecules
on one molecule have a low probability, we can say that very high velocities in
comparison with the mean value of the velocity can be realized extremely rarely.
In exactly the same way, it is virtually impossible for the velocity of a molecule to
vanish completely as a result of collisions. Hence, very low and very high velocities
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Fig. 11.2

in comparison with the mean value have a low probability. The probability of the
given value of D tends to zero both when D tends to zero and when it tends to
infinity. It thus follows that the velocities of molecules are mainly grouped near a
certain most probable value.

The chaotic nature of motion of molecules can be illustrated with the aid of
the following procedure. Let us surround point 0 with a sphere of arbitrary radius
@ (Fig. 11.2). Any point A on this sphere determines the direction from 0 to A. Con-
sequently, the direction in which the molecules of a gas move at a certain moment
can be set by points on the sphere. The equal probability of all the directions re-
sults in the fact that the points showing the directions of motion of the molecules
will be distributed over the sphere with a constant density. The latter equals the
number # of molecules being considered divided by the surface area of the sphere
4c@2. Collisions lead to changes in the directions of motion of the molecules. As
a result, the positions of the # points on the sphere continuously change. Owing
to the chaotic nature of the motion of the molecules, however, the density of the
points at any spot on the sphere remains constant all the time.

The number of possible directions in space is infinitely great. But at each mo-
ment a finite number of directions is realized, equal to the number of molecules
being considered. Therefore, putting the question of the number ofmolecules hav-
ing a given (depicted by the point on the sphere) direction of motion is deprived
of all meaning. Indeed, since the number of possible directions is infinitely great,
whereas the number of molecules is finite, the probability of at least one molecule
flying in a strictly definite direction equals zero. A question we are able to answer
is what number ofmolecules move in directions close to the given one (determined
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Fig. 11.3 Fig. 11.4

by point A on the sphere). All the points of the surface elements J( of the sphere
taken in the vicinity of point A (see Fig. 11.2) correspond to these directions. Since
the points depicting the directions of motion of the molecules are distributed uni-
formly over the sphere, then the number of points within the area J( will be

J#A = #
J(

4c@2
. (11.12)

The subscript A indicates that we have in view the molecules whose directions of
motion are close to that determined by point A.

The ratio J(/@ is the solid angle JS subtended by the area J(. Therefore,
Eq. (11.12) can be written as follows:

J#A = #
JS

4c
. (11.13)

Here JS is the solid angle containing the directions of motion of the molecules
being considered. We remind our reader that 4c is a complete solid angle (corre-
sponding to the entire surface of the sphere).

The direction of 0A can be given with the aid of the polar angle \ and the
azimuth i (Fig. 11.3). Hence, the directions of motion of the molecules of a gas
can be characterized by giving for each molecule the values of the angles \ and i
measured from a fixed direction 0Z (we can take the direction of a normal to the
surface of the vessel confining a gas as such a direction) and the plane P0 drawn
through it.

Let us surround the origin of coordinates 0 with a sphere of radius @ and find
the element d( of the sphere corresponding to the increments d\ and di of the
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angles \ and i (Fig. 11.4). The element being considered is a rectangle with the sides
@ d\ and @ sin \ di. Thus,

d( = @2 sin \ d\ di. (11.14)
The expression obtained gives an element of the surface @ = constant in a spherical
system of coordinates.

Dividing Eq. (11.14) by @2, we shall find the element of the solid angle corre-
sponding to the angle intervals from \ to \ + d\ and from i to i + di:

dS\,i = sin \ d\ di. (11.15)
Two spheres of radii @ and @+d@, two coneswith the apex angles \ and \+d\, and

two planes forming the angles i and i+diwith P0 separate in space a rectangular
parallelepiped with the sides @ d\, @ sin \ di and d@ (see Fig. 11.4). The volume of
this parallelepiped

d+ = @2 sin \ d@ d\ di (11.16)
is an element of volume in a spherical system of coordinates (the volume corre-
sponding to an increase in the coordinates @, \, and i by d@, d\ and di).

Passing over from deltas to differentials in Eq. (11.13) and introducing Eq. (11.15)
for dS, we arrive at the expression

d#\,i = #
dS\,i

4c
= #

sin \ d\ di
4c

. (11.17)

The subscripts \ and i of d# indicate that we have in view the molecules whose
directions of motion correspond to the angle intervals from \ to \ + d\ and from
i to i + di.

11.3. Number of Collisions of Molecules with a Wall

Let us consider a gas in equilibrium confined in a vessel. We shall take an element
J( of the surface of the vessel and count the number of collisions of molecules
with this element during the time JB.

Let us separate from the # molecules in the vessel those d#D molecules whose
velocities have magnitudes ranging from D to D+ dD. Of these molecules, the num-
ber of molecules whose directions of motion are confined within the solid angle
dS equals

d#D,\,i = d#D

dS\,i

4c
(11.18)

[see Eq. (11.17)]. Of the molecules separated in this way, the ones confined in an
oblique cylinder with the base J( and the altitude (D cos \)JB (Fig. 11.15) will fly
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Fig. 11.5

during the time JB up to the area J( and collide with it¹. The number of these
molecules is

daD,\,i = d#D

dS\,i

4c
J((D cos \)JB

+
(11.19)

(+ is the volume of the vessel).
To obtain the total number of collisions of the molecules with the area J(, we

must summate Eq. (11.19) over the solid angle 2c (corresponding to changes in \
from 0 to c/2 and changes in i from 0 to 2c ) and over the velocities ranging from
0 to Dmax, where Dmax is the maximum velocity the molecules can have in the given
conditions (see the preceding section).

We shall begin with summation over the directions. For this purpose, we shall
write dS in the form sin \ d\ di [see Eq. (11.15)] and integrate Eq. (11.19) with respect
to \ within the limits from 0 to c/2 and with respect to i within the limits from 0

¹The objection could seem possible that part of these molecules would collide with other
molecules on their way to the wall, as a result of which they will change their direction and will
not reach the area J(. These collisions, however, will not violate the chaotic nature of motion of the
molecules: the transition of a certain number of molecules from the group moving toward the wall
to groups moving in other directions is attended by the simultaneous transition of the number of
molecules from the other groups to the one moving toward the wall. Consequently, in calculating
the number of molecules reaching the wall, the collisions of the molecules with one another may be
disregarded.
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to 2c :

daD =
d#DDJ(JB

4c+

∫ c/2

0
cos \ sin \ d\

∫ 2c

0
di.

Integration with respect to di gives 2c , and the integral with respect to d\ equals
1/2. Hence,

daD =
d#DDJ(JB

4+
. (11.20)

This expression gives the number of times the molecules flying in the directions
confined within the solid angle 2c and having velocities from D to D + dD collide
with the area J( during the time JB.

Summation over the velocities gives the total number of collisions of themole-
cules with the area J( during the time JB:

aJ(,JB =
J(JB

4+

∫ Dmax

0
D d#D. (11.21)

The expression
1
#

∫ Dmax

0
D d#D

is the mean value of the speed D. Substituting the product # 〈D〉 for the integral in
Eq. (11.21), we find that

aJ(,JB =
J(JB

4+
# 〈D〉 = 1

4
< 〈D〉 J(JB. (11.22)

Here < = #/+ is the number of molecules of a gas in unit volume.
Finally, dividing Eq. (11.22) by J( and JB, we shall find the number of collisions

of the gas molecules with a unit surface area of the wall in unit time:

a =
1
4
< 〈D〉 . (11.23)

The result obtained signifies that the number of collisions is proportional to the
number of molecules per unit volume (the “concentration” of the molecules) and
to the mean value of the speed of the molecules (and not their velocity—the mean
value of the velocity vector of the molecules for equilibrium of a gas is zero). We
must note that the quantity a in Eq. (11.23) is the density of the stream of molecules
striking the wall.

Let us consider an imaginary unit area in a gas. If the gas is in equilibrium,
the same number of molecules will fly through this area in both directions on an
average. The number of molecules flying in each direction in unit time is also
determined by Eq. (11.23).

Equation (11.23) can be obtained with an accuracy up to the numerical coeffi-
cient with the aid of the following simplified reasoning. Let us assume that the gas
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molecules travel only in threemutually perpendicular directions. If our vessel con-
tains # molecules, then at any moment #/3 molecules will travel in each of these
directions. One half of them (i.e., #/6 molecules) will travel in a given direction to
one side, and the other half to the other side. Hence, 1/6 of the molecules travel in
the directionwe are interested in (for example, along a normal to the given element
J( of the vessel’s wall).

Let us also assume that all the molecules travel with the same speed equal to
〈D〉. Therefore, during the time JB, the wall element J( will be reached by all the
molecules moving toward it that are inside a cylinder with the base J( and the
altitude 〈D〉 JB (Fig. 11.6). The number of these molecules is Ja = (</6)J( 〈D〉 JB.
Accordingly, the number of collisions with a unit area in unit time will be

a =
1
6
< 〈D〉 . (11.24)

The expression obtained differs from Eq. (11.23) only in the value of the numerical
factor (1/6 instead of 1/4).

Retaining our assumption on the motion of the molecules in three mutually
perpendicular directions, but negating the assumption on the molecules having
identical speeds, wemust separate from among themolecules in unit volume those
d<D molecules whose speed ranges from D to D + dD. The number of molecules
having such speeds and reaching the area J( during the time JB is

daD =
1
6
DJ(JB d<D. (11.25)

We get the total number of collisions by integratingEq. (11.25)with respect to speeds:

Ja =

∫
daD =

1
6
J(JB

∫ Dmax

0
D d<D =

1
6
< 〈D〉 J(JB.

Finally, dividing Ja by J( and JB, we get Eq. (11.24). Thus, our assumption that the
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molecules have identical speeds does not affect the result obtained for the number
of collisions of themolecules with the wall. As we shall see in the following section,
however, this assumption changes the result of pressure calculations.

11.4. Pressure of a Gas on a Wall

Thewalls of a vessel containing a gas are continuously bombarded by itsmolecules.
The result is that thewall element J( receives amomentumduring one second that
equals the force acting on this element. The ratio of this force to the area J( gives
the pressure exerted by the gas on the walls of the vessel. The pressure of the gas
on different portions of the vessel walls is the same owing to the chaotic nature of
motion of themolecules (naturally, provided that the gas is in an equilibrium state).

If we assume that the molecules rebound from a wall according to the law
of mirror reflection (\ref = \inc) and the magnitude of the velocity of a molecule
does not change², then the momentum imparted by a molecule to the wall upon
colliding with it will be 2;D cos \ (Fig. 11.7), where; is themass of amolecule. This
momentum is directed along a normal to the area. Each of the daD,\,imolecules [see
Eq. (11.19)] imparts a momentum of 2;D cos \ to the wall, and all these molecules
impart a momentum of

d D,\,i = 2;D cos \ daD,\,i = d#D

dS\,i

4c
2;D2 cos2 \J(JB

+
.

(We have used the symbol  for the momentum instead of the previously used
symbol > to avoid confusion—the latter symbol stands for pressure here.)

²The interaction of the molecules with the walls of the vessel is actually of a more complicated
nature (see Sec. 16.6), and our assumptions hold only on the average for a great number of collisions.
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Summation of the expression obtained by directions within the limits of the
solid angle 2c (corresponding to changes in \ from 0 to c/2 and changes in i from
0 to 2c ) gives the momentum imparted by the molecules whose velocities have
magnitudes ranging from D to D + dD:

d D = d#D

2;D2J(JB
4c+

∫ c/2

0
cos2 \ sin \ d\

∫ 2c

0
di

[we have introduced Eq. (11.15) for dS]. Integration with respect to di yields 2c ,
and the integral with respect to d\ is 1/3. Hence,

d D = d#D

;D2JB

3+
.

Integrating this expression with respect to velocities from 0 to Dmax we get the total
momentum imparted to the area J( during the time JB:

J =
;J(JB

3+

∫ Dmax

0
D2 d#D. (11.26)

The expression
1
#

∫ Dmax

0
D2 d#D

is the mean value of the square of the velocity of the molecules. Substituting the
product #

〈
D2

〉
for the integral in Eq. (11.26), we find that

J =
;J(JB

3+
#

〈
D2

〉
=
1
3
<;

〈
D2

〉
J(JB

(< = #/+ is the number of molecules in unit volume). Finally, dividing this ex-
pression by J( and JB, we obtain the pressure of a gas on the walls of the vessel
containing it:

> =
1
3
<;

〈
D2

〉
=
2
3
<
;

〈
D2

〉
2

. (11.27)

We have assumed that all the molecules have the same mass. We can therefore
put it inside the sign of the mean quantity. As a result, Eq. (11.27) acquires the form

> =
2
3
<

〈
;D2

2

〉
=
2
3
< 〈Ytr〉 (11.28)

where 〈Ytr〉 is the mean value of the kinetic energy of translation of the molecules.
Let us obtain an expression for the pressure proceeding from the simplified

notions that led us to Eq. (11.24). According to these notions, each molecule imparts
a momentum of 2; 〈D〉 to the wall it collides with. Multiplying this momentum by
the number of collisions [see Eq. (11.24)], we get the momentum imparted to a unit
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area in unit time, i.e., the pressure. We thus obtain the equation

> =
1
6
< 〈D〉 × 2; 〈D〉 = 1

3
<; 〈D〉2 . (11.29)

This equation differs from Eq. (11.27) in that it contains the square of the mean
velocity 〈D〉2 instead of themean square of the velocity

〈
D2

〉
. We shall see on a later

page (in Sec. 11.5) that these two quantities differ from each other, i.e.,
〈
D2

〉
≠ 〈D〉2.

In a more accurate calculation, we must multiply the number of molecules de-
termined according to Eq. (11.25) by 2;D and then summate over all the D’s. As a
result, we get the momentum imparted to the area J( during the time JB:

J =

∫ Dmax

0

1
6
d<DJ(JB × 2;D =

1
3
;J(JB

∫ Dmax

0
D2 d<D

=
1
3
<;

〈
D2

〉
J(JB.

Dividing this equation by J( and JB, we get Eq. (11.27) for the pressure. Thus, on
the basis of our simplified notion of the molecules travelling in three mutually per-
pendicular directions, we have obtained an exact expression for the pressure. The
explanation is that this simplification leads on the one hand to diminishing of the
number of collisions of the molecules with the wall [< 〈D〉 /6 instead of < 〈D〉 /4,
see Eqs. (11.23) and (11.24)], and on the other to overstating of the momentum trans-
mitted to the wall in each collision. In our simplified derivation, we assumed that
the wall receives a momentum of 2;D upon each collision. Actually, however, the
magnitude of the momentum imparted to the wall depends on the angle \, and
as a result the mean momentum imparted in one collision is 4;D/3. In the long
run, both inaccuracies mutually compensate each other and, notwithstanding the
simplified nature of our derivation, we obtain an exact expression for the pressure.

11.5. Mean Energy of Molecules

Let us write Eq. (11.28) for the pressure obtained in the preceding section and the
equation of state (10.21) of an ideal gas next to each other:

> =
2
3
< 〈Ytr〉 , > = <9).

A comparison of these equations shows that

〈Ytr〉 =
3
2
9). (11.30)

We have thus arrived at an important conclusion: the absolute temperature is
a quantity proportional to the mean energy of translation of molecules.
Only gas molecules have translation. For liquids and solids, the mean energy of
the molecules is proportional to the absolute temperature only when the motion
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of themolecules can be treated classically. In the quantum region, the mean energy
of the molecules stops being proportional to the absolute temperature.

Equation (11.30) is remarkable in that the mean energy is found to depend only
on the temperature and is independent of the mass of a molecule.

Since 〈Ytr〉 =
〈
;D2/2

〉
= (;/2)

〈
D2

〉
it follows from Eq. (11.30) that〈

D2
〉
=
39)
2;

. (11.31)

Representing
〈
D2

〉
in the form of the sum of the squares of the velocity compo-

nents, we can write:〈
D2F

〉
=

〈
D2G

〉
=

〈
D2H

〉
.

Taking this into account, we find that〈
D2F

〉
=
1
3

〈
D2

〉
=
9)

;
. (11.32)

Equation (11.30) determines the energy of only the translation of a molecule.
In addition to translation, however, rotation of a molecule and vibrations of the
atoms in the molecule are possible. Both these kinds of motion are associated with
a certain store of energy. The latter can be determined by the theorem on the equal
distribution of the energy by the degrees of freedom of a molecule established by
statistical physics.

The number of degrees of freedom of amechanical system is defined as the number of
independent quantities by means of which we can set the position of the system. Thus,
the position of a point particle in space is determined completely by setting the
values of three of its coordinates (for example, the Cartesian coordinates F, G, H,
or the spherical coordinates @, \, i, etc.). Accordingly, a point particle has three
degrees of freedom.
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The position of a perfectly rigid body can be determined by setting three coor-
dinates of its centre ofmass (F, G, H), the two angles \ and i indicating the direction
of an axis associated with the body and passing through its centre of mass (Fig. 11.8),
and, finally, the angle k determining the direction of a second axis associated with
the body and perpendicular to the first one. Hence, a perfectly rigid body has six
degrees of freedom. A change in the coordinates of the centre of mass with the an-
gles \, i, and k remaining constant is due to translation of a rigid body. Therefore,
the relevant degrees of freedom are called translational. A change in any of the
angles \, i, k with an unchanging position of the centre of mass is due to rotation
of a body, and in this connection the corresponding degrees of freedom are called
rotational. Hence, of the six degrees of freedom of a perfectly rigid body, three
are translational and three rotational.

A system of # point particles between which there are no rigid constraints has
3# degrees of freedom (the position of each of the # particles must be set by three
coordinates). Any rigid constraint establishing an unchangingmutual arrangement
of two particles reduces the number of degrees of freedom by one. For example,
if a system consists of two point particles with a constant distance : between them
(Fig. 11.9), then the number of degrees of freedom of the system is five. Indeed, in
this case, the following relation holds between the coordinates of the particles:

(F2 − F1)2 + ( G2 − G1)2 + (H2 − H1)2 = :2 (11.33)
owing to which the coordinates will not be independent: it is sufficient to set any
five coordinates, and the sixth one will be determined by condition (11.33). To clas-
sify these five degrees of freedom,we shall note that the position of a system formed
by two rigidly connected point particles can be determined as follows: we can set
the three coordinates of the centre of mass of the system (Fig. 11.10) and the two
angles \ and i that determine the direction in space of the axis of the system (i.e.,
the straight line passing through both points). It thus follows that three degrees of
freedom will be translational and two rotational. The latter correspond to rota-
tion about two mutually perpendicular axes 0′0′ and 0′′0′′ that are at right angles
to axis 00 of the system (Fig. 11.11). Rotation about axis 00 is deprived of meaning
for point particles.

If two point particles are connected by an elastic constraint instead of a rigid
one (i.e., so that any change in the equilibrium distance @0 between the particles
results in the setting up of forces tending to establish the initial distance between
the particles), then the number of degrees of freedom will be six. The position of
the system in this case can be determined by setting the three coordinates of the
centre of mass (Fig. 11.12), the two angles \ and i, and the distance @ between the
particles. Changes in @ correspond to vibrations in the system, consequently this
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degree of freedom is called vibrational. Thus, the system considered has three
translational, two rotational, and one vibrational degree of freedom.

Let us consider a system consisting of # point particles elastically connected
to one another. Such a system has 3# degrees of freedom. The particles have an
equilibrium configuration corresponding to a minimum potential energy of the
system. The equilibrium configuration is characterized by quite definite mutual
distances between the particles. If the particles are brought out of their positions
corresponding to equilibrium configuration, vibrations appear in the system. The
position of the system can be determined by setting the position of the equilibrium
configuration and the quantities characterizing the displacements of the particles
from their equilibrium positions. The latter quantities correspond to the vibra-
tional degrees of freedom.

The position of equilibrium configuration, like that of a perfectly rigid body, is
determined by six quantities which three translational and three rotational degrees
of freedom correspond to. The number of vibrational degrees of freedom is thus
3# − 6³.

³It is assumed that the equilibrium positions of the particles are not on one straight line. Other-
wise there will be only two rotational degrees of freedom, and 3# − 5 vibrational ones. We treated
this case in dealing with a system consisting of two particles.
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Experiments on measuring the heat capacity of gases have shown that atoms
must be treated as point particles in determining the number of degrees of freedom
of a molecule. Consequently, three translational degrees of freedom should be as-
cribed to a monatomic molecule. The degrees of freedom ascribed to a diatomic
molecule depend on the nature of the bond between the atoms. They include either
three translational and two rotational degrees of freedom (with a rigid bond), or,
apart from these five, another vibrational degree of freedom (with an elastic bond).
A triatomic molecule with rigid bonds has three translational and three rotational
degrees of freedom, etc.

We must note that no matter how many degrees of freedom a molecule has,
three of them are translational. Since none of the translational degrees of freedom
of amolecule has priority over the other two, an identical energy should fall to each
of them on an average. This energy is one-third of the value given by Eq. (11.30),
i.e., 9)/2.

The equipartitionprinciple is derived in classical statistical physics⁴. It states
that an identical kinetic energy equal to 9)/2 resides on the average in any degree of
freedom.

According to this principle, the mean energy of one molecule 〈Y〉 will be the
greater (at the same temperature), the more complex is the molecule and the more
degrees of freedom it has. In determining 〈Y〉, we must take into account that a
vibrational degree of freedommust have an energy capacity that is twice the value
for a translational or rotational one. The explanation is that translation and rota-
tion of a molecule are associated with the presence of only kinetic energy, whereas
vibration is associated with the presence of both kinetic and potential energy; for
a harmonic oscillator, the mean value of the kinetic and the potential energy is the
same. Hence, two halves of 9) must reside in each vibrational degree of freedom—
one in the form of kinetic energy and one in the form of potential energy.

Thus, the mean energy of a molecule should be

〈Y〉 = 7

2
9) (11.34)

where 7 is the sum of the number of translational (<tr), the number of rotational
(<rot), and the double number of vibrational (<vib) degrees of freedomof amolecule:

7 = <tr + <rot + 2<vib. (11.35)
For molecules with a rigid bond between their atoms, 7 coincides with the number
of degrees of freedom of a molecule.

Molecules of an ideal gas do not interact with one another. We can therefore

⁴This derivation is beyond the scope of a course in general physics.
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find the internal energy of one mole of an ideal gas by multiplying the Avogadro
constant by the mean energy of one molecule:

*m = #A 〈Y〉 =
7

2
#A9) =

7

2
'). (11.36)

A comparison of this equation with Eq. (10.28) shows that

�+ =
7

2
'. (11.37)

With a view to Eq. (10.33), we find that

�> =

(
7 + 2
2

)
'. (11.38)

Hence,

W =
�>

�+
=
7 + 2
7
. (11.39)

Thus, the quantity W is determined by the number and the nature of degrees of
freedom of a molecule.

Table 11.1 gives the values of �+ , �>, and W obtained for different species of
molecules by Eqs. (11.37), (11.38), and (11.39). Table 11.2 compares the theoretical results
with experimental data. The theoretical values have been obtained (except for the
case indicated in the footnote to the table) on the assumption that themolecules are
rigid; the experimental values have been obtained for temperatures close to room
temperature.

It should seem to follow fromTable 11.2 that agreement between theory and ex-
periments is quite satisfactory, at any rate for monatomic and diatomic molecules.
Actually, however, matters are different. According to the theory we have con-
sidered, the heat capacities of gases ought to be integral multiples of '/2 because
the number of degrees of freedom can only be integral. Therefore, even small de-
viations of �+ and �> from values that are multiples of '/2 have fundamental

Table 11.1

Molecule
Nature of
Molecule <tr <rot <vib 7 �+ �> W

Monoatomic — 3 — — 3 3
2'

5
2' 1.67

Diatomic Rigid 3 2 — 5 5
2'

7
2' 1.40

Diatomic Elastic 3 2 1 7 7
2'

9
2' 1.29

> 3 atoms Rigid 3 3 — 6 6
2'

8
2' 1.33
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significance. Examination of the table shows that such deviations, exceeding the
possible errors of measurements, are encountered.

The discrepancies between theory and experiments become especially strik-
ing if we turn to the temperature dependence of the heat capacity. Figure 11.13
shows a curve of the temperature dependence of the molar heat capacity �+ ob-
tained experimentally for hydrogen. The heat capacity should be independent of
the temperature according to theory. A glance at the figure shows that this holds
only within the limits of separate temperature intervals, and that within different
intervals the heat capacity has values corresponding to different numbers of de-
grees of freedom of a molecule. Thus, on portion 1-1′, we have �+ = 3'/2. This
signifies that a molecule behaves like a system having only translational degrees of
freedom. On portion 2-2′, we have �+ = 5'/2. Hence, at temperatures corre-
sponding to this portion of the curve, in addition to the three translational degrees
of freedommanifesting themselves at lower temperatures, two rotational ones ap-
pear in a molecule. Finally, at sufficiently high temperatures, �+ becomes equal

Table 11.2

Gas No. of atoms
in molecule

�+ × 10−3 �> × 10−3 W

Theor. Exp. Theor. Exp. Theor. Exp.

Helium (He) 1 12.5 12.5 20.8 20.9 1.67 1.67
Oxygen (O2) 2 20.8 20.9 29.1 28.9 1.40 1.40
Carbon monoxide (CO) 2 20.8 21.0 29.1 29.3 1.40 1.40
Water vapour (H2O) 3 25.0 27.8 33.2 36.2 1.33 1.31

33.2† 41.5† 1.25†

† For 7 = 8, i.e., assuming that there is additionally one vibrational degree of freedom.
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to 7'/2, which points to the presence of vibrations of a molecule at these tem-
peratures. Between these intervals, the heat capacity monotonously grows with
increasing temperature, i.e., corresponds, as it were, to a fractional varying num-
ber of degrees of freedom.

Thus, the number of degrees of freedom of a molecule manifesting itself in the
heat capacity depends on the temperature. At low temperatures, only translation
of the molecules is observed. At higher temperatures, rotation of the molecules is
observed in addition to translation. And, finally, at still higher temperatures, vibra-
tions of the molecules are also added to the first two kinds of motion. As indicated
by the monotonous nature of the heat capacity curve, here not all the molecules at
a time are involved in rotation, and then in vibration. First rotation, for example,
begins to be observed only in a small fraction of themolecules. This fraction grows
with elevation of the temperature, and in the long run when a definite temperature
is reached, virtually all the molecules will be involved in rotation.

Matters are similar for vibration of the molecules. This behaviour of the heat
capacity is explained by quantum mechanics. The quantum theory has established
that the energy of rotation and vibration of molecules is quantized. This signi-
fies that the energy of rotation and that of vibration of a molecule cannot have
any values, but only discrete ones (i.e., values differing from one another by a fi-
nite amount). Consequently, the energy associated with these kinds of motion can
change only in jumps. Such restrictions do not exist for the energy of translation.

The intervals between separate allowed values of the energy (or, in accordance
with the adopted terminology, between energy levels) are about an order greater
for vibration than for rotation. A simplified diagram of the rotational and vibra-
tional levels of a diatomic molecule is given in Fig. 11.14. (The distances between
the rotational levels are actually not the same, but this is of no significance for the
question being considered.)

We noted in Sec. 11.2 that the velocities of molecules are mainly grouped near a
most probable value. Accordingly, the predominating part of molecules have ener-
gies close to themean value 〈Y〉, and only a small part of themolecules have energies
considerably exceeding 〈Y〉. Hence, for an appreciable part of the molecules to be
involved in rotation or vibration, their mean energy must be sufficiently high in
comparison with the distance between the allowed levels of the relevant energy.

Let us take such a low temperature that the mean energy of a molecule 〈Y〉 is
considerably lower than the first allowed value of the rotational energy (see the
bottom dash line in Fig. 11.14). Now only an insignificant part of all the molecules
will be involved in rotation, so that the molecules of the gas will virtually have
only translation. Small changes in the temperature will result in changes only in
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the energy of translation, and the heat capacity of the gas will accordingly be 3'/2
(see 1-1′ on the curve depicted in Fig. 11.13).

Elevation of the temperature is attended by an increase in 〈Y〉 so that a con-
stantly growing part of the molecules will be involved in rotation. Portion 1′-2 of
the curve in Fig. 11.13 corresponds to this process.

After all the molecules begin to participate in rotation, the horizontal portion
2-2′ commences. At temperatures corresponding to it, the value of 〈Y〉 is still con-
siderably lower than the distance between the allowed levels of vibrational energy.
As a result, vibration of themolecules will virtually be absent. With a further eleva-
tion of the temperature, the molecules will begin to vibrate in greater and greater
numbers, which transition portion 2′-3 on the heat capacity curve corresponds
to. Finally, at a sufficiently high temperature, all the molecules will be involved in
vibration, and the heat capacity will become equal to 7'/2.

The classical theory of heat capacity is thus approximately correct only for
separate temperature intervals. A different number of degrees of freedom of a
molecule corresponds to each interval.

11.6. The Maxwell Distribution

We shall use the following procedure to find a way of quantitatively describing the
distribution of molecules by velocity magnitudes. Let us take Cartesian coordi-
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nate axes in an imaginary space which we shall call D-space (velocity space). We
shall lay off the values of DF , DG , DH of individual molecules along these axes (what
we have in view are the velocity components along the axes F, G, H taken in conven-
tional space). Hence, a point in this D-space will correspond to the velocity of each
molecule. Owing to collisions, the positions of the pointswill continuously change,
but their density at each place will remain unchanged (we remind our reader that
we are dealing with an equilibrium state of a gas).

Owing to all the directions of motion having equal rights, the arrangement
of the points relative to the origin of coordinates will be spherically symmetrical.
Hence, the density of the points in our D-space can depend only on the magnitude
of the velocity D (or on v2). Let us denote this density by #5 (D) (here # is the total
number of molecules in the given mass of gas). Hence, the number of molecules
whose velocity components are within the limits from DF to DF + dDF , from DG to
DG + dDG , and from DH to DH + dDH can be written in the form

d#DF ,DG ,DH = #5 (D) dDF dDG dDH (11.40)
(the product dDF dDG dDH gives an element of volume in D-space).

Points depicting velocities whosemagnitude is confinedwithin the limits from
D to D + dD are in the region between spheres of radii D and D + dD (Fig. 11.15). The
volume of this region is 4cD dD. Hence, the number of points in this region is de-
termined by the expression

d#D = #5 (D)4cD dD. (11.41)
This equation gives the number of molecules with velocity magnitudes ranging
from D to D + dD. Dividing it by # , we get the probability d%D of the velocity of a
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molecule being within the limits from D to D + dD:
d%D = 5 (D)4cD dD. (11.42)

By comparing this expression with Eq. (11.6), we conclude that
� (D) = 5 (D)4cD2 (11.43)

plays the part of a distribution or partition function of the molecules of a gas by
velocities.

The form of the function (11.43) was established theoretically in 1860 by James
Maxwell (1831-1879). We approximately follow his reasoning in the derivation of the
law of distribution of gas molecules by velocities set out below.

According toEq. (11.6), the probability of the velocity component DF of amolecule
having a value within the limits from DF to DF + dDF can be written in the form

d%DF = i(F) dDF (11.44)
where i(F) is a distribution function. The similar probabilities for the other two
components are determined by the equations

d%DG = i( G) dDG , (11.45)

d%DH = i(H) dDH . (11.46)
Owing to all directions of motion having equal rights, the analytical form of the
functions i(DF), i(DG), and i(DH) must be identical. These functions differ only in
the designation of the argument.

Maxwell assumed that the probability of one of the components, for instance
DF , having different values does not depend on the values of the other two compo-
nents (in our case DG and DH)⁵. This signifies that the events consisting in that DF
of a molecule is within the limits from DF to DF + dDF , DG of the same molecule is
within the limits from DG to DG +dDG , and, finally, DH of the same molecule is within
the limits from DH to DH +dDH , are statistically independent. Therefore the probabil-
ity that the velocity components of a molecule have values within the limits from
D- , DG , DH to DF +dDF , DG +dDG , DH +dDH equals the product of the probabilities given
by Eqs. (11.44)-(11.46):

d%DF ,DG ,DH = i(DF)i(DG)i(DH) dDF dDG dDH (11.47)
[see Eq. (11.4)]. At the same time, according to Eq. (11.40), this probability can be
written in the form

d%DF ,DG ,DH = 5 (D) dDF dDG dDH . (11.48)
A comparison of Eqs. (11.47) and (11.48) shows that
5 (D) = i(DF)i(DG)i(DH). (11.49)

⁵This assumption can be proved very strictly, but the proof is beyond the cope of our course.
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Taking logarithms of both sides of this equation, we get
ln[5 (D)] = ln[i(DF)] + ln[i( G)] + ln[i(DH)].

Differentiation of this expression with respect to DF yields
5 ′(D)
5 (D)

∂D

∂DF
=
i′(DF)
i(DF)

. (11.50)

Since D =
(
D2F + D2G + D2H

)1/2
, the partial derivative of D with respect to DF is

∂D

∂DF
=

DF(
D2F + D2G + D2H

)1/2 =
DF

D
.

Introducing this value of the derivative into Eq. (11.50) and then transferring DF from
the numerator of the left-hand side to the denominator of the right-hand one, we
get the equation

5 ′(D)
5 (D)

1
D
=
i′(DF)
i(DF)

=
1
DF
. (11.51)

The right-hand side of this equation, and therefore its left-hand side, is indepen-
dent of the variables DG and DH . Consequently, it also cannot depend on DF [the
quantities DF , DG , and DH in 5 (D) are symmetrical, see Eq. (11.49)]. Thus, each of the
expressions in the left-hand and right-hand sides of Eq. (11.51) equals a certain con-
stant which we shall denote by −U (we shall see later that this constant is less than
zero, i.e., U > 0).

Hence,
i′(DF)
i(DF)

1
DF

= −U, or
i′(DF)
i(DF)

= −UDF .

Integration yields

ln[i(DF)] = −
UD2F

2
+ ln �

where � is a constant. Thus,

i(DF) = � exp
(
−UD

2
F

2

)
. (11.52)

Similarly,

i(DG) = � exp

(
−
UD2G

2

)
, i(DH) = � exp

(
−UD

2
H

2

)
.

Multiplication of these functions yields

5 (D) = �3 exp
[
−U
2

(
D2F + D2G + D2H

)]
= �3 exp

(
−UD

2

2

)
. (11.53)

It can be seen from the form of functions (11.52) and (11.53) that the constant a
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must be greater than zero. If it were negative, these functions would growwithout
restriction with increasing D.

The constant � is found from the normalization condition (11.7). According to
this condition,

�

∫ +∞

−∞
exp

(
−UD

2
F

2

)
dDF = 1. (11.54)

We pointed out in Sec. 11.2 that the values of D (and, consequently, DF too) cannot
exceed a certain very great, but finite value Dmax. At the same time, we have taken
−∞ and +∞ as the integration limits. This extension of the integration limits does
not introduce an appreciable error. The integrand diminishes with increasing DF
so rapidly that at sufficiently great values of DF it does not virtually differ from
zero. Therefore, the contribution of the integration paths from Dmax to ∞ and
from −Dmax to −∞ is negligibly small.

The integral in Eq. (11.54) is a Poisson integral with V = U/2 [see Appendix A.2,
Eq. (A.1)]. According to Eq. (A.3), we have∫ +∞

−∞
exp

(
−UD

2
F

2

)
dDF =

(
c

U/2

)1/2
=

(
2c
U

)1/2
. (11.55)

Introducing this value into Eq. (11.54), we find that �
√
2c/U = 1. Hence,

� =

( U
2c

)1/2
. (11.56)

Using the found value of � in Eqs. (11.52) and (11.53), we arrive at the equations

i(DF) =
( U
2c

)1/2
exp

(
−UD

2
F

2

)
, (11.57)

5 (D) =
( U
2c

)3/2
exp

(
−UD

2

2

)
. (11.58)

To find the constant U, we shall use the function (11.57) to calculate the value of〈
D2F

〉
and equate the expression obtained to the value of 9)/; found by calculating

the pressure [see Eq. (11.31)]. In accordance with Eq. (11.11)〈
D2F

〉
=

∫ +∞

−∞
D2Fi(DF) dDF =

( U
2c

)1/2 ∫ +∞

−∞
exp

(
−UD

2
F

2

)
D2F dDF . (11.59)

According to Eq. (A.4), we have∫ +∞

−∞
exp

(
−UD

2
F

2

)
D2F dDF =

1
2

[
c

(U/2)3

]1/2
=

(
2c
U3

)1/2
. (11.60)

Substituting for the integral in Eq. (11.59) its value from Eq. (11.60), we find that〈
D2F

〉
=

( U
2c

)1/2 (
2c
U3

)1/2
=
1
U
.
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Comparison with Eq. (11.32) yields

U =
;

9)
. (11.61)

The use of this value in Eqs. (11.57) and (11.58) leads to the final expressions for the
distribution functions:

i(DF) =
( ;

2c9)

)1/2
exp

(
−;D

2
F

29)

)
, (11.62)

5 (D) =
( ;

2c9)

)3/2
exp

(
− UD

2

29)

)
. (11.63)

It must be remembered that function (11.63) when multiplied by # determines
the density of the points depicting the velocities of themolecules in D-space. Multi-
plication of this function by dDF dDG dDH gives the probability d%DF ,DG ,DH of the veloc-
ity components being within the limits from D- , DG , DH to DF +dDF , DG +dDG , DH +dDH .
Not only themagnitude of the velocity, but also its direction vary onlywithin small
limits determined by dDF , dDG , and dDH . If we are interested only in the probability
of themagnitude of the velocity regardless of the direction ofmotion of amolecule,
i.e., d%D, then wemust take the distribution function in the form of Eq. (11.43). Mul-
tiplication of this function by dD gives the probability of the velocity of a molecule
having themagnitude (with an arbitrary direction ofmotion)within the limits from
D to D + dD.

According to Eqs. (11.43) and (11.63), we have

� (D) =
( ;

2c9)

)3/2
exp

(
−;D

2

29)

)
4cD2. (11.64)

This function is characterized by the exponent containing the negative ratio be-
tween the kinetic energy of a molecule corresponding to the velocity D being con-
sidered and 9) , i.e., a quantity characterizing the mean energy of the molecules of
a gas.

A graph of function (11.62) is shown in Fig. 11.16. It coincides with the Gaussian
distribution of a random quantity.

A graph of function (11.64) is shown in Fig. 11.17. Since when D increases, a factor
of the kind 4−UD

2
diminishes more rapidly than the factor D2 grows, the function,

which begins at zero (owing to D2), reaches a peak and then asymptotically tends
to zero. The area enveloped by the curve equals unity [compare with Eq. (11.7)]. Let
us find the mean velocity of the molecules 〈D〉 (we have in mind the arithmetical
mean velocity). By analogy with Eq. (11.9), we have

〈D〉 =
∫ ∞

0
D� (D) dD =

( ;

2c9)

)3/2
4c

∫ ∞

0
exp

(
−;D

2

29)

)
D2 dD.

By passing over to the variable Z = D2 and integrating by parts, we arrive at the
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Fig. 11.16 Fig. 11.17

following result:

〈D〉 =
(
89)
c;

)1/2
. (11.65)

According to Eq. (11.11)〈
D2

〉
=

∫ ∞

0
D2� (D) dD =

( ;

2c9)

)3/2
4c

∫ ∞

0
exp

(
−;D

2

29)

)
D4 dD. (11.66)

From Eq. (A.6), we get∫ ∞

0
exp

(
−;D

2

29)

)
D4 dD =

3
8

(
c

(;/29))5

)1/2
=

3
8c2

(
2c9)
c

)5/2
.

Introducing this value of the integral into Eq. (11.66), we get for (
〈
D2

〉
) the value

39)/; that we already know [see Eq. (11.31)]. This is not surprising because when
finding the value of U in Eq. (11.57) we proceeded fromEq. (11.32), i.e., in essence from
Eq. (11.31).

The square root of
〈
D2

〉
is called themean square velocity:

Dm. sq =
√
〈D2〉 =

(
39)
;

)1/2
. (11.67)

The velocity corresponding to the maximum of � (D) will be the most probable
velocity. Taking the derivative of Eq. (11.64) with respect to D, omitting the constant
factors and equating the expression obtained to zero, we arrive at the equation

exp
(
−;D

2

29)

) [
2 − ;D

2

9)

]
D = 0.

The values D = 0 and D = ∞ satisfying this equation correspond to minima of
� (D). The value of Dmaking the expression in brackets vanish is the required most
probable velocity Dprob:

Dprob =

(
29)
;

)1/2
. (11.68)



330 STATISTICAL PHYSICS

Fig. 11.18 Fig. 11.19

By comparing Eqs. (11.65), (11.67), and (11.67), we find that

Dprob : 〈D〉 : Dm. sq =
√
2 :

√
8/c :

√
3 = 1 : 1.13 : 1.22.

Figure 11.18 illustrates this proportion.
Using Eq. (11.68) in (11.64), we shall find themaximumvalue of the function � (D):

� (Dprob) =
4
4

( ;

29)

)1/2
∝

(;
)

)1/2
. (11.69)

It can be seen from Eqs. (11.68) and (11.69) that when the temperature grows (or
the mass of a molecule diminishes), the peak of the curve moves to the right and
becomes lower. The area confined by the curve, as we know, remains unchanged.
Figure 11.19 compares two distribution curves that can be interpreted either as relat-
ing to different temperatures)1 and)2 (with identical;), or as relating to different
masses of the molecules ;1 and ;2 (with identical ) ).

The relative number of molecules whose velocity exceeds a certain value D0 is
determined by the expression∫ ∞

D0

� (D) dD.

In Fig. 11.19, the part of the area confined by the curve that is, to the right of D0
corresponds to this integral. It can be seen from the figure that the relative number
of molecules having velocities exceeding D0 greatly increases with elevation of the
temperature.

Table 11.3 gives the relative number of molecules J#/# for different velocity
intervals calculated with the aid of function (11.64). Inspection of the table shows
that the velocity of 70% of all the molecules differs from the most probable value
by not over 50%. Only 0.04% of the molecules have a velocity exceeding Dprob more
than three times. And only one of 12000 million molecules, on the average, has a
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velocity exceeding 5Dprob.
Let us assess the mean velocity of oxygen molecules. It is convenient to per-

form the calculations by replacing 9/; in Eq. (11.65) with the ratio '/" equal to it.
The expression for the mean velocity thus becomes

〈D〉 =
(
8')
c"

)1/2
. (11.70)

The molecular mass of oxygen is 32. Consequently, the mass of a mole " =

32 × 10−3 kgmol−1. Room temperature is about 300K. Introducing numerical
values into Eq. (11.70), we get

〈D〉 =
(
8 × 8.31 × 300
3.14 × 32 × 10−3

)1/2
≈ 500m s−1.

Thus, each molecule of oxygen travels a path, on the average, of 0.5 km in one
second. Since a molecule collides very frequently with other molecules, this path
consists of a great number of short straight lengths forming a broken line.

Hydrogen molecules have a mass that is 1/16 that of an oxygen molecule. As
a result, their velocity at the same temperature will be four times greater and will
be almost 2 km s−1 at room temperature.

If we have a mixture of gases in equilibrium, then the distribution (11.64) occurs
within the limits of the molecules of each species with its own value of ;. The
heavier molecules will travel on the average with a lower velocity than the lighter
ones.

On the basis of the distribution of molecules by velocities

d#D = #

( ;

2c9)

)3/2
exp

(
−;D

2

29)

)
4cD2, dD (11.71)

Table 11.3

D/Dprob J#/# , %

0.0-0.5 8.10
0.5-1.5 70.7
1.5-2.0 16.6
2.0-3.0 4.60
> 3.0 0.04
> 5.0 8 × 10−9
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we can find the distribution of the molecules by their values of the kinetic energy
of translation (we shall denote it by the symbol Y). For this purpose, we must pass
over from a variable D to a variable Y equal to ;D2/2. Substituting D = (2Y/;)1/2
and dD = (2;Y)−1/2 dY in Eq. (11.71), we obtain

d#Y = #
2
√
c
(9))−3/2 exp

(
− Y

9)

)
Y1/2 dY (11.72)

where d#Y stands for the number of molecules whose kinetic energy of translation
has values ranging from Y to Y + dY.

The distribution of the molecules by values of Y is thus characterized by the
function

5 (Y) = � exp
(
− Y

9)

)
Y1/2 (11.73)

where � is a normalization factor equal to (2/
√
c) (9))−3/2.

11.7. Experimental Verification of the Maxwell Distribution Law

The first experimental determination of the velocities of molecules was conducted
by 0. Stern in 1920. The apparatus he used for this purpose consisted of two coaxial
cylinders (Fig. 11.20). A silver-coated platinumwire was made taut along the axis of
the apparatus. When the wire was heated by passing an electric current through it,
silver atoms evaporated from its surface. The velocities of the evaporated atoms
corresponded to the temperature of the wire. The atoms travelled in radial direc-
tions after escaping from the wire. The inner cylinder had a narrow longitudinal
slot through which a narrow beam of atoms (a molecular beam) passed outward.
The entire apparatuswas evacuated to prevent deviations of the silver atoms due to
collisions with air molecules. After reaching the surface of the outer cylinder, the
silver atoms settled on it and formed a layer having the shape of a narrow vertical
stripe.

If the entire apparatus is brought into rotation, the trace left by the molecular
beam will be displaced along the surface of the outer cylinder by the amount JA
(see Fig. 11.20). This will occur because the apparatus manages to turn through the
angle Jiwhile the silver atoms are flying through the space between the cylinders.
As a result, a different part of the outer cylinder will be opposite the beam and it
will be displaced relative to the initial trace A0 by the amount JA equal to 'Ji ('
is the radius of the outer cylinder). Considering the motion of the silver atoms
in a rotating reference frame associated with the cylinders, the displacement of
the trace can be explained by the action on the atoms of a Coriolis force equal to
2;(v × 8).
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Fig. 11.20

The distance JA between the original and the displaced stripes of silver can be
related to the angular velocity of the cylinders l, the geometry of the apparatus,
and the velocity of the atoms D. Denoting the flying time by JB, we can write that

JA = l'JB. (11.74)
Since the radius of the inner cylinder is small in comparison with that of the outer
cylinder ', the flying time can be assumed to equal

JB =
'

D
.

Using this expression in Eq. (11.74) and solving the resulting equation with respect
to D, we get

D =
l'2

JA
.

The velocity of the atoms can be determined by measuring the displacement
of the trace JA and the angular velocity of the apparatus. Complications are in-
troduced, however, by the fact that owing to velocity distribution the atoms have
different velocities. As a result, the displaced stripe will be blurred⁶. By studying
the profile of the trace (see Fig. 11.20), Stern found it possible to form an approxi-
mate notion of how the silver atoms are distributed by velocities.

The results of Stern’s experiment confirmed the correctness of estimating the
mean velocity of atoms that follows from the Maxwell distribution. This experi-

⁶Thewidth of the stripe obtainedwith a stationary apparatus is determined only by the geometry
of the apparatus, in particular by the width of the slot through which the molecular beam emerges.
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Fig. 11.21

ment, however, could give only very approximate information on the nature of the
distribution itself.

The distribution lawwas verifiedmore accurately in the experiment conducted
by J. Lammert (1929). He passed a molecular beam through two rotating disks with
radial slots displaced relative to each other through an angle i (Fig. 11.21). Only
those of the molecules which pass through the slot in the first disk will fly through
the second disk that arrive at it and encounter the slot in it. The faster molecules
will reach the second disk too early, and the slower ones too late to pass through the
slot. Thus, this apparatus makes it possible to separate molecules having a definite
velocity from a beam (owing to the finite width of the slots, the apparatus separates
molecules whose velocities are within a certain interval JD). The mean velocity of
the molecules separated by the apparatus can be found from the condition that the
time B1 duringwhich themolecules cover the distance : between the disks (B1 = :/D)
must coincide with the time B2 during which the disks rotate through the angle i
(i.e., B1 = i/l). Equating these two times, we get

D =
l:

i
.

By changing the angular velocity l of the apparatus (or the angle i between the
disks), we can separate molecules having different magnitudes of their velocity
from the beam. By trapping these molecules during a definite time, we can find
their relative number in the beam.

The results of Lammert’s experiment and of other experiments undertaken for
the same purpose completely agree with the distribution law established theoreti-
cally by Maxwell.

Itmust be noted that the distribution ofmolecules by velocities in a beamflying
out through a hole in a vessel differs somewhat from the distribution in a closed
vessel. Since the faster molecules will pass through the hole in a relatively greater
number than the slower ones, the beamwill be rich in the fastermolecules. Because
the number of molecules flying through the hole in unit time is proportional to D,
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Fig. 11.22

the distribution in the beam will be characterized not by the function (11.64), but
by the function

�1(D) = �1 exp
(
−;D

2

29)

)
D3

where �1 is a normalization factor. The most probable velocity in this case is
Dprob =

√
39)/;, and the mean velocity is 〈D′〉 =

√
9c9)/8;.

11.8. The Boltzmann Distribution

The barometric formula (10.71) obtained in Sec. 10.14, i.e.,

> = >0 exp
(
−"6ℎ

')

)
gives the dependence of the pressure on the altitude for an imaginary isothermal
atmosphere. Let us replace "/' in the exponent with the ratio ;/9 equal to it
(; is the mass of a molecule, and 9 is the Boltzmann constant). In addition, let us
substitute <9) for > and <09) for >0 according to Eq. (10.21). After cancelling 9)
in both sides of the equation, we arrive at the formula

< = <0 exp
(
−;6ℎ
9)

)
. (11.75)

Here < is the density of the molecules (i.e., their number in a unit volume) at the
altitude ℎ, and <0 is the density of the molecules at the altitude ℎ0 = 0.

It can be seen fromEq. (11.75) thatwith lowering of the temperature, the number
of particles at altitudes other than zero diminishes and vanishes at) = 0 (Fig. 11.22).
At absolute zero, all the molecules would be at the Earth’s surface. At high temper-
atures, on the contrary, < only slightly diminishes with increasing altitude so that
the molecules are distributed by altitude almost uniformly.
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This fact has a simple physical explanation. Each concrete distribution of the
molecules by altitude sets in as a result of the action of two trends: (1) the attrac-
tion of the molecules to the Earth (characterized by the force ;6) tends to arrange
them on the Earth’s surface, and (2) thermal motion (characterized by the quantity
9) ) tends to scatter the molecules uniformly over all the altitudes. The first trend
prevails to a greater extent, the greater is; and the smaller is) , and the molecules
crowd together at the Earth’s surface. In the limit at ) = 0, the thermal motion
stops completely, and under the influence of the Earth’s attraction the molecules
occupy its surface. At high temperatures, thermal motion prevails, and the density
of the molecules slowly diminishes with the altitude.

At different altitudes, a molecule has different stores of potential energy:
Yp = ;6ℎ. (11.76)

Consequently, the distribution of themolecules by altitude is also their distribution
by the values of the potential energy. In view of Eq. (11.76), we can write Eq. (11.75)
as follows:

< = <0 exp
(
−
Yp

9)

)
(11.77)

where < is the density of the molecules at the spot in space where a molecule has
the potential energy Yp and <0 is the density of the molecules where the potential
energy of a molecule vanishes.

Examination of Eq. (11.77) shows that the density of molecules per unit volume
is greater where their potential energy is lower, and, conversely, their density is
lower where their potential energy is greater.

According toEq. (11.77), the ratio of <1 to <2 at pointswhere the potential energy
of a molecule has the values Yp,1 and Yp,2 is

<1

<2
= exp

[
−

(
Yp,1 − Yp,2

)
9)

]
. (11.78)

L. Boltzmann proved that distribution (11.77) holds not only for the potential field
of the Earth’s gravitation, but also for any potential field of forces containing an as-
sembly of any identical particles in a state of chaotic thermal motion. Accordingly,
distribution (11.77) is called the Boltzmann distribution.

Whereas Maxwell’s law gives the distribution of particles by values of their
kinetic energy, Boltzmann’s law gives their distribution by values of their potential
energy. Both distributions are characterized by the presence of an exponential
factor whose exponent is the ratio of the kinetic or, correspondingly, the potential
energy of one molecule to the quantity determining the mean energy of thermal
motion of a molecule.

According to Eq. (11.77), the number ofmolecules contained in the volume d+ =
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dF dG dH at a point with the coordinates F, G, H is

d#F,G,H = <0 exp
[
−
Yp(F, G, H)

9)

]
dF dG dH. (11.79)

We have obtained another expression of the Boltzmann distribution law.
The Maxwell and Boltzmann distributions can be combined into the single

Maxwell-Boltzmann law according to which the number of molecules whose
velocity components arewithin the limits from DF , DG , DH to DF+dDF , DG+dDG , DH+dDH
and whose coordinates are within the limits from F, G, H to F +dF, G +dG, H +dH is

d#DF ,DG ,DH ,F,G,H = � exp
[
−

(
Yp + ;D2

)
9)

]
dDF dDG dDH dF dG dH (11.80)

[see Eqs. (11.40), (11.63), and (11.79)]. Here, � = <0(;/2c9))3/2, is a normalization
factor. We remind our reader that Yp = Yp(F, G, H) and D2 = D2F + D2G + D2H .

The potential energy Yp and the kinetic energy ;D2/2, and therefore the total
energy �, can take on a continuous series of values in distribution (11.80). If the
total energy of a particle can take on only a discrete series of values �1, �2, . . ., as
is the case, for example, for the internal energy of an atom, then the Boltzmann
distribution has the form

#7 = � exp
(
− �7
9)

)
(11.81)

where#7 is the number of particles in a statewith the energy �7, � is the constant of
proportionality thatmust complywith the condition

∑
7 #7 = �

∑
7 exp(−�7/9)) =

# (here # is the total number of particles in the system being considered).
Introducing the value of � found from the above condition into Eq. (11.81), we

get the final expression of the Boltzmann distribution for the case of discrete values
of the energy:

#7 =
# exp(−�7/9))∑
7

exp(−�7/9))
. (11.82)

11.9. Determination of the Avogadro Constant by Perrin

J. Perrin used distribution (11.75) as the basis of experiments (1909) for determining
the Avogadro constant. Very minute solid particles suspended in a liquid are in a
state of continuous disordered motion called Brownian motion (see Sec. 10.1). Its
cause is that with sufficiently small particles, the momenta imparted to a particle
by the molecules colliding with it at different sides are not balanced. If a particle
has appreciable dimensions, a great number of molecules collide with it simultane-
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Fig. 11.23

ously, so that the resultant momentum produced by all these collisions is nil. When
a particle is small, the deviations of the velocities of separate molecules and of the
number of colliding molecules from the mean values begin to tell. If the velocity
or the number of molecules colliding with a particle on one side is different than of
those colliding with it on the other side, then the resultant momentum imparted to
the particle will differ from zero, and the particle will begin to travel in the relevant
direction. At the next instant, the resultant momentum has a different direction.
Consequently, the particle will move chaotically all the time.

Brownianmotion points to the fact that sufficiently small particles are involved
in the thermal motion performed by molecules. Since they take part in thermal
motion, such particles should behave like giantmolecules, and they should obey the
laws of the kinetic theory, in particular the Boltzmann distribution [see Eq. (11.75)].

Themain difficulty in Perrin’s experimentwas the preparation of identical par-
ticles and determination of their mass. Using multiple centrifuging, Perrin suc-
ceeded in preparing a very homogeneous emulsion of virtually identical globules
of gamboge⁷ with radii of the order of several tenths of a micrometre. The emul-
sion was placed in a flat glass tray 0.1mm deep and was observed with the aid of
a microscope (Fig. 11.23). The microscope had such a small depth of field that only
particles in a horizontal layer about one micrometre thick were visible in it. By
moving the microscope vertically, it was possible to study the distribution of the
Brownian particles in height (depth).

Let ℎ stand for the height of the layer visible in the microscope above the bot-
tom of the tray. The number of particles getting into the field of vision of the
microscope is determined by the formula

J# = <(ℎ)(Jℎ
where <(ℎ) is the number of Brownian particles in a unit volume at the height ℎ, (
is the area and Jℎ the depth of field of the microscope.

⁷Gamboge (cambogia) is a thick gum resin obtained from notches in the bark of some species of
trees growing io Indochina and Shri Lanka.
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Applying Eq. (11.75) to the Brownian particles, we can write

<(ℎ) = <0 exp
(
− >
′ℎ

9)

)
where <0 is the number of particles in a unit volume at ℎ = 0, and >′ is the weight
of a Brownian particle in the emulsion, i.e., the weight taken with account of the
correction for Archimedes’ principle.

Expressing the number of particles J# for two different heights ℎ1 and ℎ2, we
get

J#1 = <0 exp
(
− >
′ℎ1
9)

)
(Jℎ,

J#2 = <0 exp
(
− >
′ℎ2
9)

)
(Jℎ.

Finally, taking logarithms of the ratio J#1/J#2, we arrive at the following ex-
pression:

ln
(
J#1

J#2

)
=
>′(ℎ2 − ℎ1)

9)
. (11.83)

After measuring >′, ) , (ℎ2 − ℎ1), J#1, and J#2, Eq. (11.83) can be used to find
the Boltzmann constant 9. Next, by dividing the molar gas constant ' by 9, the
Avogadro constant #A can be found.

The value of #A obtained by Perrin using different emulsions ranged from
6.5 × 1023mol−1 to 7.2 × 1023mol−1. Its value determined by other more accurate
methods is 6.02 × 1023mol−1. Thus the value obtained by Perrin agrees quite well
with values obtained by other methods. This proves the possibility of applying the
Boltzmann distribution to Brownian particles.

11.10. Macro- and Microstates. Statistical Weight

The state of a macroscopic body (i.e., a body formed by an enormous number of
molecules) can be set with the aid of the volume, pressure, temperature, internal
energy, and other macroscopic (i.e., characterizing the body as a whole) quantities.
A state characterized in this way is defined as amacrostate.

A state of a macroscopic body which is characterized in such detail that the
states of all the molecules forming the body are set is defined as amicrostate.

A macrostate can be achieved in various ways, and a certain microstate of the
body corresponds to each way. The number of various microstates corresponding
to a given macrostate is called the statistical weight or thermodynamic proba-
bility of the macrostate. Thus, the statistical weight is the number of microscopic
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Fig. 11.24

ways in which we can achieve a given macrostate.
To explain the concept of statistical weight, let us consider the ways in which

the molecules of a gas can be distributed between the two halves of the vessel con-
taining the gas. Let the total number of molecules be # . We shall characterize the
state of the gas by the number of molecules < in the left half of the vessel (the num-
ber of molecules in the right half will accordingly be # − <). We shall characterize
the state of an individual molecule by indicating which half of the vessel it is in.
Such a description of the state of a gas and the states of its individual molecules
is naturally far from complete. But it is sufficient to explain the features of the
statistical behaviour of any macrosystems using this example.

Let us begin with the total number of the molecules equal to four (Fig. 11.24).
Each molecule can be either in the left or the right half of the vessel with an equal
probability. Therefore, the probability of, say, molecule 1 being in the left half
of the vessel is 1/2. The residing of molecule 1 in the left half of the vessel and
the residing of molecule 2 in the same half are statistically independent events.
Hence, the probability of molecules 1 and 2 simultaneously occupying the left half
of the vessel equals the product of their individual probabilities of being there, i.e.,
(1/2)2. Continuing this reasoning, we find that the probability of all fourmolecules
simultaneously residing in the left half of the vessel is (1/2)4.

Similar reasoning shows that the probability of any arrangement of themolecules
in the vessel (say, one inwhichmolecules 1 and 4 are in the left half andmolecules 2
and 3 in the right one) also equals (1/2)4. Each of the arrangements is a microstate
of the gas. It follows from what has been said above that the probability of all the
microstates is the same and equals (1/2)4.

Table 11.4 shows all the possible ways of distributing the molecules between
the halves of the vessel (all the microstates of the gas). A state characterized by,
for instance, the left half of the vessel containing one molecule (it is no difference
which one) and the right half containing three is a macrostate. Inspection of the
table shows that four microstates correspond to such a macrostate. Hence, the
statistical weight of the given macrostate is 4, and the probability (conventional,
and not thermodynamic) is 4/16. A macrostate in which both halves of the vessel
contain the same number of molecules is realized with the aid of six microstates.
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Its statistical weight is accordingly 6, and its probability (conventional) is 6/16.
The above example shows that all the microstates of a given system are equally

probable. Consequently, the statistical weight is proportional to the probability
(conventional) of the macrostate. The statement that all microstates are equally
probable forms the foundation of statistical physics and is called the ergodic hy-
pothesis.

According to Table 11.4, when we are dealing with four molecules, the proba-
bility of all the molecules gathering in one of the halves (left or right) of the vessel
is quite great (one-eighth). Matters change appreciably, however, with an increase
in the number of molecules.

Let us find the number ofways (the number ofmicrostates) inwhich amacrostate
can occur characterized by the left half of the vessel containing <molecules of their

Table 11.4

State Ways of realizing state Number of
ways of
realizing a
given state (S)

Number of
molecules
at left

Number of
molecules
at right

Number of
molecules
at left

Number of
molecules
at right

0 4 — 1, 2, 3, 4 1

1 3

1 2, 3, 4

4
2 1, 3, 4
3 1, 2, 4
4 1, 2, 3

2 2

1, 2 3, 4

6

1, 3 2, 4
1, 4 2, 3
2, 3 1, 4
2, 4 1, 3
3, 4 1, 2

3 1

1, 2, 3 4

4
1, 2, 4 3
1, 3, 4 2
2, 3, 4 1

4 0 1, 2, 3, 4 — 1

Total ways 24 = 16
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total number # , and by the right half containing # − <molecules. We shall num-
ber the molecules from 1 to # for this purpose. Next we shall take one molecule
at a time and put it in the left half of the vessel. We can choose the first molecule
in # ways, the second in # − 1 ways, the third in # − 2 ways, and, finally, we can
choose the <-th molecule in # − < + 1 ways. We shall place the remaining # − <
molecules in the right half of the vessel.

We can thus see that the number H of ways in which we can randomly choose
<molecules for the left half of the vessel from their total number # is

H = # (# − 1) (# − 2) . . . (# − < + 1).
Multiplying and dividing this number by (# − <)!, we get

H =
# !

(# − <)! . (11.84)

Not all Hways, however, result inmicrostates that differ fromone another. Sep-
arate microstates differ only in the combination of the numbers of the molecules
chosen for each half of the vessel, but not in the sequence in which these numbers
were selected. For example, for # = 3 and < = 2, we get the selections

1-2 2-1 3-1
1-3 2-3 3-2.

Of these, selections 1-2 and 2-1 correspond to the same microstate (molecules 1
and 2 in the left half and 3 in the right one). The same relates to selections 1-3 and
3-1, and also to 2-3 and 3-2. Thus, selections differing only in the permutation of <
numbers of the molecules chosen for the left half of the vessel (the number of these
selections is <!) correspond to the same microstate. Hence, to obtain the number
of microstates by means of which we can provide the macrostate (<, # − <), we
must divide the number H given by Eq. (11.84) by <!. The resulting expression for
the statistical weight is

S(<, # − <) = # !
<!(# − <)! . (11.85)

It is easy to see that S(2, 4 − 2) = 6, and S(1, 4 − 1) = 4 (see Table 11.4).
Table 11.5 gives the values of S calculated by Eq. (11.85) for # = 24.
The total number of ways of distributing 24 molecules between the two halves

of a vessel is 224 = 16777216, and only in two cases are all the molecules concen-
trated in one of the halves. The probability of such an event is about 10−7. Four
cubic centimetres of air contain about 1020 molecules. The probability of all these
molecules gathering in one of the halves of a vessel is two divided by two raised
to the power 1010, i.e., about 10−3×10

19
. This probability is so small that we can

consider it virtually equal to zero.
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Fig. 11.25

Figure 11.25 depicts a graph showing how the number of molecules < in one of
the halves of the vessel changes with time. This number fluctuates about the mean
value equal to #/2. Random deviations of the values of a physical quantity F from
its mean value 〈F〉 are called fluctuations of this quantity. Denoting the fluctuation
by JF, we find that

JF = F − 〈F〉 . (11.86)
The arithmetical mean of the quantity (11.86) equals zero. Indeed,

〈JF〉 = 〈(F − 〈F〉)〉 = 〈F〉 − 〈F〉 = 0.
This is why fluctuations are characterized by themean square fluctuation equal
to [〈

(JF)2
〉]1/2

. (11.87)
The relative fluctuation of the quantity F is more indicative. It is determined

Table 11.5

Number of molecules
S Probability

Number of molecules
S Probability

at left at right at left at right

0 24 1 6.0 × 10−7 9 15 1307504 7.8 × 10−2

1 23 24 1.4 × 10−6 10 14 1961256 0.117
2 22 276 1.6 × 10−5 11 13 2496144 0.149
3 21 2024 1.2 × 10−4 12 12 2704156 0.161
4 20 10626 6.3 × 10−4 13 11 2496144 0.149
5 19 42504 2.5 × 10−3 . . . . . . . . . . . .
6 18 134596 8.0 × 10−3 23 1 24 1.4 × 10−6

7 17 346104 2.0 × 10−2 24 0 1 6.0 × 10−7

8 16 735471 4.4 × 10−2

Total 224 = 16777216 ways
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by the ratio[〈
(JF)2

〉]1/2
〈F〉 . (11.88)

It is proved in statistical physics that the relative fluctuation of an additive
quantity (i.e., a quantity whose value for the body as a whole equals the sum of
the values for its separate parts) is inversely proportional to the square root of the
number of molecules # forming the body:[〈

(JF)2
〉]1/2

〈F〉 ∝ 1
#1/2 . (11.89)

Let us calculate the relative fluctuation of the number of molecules in the left
half of the vessel using the data of Table 11.4. We shall perform our calculations by
Eq. (11.5). The values of the fluctuations and their probabilities % are given below.

< − #/2 . . . − 2 − 1 0 + 1 + 2
% . . . 1/16 4/16 6/16 4/16 1/16

According to these data〈
(< − #/2)2

〉
= (−2)2 × 1/16 + (−1)2 × 4/16 + (0)2 × 6/16

(+1)2×4/16 + (+2)2 × 1/16 = 1.

Hence, the mean square fluctuation equals
√
1 = 1, and the relative fluctuation

equals 1/2 (the mean value of < is 2). Similar calculations performed using the data
of Table 11.5 give the value 2.45 for the mean square fluctuation, and 0.204 for the
relative fluctuation. It is easy to see that

0.5 : 0.204 =
√
24 : 4. (11.90)

This proportion agrees with Eq. (11.89).
Examination of Table 11.5 shows that deviations from the mean number of

molecules (equal to 12) by not over 2 molecules occur with a probability of 0.7,
and deviations by not over 3 molecules with a probability of 0.85. If the number of
molecules could be fractional, it would be possible for us to say that the gas spends
themajority of its time in states inwhich the deviations of the number ofmolecules
from the mean value do not exceed the relative fluctuation, i.e., 2.45.

Forming a proportion similar to (11.90) for # = 4 and # = 1020, we get the
relative fluctuation (5r) of the number of molecules in the left half of the vessel for
the case when # = 1020. This proportion has the form

0.5 : 5r =
√
1020 : 4

whence 5r = 10−10. The result obtained signifies that the value of the number of
molecules in one of the halves of the vessel undergoes changes that in the main do
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not exceed unity in the tenth significant digit.
We have considered the fluctuations of the number of molecules in one of the

halves of a vessel. Other macroscopic characteristics such as the pressure and the
density of the gas at different points of space also fluctuate, i.e., deviate from their
mean values.

Amacrostate of a system is an equilibriumonewhen it has no trend of changing
with time. It is clear that the absence of such a trend will be expressed the greatest
in the most probable of all the macrostates conceivable for the given system. The
probability of a state is proportional to its statistical weight. Therefore, the equi-
librium state can be determined as the state whose statistical weight is maximum.

A system in an equilibrium state deviates spontaneously fromequilibrium from
time to time. These deviations are insignificant and of a short duration, however.
The system spends the overwhelming part of its time in its equilibrium state char-
acterized by the maximum statistical weight.

Statistical physics reveals the nature of irreversible processes. Let us assume
that first a gas is in the left half of a vessel separated by a partition from the right
empty half. If we remove the partition, the gas spontaneously spreads out over
the entire vessel. This process will be irreversible because the probability of the
fact that as a result of thermal motion all the molecules will gather in one of the
halves of the vessel, as we have seen, is virtually nil. Hence, the gas cannot again
concentrate in the left half of the vessel by itself, without any external action on it.

Thus, the process of the spreading of the gas over the entire vessel is irreversible
because the reverse process is improbable. This conclusion can be extended to
other processes as well. An irreversible process is one whose reverse process is.
extremely improbable.

11.11. Entropy

We established in the preceding section that the probability of a macrostate (in
the following we shall call it simply a state) is proportional to its statistical weight
S, i.e., to the number of microscopic ways in which the given macrostate can be
achieved. We could therefore take this number itself, i.e., S, as a characteristic of
the probability of the state. Such a characteristic, however, would not have the
property of additivity. To convince ourselves in the truth of this statement, let us
divide a given system into two subsystems that do not virtually interact. Let these
subsystems be in states with the statistical weights S1 and S2. The number of ways
in which we can achieve the corresponding state of the system equals the product
of the number of ways in which we can achieve the states of each of the subsystems
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separately:
S = S1S2. (11.91)

This expression shows that S is not an additive quantity indeed.
Taking logarithms of Eq. (11.91), we get
ln S = ln S1 + ln S2. (11.92)

A glance at Eq. (11.92) shows that ln S is an additive quantity. It is much simpler
and more convenient to deal with additive quantities. For this reason, the quantity
( proportional to the logarithm of the statistical weight is taken as a characteristic
of the probability of a state. For a reason which will be explained below, we take
the constant of proportionality equal to the Boltzmann constant 9. The quantity

( = 9 ln S (11.93)
determined in this way is called the entropy of a system.

The properties of the entropy indicated below follow from what was said in
the preceding section:

1. The entropy of an isolated system growswhen an irreversible process occurs
in it. Indeed, an isolated system (i.e., one left by itself) passes over from a less
probable state to a more probable one, and this is attended by a growth of
quantity (11.93).

2. The entropy of a system in its equilibrium state is maximum.
We shall stress once more the not absolutely strict nature of the above state-

ments. For example, the entropy of a system in an equilibrium state undergoes
insignificant brief negative fluctuations. The latter are so small, however, that the
entropy can virtually be considered constant and equal to the maximum value.

The statement that the entropy of an isolated system can only grow (or remain
constant when a maximum value is reached) is known as the law of entropy in-
crease or the second law of thermodynamics. In other words, we can say that
the entropy of an isolated system cannot decrease.

Thus, when an irreversible process occurs in an isolated system, the entropy
grows, i.e., the following relation is observed:

d( > 0. (11.94)
To see how the entropy of a non-isolated system behaves, let us establish the

relation between the increment of the entropy d( and the amount of heat d′& sup-
plied to the system. Being a function of state, the entropy should be determined
by the parameters of state of a body (or a system of bodies). An ideal gas has the
simplest properties. Its equilibrium state is completely determined by setting two
parameters, for example, its volume + and temperature ) . Let us try to find the
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form of the function ( = ((+,)) for a monatomic ideal gas⁸.
We shall consider a monatomic ideal gas in equilibrium in a vessel of volume

+ . External force fields are absent. The number of molecules in the gas is # and its
temperature is) . Themacrostate of the gas is characterized by the values of the pa-
rameters + and ) , and its microstate is determined by setting the coordinates and
velocities of all # molecules. The distribution of the molecules by coordinates and
their distribution by velocities are independent. Therefore, the statistical weight S
of a macrostate can he represented in the form of the product of the factor Ssp de-
termining the number of different arrangements (permutations) of the molecules
in space, and the factor Sv determining the number of different distributions of
the molecules by velocities:

S = SspSv. (11.95)
Indeed, each of the Ssp arrangements in space can he realized together with any
of the Sv distributions by velocities. This gives us Eq. (11.95).

Thus, in the case being considered, the expression for the entropy has the form

( = 9 ln S = 9 ln Ssp + 9 ln Sv. (11.96)
It can be seen from this equation that the finding of the entropy of an ideal gas con-
sists in finding the numbers Ssp and Sv. Having determined how these numbers
depend on the parameters + and ) of a gas, we shall find its entropy as a function
of these parameters.

To determine the number Ssp, let us divide the volume+ occupied by a gas into
identical cubic cells. We shall choose the volume of a cell J+ so that the number
of cells

@ =
+

J+
(11.97)

is much smaller than the number of molecules# (@ � # ). Hence, manymolecules
will get into each cell on the average. We shall see below that the size of the cells
(except for the condition @ � # ) has no appreciable influence on the expression
for the entropy.

Let us consider a macrostate characterized in that the first cell contains <1
molecules, the second cell—<2 molecules,. . . , the @-th cell—<@ molecules (

∑
7 <7 =

# ). We shall find the number of ways (i.e., the number of microstates) in which
such a macrostate can he realized. For this purpose, we shall fix “sites” inside the
cells at which we shall “place” the molecules in distributing them among the cells
(in Fig. 11.26 these sites are designated by dots).

The molecules can be arranged at the sites depicted in Fig. 11.26 in # ! ways (# !

⁸The following derivation was proposed by N. B. Narozhny.
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Fig. 11.26

is the number of permutations of # molecules arranged at # sites at a time). Per-
mutations, however, in which the only change is the order of arrangement of the
molecules at the <1 sites of the 1st cell (the number of these permutations is <1!), or
at the <2 sites of the 2nd cell (the number of these permutations is <2!), etc., do not
result in a new microstate. We remind our reader that separate microstates differ
only in the numbers of themolecules getting into different cells. Let us fix the num-
bers of the <1 molecules in the first cell. The number of different permutations of
the molecules in this cell corresponding to each of the possible distributions of the
remainingmolecules among the other cells is <1!. Hence, dividing the total number
of permutations # ! by <1!, we eliminate from our consideration the permutations
differing only in the way of arrangement of the molecules in the first cell. Next
dividing # !/<1! by <2!, we exclude from our consideration the permutations dif-
fering only in the way of arranging the molecules in the second cell. Continuing
this process, we arrive at the equation

Ssp =
# !

<1!<2! . . . <@ !
(11.98)

that gives us the number of permutations of the molecules by cells differing only
in the numbers of the molecules in different cells [compare with Eq. (11.85)]. This
number is the “space” part of the statistical weight.

Since we have assumed that an external force field is absent, in the equilibrium
state themolecules are distributed over the volumewith a constant density. Hence,
the numbers <1, <2, . . . , <@ are identical on the average and equal < = #/@ (@ is the
number of cells). Thus, for the equilibrium state, the “space” part of the statistical
weight is

Ssp =
# !
(<!)@ .

Taking logarithms, we obtain
Ssp = ln# ! − @ ln <!. (11.99)

According to Stirling’s formula (see Sec. A.3), we have
ln# ! ≈ # ln# − #. (11.100)

We shall use this formula to transform Eq. (11.99) as follows:

ln Ssp ≈ # ln# − # − @(< ln < − #) = # ln# − # ln < = # ln
(
#

<

)
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(we have taken into account that @< = # ). The ratio #/< equals +/J+ . Hence,

ln Ssp = # ln
(
+

J+

)
= # ln+ − # ln J+. (11.101)

Let us now pass over to finding Sv. We shall introduce a space along whose
axes the components of themolecule velocities are laid off (a D-space). Let us divide
this space into identical cubic cells of volume JL. We shall see below that the value
of JL, like that of J+ , is of no significance; it is only important that the volume
JL be sufficiently great for many molecules to “get” into it.

In the equilibrium state, the density d of the points depicting the velocities of
the molecules is determined by a Maxwell distribution function [see Eqs. (11.40),
(11.53), and (11.63)]:

d = #5 (DF , DG , DH) = #�3 exp

−
;

(
D2F + D2G + D2H

)
29)


= #

( ;

2c9)

)3/2
exp

(
−;D

2

29)

)
.

Denoting the velocity corresponding to the 7-th cell byv7we get the following value
for the “density of the molecules” in the 7-th cell:

d7 = #

( ;

2c9)

)3/2
exp

(
−
;D2

7

29)

)
.

Finally, multiplying the density d7 by the volume of a cell JL, we get the number
of molecules <7 entering the 7-th cell:

<7 = #

( ;

2c9)

)3/2
exp

(
−
;D2

7

29)

)
JL. (11.102)

By analogy with Eq. (11.98), we conclude that the number of ways in which we can
distribute the molecules among the cells with the given values of the numbers <7 is

Sv =
# !

<1!<2! . . . <7! . . .
. (11.103)

Unlike Eq. (11.98), the number of cells is now infinitely great. For cells sufficiently
remote from the origin of coordinates, however, the numbers <7 virtually equal
zero. Taking logarithms of Eq. (11.103) yields

ln Sv = ln# ! −
∑
7

ln <7!.

Using expression (11.100), we get

ln Sv ≈ # ln# − # −
∑
7

(<7 ln <7 − <7) = # ln# −
∑
7

<7 ln <7. (11.104)
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(here
∑
7 <7 = # .)

According to Eq. (11.102), we have

ln <7 = ln# + ln JL + 3
2
ln

( ;

2c9

)
− 3
2
ln) −

;D2
7

29)
.

Introducing this equation into expression (11.104), we get

ln Sv = # ln# −
(
ln# + ln JL + 3

2
ln

( ;

2c9

) 3
2
ln)

) ∑
7

<7

+ 1
9)

∑
7

<7
;D2

7

2
. (11.105)

The expression
∑
7 <7

(
;D2

7

)
/2 is equivalent to#

〈
;D2/2

〉
= 3#9)/2, and the

sum
∑
7 <7 equals # . Taking this into account, we shall write Eq. (11.105) as follows:

ln Sv = −# ln JL − 3
2
# ln

( ;

2c9

)
+ 3
2
# ln) + + 1

9)
#
3
2
9)

=
3
2
# ln) − # ln JL + 3

2
#

[
1 − ln

( ;

2c9

)]
=
3
2
# ln) − # ln JL + 3

2
#U. (11.106)

Here U stands for the expression in brackets that contains no parameters of state
of a gas.

Assuming in Eqs. (11.101) and (11.106) that # equals the Avogadro constant #A
and then introducing these equations into Eq. (11.96), we arrive at a formula for the
entropy of one mole of a monatomic ideal gas:

(m = 9#A ln+ − 9#A ln J+ +
3
2
9#A ln) − 9#A ln JL +

3
2
9#AU.

The product 9#A equals the molar gas constant '. Consequently,

(m = ' ln+ + 3
2
' ln) − ' ln(J+ JL) + 3

2
'U.

Introducing the notation

(0 = −' ln(J+ JL) +
3
2
'U (11.107)

and taking into account that 3'/2 is the molar heat capacity of a monatomic gas
at constant volume �+ , we get the final formula

(m = ' ln+ + �+ ln) + (0. (11.108)
This formula determines themolar entropy of amonatomic ideal gas⁹ as a function
of the parameters of state + and ) . Using an equation of state, we can pass over to

⁹We shall show in Sec. 12.4 that Eq. (11.108) also holds for an ideal gas with polyatomic molecules.
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an expression for the entropy through other parameters, for instance, through +
and >.

It can be seen from Eq. (11.107) that the choice of the size of the cells J+ and JL
only affects the value of the additive constant (0, and the entropy is determined by
Eq. (11.108) with an accuracy up to this quantity.

When the heat d′& is supplied to a gas, either) changes (at a constant + ), or +
changes (at a constant) ), or both parameters) and+ change. The entropy changes
accordingly. To relate this change to d′&, let us find the differential of Eq. (11.108)
and multiply it by ) . The result is

) d(m =
')

+m
+ �+ d)

(to stress that we have in view a mole of the gas, we have used the subscript “m”
with + ).

The addend �+ d) gives the increment of the internal energy of a gas d*m.
Assuming that the process of supplying the heat d′& is reversible, we can represent
the addend (')/+m) d+m in the form > d+m = d′�. We thus arrive at the equation

) d(m = > d+m + d*m.

Owing to the additivity of (, + , and * , a similar equation holds for an arbitrary
mass of a gas:

) d( = > d+ + d* = d′� + d*.
According to the first law of thermodynamics, the right-hand side of this equation
equals d′&. Therefore,

) d( = d′&.
Hence,

) d(m. id =
d′&
)

reversible process (11.109)

(the subscript “m.id” signifies “monatomic ideal gas”).
We have obtained Eq. (11.109) when considering a monatomic ideal gas. It is

simple to extend it, however, to any thermodynamic system. Assume that we have
an isolated system in an equilibrium state whose composition, in addition to a
monatomic ideal gas, includes other bodies whose combination we shall call a sub-
system. All parts of the system have the same temperature (otherwise the state of
the system will not be an equilibrium one). Owing to additivity, the entropy of the
system (syst can be written in the form

(syst = (sub + (m. id

where (sub is the entropy of the subsystem, and (m. id is the entropy of amonatomic
ideal gas. Assume that the temperature of the gas experienced an infinitely small
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fluctuation d) . As a result, the gas will obtain the amount of heat d′&m. id from
the subsystem. The latter will receive the heat d′&sub = −d′&m. id. Owing to the
smallness of d) , this process can be considered as reversible. Consequently, the
entropy of the gas will receive the increment d(m. id = d′&m. id/) .

When a reversible process occurs in an isolated system, the entropy of the sys-
tem remains constant. It thus follows that

d(syst = d(sub + d(m. id = 0.
Taking into account the value d(m. id, we shall get the following expression for the
increment of the entropy of the subsystem:

d(sub = −d(m. id = −
d′&m. id

)
=
d′&sub

)
.

Thus, for a combination of arbitrary bodies too, the formula

d( =
d′&
)

(11.110)

holds. Here d′& is the amount of heat received by the system in a reversible process,
and ) is the temperature of the system.

We must note that whereas d′& is not a total differential, Eq. (11.110) is a total
differential (the entropy is a function of state).

Now we are in a position to explain why we took the Boltzmann constant 9 as
the constant of proportionality in Eq. (11.93). This resulted in the proportionality
constant between d( and d′&/) being equal to unity [see Eq. (11.110)].

A state achieved in a relatively small number of ways is called ordered or not
random. A state achieved inmany differentways is calleddisordered or random.
The entropy is thus a quantitative measure of the degree of molecular disorder
in a system. This circumstance makes it possible to understand the meaning of
Eq. (11.110). The supply of heat to a system results in greater thermal motion of
the molecules and, consequently, in an increase in the degree of disorder in the
system. The higher the temperature, i.e., the greater the internal energy of the
system, the relatively smaller is the fraction of the disorder due to the supply of
the given amount of heat d′&.

The reversibility of the process in the course of which the heat d′& is supplied
to the system is an important condition for Eq. (11.110) to hold. If the amount of heat
d′& is imparted to the system in the course of an irreversible process, the entropy
grows both as a result of supplying heat and as a result of the irreversibility of the
process. We therefore have the inequality

d( >
d′&
)
. irreversible process (11.111)

When d′& vanishes, this inequality transforms into expression (11.94). By ) in for-
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mula (11.111), wemean the temperature of the reservoir fromwhich the given system
receives the heat d′&. The temperature of the system in an irreversible processmay
not have a definite value because the state of the system is not an equilibrium one.

We can combine Eq. (11.110) and Eq. (11.111) and write

d( >
d′&
)
. (11.112)

The equality sign relates to reversible processes, and the non-equality sign to irre-
versible ones.

Expression (11.112) is the foundation for thermodynamic applications of the
concept of entropy. These applications will be dealt with in the following chap-
ter.

At absolute zero, any body, as a rule¹⁰, is in its basic state whose statistical
weight equals unity (S = 1). Equation (11.93) gives a value of zero for the entropy in
this case. It thus follows thatwhen the temperature of a body tends to absolute
zero, its entropy tends to zero:

lim
)→0

( = 0. (11.113)

This statement is the content of Nernst’s theorem. It is sometimes called the
third law of thermodynamics.

¹⁰There are exceptions to this rule which we shall not discuss.
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Chapter 12

THERMODYNAMICS

12.1. Fundamental Laws

Thermodynamics originated as a science on the conversion of heat into work. The
laws on which thermodynamics is based, however have such a general nature that
thermodynamic methods at present are being used with great success to study nu-
merous physical and chemical processes, as well as the properties of a substance
and radiation. As we have already noted in Sec. 10.1, thermodynamics does not
consider the microscopic picture of phenomena in studying the properties and
processes of the transformation of a substance. It treats phenomena on the basis
of fundamental laws extracted from experiments. For this reason, the conclusions
which thermodynamics arrives at have the same degree of authenticity as the laws
it is based on. The latter, in turn, are a generalization of an enormous amount of
experimental data.

Two laws form the foundation of thermodynamics. The first of them estab-
lishes the quantitative relations attending the conversions of energy from kind to
kind. The second law determines the conditions in which these conversions are
possible, i.e., it determines the possible directions of processes.

The first law of thermodynamics states that the heat supplied to a system is spent
on an increment in the internal energy of the system and on work done by the system
on external bodies:

& = *2 −*1 + � (12.1)
or in the differential form:

d′& = d* + d′� (12.2)
[see Eqs. (10.7) and (10.9)].

The first law is sometimes worded as follows: it is impossible to have a perpetual
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Fig. 12.1

motionmachine (perpetuummobile) of the first kind, i.e., such a periodically functioning
machine that would do work in a greater amount than the energy it receives from its
surroundings.

Any machine or engine is a system repeatedly performing a cyclic process (a
cycle). Assume that in the course of a cycle the working substance (for example,
a gas) first expands to the volume +2, and then is again compressed to its initial
volume +1 (Fig. 12.1). For the work during a cycle to be greater than zero, the pres-
sure (and, consequently, also the temperature) in the expansion process should be
greater than in compression. For this purpose, heat must be supplied to the work-
ing substance in expansion, and heat must be removed from it in compression.

The working substance returns to its initial state upon completing a cycle.
Therefore, the change in the internal energy during a cycle equals zero. The amount
of heat supplied to the working substance during a cycle is &1 − &′2, where &1 is
the heat received by the working substance in expansion, and &′2 is the heat given
up in compression. The work � done during a cycle equals the area of the cycle
(see Sec. 10.6). Equation (12.1) written for a cycle thus has the form

� = &1 − &′2. (12.3)
A periodically functioningmachine doingwork at the expense of heat received

from an external source is called a heat engine. We can see from Eq. (12.3) that not
all the heat &1 received from an external source is used to obtain useful work. For
a machine or engine to operate in cycles, part of the heat equal to &1 must be re-
turned to the surroundings and is therefore not used for its direct purpose (i.e.,
for doing useful work). It is clear that the more completely a heat engine converts
the heat &1 received from a source into useful work �, the more profitable is this
engine. It is therefore customary practice to characterize a heat engine by its effi-
ciency [ determined as the ratio of the work � done during a cycle to the heat &1
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received during the cycle:

[ =
�

&1
. (12.4)

In view of Eq. (12.3), the expression for the efficiency can be written in the form

[ =
&1 − &′2
&1

. (12.5)

It follows from the definition of the efficiency that it cannot be greater than unity.
If we reverse the cycle shown in Fig. 12.1, we shall get a cycle of a refrigerating

machine. Such a machine removes the heat &′2 from a substance at the tempera-
ture )2 and gives up the heat &1 to a substance with a higher temperature )1. The
work �′ must be done on the machine during a cycle. The effectiveness of a re-
frigerating machine is characterized by its refrigerating factor (or coefficient of
performance) V. The latter is defined as the ratio of the heat &2 removed from a
body being cooled to the work �′ spent to actuate the machine:

V =
&2

�′
=

&2

&′1 − &2
. (12.6)

The second law of thermodynamics, like the first one, can be formulated in
several ways. We have acquainted ourselves with one of them in Sec. 11.11. It is the
statement that the entropy of an isolated system cannot diminish:

d( > 0. (12.7)
The German physicist Rudolf Clausius (1822-1888) stated the second law as fol-

lows: processes are impossible whose only final result would be the flow of heat from
a colder body to a warmer one. Matters must not be understood in such a way that
the second law in general prohibits the transfer of heat from a colder body to a
warmer one. It is exactly such a transfer that is performed in a refrigerating ma-
chine. This transfer, however, is not the only result of a process. It is attended by
changes in the surrounding bodies associated with the performance of the work
�′ on the system.

We shall show that an imaginary process performed in an isolated system and
contradicting the second law as worded by Clausius is attended by a decrease in
the entropy. We shall thus prove the equivalence of Clausius’s statement and of
the statistical statement of the second law according to which the entropy of an
isolated system cannot diminish.

We shall first make the following remark. Assume that a body exchanges heat
with another body, which we shall call a heat source or heat reservoir. Let the
heat capacity of the reservoir be infinitely great. This signifies that when the reser-
voir receives or gives up a finite amount of heat, its temperature does not change.
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A process occurring in a body and attended by the exchange of heat with a reser-
voir can be reversible only if in the course of this process the temperature of the
body will equal that of the corresponding reservoir. Indeed, if, for example, a body
receives heat from a reservoir having the temperature )1 while having a temper-
ature lower than )1, then when the same process is reversed the body can return
to the reservoir the heat received from it if its temperature at any rate is not lower
than )1. Consequently, in the forward and the reverse course of the process, the
temperature of the body will differ, the body will pass in both cases through differ-
ent sequences of states (characterized by different temperatures), and the process
being considered will be irreversible.

Thus, a process attended by heat exchange can be reversible only if upon re-
ceiving heat and returning it in the reverse stroke to the reservoir, the body has the
same temperature equal to that of the reservoir. Strictly speaking, when receiving
heat, the temperature of the body must be lower than that of the reservoir by an
infinitely small value (otherwise no heat will flow from the reservoir to the body),
and when giving up heat, the temperature of the body must be higher than that of
the reservoir by an infinitely small value.

Consequently, the only reversible process attended by heat exchange with a
reservoir whose temperature remains constant is an isothermal process at the tem-
perature of the reservoir. Let us consider an isolated system consisting of two bod-
ies of the same heat capacity�. Assume that body B transfers the heat& to body A,
and as a result the temperature of A rises from)A,0 to)A, while the temperature of
B lowers from )B,0 to )B (here )B < )B,0 < )A,0 < )A). Such a process contradicts
the second law formulated by Clausius. Let us find the change in the entropy in
this case. In the course of this process, heat exchange occurs between bodies with
different temperatures. In view of what has been said above, such a process is irre-
versible. Equation (11.110), however, may be applied only to reversible processes. To
find the change in the entropy in an irreversible process, we proceed as follows. We
consider a reversible process that brings the system to the same final state as the
given irreversible process, and calculate the change in the entropy for this process
by the equation

(2 − (1 =
∫ 2

1

d′&
)

(12.8)

[see Eq. (11.110)].
In accordance with what has been said above, we shall consider a reversible

process in the course of which body B gives up the heat & in portions of d′& to a
consecutive series of reservoirswith temperatures having all the values from)B,0 to
)B, and body A receives the heat & in portions of d′& from a number of reservoirs
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with temperatures from)A,0 to)A. As a result, the systemwill pass reversibly from
the state in which the bodies have the temperatures )A,0 and )B,0 to the state in
which the temperatures of the bodies are)A and)B. The increment of the entropy
in the course of this process is

J( = J(A + J(B =

∫ )A

)A,0

� d)
)
+

∫ )B

)B,0

� d)
)

= � ln
(
)A

)A,0

)
+ � ln

(
)B

)B,0

)
= � ln

(
)A)B

)A,0)B,0

)
.

Taking into account that )A = )A,0 + U and )B = )B,0 − U (here U = &/� > 0), we
can write J( in the form

J( = � ln
[
()A,0 + U) ()B,0 − U)

)A,0)B,0

]
= � ln

[
1 − U()A,0 − )B,0)

)A,0)B,0
− U2

)A,0)B,0

]
.

Since )A,0 > )B,0, the expression in brackets is less than unity, and, consequently,
J( < 0. We have thus shown that in the course of an imaginary process contradict-
ing the second law as stated by Clausius, the entropy diminishes, which contradicts
the law of non-diminishing of the entropy.

The British scientist Lord Kelvin (William Thomson, 1824-1907) proposed still
another statement of the second law of thermodynamics. It is worded as follows:
such processes are impossible whose only final result would be the removal of a definite
amount of heat from a body and the complete conversion of this heat into work.

It may seem on the face of it that this statement contradicts, for example, the
process of isothermal expansion of an ideal gas. Indeed, all the heat received by
an ideal gas from a body is completely converted into work. The reception of heat
and its conversion into work are not the only final result of the process, however;
as a result of the process the volume of the gas changes.

In a heat engine, the conversion of heat into work is attended without fail by
an additional process—the transfer of a certain amount of heat &′2 to the colder
body. Hence, the heat &1 received from the warmer body cannot be completely
converted into work.

It is easy to see that Kelvin’s statement logically follows from that of Clausius.
Indeed, work can be completely transformed into heat, for example, in friction.
Therefore, by using a process forbidden by Kelvin’s statement to convert the heat
removed from a body completely into work, and then transforming this work by
friction into heat transferred to another bodywith a higher temperature, wewould
carry out a process that is impossible according to Clausius’s statement.

By using processes forbidden by the second law of thermodynamics, we could
create an engine doing work at the expense of the heat received from such a virtu-
ally inexhaustible source of energy, for example, as the ocean. In practice, such an
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engine would be equivalent to a perpetual motionmachine. This is why the second
law of thermodynamics is sometimes stated as follows: a perpetual motion machine
of the second kind is impossible, i.e., such a periodically operating engine that would
receive heat from a single reservoir and completely convert this heat into work.

12.2. The Carnot Cycle

It can be seen from the preceding section that the presence of two heat reservoirs
is needed for the operation of a heat engine. In the course of a cycle, the engine
receives the heat&1 from one of them having the higher temperature)1 and called
the high temperature reservoir (or heater, or heat source). The engine gives
up the heat &′2 to the second one having the lower temperature )2 and called the
low temperature reservoir (or cooler, or heat sink).

Let us assume that the heat capacity of the reservoirs is infinitely great. This
signifies that when the reservoirs give up or receive a finite amount of heat, their
temperatures do not change. Let us see what reversible cycle can be performed
by the working substance of the engine in these conditions. For brevity’s sake, we
shall call the working substance of the engine simply the substance.

The cycle being considered can evidently consist both of processes duringwhich
the substance exchanges heat with the reservoirs, and of processes not attended by
heat exchangewith the surroundings, i.e., adiabatic processes. We established in the
preceding section that the only reversible process attended by heat exchange with
a reservoir whose temperature remains constant is an isothermal process going on
at the temperature of the reservoir.

We thus arrive at the conclusion that a reversible cycle performed by a sub-
stance exchanging heat with two heat reservoirs of infinitely great capacity can
consist only of two isotherms (at the temperatures of the reservoirs) and two adia-
bats. Such a cycle was first proposed for consideration by the French engineer Sadi
Carnot (1796-1832) and is called the Carnot cycle. It must be noted that the Carnot
cycle is reversible by definition.

In an adiabatic process, d′& = 0. Hence, according to Eq. (11.110), in a reversible
adiabatic process d( = 0 and, consequently, the entropy remains constant. This
is why a reversible adiabatic process is called isentropic. Using this term, we can
say that a Carnot cycle consists of two isotherms and two isentropes. In a )-(
diagram, this cycle appears as shown in Fig. 12.2. We must note that the shape of a
Carnot cycle in a )-( diagram does not depend on the properties of the substance
(or system of substances) for which it is depicted.

Figure 12.3 shows a process that transfers a system from state 1 to state 2. Ac-
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Fig. 12.2 Fig. 12.3

cording to Eq. (11.110), the elementary amount of heat d′& received by the system
can be represented in the form) d(. Hence, the area of the shaded strip in Fig. 12.3
equals d′&, and the area of the figure confined by curve 1-2 gives the amount of
heat received by the system in the course of the process. Similarly, the area of the
figure confined by the curve depicting the process in a >-+ diagram gives the work
done by the system in the course of the process (see Fig. 10.4).

In accordance with the above, the area of the cycle in Fig. 12.2 gives the heat
received by the system in the course of the cycle (it equals &1 −&′2). Similarly, the
area of the cycle in a >-+ diagram gives the work done by the system during the
cycle (see Fig. 10.5).

The heat received by a system in the course of an arbitrary reversible process
can be calculated by the formula

& =

∫ 2

1
) d( (12.9)

[compare with Eq. (10.12)].
Let us find the efficiency of a Carnot cycle. Upon completing the cycle, the

system returns to its initial state. Hence, the total change in the entropy during the
cycle is zero. Along path 1-2 (see Fig. 12.2), the system receives the heat &1 from
the reservoir with the temperature )1. The entropy increment on this path is

J(12 =

∫ 2

1

d′&
)1

=
1
)1

∫ 2

1
d′& =

&1

)1
.

Along path 3-4, the system gives up the heat &′2 to the reservoir with the temper-
ature )2. The removal of the heat &′2 from a substance is equivalent to supplying
the heat −&′2 to it. Therefore, the entropy increment along path 3-4 is

J(34 =

∫ 4

3

d′&
)2

=
1
)2

∫ 4

3
d′& = −

&′2
)2
.

The entropy is constant along 2-3 and 4-1. Thus, the total entropy increment dur-
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ing the cycle is

J(12 + J(34 =
&1

)1
−
&′2
)2

= 0. (12.10)

It can be seen from Eq. (12.10) that
&1

)1
=
&′2
)2
. (12.11)

Equation (12.5) for the efficiency of a heat engine can be written in the form

[ =
&1 − &′2
&1

= 1 −
&′2
&1

. (12.12)

Substituting in this equation for &′2/&1 its value from Eq. (12.11), we get

[ = 1 − )2
)1

=
)1 − )2
)1

. (12.13)

In deriving Eq. (12.13), we made no assumptions on the properties of the work-
ing substance and the design of the heat engine. We thus arrive at the statement
that the efficiency of all reversible machines operating in identical conditions (i.e., at the
same temperatures of the hot temperature and cold temperature reservoirs) is the same
and is determined only by the temperatures of the two reservoirs. This statement is
known as the Carnot theorem.

Let us consider an irreversible machine operating with the hot temperature
and cold temperature reservoirs similar to those of a reversible machine operating
according to the Carnot cycle. Assume that upon completion of the cycle the ma-
chine returns to its initial state, which we shall consider an equilibrium one. Since
the entropy is a function of state, its increment during the cycle should equal zero:∮

d( = 0.

Since the processes which the cycle consists of are irreversible, for each ele-
mentary process the inequality d( > d′&/) holds [see expression (11.111)). Hence,
from the condition that the total entropy increment during the cycle equals zero,
it follows that

0 =

∮
d( >

∮
d′&
)

whence∮
d′&
)

< 0. (12.14)

Let us divide the integral in (12.14) into four addends:∮
d′&
)

=

∫
)1

d′&
)
+

∫
Ad1

d′&
)
+

∫
)2

d′&
)
+

∫
Ad2

d′&
)

< 0. (12.15)
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Fig. 12.4

The first addend corresponds to the process of obtaining the heat &1 (this amount
of heat does not necessarily coincide with the heat &1 which a reversible machine
receives during a cycle) from the reservoir with the temperature )1. The second
addend in (12.15) corresponds to the first adiabatic path of the cycle. The third ad-
dend corresponds to the process of transferring the heat &′2 (this amount of heat
does not necessarily coincide with the heat &′2 which a reversible machine gives
up during a cycle) to the reservoir with the temperature )2. Finally, the fourth
addend in (12.15) corresponds to the second adiabatic path of the cycle. On the adi-
abatic paths, d′& = 0, therefore the corresponding integrals vanish. The integral
corresponding to the path)1 equals&1/)1 (we remind our reader that for an irre-
versible process, the denominator of the ratio d′&/) contains the temperature of
the reservoir from which the given substance receives the heat d′&). The integral
corresponding to the path )2 equals −&′2/)2. We thus arrive at the inequality

&1

)1
−
&′2
)2

< 0. (12.16)

We find from (12.16) that
&′2
&1

>
)2

)1
and, consequently,

[ = 1 −
&′2
&1

< 1 − )2
)1

=
)1 − )2
)1

. (12.17)

The result obtained signifies that the efficiency of an irreversible machine is always
smaller than that of a reversible one operating in the same conditions.

The form of a Carnot cycle in a >-+ diagram depends on the properties of the
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substance performing the cycle. A cycle for an ideal gas is shown in Fig. 12.4. The
efficiency of a Carnot cycle for an ideal gas can be calculated without resorting to
finding the entropy increment.

The internal energy of an ideal gas remains constant in an isothermal process.
Therefore, the heat &1 received by the gas equals the work �12 done by the gas
upon transition from state 1 to state 2 (Fig. 12.4). Thiswork, according to Eq. (10.60),
is

&1 = �12 =
;

"
')1 ln

(
+2

+1

)
(12.18)

where; is themass of the ideal gas in themachine. The heat&′2 given up to the low
temperature reservoir equals the work �′34 done to compress the gas from state 3
to state 4. This work is

&′2 = �′34 =
;

"
')2 ln

(
+3

+4

)
. (12.19)

For the cycle to be closed, states 1 and 4 must be on the same adiabat. Hence
the condition follows that

)1+
W−1
1 = )2+

W−1
2 . (12.20)

[see adiabat equation (10.41)]. Similarly, since states 2 and 3 are on the same adiabat,
the condition is observed that

)3+
W−1
3 = )4+

W−1
4 . (12.21)

By dividing Eq. (12.21) by (12.20), we arrive at the condition for the cycle to be closed:
+2

+1
=
+3

+4
. (12.22)

Now let us introduce Eqs. (12.18) and (12.19) into Eq. (12.5) for the efficiency:

[ =

;

"
')1 ln

(
+2

+1

)
− ;

"
')2 ln

(
+3

+4

)
;

"
')1 ln

(
+2

+1

) .

Finally, taking condition (12.22) into account, we get

[ =
)1 − )2
)1

which coincides with Eq. (12.13).

12.3. The Thermodynamic Temperature Scale

The theorem on the efficiency of reversible machines not depending on the prop-
erties of the working substance proved in the preceding section makes it possible



The Thermodynamic Temperature Scale 365

Fig. 12.5

to establish a temperature scale that does not depend on the choice of the thermo-
metric body. In accordance with this theorem, the quantity

[ =
&1 − &′2
&1

= 1 −
&′2
&1

and, consequently, the ratio&′2/&1 for a Carnot cycle depend only on the temper-
ature of the high temperature and low temperature reservoirs. Denoting the values
of these temperatures according to a scale that we meanwhile do not know by \1
and \2, we can write that

&′2
&1

= 5 (\1, \2) (12.23)

where 5 (\1, \2) is a universal (i.e., identical for all Carnot cycles) function of the
high temperature and low temperature reservoirs. Equation (12.23) permits us to
determine the temperature of bodies through the amounts of heat received and
given up in Carnot cycles.

We shall prove that function (12.23) has the following property:

5 (\1, \2) =
K(\2)
K(\1)

(12.24)

where K(\) is again a universal function of the temperature. Let us consider two
reversible machines M1 and M2 (Fig. 12.5), the cooler (low temperature reservoir)
of one of them simultaneously being the heater (high temperature reservoir) of the
other. Let the second machine take the same amount of heat from the reservoir at
the temperature \1 that the first machine supplies to it.

For machine M1 , we have &1 = & � and &′2 = & � � . Hence, Eq. (12.23) for this
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machine has the form
& � �

& �

= 5 (\3, \1). (12.25)

For machine M2, we have &1 = & � � , &′2 = & � � � . Hence, by Eq. (12.23),
& � � �

& � �

= 5 (\1, \2). (12.26)

Considering machines M1 and M2, and also the reservoir with the temperature \1
as a single reversible machine that receives the heat & � from the heater with the
temperature \3 and gives up the heat & � � � to the cooler with the temperature \2,
we can write:

& � � �

& �

= 5 (\3, \2). (12.27)

Dividing Eq. (12.27) by (12.25), we find that
& � � �

& � �

=
5 (\3, \2)
5 (\3, \1)

.

A comparison of this equation with Eq. (12.26) gives us the expression

5 (\1, \2) =
5 (\3, \2)
5 (\3, \1)

. (12.28)

This equation relates the temperatures \1 and \2 of two substances, but the temper-
ature \3 of a third substance figures in it. If we agree once and forever on the selec-
tion of this substance, i.e., make \3 constant, we shall reduce the function 5 (\3, \)
in the numerator and denominator of Eq. (12.28) to a function of a single variable
\. Denoting this function by K(\) we arrive at Eq. (12.24).

The functionK(\) depends only on the temperature. Therefore its value can be
used to characterize the temperature of the corresponding substance, i.e., assume
that the temperature of the substance is K, where K = K(\). Equation (12.23) thus
becomes

&′2
&1

=
K2

K1
. (12.29)

Equation (12.29) is the foundation of the so-called thermodynamic temperature
scale. A merit of this scale is that it does not depend on the choice of the substance
(the working substance in a Carnot cycle) used for measuring the temperature.

In accordance with Eq. (12.29), to compare the temperatures of two bodies, we
must carry out a Carnot cycle using these bodies as the high temperature and low
temperature reservoirs. The ratio of the amount of heat given up to the “low tem-
perature reservoir” body to the amount of heat removed from the “high temper-
ature reservoir” body gives the ratio of the temperatures of the two bodies. To
uniquely determine the numerical value of K, we must come to an agreement on
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the choice of the temperature unit, i.e., the degree. The absolute degree is defined
as one-hundredth of the difference between the temperature of water boiling at
atmospheric pressure and that of melting ice. Thus, the degree of the absolute
thermodynamic scale equals the degree of the ideal gas scale.

It is easy to see that the thermodynamic temperature scale coincides with the
ideal gas scale. Indeed, according to Eq. (12.11), we have

&′2
&1

=
)2

)1
. (12.30)

Comparing Eqs. (12.29) and (12.30), we find that
K2

K1
=
)2

)1
.

Hence, K is proportional to ) , and since the degree of both scales is the same,
K = ) .

12.4. Examples of Calculating the Entropy

The entropy is a function of state. It must therefore depend on parameters deter-
mining the state of a system. For example, it can be represented as a function of >
and) , or as a function of+ and) , and so on. Let us assume that a body is heated at
the constant pressure > from absolute zero to the temperature) , and that the heat-
ing process is reversible. Hence, according to Eqs. (11.110) and (10.24), the entropy
of a body at the pressure > and temperature ) is determined by the expression

((>,)) =
∫ )

0

�>()) d)
)

(12.31)

where�>()) is the heat capacity of the body at constant pressure, which is a func-
tion of temperature. Similarly, the entropy as a function of the volume + and tem-
perature ) can be represented in the form

((+,)) =
∫ )

0

�+ ()) d)
)

(12.32)

where �+ is the heat capacity of the body at constant volume.
It can be seen fromEqs. (12.31) and (12.32) that the heat capacities�> and�+ (and

also the heat capacity in any other process) vanish at absolute zero. Indeed, if the
heat capacity did not tend to zero, then the integrand at ) tending to zero would
grow without restriction, as a result of which the integral would be diverging (i.e.,
would become infinite).

1. Entropy of an Ideal Gas. In Sec. 11.11, we found an expression for the
entropy of a monatomic ideal gas (i.e., a gas for which �+ = 3'/2). Now, us-
ing Eq. (11.110), we shall get an expression for the entropy of an ideal gas with any
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molecules. Since the entropy is additive, it is sufficient to find its value for a mole
of the gas (m. The entropy of an arbitrary amount of the gas will be ( = (;/")(m.

We shall characterize the state of a substance by the parameters + and ) , but
shall not consider that the process being studied is isochoric. According toNernst’s
theorem and Eq. (11.110), we have

(m(+,)) =
∫ (+,))

0

d′&
)

(12.33)

where the symbol (+,)) designates the state of the gas (we have inmind the volume
of a mole). Integration is performed over an arbitrary reversible process transfer-
ring the substance from its state at absolute zero to the state characterized by the
volume + and the temperature ) .

Let us take the volume +0 and the temperature )0 at which the substance is
sure to be an ideal gas, and divide the integral in Eq. (12.33) into two:

(m(+,)) =
∫ (+0 ,)0)

0

d′&
)
+

∫ (+,))

(+0 ,)0)

d′&
)
. (12.34)

The first integral is a number that we shall denote by ((+0, )0). The second integral
is a function of + and ) . To find the form of this function, let us write d′& as
d′& = �+ d) + > d+ (in the integration interval the substance behaves like an
ideal gas). Dividing d′& by ) and substituting '/+ for >/) in accordance with an
equation of state, we get∫ (+,))

(+0 ,)0)

d′&
)

=

∫ )

)0

�+ d)
)
+

∫ +

+0

' d+
+

= �+ ln
(
)

)0

)
+ ' ln

(
+

+0

)
.

Thus, Eq. (12.34) becomes

(m(+,)) = ((+0, )0) + �+ ln
(
)

)0

)
+ ' ln

(
+

+0

)
. (12.35)

We can transform this equation as follows¹
(m = �+ ln) + ' ln+ + (0 (12.36)

where (0 is a constant equal to ((+0, )0) − ln)0 − ln+0.
It must be noted that the relations with which we have to deal in practice usu-

ally include either derivatives of the entropy with respect to parameters of state
or a change in the entropy. In these cases, there is no need to find the value of the
additive constant in the expression for the entropy.

Equation (12.36) gives an expression for the entropy of a mole of an ideal gas in

¹One must not be confused in seeing a quantity having a dimension inside a logarithm. Expres-
sions containing ln 5 always have an addend including ln 50 (50 is a constant) with a sign such that ln 5
and ln 50 can be combined into a single addend of the kind ln(5/50).
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variable + and ) . We can use an equation of state to pass over to expressions for
the entropy in other variables. Using + = ')/> in Eq. (12.36), we get

(m = �+ ln) + ' ln ' + ' ln) − ' ln > + (0.
Taking into account that for an ideal gas �+ + ' = �>, we can write

(m = �> ln) + ' ln > + (′0 (12.37)
where (′0 = (0 + ' ln '.

Finally, substituting >+/' for ) in Eq. (12.36), we arrive at the equation
(m = �+ ln > + �> ln+ + (′′0 (12.38)

where (′′0 = (0 − +� ln '.
2. Entropy of Water. The changes in the heat capacity of water within the

interval from 0 ◦C to 100 ◦C do not exceed 1%. Therefore, within this temperature
interval, the specific heat capacity of water may be considered constant and equal
to 2 = 4.2 kJ kg−1 K−1. Accordingly, denoting by A(273) the specific entropy of
liquid water at 0 ◦C and by A()) the specific entropy of water at the temperature)
(here 273 < ) < 373), we can write that

A()) − A(273)
∫ )

273

2 d)
)

= 2 ln
(
)

273

)
whence

A()) = 2 ln) + [A(273) − 2 ln(273)] = 2 ln) + constant. (12.39)
3. Change in Entropy in Melting. If the pressure does not change, then

melting proceeds at a constant temperature. Accordingly, the increment of the
specific entropy is

JA =

∫ liq

sol

d′&
)f

=
1
)f

∫ liq

sol
d′& =

!f

)f
(12.40)

where !f is the specific heat of fusion. When a substance solidifies, its specific
entropy diminishes by the same amount.

The formula for the increment of the specific entropy upon evaporation differs
from Eq. (12.40) only in that it includes the heat of vaporization and the boiling
point instead of the heat of fusion and the melting point.

12.5. Some Applications of Entropy

Let us take the volume + and the temperature ) as the independent parameters
characterizing the state of a substance. Hence, the internal energy of the substance
will be a function of these parameters: * = * (+,)). In this case, the expression



370 THERMODYNAMICS

of the first law of thermodynamics has the form²

d′& =

(
∂*

∂)

)
+

d) +
(
∂*

∂+

)
)

d+ + > d+. (12.41)

It is customary practice in thermodynamics towrite partial derivatives of functions
with respect to the state parameters with a subscript indicating what parameter is
assumed to be constant in differentiation. This is essential in connection with the
fact that, for example, we can consider the partial derivative of * with respect
to ) provided that > remains constant. This derivative is denoted by the symbol
(∂*/∂))> and, generally speaking, has a different value than (∂*/∂))+ .

Dividing Eq. (12.41) by ) , we get the increment of the entropy:

d( =

[
1
)

(
∂*

∂)

)
+

]
d) +

{
1
)

[(
∂*

∂+

)
)

+ >
]}

d+. (12.42)

Considering the entropy as a function of the parameters + and) , we can write the
increment of the entropy in the form

d( =

(
∂(

∂)

)
+

d) +
(
∂(

∂+

)
)

d+.

A comparison with Eq. (12.42) shows that(
∂(

∂)

)
+

=
1
)

(
∂*

∂)

)
+

,

(
∂(

∂+

)
)

=
1
)

[(
∂*

∂+

)
)

+ >
]
. (12.43)

The mixed partial derivatives of a function 5 (F, G) satisfy the condition
∂25

∂F ∂G
=

∂25

∂G ∂F
.

Accordingly,
∂

∂+

(
∂(

∂)

)
+

=
∂

∂)

(
∂(

∂+

)
)

.

The introduction of Eqs. (12.43) into this equation yields
∂

∂+

[
1
)

(
∂*

∂)

)
+

]
=

∂

∂)

{
1
)

[(
∂*

∂+

)
)

+ >
]}
.

After differentiation, we get
1
)

∂2*

∂+ ∂)
= − 1

)2

[(
∂*

∂+

)
)

+ >
]
+ 1
)

[
∂2*

∂) ∂+
+

(
∂>

∂)

)
+

]
.

²The total differential of the function 5 (F, G) of the variables F and G is determined by the ex-
pression d5 = ∂5/∂F dF+∂5/∂G dG. This expression gives the increment of the function 5 (F, G) when
the variables F and G receive the increments dF and dG [see Eq. (3.33)].
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Taking into account that ∂2*/∂+ ∂) , we arrive at the formula(
∂*

∂+

)
)

= )

(
∂>

∂)

)
+

− >. (12.44)

The latter shows how the internal energy depends on the volume. Let us use it
to find the internal energy of an ideal and a van der Waals gas.

For an ideal gas, we have > = ')/+ . Hence, (∂>/∂))+ = '/+ . Using this value
in Eq. (12.44), we obtain(

∂*

∂+

)
)

= )
'

+
− > = 0.

The result obtained signifies that the internal energy of an ideal gas does not de-
pend on its volume. In Sec. 10.9, we arrived at the same conclusion when we as-
sumed that there is no interaction between molecules.

It follows from the equation of state for a van derWaals gas [see Eq. (10.62)] that

> =
')

(+ − 1) −
0

+ 2 . (12.45)

Hence(
∂>

∂)

)
+

=
'

(+ − 1) .

Using this expression in formula (12.44), we get(
∂*

∂+

)
)

=
')

(+ − 1) − > =
0

+ 2 .

[see Eq. (12.45)]. Integration with respect to + yields

* = − 0
+
+ 5 ()).

The function 5 ()) can be concreted by taking advantage of the fact that at + tend-
ing to infinity the expression for the internal energy of a van der Waals gas must
transform into the expression for the internal energy of an ideal gas* = �+) . As
a result, we arrive at the expression* = �+)−0/+ whichwe obtained in Sec. 10.13
on the basis of other considerations [see Eq. (10.66)].

12.6. Thermodynamic Potentials

All calculations in thermodynamics are based on the use of functions of state called
thermodynamic potentials. A separate thermodynamic potential corresponds
to each set of independent parameters. The changes in the potentials occurring in
the course of processes determine either the work done by the system or the heat
received by it.

In considering thermodynamic potentials, we shall use expression (11.112), writ-
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ing it in the form
) d( > d′&. (12.46)

The equality sign relates to reversible processes, the inequality sign to irreversible
ones.

The thermodynamic potentials are functions of state. Therefore, the increment
of any of the potentials equals the total differential of the function by which it is
expressed. The total differential of the function 5 (F, G) of the variables F and G is
determined by the expression

d5 =
∂5

∂F
dF + ∂5

∂G
dG.

Therefore, if in the course of transformationswe get for the increment of a quantity
fan expression of the kind

d5 = - (Z , [) dZ + . (Z , [) d[ (12.47)
then we can state that this quantity is a function of the parameters Z and [), the
functions - (Z , [) and . (Z , [) being the partial derivatives of the function 5 (Z , [):(

∂5

∂Z

)
[

= - (Z , [),
(
∂5

∂[

)
Z

= . (Z , [). (12.48)

Internal Energy. We are already well acquainted with one of the thermody-
namic potentials, namely, the internal energy of a system. The expression of the
first law for a reversible process can be written in the form

d* = ) d( − > d+. (12.49)
A comparison with Eq. (12.47) shows that the variables ( and + fill the capacity of
the so-called natural variables for the potential* . It follows from Eq. (12.48) that(

∂*

∂(

)
+

= ),

(
∂*

∂+

)
(

= −>. (12.50)

It can be seen from the relation d′& = d* + d′� that when a body does not
exchange heat with surroundings, the work done by it is

d′� = −d*
or in the integral form

� = *1 −*2. (heat exchange is absent) (12.51)
Thus, in the absence of heat exchange with the surroundings, the work equals the
decrement of the internal energy of a body. At constant volume

d′& = d*. (12.52)
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Hence, the heat capacity at constant volume is

�+ =

(
∂*

∂)

)
+

. (12.53)

Free Energy. According to Eq. (12.49), the work done by a body in a reversible
isothermal process can be written in the form

d′� = −d* + ) d( = −d(* − )(). (12.54)
The function of state

� = * − )( (12.55)
is called the free (Helmholtz) energy of a body.

According to Eqs. (12.54) and (12.55), in a reversible isothermal process, the work
equals the decrement of the free energy of a body:

d′� = −d� (12.56)
or

� = �1 − �2. () = constant, reversible) (12.57)
A comparison with Eq. (12.51) shows that in isothermal processes the free energy
plays the same part as the internal energy in adiabatic ones.

We must note that Eq. (12.51) holds for both reversible and irreversible pro-
cesses. Equation (12.57), on the contrary, holds only for reversible processes. For
irreversible processes, we have d′& < ) d( [see expression (12.46)]. Introducing this
inequality into the equation d′� = d′& − d* , it is easy to find that in irreversible
isothermal processes we have

� < �1 − �2. () = constant, irreversible) (12.58)
Hence, the decrement of the free energy determines the upper limit of the amount
of work that a system can do in an isothermal process.

Let us take a differential of the function (12.55). Taking Eq. (12.49) into account,
we get

d� = ) d( − > d+ − ) d( − ( d) = −( d) − > d+. (12.59)
We conclude from a comparison with Eq. (12.47) that ) and + are the natural vari-
ables for the free energy. According to Eq. (12.48)(

∂�

∂)

)
+

= −(,
(
∂�

∂+

)
)

= −>. (12.60)

Let us substitute d*+> d+ for d′& in expression (12.46) and divide the resulting
relation by dB (here B is the time). The result is

)
d(
dB
>

d*
dB
+ > d+

dB
. (12.61)
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If the temperature and the volume remain constant, then expression (12.46) can be
transformed as follows:

d(* − )()
dB

=
d�
dB
6 0. () = constant, + = constant) (12.62)

Examination of this expression shows that an irreversible process occurring at
constant temperature and volume is attended by a decrease in the free energy of the
body. When equilibrium is reached, � stops changing with time. Thus, a state for
which the free energy is minimum is the equilibrium one at constant temperature
and volume.

Enthalpy. If a process goes on at constant pressure, then the amount of heat
received by a body can be represented as follows:

d′& = d* + > d+ = d(* + >+ ). (12.63)
The function of state

� = * + >+ (12.64)
is called the enthalpy (or heat function).

It follows from Eqs. (12.63) and (12.64) that the heat received by a body in the
course of an isobaric process is

d′& = d� (12.65)
or in the integral form

& = �2 − �1. (12.66)
Hence, when the pressure remains constant, the heat received by a body equals the
increment of the enthalpy.

Differentiation of Eq. (12.64) with account taken of Eq. (12.49) yields
d� = ) d( − > d+ + > d+ + + d> = ) d( + + d>. (12.67)

Thus, we conclude that the enthalpy is a thermodynamic potential in the variables
( and >. Its partial derivatives are(

∂�

∂(

)
>

= ),

(
∂�

∂>

)
(

= +. (12.68)

The heat capacity at constant pressure in accordance with Eq. (12.65) is

�> =

(
∂�

∂)

)
>

. (12.69)

Comparing Eqs. (12.65) and (12.69) with (12.52) and (12.53), we arrive at the conclusion
that when the pressure is constant, the enthalpy has properties similar to those
which the internal energy has at a constant volume.

Gibbs Thermodynamic Potential. This function of state (also called the
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Gibbs energy) is determined as follows:
� = � − )( = * + >+ − )(. (12.70)

Its total differential is [see Eq. (12.67)]
d� = ) d( + + d> − ( d) = + d> − ( d). (12.71)

Consequently, > and ) are the natural variables for the function �. The partial
derivatives of this function are(

∂�

∂>

)
)

= +,

(
∂�

∂)

)
>

= −(. (12.72)

If the temperature and pressure remain constant, Eq. (12.61) can be written in
the form

d(* + >+ − )()
dB

=
d�
dB
6 0. () = constant, > = constant) (12.73)

It can be seen from this expression that an irreversible process going on at constant
temperature and pressure is attended by a decrease in the Gibbs thermodynamic
potential. When equilibrium is reached, � stops changing with time. Thus, a state
for which the Gibbs thermodynamic potential is minimum is the equilibrium one
at constant temperature and pressure [compare with expression (12.62)].

Table 12.1 gives the basic properties of the thermodynamic potentials.

Table 12.1

Name and symbol of
thermodynamic potential Properties

Internal energy *1 −*2 = � in adiabatic process
* = * ((, + ) *2 −*1 = & when + is constant

Free energy �1 − �2 = � in irreversible isothermal process
� = � (), + ) � = min for equilibrium state when ) and

+ are constants

Enhalpy �2 − �1 = & when > is constant
� = � ((, >)

Gibbs thermodynamic potential � = min for equilibrium state when
� = �(>,)) ) and > are constants
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Chapter 13

THE CRYSTALLINE STATE

13.1. Features of the Crystalline State

The majority of solids in nature have a crystalline structure. For example, almost
all minerals and all metals in the solid state are crystals.

A feature of the crystalline state distinguishing it from the fluid states is the
presence of anisotropy, i.e., the dependence of a number of physical properties
(mechanical, thermal, electrical, optical) on the direction.

Bodies whose properties are identical in all directions are called isotropic. In
addition to gases and, with a few exceptions, all liquids, amorphous solids are also
isotropic. These solids are supercooled liquids (see Sec. 15.6).

The reason why crystals are anisotropic is the ordered arrangement of the par-
ticles they are built of (atoms or molecules). The ordered arrangement of the par-
ticles manifests itself in the regular external facetting of crystals. Crystals are re-
stricted by plane facets making angles with one another characteristic of a given
species of crystals. It is easy to split crystals along definite planes called cleavage
planes.

The regularity of the geometrical shape and the anisotropy of crystals do not
usually manifest themselves because crystalline bodies are encountered, as a rule,
in the form of polycrystals, i.e., conglomerates of a multitude of intergrown, ran-
domly oriented fine crystals. Anisotropy is observed in polycrystals only within
the confines of each separately taken minute crystal. A body as a whole does not
display anisotropy owing to the chaotic orientation of its crystals. By providing
special conditions of crystallization from a melt or a solution, we can obtain large
single crystals—monocrystals of any substance. Monocrystals of some minerals
are encountered in nature.

The ordered nature of the arrangement of the atoms (or molecules) of a crystal
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Fig. 13.1 Fig. 13.2

consists in that they are located at the points (or sites) of a geometrically regular
space lattice. The entire crystal can be obtained by repeating many times in three
different directions the same structural element called an elementary (or unit) crys-
tal cell (Fig. 13.1a). The lengths of the edges 0, 1, 2 of a cell are called the translation
periods of a crystal.

An elementary cell is a parallelepiped constructed on the three vectors a, b, c
whosemagnitudes equal the translation periods. This parallelepiped, apart from its
edges 0, 1, 2, is also characterized by the angles U, V, W between the edges (Fig. 13.1b).
The quantities 0, 1, 2, and U, V, W unambiguously define an elementary cell and are
called its parameters.

An elementary cell can be selected in variousways. This is illustrated in Fig. 13.2
using an example of a plane structure. The facing of a wall with alternating light
and dark triangular tiles can be obtained by repeating different cells many times in
two directions (see, for example, cells 1, 2, and 3; the arrows show the directions in
which the cells are repeated). Cells 1 and 2 are distinguished by including themini-
mumnumber of structural elements (one light and one dark tile each). A crystal cell
including the smallest number of atoms characterizing the chemical composition
of a crystalline substance (for example, one oxygen atom and two hydrogen atoms
for an ice crystal) is known as a primitive cell. It is customary practice, however,
to select an elementary cell having a greater number of atoms, but with the same
symmetry as the entire crystal, instead of a primitive cell. Thus, the plane structure
depicted in Fig. 13.2 coincides with itself when rotated through 120° about any axis
at right angles to it that passes through an apex of a tile. Elementary cell 3 has the
same property. Cells 1 and 2 have a smaller degree of symmetry: they coincide
with themselves only when rotated through 360°.
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Fig. 13.3

13.2. Classification of Crystals

A crystal lattice can have different kinds of symmetry. By the symmetry of a crystal
lattice is meant its property to coincide with itself upon certain displacements in
space.

Every lattice has translation symmetry first of all, i.e., it coincides with itself
upon displacement over the translation period¹. Among the other kinds of sym-
metry, we shall note symmetry with respect to rotations about certain axes, and
also to mirror reflection relative to definite planes.

If a lattice coincides with itself when rotated about an axis through the angle
2c/< (consequently, the lattice coincides with itself < times in one complete rev-
olution about the axis), then this axis is called an axis of symmetry of the <-th
order. It can be shown that apart from the trivial axis of the first order, only axes of
symmetry of the second, third, fourth, and sixth orders are possible. Examples of
structures having such axes of symmetry are shown schematically in Fig. 13.3 (the
empty circles, filled circles, and crosses signify atoms of different species).

If a lattice coincides with itself when reflected in a certain plane as in a mirror,
this plane is defined as a plane of symmetry. An example of a plane of symmetry
is also shown in Fig. 13.3.

The different kinds of symmetry are called elements of symmetry of a crystal
lattice. There are other elements of symmetry in addition to axes and planes, but
we shall not consider them here, however.

A crystal lattice, as a rule, has several kinds of symmetry at a time. Not any
combination of the elements of symmetry is possible, however. The prominent
Russian scientist Yevgraf Fedorov (1853-1919) showed that 230 combinations of the
symmetry elements are possible. These combinations are called space groups.
They are divided according to features of symmetry into 32 classes. Finally, with
respect to the shape of the elementary cell, all crystals are divided into seven crys-

¹When considering the symmetry of a lattice, the finite dimensions of the crystal are disregarded,
and the lattice is considered to be infinite.
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tallographic systems, each of which includes several classes of symmetry.
The crystallographic systems are arranged in the order of growth of their sym-

metry as follows.
1. Triclinic System. For this system, 0 ≠ 1 ≠ 2; U ≠ V ≠ W . An elementary
cell has the form of an oblique parallelepiped.

2. Monoclinic System. It has two right angles, while the third angle (usually
the angle V) is not a right one. Hence, 0 ≠ 1 ≠ 2; U = W = 90°, V ≠ 90°. An
elementary cell has the form of a right prismwith a parallelogram as its base
(i.e., the form of a right parallelepiped).

3. Rhombic System. All the angles are right ones, all the edges are different:
0 ≠ 1 ≠ 2; U = V = W = 90°. An elementary cell has the form of a rectangular
parallelepiped.

4. Tetragonal System. All the angles are right ones, two edges are equal: 0 =
1 ≠ 2; U = V = W = 90°. An elementary cell has the form of a right prism
with a square base.

5. Rhombohedral (or Trigonal) System. All the edges are equal, all the an-
gles are also equal and are other than right ones: 0 = 1 = 2; U = V = W ≠ 90°.
An elementary cell has the form of a cube deformed by compression or ten-
sion along a diagonal.

6. Hexagonal System. The edges and the angles between them comply with
the conditions 0 = 1 ≠ 2; U = V = 90°, W = 120°. Three elementary cells
brought together as shown in Fig. 13.4 form a regular hexagonal prism.

7. Cubic System. All the edges are equal, all the angles are right ones: 0 = 1 =
2; U = V = W = 90°. An elementary cell has the form of a cube.

13.3. Physical Kinds of Crystal Lattices

Four kinds of crystal lattices and accordingly four kinds of crystals are distin-
guished depending on the nature of the particles at the lattice points and on the
nature of the forces of interaction between the particles. They are ionic, atomic,
metallic, and molecular crystals.

1. Ionic Crystals. Ions of opposite signs inhabit the lattice points. The forces
of interaction between them are mainly electrostatic (Coulomb). The bond due to
the electrostatic forces of attraction between oppositely charged ions is called a
heteropolar (or ionic) bond.

A typical example of an ionic lattice is that of table salt (NaCl) shown in Fig. 13.5.
It belongs to the cubic system. The white circles depict the positively charged
sodium ions, and the black circles the negative chloride ions. A glance at the figure
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Fig. 13.4 Fig. 13.5

shows that the closest neighbours of an ion of a given sign will be ones of the op-
posite sign. In the gaseous state, NaCl consists of molecules in which sodium ions
are combined with chloride ones in pairs. The group of an Na ion and a Cl ion
forming a molecule loses its isolated existence in a crystal. An ionic crystal con-
sists of ions, and not of molecules. The entire crystal can be considered as a single
giant molecule.

2. AtomicCrystals. The lattice points accommodate neutral atoms. The bond
between neutral atoms in a crystal (and also in a molecule) is called homopolar (or
covalent). The forces of interactionwith a homopolar bond are also of an electrical
(but not of a Coulomb) nature. These forces can be explained only on the basis of
quantum mechanics.

A homopolar bond is produced by electron pairs. This signifies that one elec-
tron from each atom participates in setting up a bond between two atoms. For this
reason, a homopolar bond has a directed nature. In a heteropolar bond, each ion
acts on all the ions that are sufficiently close to it. In a homopolar bond, the action
is directed toward the atom with which the given one shares an electron pair. A
homopolar bond can be set up only by valence electrons, whose bond to the atom
is the weakest. Since each electron can set up a bond with only one atom, the num-
ber of bonds which a given atom can participate in (the number of neighbours with
which it can be bound) equals its valence.

Typical examples of atomic crystals are diamond and graphite. The chemical
nature of these two substances is the same (they are both constructed of carbon
atoms), but they differ in the structure of their crystals. Figure 13.6a shows a dia-
mond lattice, and Fig. 13.6b a graphite one. This example clearly shows how the
crystal structure of a substance affects its properties.

The typical semiconductors—-germanium (Ge) and silicon (Si) have the same
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Fig. 13.6

 

 

Fig. 13.7

kind of lattice as diamond (a diamond-type lattice). This lattice is characterized
by each atom being surrounded by four neighbours at an equal distance from it
located at the corners of a regular tetrahedron. Each of the four valence electrons
belongs to an electron pair joining this atom with one of its neighbours.

3. Metallic Crystals. Positive ions of the metal are located at all the lattice
points. Electrons that detached themselves from the atomswhen ionswere formed
move chaotically between the latter similar to the molecules of a gas. These elec-
trons play the part of a “cement” keeping the positive ions together, otherwise the
lattice would fall apart under the action of the forces of repulsion between the ions.
At the same time, the electrons, in turn, are retained by the ions within the crystal
lattice and cannot leave it.

Most metals have lattices of one of three kinds: the cubic volume-centred
(Fig. 13.7a), the cubic face-centred (Fig. 13.7b), and the so-called hexagonal close-
packed lattice (Fig. 13.7c). The latter is a hexagonal lattice with the ratio 2/0 equal
to

√
8/3. The cubic face-centred and the hexagonal close-packed lattices corre-

spond to the closest packing of identical spheres.
4. Molecular Crystals. Molecules with a definite orientation are located at

the lattice points. The forces binding together the molecules in a crystal are of the
same nature as the forces of attraction between molecules leading to gases deviat-
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ing from ideal ones in their properties. This is why they are called van der Waals
forces. Molecular lattices are formed, for example, by the following substances:
H2, N2, 02, C02, H20. Thus, ordinary ice, and also the so-called dry ice (solid carbon
dioxide) are molecular crystals.

13.4. Defect in Crystals

Defects in crystals are violations of an ideal crystalline structure. Such a violation
may consist in the absence of an atom at a lattice point (a vacancy), in the presence
of a foreign atom (an impurity atom) instead of an atom of the given substance (a
host atom), in the introduction of a surplus atom (host or foreign) into the inter-
stice. Such defects are called point ones. They cause violations in the regularity of
a lattice extending over a distance of the order of several periods.

In addition to point defects, there are also defects concentrated near certain
lines. They are called linear defects or dislocations. Defects of this kind violate
the regular alternation of the crystal planes. The simplest defects of this kind are
edge and screw dislocations.

An edge dislocation is due to a surplus crystal half-plane inserted between two
adjacent layers of atoms (Fig. 13.8). The edge of this half-plane forms a dislocation
of the given kind. The dislocation line is the straight line denoted by the symbol⊥
at right angles to the plane of the drawing.

A screw dislocation can be presented as a result of cutting a crystal along a
half-plane and the following shifting of the lattice portions at different sides of the
cut toward each other over a distance of one period (Fig. 13.9). The internal edge
of the cut forms a screw dislocation (see the dash line in the figure). A crystal with
a screw dislocation actually consists of a single crystal plane that is curved along
a helical surface (such a surface is called a helicoid). The dislocation line coincides
with the axis of the screw or helix. The crystal plane is displaced by one period
each time it circumvents this line.

We have considered the two simplest (extreme) kinds of dislocations. In both
cases, the dislocation lines are straight. In the general case, these lines may be
curved.

Defects greatly affect the physical properties of crystals, including their strength.
In particular, dislocations are the reason why the plastic deformation² of real crys-
tals occurs under the action of stresses that are several orders of magnitude smaller
than the stress calculated for ideal crystals.

Shear along the atomic layers readily occurs in the monocrystals of metals. Do

²A plastic deformation is one that remains after the stress causing it is removed.
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Fig. 13.8 Fig. 13.9

not imagine this process in such a way that all the atoms of a layer are displaced
simultaneously as a single whole. Actually, the atoms jump over into their new po-
sitions in small groups, sequentially. Such a sequential movement of the atoms can
be presented as a dislocation movement. The latter requires stresses much smaller
than those needed for the displacement of an entire atomic layer at a time. Fig-
ure 13.10 shows the consecutive steps of the process occurring in a crystal under
the action of the forces causing the shear. The initially present dislocation under
the action of the stresses set up in the crystal moves along the latter. This move-
ment is attended by sequential displacement of the atoms in the layer above the
dislocation relative to the atoms of the layer under it.

Dislocation movements are prevented by the presence of other defects in a
crystal, for example, by the presence of impurity atoms. Dislocations are also in-
hibited when they intersect. If the number of dislocations and other defects in a
crystal is small, the dislocations spread virtually without hindrance. As a result, the
resistance to shear will not be great. An increase in the density of the dislocations
and a growth in the concentration of the impurities lead to great inhibition of the
dislocations and stopping of their spreading. As a result, the strength of the ma-
terial grows. For example, the strength of iron is increased by dissolving carbon
atoms in it (steel is such a solution).

Plastic deformation is attended by the destruction of the crystal lattice and the
formation of a great number of defects preventing the spreading of the disloca-
tions. This explains why metals are hardened upon their cold working.

A screw dislocation often appears in the course of the growth of a crystal from
a solution or melt. The capture of an atom by a smooth flat crystal surface is less
profitable from the energy viewpoint and is therefore less probable than the at-
tachment of an atom to a step on the surface of a crystal with a screw dislocation.
This is why it is preferable practice to grow crystals with a screw dislocation built
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Fig. 13.10

into them. New atoms attach themselves to the edge of the step, owing to which
the crystal grows along a spiral.

13.5. Heat Capacity of Crystals

The location of particles at the points of a crystal lattice corresponds to a min-
imum of their mutual potential energy. When particles are displaced from their
equilibrium position in any direction, a force appears that tends to return them
to their initial position. As a result, oscillations of the particles begin. Oscillation
in an arbitrary direction can be represented as the superposition of oscillations in
three mutually perpendicular directions. Therefore, three vibrational degrees of
freedom should be ascribed to every particle in a crystal.

We learned in Sec. 11.5 that an energy equal to two halves of 9)—one half in the
form of kinetic and the other in the form of potential energy—falls on the average
to each vibrational degree of freedom. Consequently, an energy equal to 39) falls
on the average to every particle—every atom in an atomic lattice, every ion in an
ionic or metallic lattice³. We can find the energy of a mole of a substance in the
crystalline state by multiplying the mean energy of one particle by the number
of particles at the points of the crystal lattice. The latter number coincides with
the Avogadro constant #A only for chemically simple substances. For a diatomic
substance such as NaCl, the number of particles will be 2#A because a mole of
NaCl contains #A atoms of Na and #A atoms of Cl, for a triatomic one it will be
3#A and so on.

Restricting ourselves to a consideration of chemically simple substances form-
ing atomic or metallic crystals, we can write the following expression for the in-
ternal energy of a mole of a substance in the crystalline state:

*m = #A39) = 3').
The increment of the internal energy corresponding to elevation of the tem-

perature by one kelvin, according to Eq. (12.53), equals the heat capacity at constant

³Matters are more complicated for molecular crystals. The molecules in addition to transla-
tional oscillations also perform torsional oscillations. Apart from this, the atoms oscillate inside the
molecules.
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Fig. 13.11

volume. Hence,
�+ = 3'. (13.1)

Since the volume of solids changes only slightly when they are heated, their heat
capacity at constant pressure insignificantly differs from the heat capacity at con-
stant volume; we can therefore assume that �> ≈ �+ and speak simply of the heat
capacity of a solid.

Thus, Eq. (13.1) states that the molar heat capacity of chemically simple bodies
in the crystalline state is the same and equals 3'. This statement is the content
of theDulong and Petit law established experimentally. This law is obeyed with
quite a good approximation for many substances at room temperature. There are
exceptions to this law, however. For example, diamond has a heat capacity of only
about 0.7' at room temperature.

Moreover, notwithstanding Eq. (13.1), the heat capacity of crystals depends on
the temperature, this dependence having the nature shown in Fig. 13.11. Near ab-
solute zero, the heat capacity of all bodies is proportional to )3, and only at a suf-
ficiently high temperature characteristic of each substance does Eq. (13.1) begin to
be obeyed. For most substances, this already occurs at room temperature. But for
diamond the heat capacity only reaches the value of 3' at a temperature of about
1000 ◦C.

The strict theory of the heat capacity of solids proposed by A. Einstein and
P. Debye takes into account, first, the quantization of the energy of vibrational
motion (see Sec. 11.5). Second, the theory takes into account that the oscillations of
the particles in a crystal lattice are not independent. This theory, which we shall
set out in Volume 3, is in good agreement with experimental data. In particular, for
high temperatures, it leads to Eq. (13.1).
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Chapter 14

THE LIQUID STATE

14.1. The Structure of Liquids

The liquid state, occupying an intermediate position between gases and crystals,
combines some features of both of these states. In particular, liquids, like crys-
talline substances, are characterized by having a definite volume. At the same time,
a liquid, like a gas, takes on the shape of the vessel containing it. Further, the crys-
talline state is characterized by the ordered arrangement of the particles (atoms
or molecules), whereas from this viewpoint, complete chaos reigns in gases. As
shown by radiographic studies, liquids also occupy an intermediate position with
respect to the nature of arrangement of their particles. The so-called short-range
order is observed in the arrangement of liquid particles. This signifies that with
respect to any particle, the arrangement of its closest neighbours is ordered. But as
we move farther and farther away from a given particle, the arrangement of other
particles relative to it becomes less and less ordered, and order in the arrangement
of the particles vanishes quite rapidly. In crystals, there is long-range order: the
ordered arrangement of particles with respect to any particle is observed within
the limits of an appreciable volume.

The presence of short-range order in liquids is the reason why their structure
is called quasicrystalline (crystal-like).

Owing to the absence of long-range order in them, liquids, with a few excep-
tions, do not display the anisotropy characteristic of crystals with their regular
arrangement of the particles. Liquids with elongated molecules display an identi-
cal orientation of their molecules within a considerable volume, which results in
anisotropy of their optical and some other properties. Such liquids are known as
liquid crystals. Only the orientation of the molecules is ordered in them, while the
mutual arrangement of the molecules, as in conventional liquids, does not display
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long-range order.
The circumstance that the liquid state is especially complicated as regards its

properties is due to the intermediate position of liquids. Therefore, its theory has
been developed to a much smaller extent than that of the crystalline and gaseous
states. To date there is no complete and universally recognized theory of liquids.
Considerable merit in developing a number of problems of the theory of the liquid
state belongs to the Soviet scientist Yakov Frenkel (1894-1952).

Frenkel postulates that the thermal motion in liquids has the following nature.
Each molecule during a certain time oscillates about a definite position of equilib-
rium. The molecule changes its place of equilibrium from time to time, moving
in a jump to a new position that is at a distance from the previous one of the or-
der of the size of the molecules themselves. The molecules thus move only slowly
inside a liquid, spending part of their time near definite places. As picturesquely ex-
pressed by Frenkel, themolecules wander throughout the entire volume of a liquid,
leading a nomadic mode of life in which brief removals are replaced by relatively
long periods of settled life. The lengths of these stops vary quite considerably and
chaotically alternate with one another, but the mean duration of oscillations about
a single equilibrium position is a definite quantity. for each liquid that sharply
diminishes with increasing temperature. In this connection, elevation of the tem-
perature is attended by a great growth in the mobility of the molecules, and this,
in turn, results in diminishing of the viscosity of the liquid.

Solids exist that in many respects are closer to liquids than to crystals. Such
substances, called amorphous, do not display anisotropy. Only short-range or-
der is encountered in the arrangement of their particles. The transition from an
amorphous solid to a liquid when such a substance is heated occurs continuously,
whereas the transition froma crystal to a liquid occurs in a jump (thiswill be treated
in greater detail in Sec. 15.6). All this gives us grounds to consider amorphous solid
substances as supercooled liquids whose particles owing to the greatly increased
viscosity have a limited mobility.

A typical example of an amorphous solid is glass. Amorphous substances also
include resins and bitumens.

14.2. Surface Tension

The molecules of a liquid are so close to one another that the forces of attraction
between them have a considerable value. Since the interaction rapidly falls offwith
the distance, beginning from a certain distance the forces of attraction between the
molecules may be disregarded. This distance @, as we already know (see Sec. 10.13),
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Fig. 14.1

is called the radius ofmolecular action, and a sphere of radius @ is called a sphere
ofmolecular action. The radius of molecular action has a magnitude of the order
of several effective diameters of a molecule.

Each molecule is attracted by all its neighbour molecules within the limits of
the sphere of molecular action whose centre coincides with the given molecule.
The resultant of all these forces for a molecule that is at a distance from the surface
of the liquid exceeding @ evidently equals zero on the average (Fig. 14.1). Matters are
different if a molecule is at a distance less than @ from the surface. Since the density
of the vapour (or gas with which the liquid has an interface) is much smaller than
that of the liquid, the part of the sphere of molecular action protruding beyond the
limits of the liquidwill be filledwith fewermolecules than the remaining part of the
sphere. As a result, every molecule in a surface layer of thickness @ will experience
a force directed into the liquid. The magnitude of this force grows in a direction
from the inner to the outer boundary of the layer.

The transition of a molecule from the bulk of a liquid to its surface layer is
associated with the need to do work against the forces acting in the surface layer.
This work is done by the molecule at the expense of its store of kinetic energy and
increases the potential energy of the molecule, just as the work done by a body
flying upward against the forces of the Earth’s attraction increases the potential
energy of the body. When the molecule returns in to the bulk of the liquid, the
potential energy which the molecule had in the surface layer transforms into the
kinetic energy of the molecule.

Thus, molecules in a surface layer have an additional potential energy. The sur-
face layer as a whole has an additional energy forming part of the internal energy
of the liquid.

Since the equilibrium position corresponds to a minimum of potential energy,
a liquid left to itself will take on a shape having the minimum surface area, i.e., the
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shape of a sphere. What we usually observe are not liquids “left to themselves”, but
liquids subjected to the action of the Earth’s gravitational forces. In this case, the
liquid takes on a shape corresponding to a minimum of the total energy—that in
the field of the gravitational forces and the surface energy.

When the dimensions of a body increase, its volume grows as the cube of the
linear dimensions, and its surface area only as the square of these dimensions.
Therefore, the energy in the gravitational field proportional to the volume of a
body changes more rapidly with increasing dimensions of the body than its sur-
face energy. In small drops of a liquid, the surface energy plays the predominate
part, and as a result the drops have a shape close to a spherical one. Large drops
of a liquid flatten under the action of gravitational forces notwithstanding the fact
that their surface energy grows. Large bodies of a liquid take on the shape of the
vessel containing them and a horizontal free surface.

The presence of surface energy causes a liquid to tend to reduce its surface area.
The liquid behaves as if it were confined inside an elastic stretched out film tending
to compress. It must be borne in mind that there is actually no film confining a
liquid from the outside. The surface layer consists of the same molecules as the
bulk of the liquid, and the interaction between the molecules in the surface layer
is of the same nature as in the interior. The matter is only that the molecules in
the surface layer have an additional energy in comparison with those in the bulk
of the liquid.

Let us mentally separate a part of the surface of a liquid confined within a
closed contour. The tendency of this portion to contract results in that it acts on the
portions bordering on it with forces distributed over the entire contour (according
to Newton’s third law, the external portions of the surface layer act on the portion
of the surface being considered with forces of the same magnitude, but opposite in
direction). These forces are called forces of surface tension. The force of surface
tension is directed along a tangent to the surface of the liquid perpendicularly to
the portion of the contour it is acting upon.

Let us denote the force of surface tension per unit of length of a contour by
f . This quantity is defined as the surface tension. It is measured in newtons per
metre (in the SI system) or in dynes per centimetre (in the cgs system).

Assume that we have a rectangular frame with a movable side confining a film
of a liquid (Fig. 14.2). A film is a thin flat volume of liquid confined on both sides by
a surface layer (see Fig. 14.2b in which a cross section of the frame is shown). Owing
to the tendency of the surface layer to contract, the film will exert a force equal to
2f : on themovable side. For the latter to be in equilibrium, an external force 5 must
be applied to it that equals the force tensioning the film, i.e., 2f :. Let us assume that
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Fig. 14.2

themovable side hasmoved very slowly in the direction of action of the force 5 over
the very small distance dF. This process is attended by the liquid above themovable
side doing the work d′� = −2f : dF = −f d(, where d( is the increment of the area
of the surface layer. With such an increase of the surface, an additional number of
molecules will pass from the interior of the liquid to the surface layer, losing their
velocity. Therefore, if the process proceeded adiabatically, the liquid would cool
slightly. We assumed, however, that the process goes on very slowly (reversibly),
owing to which the temperature of the film remains constant as a result of the
inflow of heat from the surroundings. Thus, the process will go on isothermally.

We established in Sec. 12.6 that thework done in a reversible isothermal process
equals the decrement of the free energy [see Eq. (12.56)]. We can therefore write that

d′� = −f d( = −d�.
The result obtained signifies that upon an isothermal increase in the area of the
surface layer by d(, the free energy of the liquid grows by d� = f d(. It thus
follows that the surface tension f is the additional free energy which a unit area of
a surface layer has. Accordingly, f can be expressed not only in newtons per metre
(or dynes per centimetre), but also in joules per square metre (or in ergs per square
centimetre).

Impurities greatly affect the magnitude of the surface tension. For example,
soap dissolved in water reduces its surface tension almost one-and-a-half times.
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Fig. 14.3

When NaCl is dissolved in water, on the contrary, the surface tension grows.
With elevation of the temperature, the difference between the densities of a

liquid and its saturated vapour diminishes (see Sec. 15.4). In this connection, the
surface tension also decreases. At the critical temperature (its definition is given in
Sec. 15.4), f vanishes.

14.3. Pressure under a Curved Liquid Surface

Let us consider the surface of a liquid resting on a flat contour (Fig. 14.3a). If the
surface of the liquid is not flat, its tendency to decrease its area leads to the appear-
ance of a pressure apart from that exerted on a liquid with a flat surface. When
the surface is convex, this additional pressure is positive (Fig. 14.3b), and when it
is concave, this pressure is negative (Fig. 14.3c). In the last case, the surface layer,
tending to diminish, stretches the liquid.

The magnitude of the additional pressure must obviously grow with an in-
creasing surface tension f and surface curvature. Let us calculate the additional
pressure for a spherical surface of a liquid. To do this, we shall mentally cut a
spherical drop of a liquid with a diametral plane into two hemispheres (Fig. 14.4).
Owing to surface tension, both hemispheres are attracted to each otherwith a force
equal to

5 = :f = 2c'f .
This force presses the two hemispheres against each other over the surface ( = c'2

and, consequently, produces the additional pressure

J> =
5

(
=
2c'f
c'2

=
2f
'
. (14.1)

The curvature of a spherical surface is the same everywhere and is determined
by the radius of the sphere '. It is obvious that the smaller the radius ', the greater
is the curvature of a spherical surface. It is customary practice to characterize the
curvature of an arbitrary surface by the so-calledmean curvature, whichmay differ
for various points of a surface.

The mean curvature is determined through the curvature of normal sections.
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Fig. 14.4 Fig. 14.5

A normal section of a surface at a certain point is defined as the line of intersection
of this surface with a plane passing through a normal to the surface at the point
being considered. For a sphere, any normal section is a circle of radius ' (here '
is the radius of the sphere). The quantity � = 1/' gives the curvature of a sphere.
In the general case, different normal sections passing through the same point have
different curvatures. It is proved in geometry that the half-sum of the reciprocal
radii of curvature

� =
1
2

(
1
'1
+ 1
'2

)
(14.2)

for any pair of mutually perpendicular normal sections has the same value. It is
exactly this quantity that is the mean curvature of a surface at a given point.

The radii '1 and '2 in Eq. (14.2) are algebraic quantities. If the centre of curva-
ture of a normal section is under a given surface, the relevant radius of curvature
is positive; if the centre of curvature is above the surface, the radius of curvature is
negative (Fig. 14.5). Thus, a curved surface can have a mean curvature equal to zero.
For this purpose, the radii of curvature '1 and '2 must be identical in magnitude
and opposite in sign.

For a sphere, we have '1 = '2 = ', so that by Eq. (14.2), � = 1/'. Substituting
� for 1/' in Eq. (14.1), we get

J> = 2�f. (14.3)
The French scientist Pierre Laplace (1749-1827) proved that Eq. (14.3) holds for

a surface of any shape if by � we understand the mean curvature of a surface at
the point under which the additional pressure is being determined. Introducing
the expression (14.2) for the mean curvature into Eq. (14.3), we get a formula for the
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Fig. 14.6 Fig. 14.7

additional pressure under an arbitrary surface:

J> = f

(
1
'1
+ 1
'2

)
. (14.4)

It is called the Laplace formula.
The additional pressure given by Eq. (14.4) causes the level of a liquid in a nar-

row tube (capillary) to change. This is why it is sometimes called the capillary
pressure.

14.4. Phenomena on Liquid-Solid Interface

Everything said in Sec. 14.2 about the special conditions in which the molecules of
a surface layer are also relates completely to solids. Hence, solids, like liquids, have
a surface tension.

When considering phenomena on the interface between various media, we
must not forget that the surface energy of a liquid or solid depends not only on the
properties of the given liquid or solid, but also on the properties of the substance
with which they have a common boundary. Strictly speaking, we must consider
the total surface energy f12 of both substances in contact with each other (Fig. 14.6).
Only if one of the substances is gaseous, does not react chemically with the other
substance, and has a poor solubility in it, can we simply speak of the surface energy
(or the surface tension) of the second liquid or solid.

If three substances, namely, a solid, a liquid, and a gas, are in direct contact with
one another (Fig. 14.7), then the entire system takes on a configuration correspond-
ing to the minimum of the total energy (surface, in the field of forces of gravity,
etc.) In particular, the contour along which the three substances are in contact
is arranged on the surface of the solid so that the sum of the projections of all the
surface tension forces applied to each contour element onto the direction in which
the contour element can move (i.e., onto a direction tangent to the surface of the
solid) equals zero. It can be seen from Fig. 14.7 that the condition of equilibrium of
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Fig. 14.8

a contour element of length J: is
J:fs,g = J:fs,l + J:fl,g cos \ (14.5)

where fs,g, fs,l and fl,g are the surface tensions at the solid-gas, solid-liquid, and
liquid-gas interfaces.

The angle \ measured inside the liquid between tangents to the surface of the
solid and the surface of the liquid is called the contact angle. In accordance with
Eq. (14.5), we have

cos \ =
fs,g − fs,l
fl,g

. (14.6)

The contact angle is determined by Eq. (14.6) only provided that
|fs,g − fs,l |

fl,g
6 1. (14.7)

If this condition is not observed, i.e., |fs,g − fs,l | > fl,g, then equilibrium cannot set
in at any value of \. This occurs in two cases.

1. fs,g > fs,l+fl,g. Nomatter how small the angle \ is, the force fs,g overbalances
the other two (Fig. 14.8a). In this case, the liquid flows unlimitedly over the
surface of the solid—complete wetting takes place. The replacement of
a solid-gas interface with two interfaces-solid-liquid and liquid-gas ones—
is advantageous from the energy viewpoint. The contact angle is zero in
complete wetting.

2. fs,l > fs,g+fl,g. Nomatter how close to c the angle \ is, the force fs,l overbal-
ances the other two (Fig. 14.8b). In this case, the liquid-solid interface con-
tracts into a point, and the liquid separates from the surface of the solid—
complete non-wetting takes place. The replacement of a solid-liquid inter-
face with two interfaces—solid-gas and liquid-gas ones—is advantageous
from the energy viewpoint. In complete non-wetting, the contact angle is c .

When condition (14.7) is observed, the contact angle may be acute or obtuse
depending on the relation between fs,g and fs,l. If fs,g is greater than fs,l then cos \ >
0 and the angle \ is acute (Fig. 14.9a). In this case, partial wetting occurs. If fs,g is
smaller than fs,l then cos \ < 0 and the angle \ is obtuse (Fig. 14.9b). In this case,
partial non-wetting occurs.
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Fig. 14.9 Fig. 14.10

Fig. 14.11

Non-wetting may result in interesting phenomena. It is general knowledge
that a needle or safety razor blade coated with grease can float on the surface of
water. It is very simple to explain this, at first sight, curious phenomenon on the
basis of energy considerations. The greased surface of steel is not wetted by water;
the steel-water interface has a much greater energy than the steel-air or air-water
ones. The complete submersion of a needle into water is attended by an increase in
the surface energy from (fs,g (steel-air) to the value (fs,l (steel-water), where ( is the
surface area of the needle. The change in the surface energy upon submersion is
described by the curve �sur shown in Fig. 14.10. The symbol ℎ stands for the height
of the needle above the bottom of the vessel, ℎ0 is the height of the surface of the
liquid above the bottom of the vessel. The dependence of the potential energy of
the needle in the field of the Earth’s gravitation �gr on ℎ has the form of a straight
line passing through the origin of coordinates. The total energy �tot = �sur + �gr
has a minimum when ℎ = ℎ0. This is exactly what permits the needle to float on
the surface of the water. If we press on the needle and submerge it to a depth such
that the total energy passes through its maximum and begins to decrease, then the
needle will submerge further by itself and sink.

The possibility of “carrying water in a sieve” is explained in a similar way. If
water does not wet a sieve (this can be achieved by coating the wires forming the
sieve with paraffin) and the layer of water is not very thick, then a slight displace-
ment of the water level downward (Fig. 14.11) will be attended by an increase in the
surface energy exceeding in magnitude the decrease in the energy in the field of
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gravitational forces. Hence, the water will be retained in the sieve and will not spill
out.

14.5. Capillary Phenomena

The existence of the contact angle leads to curvature of the surface of a liquid near
the walls of the vessel containing it. In a narrow tube (capillary¹) or in a narrow
gap between two walls, the entire surface is curved. If the liquid wets the walls,
the surface is concave, and if it does not wet them, the surface is convex (Fig. 14.12).
Such curved surfaces of a liquid are called meniscuses.

If one end of a capillary is immersed in a liquid poured into a broad vessel, then
the pressure under the curved surface in the capillary will differ from that under
the flat surface in the broad vessel by the amount J> determined by Eq. (14.4). As a
result, the level of the liquid in the capillary will be higher than in the vessel if the
liquid wets it, and lower if the liquid does not wet it.

The change in the height of the liquid level in narrow tubes or gaps has been
named capillarity. In the broad meaning of the term, capillary phenomena are
understood to include all the phenomena due to the existence of surface tension. In
particular, the pressure expressed by Eq. (14.4) and due to surface tension is called,
as we have already indicated, capillary pressure.

A difference ℎ sets in between the level of a liquid in a capillary and in a broad
vessel such that the hydrostatic pressure d6ℎ is balanced by the capillary pressure
J>:

d6ℎ =
2f
'
. (14.8)

In this equation, f is the surface tension on the liquid-gas interface, and ' is the ra-
dius of curvature of the meniscus. The latter can be expressed through the contact
angle \ and the radius of the capillary @. Indeed, examination of Fig. 14.12 shows
that ' = @/cos \. Using this value in Eq. (14.8) and solving the equation obtained
relative to ℎ, we arrive at the equation

ℎ =
2f cos \
d6@

. (14.9)

In accordance with the fact that a wetting liquid rises in a capillary, while a
non-wetting liquid lowers in it, Eq. (14.9) gives a positive ℎ for \ < c/2 (because
cos \ > 0), and a negative ℎ for \ > c/2 (because cos \ < 0).

In deriving Eq. (14.9), we assumed that the meniscus has a spherical shape. The
equation for ℎ can also be obtained on the basis of energy considerations, and there

¹The Latin capillusmeans hair. A capillary is a “tube as thin as a hair”.
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Fig. 14.12 Fig. 14.13

is no need to make a special assumption on the shape of the meniscus. The equi-
librium position of the meniscus will correspond to a minimum energy � of the
liquid-capillary system. This energy consists of the surface energy on the liquid
wall, liquid-gas, and wall-gas interfaces, and also of the potential energy of the
liquid in the field of the Earth’s gravitation.

Let us find the increment of the energy dE corresponding to an increment of
the height dℎ to which a liquid rises in a capillary. When the height grows to dℎ,
the surface area of contact of the liquid with the wall of the capillary increases by
2c@ dℎ, owing to which the energy receives an increment of 2c@fs,l dℎ. Simultane-
ously, the surface area of contact between the wall and the gas diminishes, which
is attended by an increment of the energy of −2c@fs,g dℎ. The potential energy in
the field of the Earth’s gravitation acquires an increment equal to the force of grav-
ity acting on the shaded volume of the liquid (Fig. 14.13) multiplied by ℎ, i.e., equal
to 6dc@2ℎ dℎ. We may disregard the change in the level of the liquid in the broad
vessel. Thus,

d� = 2c@
(
fs,l − fs,g

)
dℎ + 6dc@2ℎ dℎ.

Hence,
d�
dℎ

= 2c@
(
fs,l − fs,g

)
+ 6dc@2ℎ.

Equating this derivative to zero, we obtain the condition of equilibrium, from
which it follows that

ℎ =
2
(
fs,l − fs,g

)
6d@

. (14.10)

According to Eq. (14.6), fs,l − fs,g = fl,g cos \. Making this substitution in Eq. (14.10)
and using simply f instead of fl,g we get Eq. (14.9).
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Chapter 15

PHASE EQUILIBRIA
AND TRANSITIONS

15.1. Introduction

By a phase in thermodynamics is meant a combination of homogeneous parts of a
system having identical properties. Let us explain what is meant by this definition
using the following examples. A closed vessel contains water and a mixture of air
and water vapour above it. Here we have to do with a system consisting of two
phases: one is formed by the water, and the other by the mixture of air and water
vapour. If we add a few pieces of ice to the water, then all these pieces form a third
phase. Different crystalline modifications of a substance are also different phases.
For instance, diamond and graphite are different solid phases of carbon.

In definite conditions, different phases of the same substance can be in equi-
librium with one another while being in contact. The equilibrium of two phases is
possible only within a definite temperature interval, and a quite definite pressure
> at which equilibrium is possible corresponds to each value of the temperature) .
Thus, the equilibrium states of two phases will be depicted in a >-) diagram by the
line

> = 5 ()). (15.1)
Three phases of a single substance (solid, liquid, and gaseous, or liquid and two

solid phases) can be in equilibrium only at single values of the temperature and
pressure which in the >-) diagram correspond to what we call the triple point.
This point is at the intersection of the equilibrium curves for the phases taken in
pairs.

It is proved in thermodynamics, in agreement with experiments, that the equi-
librium of more than three phases of the same substance is impossible.



400 PHASE EQUILIBRIA AND TRANSITIONS

The transition from one phase to another is usually attended by the absorption
or liberation of a certain amount of heat called the latent heat of transition or
simply the heat of transition. Such transitions are called phase transitions of the
first kind. There are also transitions from the crystalline modification to another
that are not associated with the absorption or liberation of heat. These transitions
are called phase transitions of the second kind¹. We shall consider only transitions
of the first kind.

15.2. Evaporation and Condensation

Liquids and solids at any temperature contain a certain number ofmoleculeswhose
energy is sufficient for them to overcome the attraction to other molecules, escape
from the surface of the liquid or solid and to pass over into the gaseous phase. The
transition of a liquid into the gaseous phase is called vaporization or evapora-
tion, and the transition of a solid into the gaseous phase is called sublimation.

All solids sublime to some extent without any exception. In some substances
such as carbon dioxide, sublimation proceeds at an appreciable rate; in other sub-
stances, it is so insignificant at ordinary temperatures that it is practically not de-
tected.

In evaporation and sublimation, the fastest molecules leave a body. As a result,
the mean energy of the remaining molecules diminishes, and the body cools. To
maintain the temperature of an evaporating (or subliming) body at a constant value,
heat must continuously be supplied to it. The heat ! that must be supplied to a unit
mass of a substance to transform it into a vapour at the same temperaturewhich the
substance had prior to evaporation is defined as the specific heat of vaporization
(or sublimation).

In condensation, the heat for evaporation is returned: the liquid (or solid)
formed upon condensation is heated.

Let us consider the setting in of equilibrium between a liquid and its vapour.
We shall take a sealed vessel partly filled with a liquid (Fig. 15.1) and assume that ini-
tially the substance was completely removed from the space above the liquid. Ow-
ing to evaporation, the space above the liquid will become filled with molecules.
Themolecules that passed into the gaseous phasemove chaotically and collidewith
the surface of the liquid. Some of these collisions will be attended by transition of
the molecules into the liquid phase. The number of molecules passing in unit time

¹Phase transitions of the second kind do not exhaust the transitions between different crystalline
modifications. They include the transition to a superconductive state performed in the absence of a
magnetic field, and also the transition between the two liquid phases of helium called helium-I and
helium-II.
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Fig. 15.1

into the liquid phase is evidently proportional to the number of molecules collid-
ing with its surface. This number, in turn, is proportional to < 〈D〉 [see Eq. (11.23)],
i.e., grows with increasing pressure >. Hence, evaporation is accompanied by the
reverse process of transition of the molecules from the gaseous to the liquid phase,
its intensity growing as the density of the molecules in the space over the liquid
increases. When a certain quite definite (for the given temperature) pressure is
reached, the number of molecules escaping from the liquid will become equal to
that returning to it. Beginning from this moment, the density of the vapour stops
changing. Mobile equilibrium sets in between the liquid and its vapour, and it will
exist until the volume or the temperature of the system changes. A vapour in equi-
librium with its liquid is called saturated. The pressure at which equilibrium is
observed is called the saturated vapour pressure.

The number of molecules leaving a liquid in unit time grows very rapidly with
the temperature. The number of molecules colliding with the surface of the liquid
depends on the temperature to a smaller extent (through 〈D〉 in proportion to

√
) ).

Therefore, upon elevation of the temperature, equilibrium between the phases is
violated, and during a certain time the stream of molecules travelling in the direc-
tion liquid→ vapour will exceed their stream in the direction vapour→ liquid.
This continues until the increase in the pressure again leads to the setting in of mo-
bile equilibrium. Thus, the pressure at which mobile equilibrium sets in between a
liquid and its vapour, i.e., the saturated vapour pressure, is found to depend on the
temperature. The form of this relation is shown in Fig. 15.2. The meaning of the
symbols )cr and >cr will come to light in Sec. 15.4.

If we increase the volume of the vessel, the vapour pressure will drop, and
equilibrium will be violated. As a result, an additional amount of the liquid will
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Fig. 15.2

transform into a vapour to make the pressure equal to >sv, again. Similarly, reduc-
tion of the volume will cause a certain amount of the vapour to transform into a
liquid.

Everything said above about equilibrium between a liquid and a gas also holds
for a solid-gas system. A definite value of the pressure at whichmobile equilibrium
sets in between the solid and the gas corresponds to every temperature. For many
bodies such as solid metals, this pressure at ordinary temperatures is so small that
it cannot be detected by the most sensitive instruments.

15.3. Equilibrium Between a Liquid and Its Saturated Vapour

Let us consider the compression of a substance at a constant temperature. Assume
that the substance is initially gaseous. First, the pressure of the gas will grow with
decreasing volume (Fig. 15.3). When the volume +g is reached, the pressure stops
changing, and the substance stops being homogeneous—part of the gas condenses
into a liquid. The substance stratifies into two phases: a liquid and a gaseous one.
A further reduction of the volume is attended by more and more of the substance
passing over into the liquid phase, the transition occurring at a constant pressure
>sv (the saturated vapour pressure). After condensation of the substance terminates
(this occurs when the volume +lq is reached), a further reduction in the volume
begins to be attended by a rapid growth of the pressure.

In Fig. 15.3, +ab is the volume occupied by the substance in the gaseous state at
the pressure >sv and+lq is the volume of the substance in the liquid state at the same
pressure. At any intermediate value of the volume+ , part of the substance with the
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Fig. 15.3

mass ;lq will be in the liquid state, and part with the mass ;v in the vapour state.
Let us find the ratio ;lq/;v.

We shall call the volume of a unit mass of a substance its specific volume + ′.
Thus, if the mass of a substance is ;, then the specific volumes of its saturated
vapour and liquid at the pressure >sv will be

+ ′v =
+g

;
, + ′lq =

+lq

;
. (15.2)

In the state when themass of the liquid phase is;lq and that of the vapour is;v, the
liquid will occupy the volume + ′lq;lq, and the saturated vapour, the volume + ′v;v.
The sum of these two volumes must equal the volume + :

+ = + ′lq;lq + + ′v;v.

Introducing into this equation expressions (15.2) for the specific volumes and sub-
stituting the ;lq + ;v for the mass ;, we get

+ = + ′lq

(
;lq

;lq + ;v

)
+ + ′v

(
;v

;lq + ;v

)
.

Hence,
;lq

;v
=
+g − +
+ − +lq

=
G

F
(15.3)

(see Fig. 15.3). Thus, the ratio of the masses of the liquid and the saturated vapour
in a two-phase state equals the ratio of the lengths into which the point depicting
the state divides the horizontal portion of the isotherm.

It must be noted that at temperatures far from the critical one (the critical tem-
perature will be treated in the following section) the difference between the vol-
umes of a liquid and its vapour is much greater than that shown in Fig. 15.3. For
example, the specific volume of saturated water vapour at 100 ◦C is 1600 times that
of the specific volume of liquid water at the same temperature.

Thus, a horizontal portion of an isotherm corresponds to the states of equi-



404 PHASE EQUILIBRIA AND TRANSITIONS

Fig. 15.4 Fig. 15.5

librium between a liquid and its saturated vapour in a >-+ diagram. This result
is common for all two-phase states—a horizontal portion corresponds to a two-
phase system on an isotherm depicted in the variables > and + . The ends of this
portion correspond to the volumes+1 and+2 occupied by the substance in the first
and second phases. These phases may be a liquid and its saturated vapour, or a liq-
uid and crystals (see Fig. 15.4), or, finally, two crystalline modifications of the same
substance. In all cases, an equation similar to (15.3) holds:

;1

;2
=
+2 − +
+ − +1

(;1 and ;2 are the masses of the substance in the first and second phases).

15.4. The Critical State

Figure 15.4 gives isotherms for several values of the temperature. A glance at the
figure shows that the horizontal portion of the isotherm diminishes in length with
elevation of the temperature, and contracts into a point at the temperature )cr
called the critical one. The difference between the specific volumes diminishes
accordingly, and together with it the difference between the densities of the liquid
and its saturated vapour. This difference vanishes completely at the critical tem-
perature. Simultaneously, any difference between a liquid and its vapour vanishes.
The temperature dependence of the density of a liquid and its saturated vapour is
shown in Fig. 15.5.

Point C is the limit which the horizontal portions of the isotherms tend to
when the temperature tends to its critical value )cr. It is called the critical point.
The state depicted by point C is defined as the critical state of a substance. The
volume+cr, pressure >cr, and temperature)cr corresponding to the critical state are
called critical quantities. Point C is a point of inflection for the critical isotherm.
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Fig. 15.6 Fig. 15.7

A tangent to the isotherm at point C is parallel to the +-axis.
It can be seen from Fig. 15.4 that the saturated vapour pressure grows with

the temperature and reaches the value >cr at the critical temperature. At temper-
atures above the critical one, the concept of a saturated vapour loses its meaning.
Therefore, the curve showing the temperature dependence of the saturated vapour
pressure terminates at the critical point (see Fig. 15.2).

If we draw a line through the extreme points of the horizontal portions of the
isotherms (Fig. 15.4), we get a bell-shaped curve confining the region of two-phase
states of a substance. At above critical temperatures, a substance is homogeneous
at any pressure. At such temperatures, a substance cannot be liquefied, no matter
what pressure is applied to it.

The concept of the critical temperature was first introduced in 1860 by the Rus-
sian scientist Dmitri Mendeleev (1834-1907). He called it the temperature of abso-
lute boiling of a liquid and considered it as the temperature at which the forces
of cohesion between the molecules vanish, and a liquid transforms into a vapour
regardless of its pressure and the volume it occupies.

The bell-shaped curve and the portion of the critical isotherm to the left of
point C divide the >-+ diagram into three regions (Fig. 15.6). The light-shaded area
shows the region of homogeneous liquid states of a substance. Under the bell-
shaped curve is the region of two-phase states, and, finally, the region to the right
of the bell-shaped curve and the upper branch of the critical isotherm is the region
of homogeneous gaseous states of a substance. In the latter region, we can earmark
the part under the right-hand branch of the critical isotherm and call it the vapour
region. Any state in this region differs from the other gaseous states in that upon
isothermal compression the substancewhichwas originally in this state is liquefied.
The substance in one of the states at a temperature above the critical one cannot be
liquefied, no matter what pressure is applied. It is not customary practice to divide
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Fig. 15.8 Fig. 15.9

the gaseous states into a gas and a vapour.
Having selected a transition process so that it does not intersect a two-phase

region (Fig. 15.7), we can ensure a transition from the liquid state to the gaseous one
(or vice versa) without separation of the substance into two phases. In this case,
the substance will remain homogeneous all the time in the course of the transition
process.

15.5. Supersaturated Vapour and Superheated Liquid

Section 10.13 gives Eq. (10.62) proposed by van der Waals to describe the state of
gases at high densities. Figure 15.8 depicts van der Waals isotherms, i.e., curves de-
scribed by Eq. (10.62) for several temperatures. A characteristic of these isotherms
is the fact that at temperatures not exceeding the value )cr. the curves have an S-
shaped bend in whose region three different values of the volume correspond to
a given pressure. Real isotherms (see Fig. 15.4) do not have such a bend, but have
a straight horizontal portion instead of it. In Fig. 15.9, a real isotherm and a van
der Waals isotherm are superposed on one another. The van der Waals equation
describes the path of the isotherm quite well at volumes exceeding +g. At volumes
smaller than +lq, the path of a real isotherm also approximately follows the van der
Waals equation. Thus, this equation covers not only the gaseous, but also the liquid
state of a substance.

It can be seen from a comparison of a van der Waals isotherm with a real one
that these isotherms approximately coincide on portions corresponding to one-
phase states of a substance, but behave absolutely differently in the region of sepa-
ration into twophases. Instead of the S-shaped bend on the van derWaals isotherm,
the real isotherm has a straight horizontal portion in this region which is located
so that the shaded areas 1 and 2 enclosed by the bend (Fig. 15.9) are the same.
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Fig. 15.10

Separation into two phases is explained by the lack of stability of the homoge-
neous states corresponding to bend 1-2-3-4 (Fig. 15.10). The instability of the states
between points 2 and 3 becomes obvious if we take into account that the derivative
d>/d+ is positive on this part of the bend. Hence, a substance capable of passing
consecutively through states 2-3 would have absolutely unnatural properties: an
increase in the volume of the gaswould be attended by a growth in pressure instead
of a reduction in it.

The derivative d>/d+ is negative on parts 1-2 and 3-4, so that it would seem
possible for these portions of the curve to be realized. Indeed, in certain conditions,
the states corresponding to these portions can be achieved. True, they are not fully
stable: for example, it is sufficient for a dust particle to get into the vapour in state
A for the substance to break up into two phases and pass over into state B (see the
transition A→ B shown by the arrow in Fig. 15.10). Such not fully stable states are
calledmetastable. The substance in states 1-2 is called a superheated liquid, and
in states 3-4 is called a supersaturated vapour.

At sufficiently low temperatures, the bottom part of the bend in the van der
Waals isotherm crosses the +-axis and passes into the region of negative pressures
(see the bottom isotherm in Fig. 15.10). A substance under a negative pressure is
obviously in a state of tension instead of compression. Such states can also be real-
ized in certain conditions. Thus, portion 5-6 on the bottom isotherm corresponds
to a superheated liquid, and 6-7 to a tensioned liquid.

Let us consider the conditions inwhichmetastable states can be brought about.
We shall begin with a supersaturated vapour. If a vapour contains absolutely no
foreign inclusions, its condensation into a liquid cannot begin. For a droplet to
form, a great number of molecules must simultaneously approach one another to
a distance of the same order as the distances between the molecules in the liquid,
and this is absolutely improbable. For condensation to commence, the presence
of so-called condensation centres is needed, which capture the molecules flying
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toward them and transfer them into the condensed phase. Dust particles, liquid
droplets, and, especially, charged particles (ions) can be condensation centres.

Thus, if a vapour is thoroughly purified of foreign inclusions and ions, it can be
at a pressure exceeding the saturated vapour pressure >sv at the given temperature.
This state will be metastable: it is sufficient for even one condensation centre to
appear, and the state of a supersaturated vapour will be violated—the substance
will pass over into a two-phase state.

In practice, a supersaturated vapour can be obtained by subjecting one that is
not supersaturated to sharp expansion. The rapid expansion occurs without heat
exchange with the surroundings and is attended by cooling of the vapour. The
point depicting the state of the vapour moves along an adiabat. The latter, as was
shown in Sec. 10.10, is steeper than an isotherm. Hence, the vapour can pass over
from stable state 1 corresponding to the temperature )1 (Fig. 15.11) to metastable
state 2 corresponding to the lower temperature)2. Such a process is used in aWil-
son cloud chamber—adevice intended for observing the traces of charged particles
(for example, alpha particles). The air saturated with water or alcohol vapour con-
tained in a Wilson chamber is sharply expanded. The result is cooling of the air,
and the vapour becomes supersaturated. A particle flying into the chamber ionizes
the molecules along its path. The supersaturated vapour condenses on the ions
produced in minute droplets and forms a well visible trace.

Let us consider the conditions for obtaining a superheated liquid. The process
of violent vaporization (i.e., boiling) can occur, like the process of condensation,
on foreign inclusions, for example, on sand particles or gas bubbles dissolved in
the liquid. If a liquid is thoroughly purified of solid inclusions and dissolved gases,
then by heating it can be brought into a state with a pressure below >sv at a given
temperature without the liquid boiling. This will be the state of a superheated
liquid.

The transition of a liquid from its conventional state to a superheated one is
shown in Fig. 15.12 (see transition 1-2 shown by the arrow). The state of a super-
heated liquid is metastable. It is sufficient to throw a sand particle into a super-
heated liquid for the latter to boil and the substance to pass over into the stable
two-phase state (see transition �-� in Fig. 15.10).

A tensioned liquid, for example, mercury, can be obtained as follows. If we
submerge a long glass tube soldered at one end into mercury and, after turning it
with its soldered end upward, carefully pull it out from the mercury, then we can
get a column of mercury in the tube that considerably exceeds 760mm. Hence, the
mercury will be kept in the tube not by the force of atmospheric pressure, but by
the cohesion between its molecules. The mercury in the tube will be in a state of
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tension, i.e., under a negative pressure.

15.6. Melting and Crystallization

The transition of a crystalline body to the liquid state takes place at a definite tem-
perature for every substance and requires the expenditure of a certain amount of
heat called the heat of fusion.

If a substance originally in the crystalline state receives the same amount of
heat every second, its temperature will change with time as shown in Fig. 15.13.
First the temperature of the body will constantly grow. When the melting point
)m is reached (point 1 in Fig. 15.13), the temperature of the body will stop chang-
ing although the supply of heat to it is continued. At the same time, the process
of melting of the solid body begins, during which new and new portions of the
substance transform into a liquid. After the melting process is completed and all
of the substance melts (point 2 in Fig. 15.13), the temperature again begins to rise.

The heating curve of an amorphous body is different (see the dash curve in
Fig. 15.13). Upon the uniform supply of heat, the temperature of an amorphous body
continuously grows. Amorphous bodies have no definite temperature of transition
to the liquid state. This transition occurs continuously, and not in a jump. We can
only indicate the temperature interval within which a body softens. The explana-
tion is that liquids and amorphous bodies differ only in the degree of mobility of
their molecules—amorphous bodies, as already indicated, are greatly supercooled
liquids.

The melting point depends on the pressure. Thus, the transition from a crys-
talline to a liquid state occurs in quite definite conditions characterized by the val-
ues of the pressure and temperature. A curve in a >-) diagram called the melting
or fusion curve corresponds to a combination of these values. The melting curve
is very steep. To change the melting point of ice by one kelvin, for example, the
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Fig. 15.13 Fig. 15.14

pressure has to be changed by 132 atm.
A point on themelting curve determines the conditions inwhich the crystalline

and the liquid phases can be in equilibrium with each other. Such equilibrium is
possible with any ratio between the masses of the liquid and the crystals, i.e., at
values of the volume of the system within the limits from ;+ ′s to ;+ ′lq, where ; is
the mass of the system, and + ′s and + ′lq are the specific volumes of the solid and the
liquid phases. Consequently, in a >-+ diagram, a portion of a horizontal straight
line (Fig. 15.14) corresponds to every point of a melting curve. Since the substance
in the states depicted by points on this line has the same temperature, straight line
1-2 in Fig. 15.14 is a portion of an isotherm corresponding to two-phase states of
the substance (compare with the horizontal portions of the isotherms in Fig. 15.14).

The process of crystallization that is the reverse ofmelting proceeds as follows.
When a liquid is cooled to a temperature at which the solid and liquid phases can
be in equilibrium at the given pressure (i.e., to the same temperature at whichmelt-
ing occurs), the simultaneous growth of minute crystals begins about the so-called
nuclei or centres of crystallization. Growing larger and larger, the separate
crystals in the long run join one another, forming a polycrystalline solid.

Solid particles suspended in the liquid can be the crystallization centres. A
liquid thoroughly purified of such particles can be cooled to below the freezing
point without the formation of crystals beginning. The state of such a supercooled
liquid is metastable. It is usually sufficient for a dust particle to get into such a
liquid for it to break up into a liquid and crystals at the equilibrium temperature.
Sometimes upon great supercooling, however, the mobility of the liquid molecules
is so insignificant that the metastable state can be preserved for a very long time.
The liquid in such cases has a very low fluidity and is an amorphous solid. The
process of crystallization is attended by the liberation of the same amount of heat
as that absorbed in melting.
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Fig. 15.15

15.7. The Clapeyron-Clausius Equation

We saw in the preceding sections that any two phases of a substance can be in equi-
librium only at a definite pressure whose magnitude depends on the temperature.
We can obtain the general form of this relation by resorting to the concept of en-
tropy. For this purpose, we shall consider a Carnot cycle for a system consisting of
two phases of a given substance in equilibrium.

In a >-+ diagram, the Carnot cycle for a two-phase system has the form shown
in Fig. 15.15 (the temperatures of the high temperature and low temperature reser-
voirs are assumed to differ by the very small value J) ). The numbers 1 and 2 de-
note the extreme points of the horizontal portion of the isotherm of temperature
) . States 1 and 2 are one-phase ones. All the intermediate points on 1-2, depict
two-phase states differing from each other in the distribution of the mass of the
substance between the first and the second phases.

The isothermal process A→ B is attended by a phase transition of a certain
mass ; of the substance. The volume of the substance receives an increment of
;(+ ′2−+ ′1), where+ ′1 and+ ′2 are the specific volumes of the first and second phases.
For such a transition to occur, the heat &1 equal to ;!12 must be supplied to the
substance (!12 is the specific heat absorbed in the transition from state 1 to state
2 at the temperature ) ). The heat &1 is the heat which the system receives in the
course of the cycle from the high temperature reservoir. The heat is given up to
the low temperature reservoir in the course of the isothermal process C→D. The
heat given up amounts to &′2 = ;′!′12, where !

′
12 is the heat of transition 1-2 at

the temperature ) − J) , and ;′ is the mass of the substance experiencing a phase
transition in the course of the process C→D. This value differs somewhat from;

because a certain mass of the substance undergoes phase transitions in the course
of adiabatic processes.

On ihe isothermal portion A-B, the entropy of the system receives the incre-
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ment J(1 equal to &1/) . On the isothermal portion C-D, the increment of the
entropy is J(2 = −&′2() − J)). The entropy does not change in the course of
the adiabatic processes B-C and D-A. The total increment of the entropy during a
cycle is zero. Hence,

J(1 + J(2 =
&1

)
−

(
&′2

) − J)

)
= 0

whence(
&1 − &′2

)
) = &1J). (15.4)

According to Eq. (12.3),&1−&′2 equals the work done during a cycle. This work
can be found by calculating the area of the cycle. Approximately, this area can be
considered equal to ;(+ ′2 − + ′1)J> (see Fig. 15.15). We thus arrive at the relation

&1 − &′2 = ;
(
(+ ′2 − + ′1)

)
J>. (15.5)

In the limit when J> tends to zero (for which it is necessary that J) also tend to
zero), expression (15.5) transforms into a strict equality.

Let us substitute expression (15.5) in Eq. (15.4) for &1 − &′2, and also ;!12 for
&1. As a result, we get

;
(
+ ′2 − + ′1

)
) J). ≈ ;!12J).

Hence,
J>

J)
≈ !12(

+ ′2 − + ′1
) .

Finally, performing the limit transition J) → 0, we arrive at the strict equation
d>
d)

=
!12(

+ ′2 − + ′1
) . (15.6)

This expression is called theClapeyron-Clausius equation. It relates the temper-
ature derivative of the equilibrium pressure to the heat of transition, the tempera-
ture, and the difference between the specific volumes of the phases in equilibrium.

According toEq. (15.6), the sign of the derivative d>/d) depends onwhat change
in the volume—an increase or a reduction—attends a phase transition occurring
with the absorption of heat. In the evaporation of a liquid or a solid, the volume
always grows, therefore d>/d) for a vaporization curve, and also for a sublimation
one, can only be positive: elevation of the temperature leads to an increase in the
equilibrium pressure.

The volume grows, as a rule, in melting, so that d>/d) > 0: an increase in the
pressure raises the melting point. For some substances including water, however,
the volume of the liquid phase is less than that of the solid phase (+ ′2 − + ′1)². In

²The volume of water is known to increase when it freezes. For this reason, ice has a smaller
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this case, d>/d) < 0—an increase in the pressure is attended by lowering of the
melting point. We can melt ice by applying a high pressure to it without raising its
temperature above 0 ◦C.

The temperature of transition from one crystalline modification to another
will rise or lower with increasing pressure depending on which of the solid phases
has a greater specific volume.

15.8. Triple Point. Phase Diagram

Let us take a substance in the form of a liquid and its saturated vapour in equilib-
rium with it and withdraw heat from it without changing the volume. This pro-
cess will be attended by lowering of the temperature of the substance and a cor-
responding reduction in the pressure. Therefore, the point depicting the state of
the substance in a >-) diagram will move downward along the vaporization curve
(Fig. 15.16). This will continue until the freezing point of the substance is reached
corresponding to the equilibrium pressure value. Let us denote this temperature
by )tr. The temperature and the pressure remain constant all the time the freez-
ing process goes on. The heat removed during this process is the heat liberated in
freezing (crystallization).

The temperature )tr and the equilibrium pressure >tr corresponding to it are
the only values of the temperature and pressure at which three phases of a sub-
stance —the solid, liquid, and gaseous ones—can be in equilibrium. The corre-
sponding point in a >-) diagram is called a triple point. Thus, a triple point de-
termines the conditions in which three phases of a substance can be in equilibrium
simultaneously.

Upon completion of the freezing process, the solid and gaseous phases will be

density than water.
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in equilibrium. If we continue to remove heat from the substance, the tempera-
ture will again begin to lower. The pressure of the vapour in equilibrium with the
crystalline phase will decrease accordingly. The point depicting the state of the
substance will move downward along the sublimation curve.

The temperature of a triple point is the temperature at which a substancemelts
when it is under the pressure >tr. At other pressures, the melting point will be dif-
ferent. The relation between the pressure and themelting point will be depicted by
the melting curve beginning at the triple point. Thus, a triple point is on the inter-
section of three curves determining the conditions of equilibrium of two phases:
solid and liquid, liquid and gaseous, and, finally, solid and gaseous.

Depending on the relation between the specific volumes of the solid and liquid
phases, the melting curve is directed either as shown in Fig. 15.16 (d>/d) > 0) or as
shown in Fig. 15.17 (d>/d) < 0).

The melting, vaporization, and sublimation curves divide the coordinate plane
into three regions. To the left of the sublimation andmelting curves is the region of
the solid phase, between themelting and vaporization curves is the region of liquid
states, and, finally, to the right of the vaporization and sublimation curves is the
region of gaseous states of the relevant substance. Any point in one of these regions
depicts the corresponding one-phase state of the substance (we always have in view
only equilibrium states, i.e., states in which a substance can be as long as desired
in unchanging external conditions). A point on one of the curves separating the
regions depicts a state of equilibrium of the two relevant phases of the substance.
The triple point depicts the state of equilibrium of all three phases. Thus, each
point in the diagram depicts a definite equilibrium state of the substance. Such a
diagram is called a phase diagram.

The phase diagram is more complicated for a substance having several crys-
talline modifications. Figure 15.18 shows a diagram for the case when the number
of different crystalline modifications is two. There are two triple points in this
case. The liquid, gas, and the first crystalline modification of the substance are in
equilibrium at point )r, while the liquid and both crystalline modifications are in
equilibrium at point ) ′r .

A phase diagram for each particular substance is plotted on the basis of ex-
perimental data. Knowing the phase diagram, we can predict the state in which a
substance will be in various conditions (at various values of > and ) ), and also the
transformations which the substance will undergo in different processes.

The following examples will explain this. If we take a substance in the state
corresponding to point 1 (see Fig. 15.16) and subject it to isobaric heating, then the
substance will pass through the sequence of states shown by the dash straight line
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1-2, namely, crystals-liquid- gas. If we take the same substance in the state depicted
by point 3 and also subject it to isobaric heating, then the sequence of states (dash
line 3-4) will be different, namely, the crystals transform directly into a gas without
passing through the liquid phase.

It can be seen from the phase diagram that the liquid phase can exist in an
equilibrium state only at pressures not lower than that of the triple point (the same
relates to the solid phase II in Fig. 15.18). At pressures below >tr only supercooled
liquids are observed. The triple point of most ordinary substances is considerably
lower than atmospheric pressure. Hence, the transition of these substances from
the solid state to the gaseous one occurs through the intermediate liquid phase.
For instance, a pressure of 4.58mmHg and a temperature of 0.0075 ◦C correspond
to the triple point of water. For carbon dioxide, the pressure at the triple point is
5.11 atm (the temperature of the triple point is−56.6 ◦C). Therefore at atmospheric
pressure, carbon dioxide can exist only in the solid and the gaseous states. Solid
carbon dioxide (dry ice) transforms directly into a gas. The sublimation point of
carbon dioxide at atmospheric pressure is −78 ◦C.

If the specific volume of crystals exceeds the specific volume of the liquid phase,
then the behaviour of the relevant substance in some processes may be quite pe-
culiar. Let us take, for example, such a substance in the state depicted by point 1
(see Fig. 15.17), and subject it to isothermal compression. The pressure grows in this
case, and the process is depicted in the diagram by a vertical straight line (see dash
line 1-2). In the course of the process, the substance passes through the following
sequence of states: gas-crystals-liquid. Such a sequence is evidently observed at
temperatures below that of the triple point.

In concluding, we shall note another feature of a phase diagram. The vaporiza-
tion curve terminates at the critical point C. Hence, a transition from the region of
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liquid states to that of gaseous states is possible around the critical point without
intersecting the vaporization curve (see transition 3-4 in Fig. 15.17 depicted by the
dash curve). Figure 15.11 shows how such a transition looks in a >-+ diagram. In
this case, the transition from the liquid state to the gaseous one (and vice versa) is
performed continuously through a sequence of one-phase states. It must be noted
that the entire horizontal portion of the relevant isotherm in Fig. 15.11 corresponds
to the point with the coordinate ) taken on the vaporization curve.

The continuous transition between the liquid and the gaseous states is possible
because the difference between them is more of a quantitative than of a qualitative
nature. In particular, anisotropy is absent in both these states. A continuous tran-
sition from the crystalline state to the liquid or gaseous one is impossible because
we know that the crystalline state is featured by anisotropy. A transition from a
state with anisotropy to one without it can be performed, however, only in a jump.
Anisotropy cannot be present only partly either it is present or it is absent, and
there is no third possibility. This is why the sublimation and the melting curves
cannot terminate at the critical point like the vaporization curve does. The sub-
limation curve terminates at the point > = 0 and ) = 0, and the melting curve
extends to infinity.

In exactly the same way, a continuous transition from one crystalline modifi-
cation to another is impossible. Different crystalline modifications of a substance
differ in their inherent elements of symmetry. Since a symmetry element may only
be either present or absent, the transition from one solid phase to another is possi-
ble only in a jump. For this reason, the equilibrium curve of two solid phases, like
the melting curve, extends to infinity.
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Chapter 16

PHYSICAL KINETICS

16.1. Transport Phenomena

Statistical physics has to do with equilibrium states and reversible processes (i.e.,
processes in which a system passes through a sequence of equilibrium states). The
science studying the processes that are set up when equilibrium is violated is called
physical kinetics.

When equilibriumof a system is violated, the system tends to return to its equi-
librium state. This process is attended by a growth in entropy and is consequently
irreversible. Thus, the processes which physical kinetics studies are irreversible.

The violation of equilibrium is accompanied by the appearance of flows of
either molecules, or heat, or an electric charge, and so on. In this connection, the
relevant processes are called transport phenomena. It follows from the above
that transport phenomena are irreversible processes.

We shall consider three transport phenomena—diffusion, thermal conductiv-
ity, and internal friction or viscosity. We shall deal only with the cases when devi-
ations from equilibrium are not considerable. First, we shall write empirical equa-
tions of these processes applicable to any media (solid, liquid, and gaseous). In the
following sections, we shall give the molecular-kinetic derivation of these equa-
tions for gases.

When considering transport phenomena, we shall have to calculate the amounts
of various quantities (the number of particles, mass, energy, momentum) trans-
ported through an imaginary surface. The amount of a quantity passing in unit
time through a surface is called the flux (flow) of this quantity. Examples are the
flux (flow) of a liquid through a cross section of a pipe or tube, and the light flux
through a window pane or through the glass bulb of an electric lamp. We can
consider the flux through a surface of any shape; in particular, the surface can be
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closed.
The flux is a scalar algebraic quantity. The sign of a flux is determined by

the choice of the positive direction, for example, the direction of the axis along
which the flux propagates. The positive direction is usually chosen arbitrarily. For
closed surfaces, it is customary practice to consider the flux flowing out of the
surface as positive, and that flowing into it as negative. In this chapter, we shall deal
with fluxes through flat surfaces perpendicular to the H-axis. If particles, energy,
or momentum will be transported through the surface in the direction of the H-
axis, we shall consider the corresponding flux to be positive, otherwise we shall
consider it negative.

Every transport phenomenon is due to changes in a certain quantity 5 in space.
This quantity for the transport of particles (diffusion) is the concentration of the
particles—the latter are transported in the direction of diminishing of their con-
centration. A heat flux appears when the temperature at different points of the
medium differs, the heat flowing in the direction of diminishing temperature, etc.

We shall consider for simplicity that the quantity 5 whose lack of homogeneity
underlies the given transport process (the concentration, temperature, etc.) is a
function of only the coordinate H. Hence, the change in this quantity in space will
he characterized by the derivative d5/dH. The latter is usually called the gradient
of the quantity 5 . This name is not quite correct—strictly speaking, the derivative
of the scalar function 5 = 5 (H) with respect to H gives the projection of the gradient
of the function onto the H-axis [see Eq. (3.23)]. Following the tradition, however, we
shall call quantities of the kind d5/dH in a transport equation a gradient.

Diffusion. Diffusion is defined as the spontaneous levelling out of the concen-
trations in amixture of several (in the simplest case of two) different substances due
to thermalmotion. This process is observed in solid, liquid, and gaseousmedia. We
shall consider only gaseous media.

Assume that a unit volumeof a two-component gasmixture contains <1molecules
of one species and <2 molecules of another one. The total number of molecules in
unit volume is < = <1 + <2. The ratio

27 =
<7

<
is called the relative concentration of the molecules of the 7-th species.

Let us assume that concentration gradients d21/dH and d22/dH are set up in the
direction of the H-axis, and d21/dH = −d22/dH (Fig. 16.1). Hence,

d
dH
(21 + 22) =

1
<

d
dH
(<1 + <2) = 0

so that < and, consequently, > are constant (> = <9) ). Therefore, no gas-dynamical
fluxes appear. But owing to the thermal motion of the molecules, the process of
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levelling out of the concentrations will occur attended by the transport of the mass
of each of the components in the direction of the diminishing of its concentration.
As indicated above, this process is called diffusion.

It has been established experimentally that the flux of molecules of the 7-th
species through surface ( perpendicular to the H-axis is determined by the expres-
sion

#7 = −�
d<7
dH
( (16.1)

where � is a constant of proportionality called the diffusion coefficient.
According to Eq. (16.1), when d<7/dH > 0, the flux #7 is negative; this signi-

fies that the molecules are transported in a direction opposite to that of the H-axis
(Fig. 16.2a). When d<7/dH < 0, the flux is positive, i.e., themolecules are transported
in the direction of the H-axis (Fig. 16.2b). Thus, the minus sign in Eq. (16.2) is due to
the fact that the molecules flow in the direction of diminishing of the concentra-
tion.

The dimension of the flux of molecules # is T−1, that of <7 is L3, of the area ( is
L2, and dH has the dimension L. Hence, the diffusion coefficient has the dimension
L2T−1. Multiplying both sides of Eq. (16.1) by the mass of a molecule of the 7-the
species ;7 we get an expression for the flux of the mass of the 7-th component:

"7 = −�
dd7
dH
(. (16.2)

Here d7 = <7;7 is the partial density of the 7-th component; it is also called the
absolute concentration.

Equations (16.1) and (16.2) are empirical equations of diffusion. They are also
called Fick’s law.

Thermal Conductivity. Experiments show that if we set up a temperature
gradient along the H-axis in a medium (solid, liquid, or gaseous one), then a heat
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Fig. 16.2

flux is produced whose magnitude is determined by the formula

? = −pd)
dH
( (16.3)

where ? is the heat flux through surface ( perpendicular to the H-axis, d)/dH is the
temperature gradient (more exactly, the projection of the temperature gradient on
the H-axis) and p is a proportionality constant depending on the properties of the
medium and called the thermal conductivity coefficient.

The unit of ? is J s−1, i.e., W (watt). Hence, p is measured in watts per metre-
kelvin

[
Wm−1 K−1

]
. The minus sign in Eq. (16.3) signifies that the heat flows in the

direction of diminishing of the temperature. Therefore, the signs of ? and d)/dH
are opposite. Equation (16.3) is an empirical equation of thermal conductivity. It is
also called the Fourier law.

Internal Friction. According to Eq. (9.12), the force of friction between two
layers of a fluid is

� = [

����dCdH ���� ( (16.4)

where [ is the viscosity (viscosity coefficient), dC/dH is the quantity showing how
rapidly the velocity of the fluid changes in the direction H perpendicular to the
direction of motion of the layers (the gradient of C) and ( is the surface area over
which the force � acts.

Equation (16.4) is the empirical equation of viscosity.
According to Newton’s second law, the interaction of two layers with the force

� can be considered as a process in the course of which a momentum equal to �
in magnitude is transmitted from one layer to another in unit time. Therefore,
Eq. (16.4) can be written in the form

 = −[dC
dH
( (16.5)

where  is the momentum transmitted in one second from layer to layer through
surface (, i.e., the momentum flux through (.

Themomentumflux  is measured in kgm s−2. Hence, the unit of the viscosity
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[ is the kilogramme permetre-second
[
[kgm−1 s−1

]
. [This unit can also bewritten

in the form pascal-second (Pa s).]
The minus sign in Eq. (16.5) is due to the circumstance that the momentum

“flows” in the direction of the decrease in the velocity C. Therefore, the signs of the
flux  and of the derivative dC/dH are opposite.

It must be remembered that Eq. (16.4) determines the identical modulus of two
oppositely directed forces with which the layers act on each other. Therefore, the
minus sign must not be written in front of the right-hand side of Eq. (16.4). In
addition, we must take the magnitude of the expression dC/dH (the magnitude of
the force with any sign of the derivative dC/dH must be positive).

16.2. Mean Free Path

The molecules of a gas in thermal motion continuously collide with one another.
The term “collision” as applied to molecules must not be understood literally and
the process conceived as the collision of rigid balls. By a collision of molecules is
meant the process of interaction between them as a result of which the molecules
change the direction of their motion.

Figure 16.3 shows a curve depicting themutual potential energy of twomolecules
as a function of the distance @ between their centres. Let us use this curve to con-
sider the process of the approach (collision) of molecules. Let us mentally place the
centre of one of the molecules at the origin of coordinates, and imagine the centre
of the second molecule moving along the @-axis. Assume that the second molecule
is flying toward the first one from infinity having the initial store of kinetic en-
ergy Yk = Y1. Approaching the first molecule, the second one under the action of
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Fig. 16.4

the force of attraction moves with a constantly growing velocity. The kinetic en-
ergy of a molecule Yk also grows as a result. The total energy of the system equal
to Y = Yk + Yp, however, remains unchanged (the system of the two molecules is
closed) and equal to Y1 because the potential energy Yp diminishes simultaneously.
When the molecule passes the point with the coordinate @0, the forces of attraction
are replaced by forces of repulsion, owing to which the molecule begins to rapidly
lose its velocity (in the region of repulsion the curve of Yp is very steep). At the mo-
ment when the potential energy Yp becomes equal to the total energy of the system
Y1, the velocity of the molecule vanishes. At this moment, the molecules approach
each other to the closest distance. After themolecule stops, all the phenomena pro-
ceed in the reverse sequence: first the molecule travels with a constantly growing
velocity under the action of the force of repulsion, upon covering the distance @0,
the molecule gets under the action of the force of attraction that retards its motion
and, finally, travels away to infinity having its initial store of kinetic energy Y1.

The minimum distance between the centres of two molecules when they col-
lide is called the effective or collision diameter of a molecule 3 (Fig. 16.4). The
quantity

f = c32 (16.6)
is known as the effective section of a molecule.

A glance at Fig. 16.3 shows that when amolecule begins its motion from infinity
with a greater store of energy, the minimum distance between the centres of the
molecules when they approach is less (compare 31 and 32 in the figure). Thus,
the collision diameter of molecules depends on their energy and, consequently, on
the temperature. The collision diameter of molecules diminishes with increasing
temperature.

During one second, a molecule travels an average path equal to the mean ve-
locity 〈D〉. If it experiences an average of a collisions a second, then the mean free
path will be

: =
〈D〉
a
. (16.7)

To calculate the average number of collisions a, let us first assume that all the
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molecules except for a given one are frozen still in their places. Let us watch the
motion of the molecule we have earmarked. After striking one of the station-
ary molecules, it will fly in a straight line until it collides with another stationary
molecule (Fig. 16.5). This collisionwill occur if the centre of the stationarymolecule
is at a distance from the line of flight of themolecule less than the collision diameter
of a molecule 3. As a result of the collision, the molecule will change the direction
of its motion, and will then again fly along a straight line for a time. This will con-
tinue until it encounters anothermolecule whose centre will be within the cylinder
of radius 3 shown in Fig. 16.5.

Themolecule travels a path of 〈D〉 in one second. The number of collisionswith
stationary molecules occurring during this time equals the number of molecules
whose centres are within the bent cylinder of length 〈D〉 and radius 3. It will be
shown below that the mean free path is much larger than the collision diameter of
the molecules 3. Therefore, the volume of the cylinder can be considered equal to
c32 〈D〉. Multiplying this volume by the number of molecules in a unit volume <,
we get the average number of collisions of a movingmolecule with stationary ones
per second:

a′ = c32 〈D〉 <. (16.8)
Actually, all the molecules are in motion, owing to which the number of colli-

sions is determined by themean velocity ofmotion of themoleculeswith respect to
one another, and not by the mean velocity 〈D〉 of molecules relative to the walls of
the vessel confining them. The relative velocity of two arbitrarily taken molecules
is vrel = v2 − v1.
Squaring this equation, we get

D2rel = (v2 − v1)
2 = D22 + D21 − 2v1v2

(we have taken advantage of the fact that v2 = D2). The mean value of the sum of
several quantities equals the sum of the mean values of the quantities being added.
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Hence,〈
D2rel

〉
=

〈
D22

〉
+

〈
D21

〉
− 2 〈v1v2〉 .

Events consisting in that a first molecule has the velocity v1 and a second one the
velocity v2 are statistically independent. Therefore, 〈v1v2〉 = 〈v1〉 〈v2〉. Each of
the multipliers equals zero for a gas in equilibrium. Thus,〈

D2rel
〉
=

〈
D22

〉
+

〈
D21

〉
= 2

〈
D2

〉
(the mean value of the square of the velocity of all the molecules is the same and
equals

〈
D2

〉
). The result obtained signifies that Drel,m. sq =

√
2Dm. sq. The mean

square velocities are proportional to the arithmetical mean ones. Consequently,
〈Drel〉 =

√
2 〈D〉 .

Substituting 〈Drel〉 for 〈D〉 in Eq. (16.8), we get the following expression for the
mean number of collisions:

a =
√
2c32 〈D〉 <. (16.9)

Using this value of a in Eq. (16.7), we get the following equation for the mean free
path:

: =
1

√
2c32<

. (16.10)

Substituting f for c32 in the above equation in accordance with Eq. (16.6), we get

: =
1
√
2f<

. (16.11)

At constant temperature, < is proportional to >. Hence, the mean free path is
inversely proportional to the pressure:

: ∝ 1
>
. (16.12)

Wenoted above that the collision diameter ofmolecules diminisheswith increasing
temperature. Accordingly, elevation of the temperature is attended by an increase
in the free path.

Let us assess the value of the mean free path and the average number of colli-
sions a second. We established in Sec. 10.2 that molecules have dimensions of the
order of several angstroms. Let us adopt the collision diameter of a molecule equal
to 2 Å, i.e., 2 × 10−10m. A mole of a gas in standard conditions (i.e., at 0 ◦C and
> = 1 atm) occupies a volume of 22.4 × 10−3m3. The number of molecules in unit
volume in these conditions is 6 × 1023/22.4 × 10−3 ≈ 3 × 1025m−3. Introducing
these numbers into Eq. (16.10), we have

: =
1

√
2 × 3.14 × 4 × 10−20 × 3 × 1025

≈ 2 × 10−7m = 2 × 10−5 cm.
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At a pressure of 10−3mmHg (which corresponds to about 10−6 atm), : will be
of the order of 10 cm. If a vessel has dimensions of a few centimetres, then at such
a pressure the molecules will travel from wall to wall virtually without colliding
with one another. At a pressure of 10−6mmHg : reaches a value of scores ofmetres.

When deriving Eq. (16.8), we assumed that : is much greater than 3. Nowwe can
see that this assumption is correct. Indeed, it follows from the above assessment
that in standard conditions the ratio of : to 3 is about 2 × 10−5/2 × 10−10 = 105.

We can find the number of collisions a second by dividing the mean velocity of
themolecules 〈D〉 by :. In Sec. 11.6, we obtained a value of 〈D〉 of about 500m s−1 for
oxygen. Dividing this value by : = 2 × 10−7m, we get a value of 2.5 × 109 s−1 for
the number of collisions a second. Thus, in standard conditions, the number of col-
lisions a second is several thousand millions. The number of collisions diminishes
with a decreasing pressure, changing in proportion to > [see Eq. (16.12)].

16.3. Diffusion in Gases

We shall attempt to get an equation of diffusion proceeding frommolecular-kinetic
notions. To simplify our task, we shall consider that the molecules of both com-
ponents differ only slightly in mass (;1 ≈ ;2 ≈ ;) and have virtually identical
effective sections (f1 ≈ f2 ≈ f ). In this case, we can assign the same mean veloc-
ity of thermal motion 〈D〉 to the molecules of both components and calculate the
mean free path by the equation

: =
1
√
2f<

where < = <1 + <2.
It is easy to understand that the process of diffusion in gases will proceed more

intensively when the molecules have a higher velocity 〈D〉 and collide less fre-
quently with one another (i.e., the free path : is greater). Consequently, we can
expect that the diffusion coefficient � must be proportional to the product 〈D〉 :.
This agrees with the fact that, as we noted in Sec. 16.1, the dimension of � is L2T−1.

Let us begin our calculations. Assume that the change in the concentration of
the first component along the H-axis is described by the function <1 = <1(H). Let
us denote the number of molecules of the first component flying through area ( in
the direction of the H-axis a second by # ′1, and the number of molecules flying in
the direction opposite to the H-axis by# ′′1 (Fig. 16.6)¹. The difference between these

¹We have drawn Fig. 16.6 so that the molecules # ′1 fly through the upper half and the molecules
# ′′1 through the lower half of area (. Actually, both groups of molecules are distributed over the
entire surface (.
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numbers is the flux of the molecules of the first component #1 through surface (:
#1 = # ′1 − # ′′1 . (16.13)

We shall proceed from the simplified notion according to which the molecules
move along threemutually perpendicular directions coincidingwith the axes F, G, H
(the axes F and G are parallel to area (). In this case according to Eq. (11.24), the num-
ber of molecules flying one of the directions through unit area a second is < 〈D〉 /6.
Hence, the numbers # ′1 and #

′′
1 can be represented in the form

# ′1 =
1
6
<′1 〈D〉 (, # ′′1 =

1
6
<′′1 〈D〉 (. (16.14)

where <′1 is the “effective” concentration of the molecules of the first component
to the left of (, <′′1 is the same to the right of (.

Molecules will fly through surface ( that experienced their last collision at dif-
ferent distances from it. On an average, however, the last collision will occur at
a distance from ( equal to the mean free path :. It is therefore reasonable to take
the value <1(H − :) as <′1, and <1(H + :) as <′′1 (see Fig. 16.6). Hence, with a view to
Eqs. (16.13) and (16.14), we can write that

#1 =
1
6
〈D〉 ( [<1(H − :) − <1(H + :)]. (16.15)

Since : is very small, the difference between the values of the function <1(H)
given in Eq. (16.15) in brackets can be written in the form²

<1(H − :) − <1(H + :) = −
d<1
dH

2:. (16.16)

²Equation (16.16) holds provided that the change in <1 over the free path is much smaller than
<1 itself (d<1/dH: 6 <1). This condition gives a criterion for the smallness of the deviation from
equilibrium (see the fourth paragraph of Sec. 16.1). This remark relates to similar formulas of the
following two sections. For example, Eq. (16.23) holds provided that d)/dH: 6 ) .
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Introducing this expression into Eq. (16.15), we find that

#1 = −
(
1
3
〈D〉 :

)
d<1
dH

(. (16.17)

A comparison of Eqs. (16.1) and (16.17) shows that on the basis of molecular-
kinetic notions we can not only arrive at a proper dependence of #1 on d<1/dH,
but also obtain an expression for the diffusion coefficient �. This expression has
the form

� =
1
3
〈D〉 :. (16.18)

More strict calculations lead to the same formula, but with a somewhat different
numerical factor.

It must be noted that as we assumed, the diffusion coefficient is proportional
to the product 〈D〉 :.

The derivation that led us to Eq. (16.17) can be applied with equal rights to both
components of a mixture. Hence, the diffusion coefficient has the same value for
both components.

Let us investigate the expression we have obtained for the diffusion coefficient
�. Inserting in Eq. (16.18) the expressions for 〈D〉 and :, we find that

� ∝ 1
<f

(
)

;

)1/2
. (16.19)

It follows from Eq. (16.9) that the diffusion coefficient is inversely proportional to
the number of molecules in a unit volume, and, consequently, to the pressure >:

� ∝ 1
>
.

With elevation of the temperature, � grows approximately in proportion to
√
)

(we remind our reader that f slightly depends on ) ).
We have assumed that the molecules of both components are identical in mass

and effective section. Therefore, Eq. (16.18) is in essence an expression for the co-
efficient of self-diffusion, i.e., the diffusion of the molecules of a gas in a medium
containing molecules of the same gas. The phenomenon of self-diffusion could
be observed if we marked in some way or other part of the molecules of a ho-
mogeneous gas. If the concentrations of marked molecules and of the molecules
bearing no marks were not constant, counterflows of the two kinds of molecules
would appear in the gas, and the magnitude of the flows would be determined by
Eq. (16.17). Self-diffusion can be studied in practice by employing the tracer tech-
nique. It consists in using a mixture of isotopes, i.e., varieties of atoms of the same
element differing from each other, for example, in that one variety of the atoms is
radioactive and the other is stable.
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When the molecules of the two components of a mixture differ in their mass
and in effective section, the diffusion coefficient is determined by the expression

� =
<1 〈D2〉 :2 + <2 〈D1〉 :1

3 (<1 + <2)
where <1, 〈D1〉 , :1 are the concentration, mean velocity and mean free path of the
molecules of the first component, and <2, 〈D2〉 , :2 represent the same quantities for
the molecules of the second component.

16.4. Thermal Conductivity of Gases

Let us calculate the heat flux in a gas on the basis of molecular-kinetic notions.
If the temperature of the gas differs at different points, then the mean energy of
the molecules at these points will also differ. Being displaced owing to thermal
motion from one set of points to another, the molecules transport the energy they
have stored. This energy transfer underlies the process of thermal conductivity in
gases. Before beginning our calculations, let us attempt to reveal the factors that
can affect the ability of a gas to conduct heat. It is easy to understand that apart from
the factors determining the rate of diffusion, i.e., themean velocity of themolecules
〈D〉 and the free path :, the amount of energy transported by the molecules must
depend on the ability of the molecules to store energy, i.e., on the heat capacity of
the gas.

Let us consider a gas in which a temperature gradient is maintained in some
way or other along the direction which we have denoted by the letter H. Let us
mentally imagine area ( perpendicular to this direction (Fig. 16.7).

On the basis of simplified notions, we shall consider that the number of mole-
cules flying in one second through area ( in each direction (from left to right and



Thermal Conductivity of Gases 429

from right to left) is

# =
1
6
< 〈D〉 (. (16.20)

At constant pressure, < depends on the temperature (> = <9) ), and 〈D〉 also
changes with the temperature. Accordingly, it would seem that to find the number
of molecules flying through area ( from left to right we ought to use in Eq. (16.20)
the values of < and 〈D〉 corresponding to one temperature, and to find the number
of molecules flying from right to left, the values of < and 〈D〉 corresponding to
another temperature. The numbers of molecules flying through area ( in opposite
directions cannot differ, however. If they did, then apart from the heat flux through
area (, wewould also observe a flow ofmatter—the gaswould be transported from
one part of space to another. But we assumed that no processes occur in the gas
except for the transport of heat. Therefore, we shall use Eq. (16.20) to calculate the
number of molecules flying through ( in each direction, assuming for < and 〈D〉
their values in section (.

It must be noted that since < = >/9) , i.e., < is proportional to >/) , and 〈D〉 is
proportional to

√
) , the constancy of the product < 〈D〉 signifies the constancy of

the expression
>

)

√
) =

>
√
)
.

Hence, for no flow of molecules to be observed when a temperature gradient is
present, it is essential that the pressure change along the H-axis in proportion to√
) .
In calculating the heat flux, we shall proceed from the assumption that every

molecule carries with it the energy Y = 9)/2 corresponding to the temperature at
the spot where its last collision with another molecule occurred. On the average,
this collision occurs at a distance from ( equal to the mean free path : (see Fig. 16.7).
Thus, the energy 〈Y1〉 corresponding to the temperature )1 = ) (H − :), i.e., to the
temperature in the plane (H − :), should be ascribed to the molecules flying in
the direction of the H-axis, and the energy 〈Y2〉 corresponding to the temperature
)2 = ) (H + :) should be ascribed to the molecules flying in the opposite direction
(here H is the coordinate of plane ().

In accordance with the above, we get the following expression for the heat flux
through area ( in the positive direction of the H-axis:

? = # (〈Y1〉 − 〈Y2〉)
where # is determined by Eq. (16.20). Introduction of the values of # , 〈Y1〉, and
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〈Y2〉 yields

? =
1
6
< 〈D〉 (

(
7

2
9)1 −

7

2
9)2

)
=
1
6
< 〈D〉 ( 7

2
9 ()1 − )2) . (16.21)

The difference )1 − )2 equals

) (H − :) + ) (H + :) = −d)
dH

2: (16.22)

(we have taken into account the smallness of :). Here d)/dH is the derivative of )
with respect to H at the location of plane (.

With a view to Eq. (16.22), we can write Eq. (16.21) as follows:

? = −1
6
< 〈D〉 ( 7

2
9
d)
dH

2: = −1
3
〈D〉 :

(
7

2
9<

)
d)
dH
(. (16.23)

A comparison of this equation with Eq. (16.3) gives the following expression for the
thermal conductivity coefficient:

p =
1
3
〈D〉 :

(
7

2
9<

)
. (16.24)

It should be remembered that the expression 7'/2 = 79#A/2 determines the
heat capacity at constant volume �+ of one mole of a gas, i.e., the amount of a gas
containing#Amolecules. Similarly, the expression 79</2 is the heat capacity of the
amount of a gas containing < molecules, i.e., the heat capacity of a unit volume of
the gas. We can obtain this heat capacity by multiplying the specific heat capacity
2+ (the heat capacity of a unit mass) by themass of a unit volume, i.e., by the density
of the gas d. Thus,

7

2
9< = d2+ . (16.25)

Introducing Eq. (16.25) into (16.24), we arrive at the final expression for the ther-
mal conductivity coefficient of a gas:

p =
1
3
〈D〉 :d2+ . (16.26)

As we have expected, the thermal conductivity coefficient was found to be propor-
tional to 〈D〉 , :, and the heat capacity of a gas d2+ . More strict calculations lead to
a similar expression for p, but with a somewhat different numerical factor.

Let us find how p depends on the quantities characterizing molecules and on
the parameters of state of a gas. Taking into account that 0D4@064D is proportional
to

√
)/;, : is proportional to 1/<f , and d2+ is proportional to 7< [see Eq. (16.25)],

we get

p ∝
(
)

;

)1/2 1
<f
7< =

7

f

(
)

;

)1/2
. (16.27)
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Fig. 16.8

Inspection of expression (16.27) shows that unlike the diffusion coefficient, the
thermal conductivity coefficient of a gas does not dependon the number ofmolecules
in a unit volume, and, therefore, on the pressure (> = <9) ). This is due to the fol-
lowing reasons. Reduction of the pressure is attended by diminishing of <, i.e., of
the number of molecules participating in the transfer of energy. Simultaneously,
: grows and, consequently, also the difference between the energies transported
by every molecule in opposite directions. As a result, we see that the amount of
energy transferred by the molecules at the given temperature gradient does not
depend on the pressure. This holds only as long as : remains small in comparison
with the distance between the surfaces exchanging heat at the expense of the ther-
mal conductivity of the gas contained between them (for example, in comparison
with the size of the gap between the internal and external walls of a glass vacuum
bottle). As this condition stops being observed, the thermal conductivity begins
to depend to a greater and greater extent on the pressure, diminishing when the
latter lowers. When : exceeds the distance between the surfaces, the path of the
molecules is determined by the magnitude of this distance and stops depending on
the pressure. The number of molecules per unit volume continues to fall off with
decreasing pressure, the result being a reduction in p.

When the temperature is raised, the thermal conductivity coefficient grows
somewhat more rapidly than

√
) . The cause is that the effective section a depends

slightly on ) (see Sec. 16.2).

16.5. Viscosity of Gases

To understand the origin of forces of internal friction, let us consider two contact-
ing layers of a gas having a thickness of JH. We shall assume that the layers move
with different velocities C1 and C2 (Fig. 16.8). Every molecule of the gas participates
in two motions: chaotic thermal motion whose mean velocity is 〈D〉, and ordered
motion with the velocity C that is much smaller than 〈D〉.

Suppose that at a certain moment the layers have the momenta  1 and  2.
These momenta cannot remain unchanged because owing to thermal motion the
continuous transition of molecules from one layer to another occurs. According
to our simplified notions, the number of molecules passing through area ( from
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one layer to another a second is determined by the expression

# =
1
6
< 〈D〉 ( (16.28)

(the insignificant effect of ordered motion on the magnitude of the velocity of the
molecules may be disregarded). Upon getting into another layer, a molecule col-
lides with the molecules of that layer. As a result, it either gives up its surplus
momentum to other molecules (if it arrived from a layer moving with a greater
velocity), or increases its momentum at the expense of the other molecules (if it
arrived from a layer moving with a smaller velocity). As a result, the momentum
of the faster layer diminishes, and of the slower one grows. The layers thus behave
as if a retarding force is applied to the first layer (whose velocity is greater), and an
accelerating force equal inmagnitude is applied to the second layer (whose velocity
is lower).

Themomentum transferred through area ( on the interface between the layers
depicted in Fig. 16.8 in unit time from the first layer to the second one is

 = # (;C1 − ;C2)
(; is the mass of a molecule). Introduction of Eq. (16.28) for # yields

 =
1
6
< 〈D〉 (; (;C1 − ;C2) . (16.29)

In a real gas flow, the velocity when crossing the interface between two layers
changes not in a jump, but continuously according to the law C = C(H) (Fig. 16.9).
We shall consider that every molecule flying through surface ( carries along with
it the momentum ;C determined by the value of the velocity C at the spot where
the last collision of the molecule occurred. Different molecules experience their
last collision at the most diverse distances from (. On the average, this collision
occurs at a distance equal to the free path :. We shall therefore ascribe the velocity
C1 = C(H − :) to the molecules flying in the direction of the H-axis, and the velocity
C2 = C(H + :) to the molecules flying in the opposite direction. Inserting these
values in Eq. (16.29), we get the following expression for the momentum flux in the
direction of the H-axis:

 =
1
6
< 〈D〉 (; [C(H − :) − C(H + :)] = 1

6
< 〈D〉 (; dC

dH
2:

[compare with Eq. (16.23)].
Taking into account that the product nm equals the density of a gas d, we can

write that

 = −
(
1
3
〈D〉 :d

)
dC
dH
(.
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Fig. 16.9

A comparison with Eq. (16.5) gives an expression for the viscosity:

[ =
1
3
〈D〉 :d. (16.30)

Stricter calculations lead to the same expression, but with a somewhat different
numerical factor.

It can he seen from Eq. (16.30) that like � and p, the viscosity is proportional
to 〈D〉 and :. It is also proportional to the density of a gas d, i.e., to a quantity
characterizing the ability of a gas to “accumulate” momentum—at a given velocity
C the momentum of a unit volume of a gas is the greater, the higher is the density
d (we remind our reader that the thermal conductivity is proportional to the heat
capacity of a unit volume of a gas).

Taking into account the expressions for the quantities in Eq. (16.30), we can
write that

[ ∝
(
)

;

)1/2 1
<f
<; =

√
;)

f
.

Hence, it follows that like p, the viscosity does not depend on the pressure. This
holds only as long as : remains small in comparisonwith the size of the gap through
which the gas is flowing (for example, in comparison with the diameter of a pipe).
As this condition stops being observed, the viscosity begins to depend more and
more on the pressure, diminishing when the latter drops. The viscosity [ depends
on the temperature in the same way as � and p.
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16.6. Ultrararefied Gases

When the free path of molecules exceeds the linear dimensions of the vessel con-
fining them, we say that a vacuum has been achieved in the vessel. The gas in this
case is called ultrararefied. Although the word vacuum literally means “empti-
ness”, an ultrararefied gas contains a great number of molecules in a unit volume.
Thus, at a pressure of 10−6mmHg, one cubic metre contains about 1016 molecules.
Moreover, in very minute pores, the state defined as a vacuum can also be achieved
at atmospheric pressure.

The behaviour of ultrararefied gases is distinguished by numerous features.
For conditions of a vacuum, we cannot speak of the pressure of one part of a gas
on another. In ordinary conditions, the molecules often collide with one another.
Consequently, any surface with which we mentally divide a gas into two parts will
experience an exchange of momenta between molecules. Thus, one part of the
gas will act on the other with the pressure > over the interface. In a vacuum, the
molecules exchange momenta only with the wa1ls of the vessel, so that only the
concept of the pressure of a gas on a wall has a meaning. Internal friction is also
absent in the gas. But a body moving in an ultrararefied gas will experience the
action of a friction force due to the fact that the molecules colliding with this body
will change its momentum. Let us consider this in greater detail.

Assume that two plates are moving parallel to each other in an ultrararefied
gas (Fig. 16.10). The velocities of the plates are C1 and C2. The interaction between
a molecule and a plate at the moment of a collision leads to the molecule, upon
rebounding from the plate, having a velocity component equal in magnitude and
direction to the velocity of the plate in addition to its thermal velocity.

A unit area of the upper platewill be struck in one second by < 〈D〉 /6molecules
having a velocity component C2 acquired in the preceding collision with the lower
plate. Each of these molecules carries a momentum component of ;C2. Upon
rebounding from the upper plate, the molecules have a momentum component of
;C1.

Consequently, a collision of every molecule with the upper plate results in its
momentum diminishing by ; (C1 − C2). The change in the momentum in unit
time related to unit surface area of the plate is

1
6
< 〈D〉 ; (C1 − C2) .

This change equals the force acting on a unit surface area of the plate:

� =
1
6
d 〈D〉 (C1 − C2) (16.31)

(we have substituted > for <;). A force of the same magnitude, but opposite in
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Fig. 16.10 Fig. 16.11

direction, acts on a unit surface area of the lower plate.
It is natural to call the proportionality constant between the force of friction

and the velocity difference of the plates the coefficient of friction. It can be seen
fromEq. (16.31) that this coefficient equals d 〈D〉 /6, i.e., is proportional to the density
of the gas and, consequently, to the pressure of the gas on a plate and the walls of
the vessel (the expression > = <9) remains in force for this pressure).

Let us now consider the transfer of heat by a gas in a vacuum. We shall consider
two plates with temperatures)1 and)2 betweenwhich there is an ultrararefied gas
(Fig. 16.11). If the impact of the molecules against the surface of the rigid body were
of a perfectly elastic nature, the molecules would rebound from a plate with the
same velocity in magnitude (and, consequently, with the same energy) as they had
before the collision. As a result, the molecules would not be able to transfer energy
from one plate to the other. Such a conclusion, however, contradicts experimental
data. Hence, the interaction between a wall and a molecule striking it is not an
elastic collision in nature. Indeed, it occurs as follows: upon striking a wall, a
molecule adheres to it, as it were, for a brief time, after which it leaves the wall in
an absolutely arbitrary direction with a velocity whose magnitude on the average
corresponds to the temperature of the wall³.

Let us revert to Fig. 16.11. Each of the < 〈D〉 (/6 molecules striking the upper
plate a second carries the energy 79)2/2 along with it and carries away an energy
of 79)1/2. Hence, each impact of a molecule against a plate leads to the latter losing
the energy 79 ()1 − )2) /2. The second plate receives the same energy upon each
impact. Thus, the amount of energy transferred by the molecules in one second
from plate to plate will be

? =
1
6
< 〈D〉 7

2
9 ()1 − )2) (.

³Wemust note that this more precise definition of the nature of interaction of themolecules with
a wall does not affect the results which we obtained in Sec. 11.4 when calculating the pressure. If the
temperature of the gas and the walls is the same, then the molecules will leave a wall with the same
mean velocity with which they collidedwith it, so that the change in themomentum of themolecules
as a result of a collision is the same on an average as in a perfectly elastic collision.
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Multiplying and dividing this expression by ;#A, we get

? =
1
6
d 〈D〉 2+ ()1 − )2) (. (16.32)

The thermal conductivity coefficient equal to d 〈D〉 2+/6 is found to be propor-
tional to the density of a gas when the latter is ultrararefied. Hence, heat transfer
from one wall to another will fall off with decreasing pressure, whereas the ther-
mal conductivity of a gas in ordinary conditions does not depend, as we have seen,
on the pressure.
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APPENDICES

A.1. List of Symbols

� amplitude; atomic mass; work
0 distance
a acceleration†; vector
� amplitude
1 distance; thickness
b vector
� curvature; molar heat capacity
2 distance; relative concentration; specific heat capacity; speed of light
c vector
� diffusion coefficient
3 collision diameter; diameter
d vector
� energy; mechanical equivalent of heat; Young’s modulus
4 base of natural logarithms
ê unit vector
� free (Helmholtz) energy
L force
L∗ non-conservative force
5 coefficient of friction; relative fluctuation
f force
† The magnitude of a vector is denoted by the same symbol as the vector itself,
but in ordinary italic (sloping) type.
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� Gibbs thermodynamic potential (Gibbs energy); gravitational constant;
shear modulus

g acceleration of free fall
g′ gravitational field vector, gravitational intensity
� curvature; enthalpy
ℎ height; Planck’s constant
ℏ Planck’s constant divided by 2c (ℎ/2c )
� moment of inertia
= imaginary
7 imaginary unity (7 =

√
−1)

 momentum (also >); momentum flux
9 Boltzmann constant; constant of proportionality; quasi-elastic force co-

efficient; spring constant
! heat of transition
R angular momentum
L dimension of length
: length; mean free path of molecule
" mass
S moment of force (torque)
M dimension of mass
; mass
# number of molecules, particles, etc.
#A Avogadro constant
< number of molecules or particles per unit volume; polytropic exponent
> power; probability
V force of gravity
> pressure
p momentum (also Q)
& amount of heat; quality; rate of flow
? heat flux
' molar gas constant; radius of curvature
'4 Reynolds number
< real
@ radius; resistance coefficient
r displacement; position (radius) vector
( area; entropy
A distance; "interval"
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) absolute temperature; period of revolution
T dimension of time
B temperature, Celsius scale; time
* internal energy
C velocity
+ potential function; volume
v velocity
] weight
E energy density
F coordinate
G coordinate
H complex number; coordinate
U angle; coefficient of elastic compliance; constant; initial phase of oscilla-

tions
" angular acceleration
V angle; damping factor; refrigerating factor (coefficient of performance)
W angle; ratio of heat capacities �>/�+ ; relative shear
J increment
J′ elementary amount
Y energy; strain
[ efficiency; viscosity (dynamic)
K thermodynamic temperature
\ angle; temperature
p thermal conductivity coefficient
L volume of cell in D-space
_ logarithmic decrement
` reduced mass
a frequency; kinematic viscosity; number of revolutions per unit time
c ratio of circumference to diameter, c = 3.14+
d density; polar coordinate
f effective section of molecule; stress; surface tension
g proper time; tangential or shear stress
3̂ unit vector of tangent to trajectory
i angle; polar coordinate
S solid angle; statistical weight
l cyclic frequency
8 angular velocity
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A.2. Calculation of Selected Integrals

1. The improper integral

� (V) =
∫ +∞

−∞
exp

(
−VF2

)
dF (A.1)

is called the Poisson integral. Denoting the integration variable by the letter G, we
can write this integral in the form

� (V) =
∫ +∞

−∞
exp

(
−V G2

)
dG.

Multiplying the two expressions, we arrive at the double integral

[� (V)]2 =
∫ +∞

−∞
exp

(
−VF2

)
dF

∫ +∞

−∞
exp

(
−V G2

)
dG

=

∫ +∞

−∞

∫ +∞

−∞
exp

[
−V

(
F2 + G2

) ]
dF dG. (A.2)

It is easy to calculate this integral by considering the variables F and G as Carte-
sian coordinates in a plane and passing over from these coordinates to the polar
ones @ and i. When F and G vary from −∞ to +∞, the coordinate @ varies within
the limits from 0 to∞, and iwithin the limits from 0 to 2c . The sum F2+ G2 equals
@2, while the surface element dF dG in polar coordinates has the form @ d@ di. Per-
forming this substitution in Eq. (A.2), we arrive at the expression

[� (V)]2 =
∫ 2c

0

∫ ∞

0
exp

(
−V@2

)
@ d@ = 2c

1
2V

=
c

V
.

Hence, for the integral (A.1), we get the value � (V) =
√
c/V. Thus,∫ +∞

−∞
exp

(
−VF2

)
dF =

(
c

V

)1/2
. (A.3)

2. Both sides of Eq. (A.3) can be considered as a function of the parameter
V. Differentiating with respect to this parameter (at the left we differentiate the
integrand function), we find that∫ +∞

−∞
exp

(
−VF2

)
F2 dF =

1
2

(
c

V3

)1/2
. (A.4)

Repeated differentiation with respect to V yields∫ +∞

−∞
exp

(
−VF2

)
F4 dF =

3
4

(
c

V5

)1/2
. (A.5)

The integrand functions in the integrals (A.3), (A.4), and (A.5) are even ones.
Therefore, the contributions to these integrals of the intervals [−∞, 0] and [0,+∞]
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Fig. A.1

are the same. Hence it follows that, for example,∫ +∞

−∞
exp

(
−VF2

)
F4 dF =

3
8

(
c

V5

)1/2
. (A.6)

A.3. The Stirling Formula

With great values of # , we can obtain a simple approximate formula for # !. In
accordance with the definition of # !, we have

ln# ! = ln(1 × 2 × . . . × #) = ln 1 + ln 2 + . . . + ln# =

#∑
;=1

ln;.

The sum we have written equals the sum of the areas of the columns depicted in
Fig. A.1. At great values of N, the sum of the areas of these columns differs very
slightly from the area confined by the dash curve, which is a graph of the function
ln F. Hence,

ln# ! ≈
∫ #

1
ln F dF = [F ln F − F]#1 = # ln# − # + 1.

With great values of # , we may disregard unity, and we arrive at the formula
ln# ! ≈ # ln# − # (A.7)

which is called the Stirling formula.
We must note that, strictly speaking, the Stirling formula has another addend

equal to ln(2c#)/2. With great values of # , however, this addend may be disre-
garded in comparison with the other two addends.
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