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PREFACE.

THE design of this Work is to facilitate the study of Theoretical
Mechanics, by presenting to the student a systematic collection
of Problems in illustration of the more important principles of
the science. The want of any such treatise, it is believed, has
been felt by many as a serious impediment to the acquisition
of adequate ideas in this branch of mathematical philosophy.
Much importance, it may be observed, was attached by the great
discoverers of the mechanical theories to the full discussion
of numerous problems, as will be evident from a reference
to the works of the three Bernoullis, of Leibnitz, and of
D’Alembert, and to the beautiful investigations scattered
throughout so long a series of volumes of the St. Petersburgh
Transactions, by the liberal hand of Euler.

.The author of this volume has endeavoured, as much as
possible, to direct the attention of the student to the original
memoirs of which he has so largely availed himself. This
he has done, partly, to enable the beginner to obtain more
detailed information than is compatible with the nature of
this work, on particular questions which may excite an interest
in his mind: his chief object, however, has been, to offer
every facility to those who have already overcome at least
the elementary difficulties of the subject, for acquiring a
practical familiarity with the historical development of the
science. Although it be admitted that useful and exact knowledge



vi PREFACE.

may be obtained from even an exclusive perusal of the concise
and methodical treatises which are generally adopted for the
purpose of academic instruction: yet it may be asserted with
confidence, that an excessive adherence to such a system of
study, must deprive the student of much delightful and most
valuable information.

In regard to the mode in which the author of this treatise has
completed the task which he has proposed to himself, he feels
every degree of diffidence, and would willingly that it had been
undertaken by an abler hand. In apology for the imperfections,
of which either he is himself aware or which may have eluded
his observation, he can plead only the fact of engrossing occupa-
tions, or of perhaps insufficient preparation for a work requiring
greater research than was originally contemplated.

Many of the problems in this volume have been extracted,
with appropriate modifications, from the Ancient Transactions of
the various Academies and learned Societies of Europe ; many
have been selected from the Cambridge Senate-House Papers ;
and for not a few the author is under obligation to the contribu-
tions of his friends. In arriving at original sources of informa-
tion, it is scarcely necessary to state that great assistance has
been obtained from the historical matter of Lagrange’s Mécanique
Analytique, and from Montucla’s Histoire des Mathématiques.

Cambridge, October 1842.
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STATICS.

CHAPTER 1.

CENTRE OF GRAVITY.

Ler dm represent an element of the mass of a body at any
point 2, y, z, referred to any three co-ordinate axes, rectangular
or oblique, and let z, ¥, z, denote the co-ordinates of the centre
of gravity of the body; then the formule for finding the values

of z, 7,7z, are

5=_/':1:dm ’7=fydm E=fzdm
fdm’ fdm’ fdm’

the limits of the integrations being determined by the form of
the body.

If the body be bounded by a surface expressible by a single
algebraical equation in z, y, z, the evaluation of each of the
expressions [zdm, [ydm, [zdm, [dm, will require the perform-
ance of the operation of integration on a single function of
Z, ¥, z, between appropriate limits; if, however, the body be
bounded by discontinuous surfaces, the evaluation of each of
these expressions will require the integration between proper
limits of several functions of z, y, z, corresponding to the several
discontinuous surfaces; the sum of the definite integrals of
these functions being the required value of the expression.

The ideca of the centre of gravity of material bodics is due
to Archimedes, by whom the centres of gravity of various areas

B
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were investigated in his treatise, entitled 'Exurédwy igopporuay
7 kévrpa Papéy émmédwyv. He likewise determined the centre
of gravity of the parabolic conoid. Among the mathematical
successors of Archimedes who have cultivated the science of
the centre of gravity, may be mentioned Pappus', Guido Ubaldi?,
Lucas Valerius’, La-Faille', Guldin®, Wallis’, Carré’, Varignon®,
Clairaut’.

Sect. 1. Symmetrical Area.

Let 2 be the abscissa and y the ordinate of any point in the
circumference of a plane areca, symmetrical with respect to the
axis of z; the axes of co-ordinates being either rectangular or
oblique. Then the centre of gravity of any portion of this area
intercepted between any assigned pair of double ordinates will
lie in the axis of z, and its distance z from the origin will be
given by the formula

E:

[zy dz
Ty dz R ¢ 5)X
where the integrations are to be performed between limits de-
pending upon the positions of the intercepting ordinates.

The value of z is sometimes more readily obtained by polar
co-ordinates, when the formula will be

[[7* cos 0 dOdr
[frdddr

where r denotes the distance of any point within the area from
the origin, and 0 the inclination of r to the axis of z. The
nature of the limits in the double integrations will depend upon
the form of the area in each particular case.

veee dL),

E:

' Mathemat. Collect., lib. 8, published for the first time in 1588.

* In duos Archimedis Equiponderantium libros Paraphrasis, 1588.

® De Centro Gravitatis Solidorum, 1604.

¢ De Centro Gravitatis partium Circuli et Ellipsis Theoremata, 1632.
8 Centrobaryca, 1635.

¢ Opera, tom. 1. cap. 4 et 5, 1670.

' Mesure des Surfaces, 1700.

S Mém. de I' Acad. des Sciences de Paris, 1714.

* Mém. de I Acad. des Sciences de Paris, 1781, p. 1569.
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(1) To find the centre of gravity of the area of any portion
BAC (fig. 1) of a parabola cut off by any chord BC.

Let Py be a tangent to the parabola at a point P parallel to
the chord CB; from P draw Pz parallel to the axis of the
parabola. Then, Pz and Py being taken as the axes of z
and y, the equation to the curve will be

¥ = 4mz,
m being the distance of the point P from the focus.

Hence, if PE=a,

Archimedes, 'Exurédoy looppomiay, Lib. 11. Prop. 8; Guldin,
Centrobaryca, Lib. 1. cap. 9, p. 121.

(2) To find the centre of gravity of the area of the Cissoid of
Diocles, EAFE', (fig. 2).
The equation to the curve is

. 2
y=a_7’
. 4
f z *dx
= _[wydz_"°(a-2) 1
hence z= fydx_ - T (1)
z
f dz
"(a-2)

t
but f z dx=—2x%(a—x)&+ 5fx$(a—z)*dz,
(@- 2}

P

and therefore J L dr=5 f 2 (a- z)* dx
o(a _ z)} °
i ! . 4
=5aJ" z—ldx—5f T dr-ja| —F— de;
(a2 " (a-z) *(a-2)

B2
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hence from (1) we have

fa zg dz
[

(a-2)

~ (8) To find the centre of gravity of the sector ABC (fig. 3)
of a circle, of which C is the centre.

From C draw the straight line CEz bisecting the ‘sectorial
area; and draw Oy at right angles to Cz. Let CE=a, and
2 ACz = a; then Cz, Oy, being the axes of z and y,

5='[°‘zydx .............. (1).
Fre

But the equations to the straight line C4, and to the circle of
which AEB is an arc, are respectively

y=ztana, y'=a'-2";
also CF is equal to a cos a; hence

[foyae=["" wnasiss[  s@-sfds....

Now by the ordinary processes of the Integral Calculus,
f”o"tan a 2°dz = }@’ sin a cos’ a,

and fm 2(a* - 2} dz = }d sin’ a;

hence from (2) we have
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facosa .
Again, tan a zdz = }a’ sin a cos a,

and f:m :a’—.r,’)1l dz = §(a’a - @’ sin a cos a);

hence from (3) we have

This result however may be obtained more readily by polar
co-ordinates: let P be any point in the area of the sector;
CP=r, ¢PCzx=0; then

[ st a0ar 32 cos0a0

r=

sin a
3 .

f:/:rd()dr ) wf:do "M

We might have effected the double integration in a different
order ; thus

f./mr’cosﬂdrdﬂ 2sinaf‘r’dr
- 0J -a []

z= +8 = a
f f rdrd0 2af rdr
0J -a [

_2sina.}d _ sin a -3 radius x chord
" 2a.%d $a arc
According to the former order of integration, the sector
ACB is conceived to be subdivided into an infinite series of
infinitesimal triangles having a common vertex C, their bases
being elements of the arc AEB; according to the latter order,
we conceive the sector to be made up of a series of circular
rings of indefinitely small breadth, having a common centre C.
Carré; Mesure des Surfaces, &c., p. 76.

(4) To find the centre of gravity of the segment 4EBF
(fig. 8) of a circle.
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The construction and notation remaining the same as in the
preceding example, produce CP to cut the chord 4B in Q and
the arc AEB in R.

Then by the formula (I1.) for polar co-ordinates, if CQ =7,

fmfar’cosﬂdﬂdr
Z= " _ . (D).
ffrdﬂdr
-aJr
Now, since ¥ = a o8 2. we have
cos 0
f.f"cosﬂdﬂdr=},(a’—r")cos0d0=§a’ (1_2?,_")cosada;
~ cos’ 0
hence f"faf’cosﬂdﬂdr='a’f‘¢(cos0—ﬂ;)do
alr -a cos® 0

=la’(sin ) ~ cos’atan §), from @ =-a to 0 =+ a,
=3d’(sina - cos’asina) =4’ sin’a............(2).
. e _ 2 1.z cos’ a
Again, f' rddr=4%4(@-r")d0 =id (1 - E;,—o-)dﬂ,
and therefore
fﬂfardt)dr=§a’(0—cos‘a tan @), from @=-ato 0=+a,
=a’(a-sinacosa)............ (3)
Hence from (1), (2), (3), we get
sin’ a

Z=fa MO
a—-Sinacosa

This result may be obtained as easily by rectangular co-
ordinates ; thus, putting @ cos a = @/,

but y=a-z;
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hence j:’ zy dz =f: z(a’ - .7:')1l dz
=-1(a*- 2}, between limits, =}a* sin*a . ..... ).
Again, f ydz = L (@2 dz
=(a*- z’)ll z+ f 2(a’ - z’)_* dz, between limits,

—@-frra [ = ff(a'-z')*dx

o (az _ zz)* @
= }(a —z’)%z +§a’sin"§, from z=a'to z=a,
=-4a’sinacosa+}a’a=4a’(a-sinacosa).... (c)
Hence from (a), (), (c), there results
7-%a sin’ a

a-sinacosa’

In the integrations by polar co-ordinates the segmental area
is conceived to be made up of frustums of an infinite number of
infinitesimal triangles intercepted by the chord 4B, C being
the common vertex of the triangles, and a series of elements of
the arc AEB being their bases; on the other hand, when
rectangular co-ordinates are made use of, the segment is con-
ceived to be made up of an infinite number of indefinitely thin
parallelograms parallel to the chord 4B.

Guldin; Centrobaryca, Lib. 1. cap. 9, p. 107.

(5) To find the centre of gravity of any portion of a semi-
cubical parabola comprised between the curve and a double
ordinate.

The equation to the curve being ay’ = 2°, we shall have

z=3z
(6) To find the centre of gravity of the whole area of the
curve of which the equation is

g =¥

z=}a

a-—-x

X
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(7) To find the centre of gravity of the whole area of a
cycloid.

The equation to the cycloid being

y = a vers™ "—: +(2az - z’)*,
we shall have z=1a.
(8) To find the centre of gravity of a semi-ellipse, the bisect-
ing line being any diameter.

If the bisecting diameter be taken as the axis of y, and
the conjugate diameter as the axis of z, the equation to the
ellipsc will be

b’.’
Yy ==(@-2),

and we shall have zT= da .
87

Guldin; Centrobaryca, Lib. 1. cap. 9, p. 115.

(9) To find the centre of gravity of a loop of the Lemniscata
of James Bernoulli.

The equation to the curve being 7* = ¢* cos 20, we shall have

x
'r
8

T= a.

SEcT. 2. Area not Symmetrical.

The formule for the determination of the co-ordinates of the
centre of gravity of an area not symmetrical with respect to
either of the axes, are

s zdzdy . [[ydedy.
[Tady * ¥~ [[dzdy’
z and y in these expressions are the co-ordinates of any point
whatever within the area, and the limits of the double integra-
tion will depend upon the form of the bounding curve.
It frequently happens that the method of polar co-ordinates is
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more convenient for the determination of z and ¥ than that by

rectangular co-ordinates: the formule will be
_Jfrcos 0d0dr __[[r sin § dBdr

Trrdodr > Y= [rdoar

(1) To find the centre of gravity of the area CPD (fig. 4) of
an ellipse, where CP, CD, are two semi-conjugate diameters.

If CP=a, CD =%, and CP, CD, produced indefinitely, be
taken as the axes of z, y, the equation to the ellipse will be

bﬁ
= ?(a* -2 ... (1);

8i

and for the position of the centre of gravity we have, indicating
the limits of integration,

f.f'xdxdy f.f'ydxdy

0J o - 0J o

z = s [y y Y= a(y 4
f dz dy ffdxdy
0J0 0J 0

the value of y in the limit being pm in the figure; in the inte-
gration indicated with respect to y, the figure pgnm is considered
as being made up of an infinite number of indefinitely small
parallelograms p'¢’; and in the integration indicated with respect
to z, the whole figure CPD is conceived to be composed of an
infinite number of indefinitely thin figures such as pgnm.

[ edrdy=[ayde =2 [ z@-2}dz,
0Jo [] aJlJo

since the value of y in the limit coincides with the ordinate
in the equation (1); hence

fi{'xdzdy=—§g(a’—z’)i, from =0 to z=a,
0v/ 0

= la%.

Again, faf'dxdy =f‘ydz

=§L'(a=-z')*dz=}%m==5mb.

Hence by the general formula for z we have
3@’ _ 4a

imab 3m’

z=
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Again, [f ydzdy=ifo y'dz

63 a le . 5
i @-Da=i L@ -ta- e,

—  }ab® 4b
and therefore y= iwad~ 3n’

a t which might have been foreseen from the value of z.

Instead of the order of the limits which we have chosen, we
might equally well have integrated, first with respect to z and
then with respect to y, when the formula for z and y would

have been
b = b S«
ff zdy dz fj ydydz
— _voJo —_wvoJo

T=—py s Y= Gy
ff dy dz f dy dz
0J o [

(2) To find the centre of gravity of the segment APBp
(fig. 5) of an ellipse cut off by a quadrantal chord 4pB.

Let CA=a, CB=b, CM=2, PM=y, pM=y'; then the
equations to the ellipse and to the chord will be

y=t@ -, Y=2@-2)......()

The formula for z will be, indicating the limits,

T= o —— ()

Now fafyzdzdy=f¢(3/—y’)zdz

= ‘b_z fo ) {(@® - .7:’)* -(a - z)} zdz, by the equations (1),

b . )
=a{—§(a‘—r)t“—5az’+:',z“}, from z=0 to z=a,

=} a’h.
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Also f'f'dzdy=f'(y-y')dx=f’-zf'{(auz’)*_(a-x)}dx
o/ y’ [] []
__b ‘ 2 * b 1,3
—;L(a—zz) dz—;(az—ga) '

=2 Gna - ya) - Y - ab.

Hence from (2), z=3 a_.
T-2
Similarly we should evidently get
. b
=2
¥y=3 —3-

(8) To find the centre of gravity of the area KSL (fig. 6)
of a parabola, of which § is the focus, and SK, SL, any
two radii.

Take § as the origin of co-ordinates; also, 4 being the
vertex of the parabola, let A4Sz be the axis of z, and Sy at
right angles to Sz the axis of y. Let SP=r, £ASP=0,
AS=m. Then for the position of the centre of gravity, if
L ASK =a, £ASL = f3,

ffﬁ'fcos(w_o)dodr j;ﬂj:r’sin.(w—ﬂ)dl)dr

5= ) g= r
f”f rd0 dr

ﬂ r
ffrd()dr

Now f'?cos(vr—0)d0dr=:',r’cos(1r—-0)d0=—},fcos 0do;

but, by the nature of the parabola,
r=—2_.
cos’ 1 0’
1.3 cos 0

hence j; 1’cos(w—0)d0dr=—3mm s

B[ s (B cos 0
and therefore fdﬁr’cos(w—o)d()dr:—;m o180 %
cos @ 1-tan’}0 1 l—tan’%ﬂ_(

but = 4 = =(1 —tan® }0) sec' }0;
cos® 10 1+tan’}0 cos*30  cos'}é
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hence

fi’: r’cos(w—ﬂ)dﬂdr:—im’fﬁ sec’ $0(1 —tan® }0) sec’ 40 d0
- im f ® (1 - tant 36) 2d tan 30

=~ 3m’ {tan%B tan a - §(tan’ §3 - t1’-“’%«!)}

8 49
Also ffrd@dr fr’dl) ,mf T

=im? (1 +tan® 10) 2d tan }

tll.'l a
= z{tan yB—tanqa+5(tan 3 —tan gﬂ)}-
Hence Z= 2—3—'" s (tan’ 48 - “‘nﬁ Ya) - (tan }3 — tan ja)

§(tan’ } B — tan’ }a) + (tan §3 - tan }a)’
. B 4 . .
Again, fnﬁr’sm(w—ﬂ)dﬂdr=},for‘sm0d0

=5m’f6 sin 8 d0=§m’f6 sind0 g

a cos’ 30 a cos’ }0
c# 48 d cos 10
- 3 1 S 41 41
=—4{m ——3_ _1m’(sec' 13 - sec' }a
3 4o coso %0 3 ( 2 2 )’
and therefore :

sec’ }[3 - sec* }a

Y= im aw %B-tan’ia)+(tan iB—tan i
_2m 2 (tan‘ 23 ﬂ) + (tan’ §3 -
3 3 ta.n a)+(tan zﬁ t('\.n 2(1)

Let SQ be a radius vector very near to SP; and let pg, p'¢’,
be two circular arcs described about S as a centre, with radii
Sp, Sp', very nearly equal to each other. In the integrations
which we have executed for the determination of the values of
Z and y, we have first conceived the indefinitely thin triangle
PSQ to be made up of an infinite series of infinitesimal pa-
rallelograms pgp'q’, and we have then conceived the whole area
KSL to be composed of an infinite number of indefinitely thin
triangles, such as PSQ: thus the expressions

¥ cos (- 0)dOdr, 7+ sin(x - 0)d0dr,
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represent the moments of the area pgp'q’ about the axes of
y and z; the expressions

f'r’cos(-rr—O)dﬂdr, f'r'sin(w_o)dodr,
0 [1)

the moments of the area SPQ about the axes of y and z; and
the expressions

f“f'fcos(w-o)dodr, faf'r’sin(-:r—ﬂ) 40 dr,

the moments of the whole area KSL about the axes of y and z.
Also the expressions

r do dy, f'rdﬂdr, faf'rd()dr,

denote respectively the areas pgp'q’, PSQ, KSL.

(4) Cz, Oy, are asymptotes to an hyperbola EAF, (fig. 7);
PM, QN, are parallel to yC; to find the centre of gravity
of the area PMNQ.

If a, b, be the semiaxes of the hyperbola; Cz, Cy, be taken
as the axes of z, y; and CM, CN, be denoted by a, a'; then

7. @9¢-a o &+8 d-a
“logd -loga’ y=4 ad’ logad -loga’

(5) AB (fig. 8) is a parabola, of which the equation is
@™y = z™; to find the centre of gravity of the area PMNQ,
comprised between two ordinates.

If AM=a, AN=d, we shall have
m+ 1 q'nd - auuz _ m+1 ?i-ul - a?fl
m+ 2 a’nd_ anfl’ y - 2(2m + 1) a-vl a’nvl — a-nl ¢
Carré ; Mesure des Surfaces, &c. p. 80.
(6) To find the centre of gravity of the area of a quadrant of
a circle.
The equation to the circle being

z=

we shall have Z=—, Y=—.
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(1) To find the centre of gravity of the portion of the area of
the curve y = sin z, between 2=0 and z=m,
z=3m, y=}w
(8) To find the centre of gravity of the area intercepted
between a straight line y = 3z and a parabola y* = 4ma.
8m - 2m

" TR

z
Skct. 8. Solid of Revolution.
Let a solid of revolution be generated by the rotation of

a plane curve about the axis of z; then the centre of gravity
will be within the axis of z, its position being given by the

formula
z Jfrydzdy [z(4 -y")dz
[lydzdy [ - y")dz’
¥, Y, being the limiting values of y for any assignable value of z;
if ' = 0, we have
P Jzy dx

Jy'dz
If polar co-ordinates be adopted, which are frequently con-
venient, the formula will be
— [/7* sin 0 cos 0 dO dr
T JfPsin0d0dr

the pole being taken at the origin of z, and 0 being the angle
of inclination of the radius vector r to the axis of z.

(1) To find the centre of gravity of the segment of a sphere.
The centre of the generating circle being taken as the origin,
its equation will be
Zry=a............(1);
and, ¢ being the distance of the centre of the plane face of the
segment from the origin,
(o

S ¢ H

[ ya

=
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but f.xy'dx=f.(a’—z’)zdx, from (1),
=%d'2 - }2', from z=c to z =g,
=ta' -} + ¢t = $ (@ - *F;
also fay’dz=fa(a’-z’)dx
=a'z-}2’, fromz=cto z=a,
=%a'-ac+3ic:

hence from (2),
(@’ - ¢} -3 (@a+cf

ey 3
z= .
198 -3+ ‘2a+e

If the segment become a semi-circle, then ¢ =0, and therefore
z=ja.
Lucas Valerius; De Centro Gravitatis Solidorum, Lib. 11. Prop.

83, and Lib. 1. Prop. 81. Guldin; Centrobaryca, Lib. 1.
cap. 11, p. 180. Wallis; Opera, tom. 1. p. 728.

(2) To find the centre of gravity of the solid formed by the
revolution of the sector of a circle about one of its extreme
radii.

Let 3 denote the angle between the extreme radii of the
sector ; then the centre of the circle being the origin of z,
and @ the radius,

fef'r‘sinOCOSOdﬂdr

z= T +reeens
f 7% sin 0 d0 dr

oJ o

- B
but fef fsin()cosﬂd()dr:}a‘f sin 0 cos 0 dO

o

= ga‘fe sin 20 d0 = 5 a*(1 - cos 23),

B[ (2
and ff r’sinOdOdr=§a’f sin 0df =}a’(1 - cos 3);
0J0 o

hence from (1) we have

— - cos 23

1 2
=3 ~ M —3a(1 + cos 3) = 3a cos*}3.
z mal—cosﬁ da( B=1 B
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We might equally well have integrated the numerator and
denominator of (1), first with respect to 0, and afterwards with
respect to r. In the one order of integration, we conceive the
sector to be made up of an infinite number of thin triangles, of
which the centre of the circle is the common vertex; in the
other order, the sector is conceived to be made up of an
infinite number of infinitesimal rings, having the centre of the
circle as their common centre.

Wallis; Opera, tom. 1. p. 728.

(8) To find the centre of gravity of the solid generated by
the revolution of the parabolic area 4BC (fig. 9), about the
tangent Az at the vertex 4, BC being at right angles to the
axis Ay of the parabola.

Taking Az, Ay, as the axes of z, y, the equation to the

curve will be 2 = amy.

Let AC=a, BC=5; then

_ j:/:lzydxdy f:(a’—y’)zdz
z= 3 e = i
[[vaeay [@-yras

This is a case of a more general problem given by Carré,
Mesure des Surfaces, &c. p. 93.

C)) '!.‘o find the centre of ‘gravity of the solid formed by the
revolution of any parabola, of which the equation is
yﬂm = mxn.
For any portion of the solid from z=0 to z = b,

m+ 3n

r=—""""
2m + 4n
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(5) To find the centre of gravity of the frustum of a para-
boloid.

If a, b, be the radii of the less and of the greater ends, % the
length of the frustum, and z the distance of the centre of
gravity from the smaller end ;

— a + 2%

iy o
(6) To find the centre of gravity of an hyperboloid.
If the equation to, the generating hyperbola be

2 b’ z‘
y =?( + 2az),

we shall have for the volume between z=0 and z=c¢,
- _8ac+ s -
4(3a+c)’
Carré; Mesure des Surfaces, &c. p. 97.

(7) ABC (fig. 10) is a portion of the area of a common
parabola, where BC is at right angles to the axis Az of
the parabola; to find the centre of gravity of the solid gene-
rated by the revolution of the area 4 BC about BC.

Let BC = b; then, G being the centre of gravity,
CG = 4.
Carré ; Ib. p. 90.

(8) AC, BC, (fig. 11) are the semiaxes of an hyperbola,
AD being a portion of the curve intercepted by BD drawn
parallel to C4; to find the centre of gravity of the solid
generated by the revolution of the area 4ACBD about CB.

If BC= 5, then G being the position of the centre of gravity
in BC, CG = 8.
Carré; Ib. p. 97.

(9) To find the centre of gravity of the solid generated by
the revolution about the axis of z of the curve corresponding

to the equation -
y=(a-2) (z)’
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For any portion of the solid cut off by a section at a distance ¢
from the origin,
z= 140a’c — 240ac’ + 105¢°
168a® — 280ac + 120¢” °
which for the whole solid becomes

z=4§a.
.Carré ; Mesure des Surfaces, &c. p. 99.

(10) To find the position of the centre of gravity of the
volume included between the surfaces generated by the re-
volution of two parabolas, y*=1Iz, ¥’ =7 (a - z), round the axis

of z. - . l+2
Ll e

Sect. IV.  Any Solid.

Let z, y, z, be the co-ordinates of any point whatever within
any assigned solid ; let z, y, z, be the co-ordinates of the centre
of gravity of this solid ; then

s J[zdedydz . [[[ydedydz - _[[[zdzxdydz

S ffdzdydz’ YT [f[dzdydz * *T [[[dzdydz ’
where each of the triple integrations is to be performed in
accordance with the nature of the bounding surface of the solid.

(1) To find the centre of gravity of a portion of the cone, of
which the equation is

Y+ 2 =37,

which is contained between the planes of zz, zy, and a given

plane parallel to that of yz.
Let a be the length of the axis of the portion of the cone:

fff 2dz dyds yJo'ff'fj'ydxdydz
ffa' dedyds f'fﬁ'j:dzdydz’
fffzdzdydz
ffa'f dz dy dz
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Now L’ff’ﬁ'dxdydz=fﬂ"zdxdy
[ 7 @ -y asay
=]: 12 dz = a3’

e B (s e (P=
Also fffzdxdydz:ff zz dz dy
0Jo Jo oJo

=f., ff'z(ﬁw - yfde dy =fo 2 4nfs’ dz
= 1%#32"‘;

g7

e

von, [ [Lovaeori [ i
=ff(ﬁ’x’—3{’)*ydrdy
-[[1pede-
-_npd B

and therefore y= 1'2_1'62;3 =,

Similarly, z= g a.

hence =z= =}a.

(2) To find the centre of gravity of half the solid intercepted
between the surfaces of a hemisphere and a paraboloid on the
same base, the latus-rectum of the paraboloid coinciding with
the diameter of the hemisphere, and the solid being bisected by
a plane passing through its axis.

Take the centre of the sphere as the origin of co-ordinates,
and the axis of the paraboloid as the axis of z; also let the axis
of z be so taken that the plane of 2z coincides with the bisecting
plane; and take the axis of y at right angles to this plane.
Then, if a be the radius of the sphere, the equation to the
sphere will be

and to the paraboloid,
Z+y=a(a-2)

Z+y+ 2 =d,

c?
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The centre of gravity will be somewhere in the plane of yz, and
is to be determined by the formule

LfLvews | [ [Trene
e e

where 2/ is taken to represent (a* —z‘)‘, and where the limits
Z, z, of the general value of z, are its values for any assigned
values of z and y in the paraboloid and sphere respectively.

Now
f' dody ds = dz dy (z - 2)= de dy {(@ -2 -y} - = (@~ 2-§)}s

hence ff:dzdyduﬁ'dzdy{(a’_z-_y')*_E‘Z(a'-z'_yf)}

-dz{in(@ - )~ (@ - 2,
and therefore

[ [ e[ttt Se- o

=}wa’ - glt;f:(a’—:c’)*dz= }wa®- jwd'= §wad

. 1,,
Again, fvydzdydzwdzdy{(a'_z'-y')*_2—a(a ~2-g},

L’f:-”d"d"’d’“f!/dzdy{(a’-#-!/’)‘-;—a(“’-z'—y’)}

=dz{_§(a’_z’_y’)*- zl‘-l(a’—z’)y’+8—lay‘}, between limits,

-dz{i@-2) - o @ -2

hence

[ Tstnsf -t sem -

15w - 16 ,
—_a.

=}wa'-Za'= T30
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Again,
[ 2dedy de=ydzdy @ - 7)1 dody {(@-2- - L@y,

f:,:zdzdydz

A day (@2 L@-2p+ L@-y- L

= jae{(@- 2@ -2 - @ L@t @)
between limits, -
=Yz {@ - - @ -2,

[ [ raeayaany[  wri@-2 - -2ty
T D ICRES S R E
=}ma' - fwa' = §wa’.

From the formule for ¥ and z then we have

_ k(157 —16)a' 15w - 16
uﬂ’a‘ 25w

!

_&ma
"’ @

=la.

(8) AOC (fig. 12) is a right-angled triangle, O being the
right angle; 40BD is a rectangle, of which the plane is
perpendicular to that of the triangle; from every point R in
the line 4 C a straight line RQ is drawn to meet BD in Q,in a
plane at right angles to the areas of the rectangle and triangle ;
to find the centre of gravity of the volume so generated.

Let 04z, OBy, OCz, be taken as axes of z, y, z; from R
draw RM at right angles to 04, join QM, and draw PN at
right angles to QM; let O4=a, OB=5, OC=c; OM=z,
MN-=y, NP=2, z being the distance of any point in the
line PN from the point N: then for the determination of the
centre of gravity we have '
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f.ftr’zdxdydz ft[b y dz dy dz
7: “drdyd: fff dedyds
fff zdxdydz
foﬁ o dz dy dz |

From the geometry it is evident that

,_a-zb-y
a b’

hence we have

fi[ z(@a-2z)(b-y)dzdy
[f (a-2)(b-y)dedy

ff (6-2) 6~ y)ydzdy Lo-vyar
T en0-paa [o-pa T

ff lcz(“ x)z(bby)zdxdy jf (a-zyf (b- y)’dzdy
[T ez LY asay " [ [ @-)¢-y) deay

c 3a .30 2
griraTE
(4) To find the centre of gravity of the portion of the sphere
2+y+Z=4d,
which is cut off by three planes, z=0, y=0, z=
z=y=z=}a.

(5) To find the centre of gravity of a portion of the para-
boloid !/2 +22 = 4mz,
which is cut off by the three planes z=@, y=0, z=0.
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If 5 be the radius of the section of the paraboloid made by
the plane z = a, then
F-3a, goi-1%
TEIB YRR

(6) To find the centre of gravity of a portion of the solid
2*=zy, which is cut off by the five planes z=0, y=0, z=0,
z=a, y=>. _ - ar = o bi

z=3a, y=3b, z=F5ad".

(7) To find the centre of gravity of the volume of the cylinder
Y’ = 2az — 2/, which is cut off between the two planes z = 3z,
z=p Z=fa, §=0, Z=§(@B+P)a.

(8) A solid is generated by a variable rectangle moving
parallel to itself along an axis perpendicular to its plane
through its centre; one side of the rectangle varies as the
distance from a fixed point in the axis, while half the other
is the sine of a circular arc, of which this distance is the
versed sine; to determine the distance of the centre of gravity
of the whole solid from the fixed point.

The required distance is equal to four-fifths of the length
of the axis.

Secr. 5. A Plane Curve.

Let z, y, be the co-ordinates of any point of a plane curve,
and let ds denote an element of the length of the curve at that
point; then z, y, denoting the co-ordinates of the centre of
gravity of any assigned portion of the curve,

= Jzds —_Jyds
~Ta& VT m

the integrations being performed in accordance with the limits

of the portion.

The idea of the determination of the centres of gravity of
curve lines is due to La-Faille, a Flemish mathematician, by
whom it was applied in the instances of portions of the circle
and the ellipse, in a work entitled “ De centro gravitatis partium
circuli et ellipsis theoremata,” published in the year 1632. The
theorems of La-Faille were afterwards published in a somewhat



24 CENTRE OF GRAVITY.

more elegant form, and with amplifications, by Guldin ; Centro-
baryca, lib. 1. cap. 4, 5, 6, 7.

(1) To find the centre of gravity of the arc of the curve
y=sin z from z=0 to z=.
From the equation to the curve we have

ds' = dz’ + dy’ = (1 + cos’ z) dz*;
L ] . 1
_ Jyds fsmz(l+cos’z)dt
hence y=—dra—°—,
f f(1+cos’z)*dz
[
Now by the ordinary processes of the integral calculus,
fsinz(l+cos’z)*dz=2*+log(2*+l).
Also, ¢ denoting the length of the curve from z=0 to z=w,
c=f (l+cos’:t)ida:=2*} (l—gsin’z)*th,
[} o

an elliptic function, of which cos }# is the modulus. Hence y
is given by the equation

¢

cy=2 +log (2‘+ 1).

(2) To find the centre of gravity of any arc of a circle.

Let the centre of the circle be taken as the origin of co-
ordinates, and let the axis of z bisect the arc; then, if a be the
radius of the circle, ¢ the chord of the arc, and s the length of
the arc,

- _ac _
Zz = ? N y = 0.
Guldin; Centrobaryca, lib. 1. cap. 5, p. 59.
Wallis; Opera, tom. 1. p. 712.

(8) To find the centre of gravity of the arc of a semicycloid.
The equation to the curve being
y=a vers"z + (2az - :c‘)‘,
we shall have
z=%a, y=(x-9Ya
Wallis ; Opera, tom 1. p. 520.
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(4) To find the centre of gravity of the arc of a catenary

y=la(t+e9),
cut off by any assigned double ordinate.
If 2s be the whole length of the intercepted arc,

zZ=0, g=“"’;‘3’

(5) To find the centre of gravity of the arc of a parabola
y* = 4mz, cut off by the latus rectum.

3.2t _log (1 + 2 5=0
’ = U
ot 4 log (1 + 2*)

(6) To find the centre of gravity of the semi-arc of a loop of
the Lemniscata of James Bernoulli. .

If the axis of the loop be taken as the axis of z, the node
being the origin ; then, a being the length of the axis and 7 of

the semi-arc,

z=im

A\
§=“, y=(——2 l)“’.

ok oY

Skct. 6. Ourve of Double Curvature.

The formule for the determination of the centre of gravity of
a curve of double curvature, are

- _Jzds - [yds - Jzds
T e e

where z,y, z, are the co-ordinates of any point in the curve,

and ds an element of the arc at that point: the limits of the in-

tegrations will depend upon the positions of the ends of that

portion of the curve of which the centre of gravity is required.
Ex. To find the centre of gravity of the Helix.

The equations to the curve are

4 2
2+ y'=d, z=bcos‘;;
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and for the centre of gravity of any length of the curve,
beginning at the origin of co-ordinates,

_ b(a-
, 7= (a - z)

z z

, z=}z

Secr. 7. Surface of Revolution.

Let z, y, be the co-ordinates of any point of a curve, by the
revolution of which about the axis of z a surface is suppo-ed to
be generated ; then, if ds denote an element of the generating
curve at the point, we have for the position of the centre of
gravity of the surface of revolution in the axis of z,

sl
Ty ds
the integrations being performed between limits depending upon
the magnitude of the surface.

(1) To find the centre of gravity of the surface of a segment

of a sphere.
If the equation to the generating circle be

y= (20.‘5 - Zz)%y
we shall have dy = T dz,

and therefore
ds =d + dy’ = 5

a a’dz?
az—z’df: 7 or yds =adz;

hence for any segment, of which the limiting abscissa is c,

5=j;a.z:d.z: 1

- =" =le
f adz °
[
(2) To find the centre of gravity of the surface of a cone.

Let the equation to the generating straight line be y = ax;
then, ¢ being the length of the axis of the cone,

z=1%ec.

Guldin; Centrobaryca, lib. 1. cap. 10, prop. 3.
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(8) To find the centre of gravity of the surface generated by
the revolution of a semicycloid about its axis.
The equation to the curve being

y = a vers™ f—l + (2az - z")* ,

we shall have

- 157 - 8

z=%a .
s 3r -4

(4) To find the centre of gravity of the surface generated by
the revolution of the parabola 3 = 4mz about the axis of z.

z =} (3z - 2m).

SEcr. 8. Any Surface.
Let z, y, z, be the co-ordinates of any point of a sur-

face referred to three rectangular axes; and let dz _ P

dz
%z/ =¢; then for the centre of gravity of any portion of the
surface [z +p+ P dedy

i [+ g+ ) dzdy ’

[y sp s )t dzdy

g tdedy

Uz ep ) dedy

10+ 7+ @) dady
the integrations being performed between limits corresponding
to the boundary of the surface.

(1) Suppose the surface to be any portion of the superficies of
a sphere, of which the equation is
Z2+y+2d=r.
Then clearly we shall have

81

<

ni

__7 =-_Y.
p==2 7 z’
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[fdz dy

[fdzdy @+ 7'+ 2

Now it is evident that, the integrations being performed
within the given limits, the denominator of this expression
for Z represents the area of the given portion of the surface,
while the numerator represents the area of the projection of
this same portion upon the plane of z and y. Hence in general
language : the distance of the centre of gravity of any portion
whatever of the surface of a sphere from the plane of any one
of its great circles, is a fourth proportional to the area of the
portion itself, the area of its projection on this plane, and the
radius of the sphere.

The truth of this proposition depends solely upon the pro-
perty expressed by the equation

z(1 +p'+q’)*=r;

but this equation holds good for the whole class of surfaces
generated by the motion of a sphere of invariable radius, of
which the centre describes a plane curve traced arbitrarily in
the plane of z and y; hence we may evidently extend the
preceding proposition to all these surfaces under the following
enunciation :—

“ Upon any surface whatever, generated by the motion of
a sphere of which the centre never departs from a given
plane, let any portion § be taken, and let §’ be the projection
of § upon the given plane; then the distance of the centre
of gravity of § from this plane will be a fourth proportional
to S, &', and the radius of the generating sphere.”

and therefore Z=r

(2) To find the centre of gravity of any spherical triangle
formed by three great circles.

Let ABC (fig. 13) be any spherical triangle, O the centre
of the sphere; and 04, OB, OC, the three radii at the angles
4, B, C, of the triangle. Let Z,, Z,, Z, denote the distances
of the centre of gravity of this triangle from the three planes
BOC, AOC, AOB; then, by the proposition of the preceding
article, if r be the radius of the sphere, § the area of the
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spherical triangle ABC, and §' of its projection upon the
plane BOC, S’
Z. = § r.

But by the principles of spherical trigonometry,
wr’ :
S=T‘O(A+ B+ C- 180),

also it is clear that, a, d, ¢, being the number of degrees sub-
tended at the centre of the sphere by the sides of the spherical
triangle opposite to the angles 4, B, C,

§'=area BOC - area A0B x cos B - area A0OC x cos C

wr
=m(a—ocosB—bcosC),

Z=ira—bc°s C-ccos B
‘ A+B+C-180

. . b-ccosd-acosC
=1
Similarly, Z,=}r [+ B+C-180

c-acos B-bcos 4
A+B+C-180

The position of the centre of gravity of the spherical triangle
may be elegantly expressed likewise in terms of its distances
from three great circles of the sphere, at right angles to the
three edges 04, OB, OC, of the spherical pyramid 4BCO.
Let D,, D,, D,, denote these distances; then by Art. (1) we have

D,=r%", D,=r%, D,=r%,
where § denotes the spherical area 4BC, and S,, S;, S,, its
projections upon the three great circles at right angles to
04, OB, OC.

Now it is evident that the projections of the spherical area
ABC, aid of the sector BOC, upon the great circle which
is at right angles to 04, are identically the same, and therefore,
if the arc 4a be drawn at right angles to BC, we have

and therefore

Z =}r

S, = area of sector BOC x cos (’_; - ‘%’)
=" arsin 2= o sin B.sinc:

360 r 360
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nr .

_1sinBsinc
A+B+C-180"

.. bsin Csina
= I ———— —— | i
Similarly, D, T BT O~ 180°
_1, csindsind
D'-grA+B+C— 180°
If we desire to determine the position of the centre of gravity
of the triangle by means of three rectangular co-ordinates z, y, z,
let the plane of the side ¢ be taken as the plane of z and y, and
let the radius 04 be taken to coincide with the axis of z. Then
from the preceding results we have at once

hence D, =}r

. asin B sin ¢ c-bcos 4 -acos B
TA4+B+C-180° A+~ B+ C-180

Again, let the great circle, of which BC is an arc, meet
the plane of z, z, in the point D, as in fig. 14; join 4 and D
by an arc of a great circle. Then clearly the projection of
the spherical triangle ABC upon the plane of z and z, is equal
to the difference of the projections of the sectors 40C, BOC,
upon this plane, and therefore to the expression

=1
z = Z2=3

T T
180 b cos CAD - 180 7a cos D

P
=m(b sin 4 - a sin B cos ¢);

hence, by the principles of Art. (1), we have

_,bsinAd -asin Beosc

VA BiC 180
(3) The gencral formula
[[2Q4 5"+ ¢ de dy
[+ 5+ ) de dy
furnishes us with the following general proposition :—

“ Upon the surface (4), gencrated by the revolution of the
curve of equilibrium of a homogencous catenary about the

~ o
o=

’
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vertical line which passes through its lowest point, trace arbi-
trarily a perimeter enclosing a portion § of the surface ; project
this perimeter upon a horizontal plane which intersects the axis
of revolution at a distance ¢ below the lowest point of the
surface, where ¢ is equal to the horizontal tension of the ca-
tenary divided by the mass of a unit of its length; let 7~ be
the volume contained between the surface S, its projection, and
the cylindrical surface formed by the perpendiculars from the
perimeter of S upon the plane of projection. Then the altitude
of the centre of gravity of & above this plane will be double
of that of the centre of gravity of V.”

In fact, the plane touching the surface (4) in a point situated

at an altitude z above the plane of projection, which we shall
take for the plane of z and y, makes with this plane an angle,

. . . C .
of which the cosine is ot and therefore we have the equation

(A +p"+ 9’)*=-zc-;
hence, by the formula for Z, we obtain

5 [fZ dzdy
" [fzdzdy’

But calling 2z the altitude of the centre of gravity of ¥ above
the same plane, we have

2o [fYzzdx dy

=" [fzdzdy ’
and the limits of the integrations being the same in the expres-
sions for z and z, we see that z = 2z. ‘

The property expressed by the partial differential equation
+p+g)=2,

being common to all the surfaces which can be generated by the
surface (4) when it moves in such a rganner that its axis always
remains vertical, and that one of its points describes a plane
curve traced arbitrarily upon a horizontal plane, the proposition
which we have demonstrated is susceptible of the same exten-
sion as that of (1).
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The illustrations of the general formul® for the determination
of the centre of gravity of any surface, which we have given in
(1), (2), (8), are extracted from a memoir by Professor Giulio, of
Turin, which may be seen in Liouville’s Journal de Mathe-
matiques, tom. 1v. p. 386.

(4) To find the centre of gravity of the surface of a cone

v+ 2 =37,
intercepted by the planes 2=0, z=a, y=0, z2=0.

— - a
=2 4

T=xa =Z=— .
3a, Yy 3

Secr. 9. Heterogeneous Bodses.

In the preceding sections we have computed the centres of
gravity of various classes of homogeneous bodies; we will now
give a few examples of the determination of the centre of gravity
when the density is variable.

(1) To find the centre of gravity of the surface of a hemi-
sphere, when the density of each point in the surface varies as
its perpendicular distance from the circular base of the hemi-
sphere.

Let the equation to the quadrantal arc, by the revolution of
which the hemispherical surface may be generated, be

d+y=a...cc... (1),
the axis of z being the axis of revolution.

The area of the strip of the surface which is generated by the
element ds of the arc, will be~equal to 2wyds; and, if p
be its density, its mass will be equal to 2wpy ds: hence

. 2mpyds.2_ [ozyds
[empyds  Jpyds’®

but poc z; hence Z="—""_";

and therefore, since from (1) it is easily seen that
yds = adz,
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.z’dz
we have E—-'—L————a'—ga
/.zdz L
[

(2) To find the centre of gravity of a physical line, the
density of which at any point varies as the n'* power of its
distance from a given point in the line produced.

Let a, b, be the distances of the given point from the two ex-
tremities, and Z its distance from the centre of gravity of the
physical line ; then

n+l -

F e P

(3) To find the centre of gravity of a quadrant of a circle, the
density at any point of which varies as the n'® power of its
distance from the centre. :

Let a denote the radius of the circle, and Zz, ¥, the co-

ordinates of the centre of gravity of the quadrant referred to
its two extreme radii as axes ; then

Secr. 10.  Centre of Parallel Forces.

When any number of parallel forces act on a system of rigidly
connected points, they generally have a single resultant acting
on a point of which the position is invariable while their
common direction is changed in every possible way. This
point is called the Centre of the Parallel Forces: the Centre
of Gravity of a body is a particular case of this. Let z,y, 2,
denote the co-ordinates of the point of application of any force
P of the system referred to any axes, rectangular or oblique ;
and let z, y, z, be the co-ordinates of the Centre of Parallel
Forces. Then, R representing the resultant,

. _E(Py) . _3(P2)
=@’ Y =@’ =P
D

R=3(P), z=
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Whenever =(P) is equal to zero, these formule cease to be
applicable, there being in this case no single resultant; the
forces will be reducible to a resultant couple. For the complete
development of the theory of Statical Couples, the reader is
referred to Poinsot’s beautiful work entitled Elémens de Statique.

The formule for z, y, z, were first given by Varignon, in the
Mémoires de P Académie des Sciences de Paris for the year
1714.

(1) Three parallel forces acting at the angular points 4, B, C,
of a plane triangle, are respectively proportional to the opposite
sides a, b, ¢; to find the distance of the centre of parallel forces
from A.

Produce 4B, A4C, indefinitely to points z, y, and let 4z, 4y, -
be taken as co-ordinate axes.

Let pa, ub, uc, be the forces applied at A, B, C, where
a, b, c, denote the opposite sides of the triangle. The co-
ordinates of the points of application of these three forces are

0,0; ¢,0; 0,b; hence by the two first of the formule (B)
we have

- c.ub be

= —— — T —
ua +ub+pc a+b+c

7 b.uc be "y

T pa + pb +pc=a+b+c

Let r be the distance of the centre of parallel forces from
A ; then
" P =2'+¢ + 22§ cos A =22* (1 + cos A) = 47 cos'} 4,
and therefore
2bc cos $ 4

r=2zcos A4 = .
! a+b+c

(2) Three parallel forces P, Q, R, act at the angles 4, B, C,
of a given triangle, and are to each other as the reciprocals of

the opposite sides a, b, ¢; to determine the distance of their
centre from A. '

(8" + 28°¢* cos A +_c_‘)}
ab + ac + be )

Required distance = @
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(3) At the corners B, C, D, of a quadrilateral pyramid
ABCD, three parallel forces P, Q, R, are applied ; to find the
distance of their centre from the corner 4.

Let AB=b, AC=c, AD=d; £ BAC=(b,c), £BAD=(b, d),
L. CAD=(c, d); r = the required distance ; then

(P + Q+ R} = Pb+ Q¢+ R'd* + 2P Qbc cos (b, ¢)
+ 2PRbd cos (b, d) + 2QRed cos (¢, d).

(4) At three fixed points (a, ), (@, "), (a’, §"), in the plane
of z, y, are applied three parallel forces p, p', p’; supposing the
magnitude of " to vary in every possible way, to find the locus
of the centre of parallel forces.

The locus will be a straight line of which the equation is

(ap +ap)b’+ {(@-a)p+ (@ -aply
=(p+bp)a +{(¥-b)p+ (@ -8b)p}=

Secr. 11.  The Properties of Pappus.

I. If any plane area revolve about any axis in its own plane
through any assigned angle, the volume of the surface generated
by the motion of the area will be equal to a prism, of which the
base is equal to the revolving area, and the altitude to the
length of the path described by the centre of gravity of the area
during its revolution.

II. If any plane area revolve through any angle about any
axis in its own plane, the area of the surface generated by its
perimeter will be equal to a rectangle, of which one side is the
length of the perimeter, and the other the length of the path de-
scribed by the centre of gravity of the perimeter.

The enunciation of these properties, which are generally
called Guldin’s properties, is due to Pappus,' and may be seen

! The words of Pappus in the Latin translation are: “ Perfectorum utrorumque
ordinum proportio composita est ex proportione amphismatum, et rectarum li-
nearum similiter ad axes ductarum a punctis, que in ipsis gravitatis centra sunt.
Imperfectorum autem proportio composita est ex proportione amphismatum, et
circumferentiarum a punctis quee in ipsis sunt centra gravitatis, factarum, &c.”
In the former case he is alluding to those solids which are formed by the entire
revolution of the generating figures through 860%; in the latter, to those which are
formed by revolution through any smaller angle.

D2
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at the end of the Preface to the seventh book of his Mathemat:-
cal Collections, of which the first edition appeared in the form of
a Latin translation in the year 1588. They were afterwards
published, with various applications, by Guldin, in his treatise
De Centro Gravitatis, lib. 2 and 3, which appeared for the first
time in the year 1635. Cavalieri,’ in reply to objections ad-
vanced by Guldin against his method of indivisibles, gave a
demonstration of these properties by this method ; stating like-
wise, in allusion to Guldin’s claims as a discoverer, that they
had been communicated to him, long before the publication of
Guldin’s work, by a pupil of his, Antonio Roccha. Elegant
demonstrations of these properties were given also by Varignon
in the Mémoires de I’ Académie des Sciences de Parts for the
year 1714, p. 77.

(1) From any point P (fig. 15) in a parabola, is drawn a
straight line PM at right angles to the axis, and meeting it in
the point M; to find the content of the solid generated by the
complete revolution of the area 4 PM about PM.

Let AM=2z, PM=y; V= the required volume; and z = the
distance of the centre of gravity of the area APM from PM.
Then the whole path described by the centre of gravity will be
equal to 27z ; hence, by (I.),

V = 2wz x area of PAM:
but z =%z, and area of PAM =}zy; and therefore
V=2r.}z.}zy = fuzy.

Complete the parallelogram MPmA ; then the area of this
parallelogram will be equal to 2y, and the distance of its centre
of gravity from PM will be equal to }z. Conceive this pa-
rallelogram to make an entire revolution about PM; then the
path of its centre of gravity will be equal to

2w Yz = wzx;
and therefore, if U denote the volume of the cylinder which is
generated by the revolution,
U=rnz.zy = wa’y.
Hence U:V:15: 8.
This is one of the problems proposed in Kepler’s Stercometria.
Guldinus ; De Centro Graritatis, lib. 1. cap. 12, prop. 6.

'V Erercitationes Geometrice Sex, Exercit. 1 & 2; Bononie, 1647.
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(2) To find the surface of a sphere.

Let BAb (fig. 16) be a semicircle, by the revolution of which
about the diameter BCb the sphere is generated.

Let CA be at right angles to .Bb, C being the centre of the

circle, and let G' be the centre of gravity of the semicircular arc
BAb. Let CA =a, surface required = §; then, by (I1.),

27CG . arc BAb=S;
but CG = 2;“ , and arc BA4b = wa; hence

S= 2#.%.wa=4wf.
T

Now wa’ is the area of a great circle of the sphere; and thus
we find that the whole surface of a sphere is four times as great
as that of one of its great circles. This proposition was first
proved by Archimedes, Hepl Zgalpac xal KvAivdpov, BiBA. A,
xpéra. A; and afterwards, according to the method which we
have given, by Guldin, De Centro Gravitatis, lib. 1v. cap. 1,
prop. 7.

(3) To find the volume and the surface of the solid ring
generated by the complete revolution of a circle about any
external line in its own plane.

Let b be the distance of the centre of the circle from the axis
of revolution, and a the radius of the circle ; then

volume = 27%’b, and surface = 4n°ab.

(4) To find the volume of the solid ring generated by the
revolution of an ellipse about an external axis in its own plane
through an angle of 180°.

If a, b, be the semiaxes of the ellipse, and ¢ the distance of
its centre from the axis of rotation, then

volume = n’abe.

(5) To find the volume generated by the revolution through
a given angle of a portion 4PM (fig. 15) of a parabola about a
tangent at its vertex 4, PM being parallel to the tangent, and
AM at right angles to it.
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If AM=2, PM=y, and (3 be the angle through which the

revolution takes place ; then
volume = § 3%y.
(6) To find the volume and the surface of the solid generated

by the complete revolution of a cycloid about its axis.
If a be the radius of the generating circle,

volume = wa’ 3#" - §), surface = 8xa’(x - §).

(7) To find the volume and the surface of the solid generated
by the.complete revolution of a cycloid about its base.

Volume = §#*e’, surface = #mra’.

(8) To find the content of the solid generated by the complete
revolution of a right-angled triangle about its hypothenuse.

If a, b, denote the two sides of the triangle, the content will
be equal to ‘

wa’h®
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CHAPTER 1II.

EQUILIBRIUM OF A PARTICLE.

Ler P denote any one of a system of forces acting on a
particle; and let a, 3, y, be the angles which the direction
of this force makes with any three proposed straight lines, no
two of which are parallel; then the sufficient and necessary
conditions for the equilibrium of the particle are expressed
by the three following equations,

S(Pcosa)=0, Z(Pcosf3)=0, Z(Pcosy)=0,

where the = represents the summation of all such quantities as
Pcosa, Pcosf3, Pcosvy, for all the different forces of the
system ; or the algebraical sum of the resolved parts of all the
forces of the system estimated parallel to each of the three
straight lines must be equal to zero. If all the forces acting
on the particle lie within a single plane, then two of the three
straight lines being taken in this plane, the three equations of
equilibrium will evidently be reduced to two.

The conditions for the equilibrium of a particle acted on by
oblique forces, appear to have been first distinctly conceived by
Stevin of Bruges. He establishes by reasoning, which al-
though indirect is satisfactory and ingenious, the ratio which
the weight of a particle supported on an inclined plane bears to
the force by which it is sustained, the force being supposed to
act along the plane. He then announces generally, without
however supplying a corresponding extension of demonstration,
that the condition of equilibrium of any three forces acting on a
particle, consists in the proportionality of the forces to the sides

' Beghinselen der Waaghconst, 1586. 1. Livre de la Statique, prop. 19,
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of a triangle to which they are parallel. The first rigorous
demonstration of Stevin’s theorem in its general form, was
obtained by Roberval' from the nature of the lever. The idea
of a triangle of equilibrium had occurred indeed somewhat
earlier to Michacl Varro,' of Geneva, in application to the
equilibrium of forces acting on the sides of a right-angled-
triangular wedge: it does not appear, however, that Varro’s
notion was based upon any very distinct conception of the
nature of statical pressure. The Principle of the Parallelogram
of Forces, which is in fact a mere modification of Stevin’s
theorem, was announced almost simultaneously by Newton®
and Varignon;* by whom it was inferred from the consideration
of the composition of motions. In the same year was published
by Lami, in a little treatise entitled Nouvelle maniére de dé-
montrer les principauz Théorémes des élémens des Mécaniques,
a theorem in which it is asserted, that if three forces P, Q, R,
keep a particle at rest, then

P:Q: R::sin(Q, R): sin(P, R) : sin (P, Q),

where (Q, R), (P, R), (P, Q), denote the angles between the
directions of Q and R, P and R, P and Q, respectively.
The virtual coincidence of this theorem with the Principle
of the Parallelogram of Forces, subjected Lami to the imputation
of plagiarism, an aspersion cast upon him by the author of
the Histoire des Ouvrages des Savans, (April 1688). Lami
combatted this insinuation in a letter published in the Journal
des Savans, (Sept. 13, 1688), to which the Journalist replied
in the following December, when the controversy appears to
have terminated. The first unexceptionable demonstration of
the Parallelogram of Forces on pure statical principles, without
the introduction of the idea of motion, was given by Daniel
Bernoulli.® Many other proofs of the proposition have been

' Tvaité de Mécanique, printed in 1636, in the Harmonie Universelle de Mersenne,
and in a work also by Mersenne, entitled Cogitata Physico- Mathematica, published
in 1644.

* Tractatus de Motu, 1584.

? Principia, lex iii. cor. 2, 1687.

¢ Projet de la Noxvelle Mécanique, 1687.

8 Comment. Petrop., tom. 1. p. 126, 1726.
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since given. Eighteen demonstrations have been collected and
examined by Jacobi', by the following authors: D.Bernoulli,
1726 ; Lambert, 1771 ; Scarella, 1756; Venini, 1764; Araldi,
1806 ; Wachter, 1815 ; Kcestner, Marini, Eytelwein, Salimbeni,
Duchayla; two different proofs by Foncenex, 1760 ; three by
D’Alembert ; and those of Laplace and Poisson. .

Secr. 1. No Friction.

1. P and W (fig. 17) are two heavy particles ; W is attached
to the end of a fine thread, and P is suspended from a fixed
point C of the thread ; the thread has one extremity attached to
a fixed point 4, and passes through a smooth small ring at B in
the same horizontal line with 4 ; to find the ratio between P
and W, that the vertical line through C may bisect 4B in D.

From the supposition it is evident that £ ACD =4 BCD;
let each of these angles be denoted by 0: let T'= the tension of
the string CA; CA =5, AB=a; the ring B being "perfectly
smooth, W will be the tension of the string BC.

Hence for the equilibrium of the point C' we have, resolving
vertically the forces which act on it,

(T+W)cos =P,
and resolving horizontally,
Tsin=Wsin0, or T=W;

P
hence 2Wecos 0 =P, 0080=§—W-_....(1);
but from the geometry we see that
bsin 0 = a, sino=-2“— ...... ().

Squaring the equations (1) and (2), and adding the resulting
equations, we have

P a P 4 -a

ot o

' Whewell's Philosophy of the Inductive Sciences, vol. 1. p. 197.
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)
b 3
which determines the required ratio.

2. A particle P (fig. 18) is placed on the surface of a smooth
prolate spheroid, and is attracted towards the foci S and H with
forces varying as SP™ and HP™; to find the position of
equilibrium.

Draw a tangent KPL at the point P in the plane passing
through the three points S, H, P; let u, u', be the absolute
forces towards S, H; SP=r, HP =y. Then for the equi-
librium of the particle we have, resolving forces parallel to the
line KPL,

p.r"cos LSPK = y'r™ cos L HPL;

but £ SPK = £ HPL, by the nature of ellipses; hence
pr” = g™
also 2a denoting the axis of the spheroid, 24 = 7 + #; hence for
the determination of » and # we have the two equations
wr=u Q2a-ry,  u(2e-ry=ur.

8. Two weights m, m', are attached to the points O, O,
(fig. 19) of a string 400’4, suspended from two tacks at
A and A’ in the same horizontal line; to find the positions
of the points that their vertical distances from the horizontal line
through 4 and A’ may have given equal values.

Draw OF, OE', vertical ; let OE=a=OE’', AA' =b, ¢ =the
length of the string; 2AOE=0, £ A'OE=§; T-= the tension
of the string 00'. :

Then for the equilibrium of O we have, by Lami’s Principle,

T sin(r-0)  tan 0

P
and therefore W

m  sin (}w + 0)
and for the equilibrium of O,
m _sin(iw+0)

T sn(r-0)
From these two equations we get
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Again, from the geometry,
EE' = AA' - AE- A'E'
=b-a(tan 0 +tan @);
but we have also, from the geometry,
EE' =00 =c-40-4'0
=c-a(sec @ +sec 0);
hence a(sec - tan 0 +sec @ —tan @)=c-5....(2)

From the equations (1) and (2) the values of 8, &, are to be
determined, and then, EO and E'O’ being given, 40, 4'0

will be known.
Diarian Repository, p. 627.

4. To determine that point in the axis of a hemispherical
body, the particles of which attract inversely as the square of
the distance, where a corpuscle must be placed so as to remain
in equilibrium by the equal and contrary action of the matter of
the hemisphere surrounding it.

Let CA (fig. 20) be the axis of the hemisphere, DCD' a
diameter of its base, and O the required position of the cor-
puscle; DAD the intersection of the plane through CA,
DCD, with the surface of the hemisphere ; draw BOB' at right
angles to CA, join OD; take any points P, p, in the arcs
4B, BD, join PO, po, and draw PM, pm, at right angles
to CA. Let CA=a=CD, CO=¢, OB=b, OD=¥, OP=r,
OM=z, PM=y, Op=y, Om=2', pm=y'; u=the absolute
attraction of a unit of mass of the hemisphere, and p = its
density ; 4 =the attraction of the portion BAB' of the hemi-
sphere on the corpuscle, and B of the portion BDB'D'.

The attraction of a thin slice of the hemisphere at right
angles to its axis at the point M, and having a thickness dz,

21rppdz(1 ——;),

as may be seen in elementary treatises on attraction ; hence

A=21rppf-‘¢dz(l -—i:j)s
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__'A_=a_c_j"1z_d_z.. (1)’
27up ] r
similarly we have
B=21rypf dr (1 —f,),
0 r
B f‘z’dz’
2-,,-”,,—0_ . '—r—,— ...... (2)‘

Now from the geometry we see that
P=+y=2+a-(z+cf=a’-c" -2z =b"-2cz,
hence 2cz =0 -1, cdz=-rdr,
zdz b -1
and therefore 5 =" T3g

hence from (1), it being observed that r is equal to a-c, b,
when z is equal to @ - ¢, 0, we have
A 1 e 2
21mp-a—c+§? , @ -rHdr.... (8.
Again, from the geometry,
=21y’ =2"+a~(c-2V =d"- &+ 2c2' = b + 2¢c2';

hence 2z = 1% - b, cdx' = r'dr,

dr;

1) ' 3 _ 2
and therefore :ﬂz_ S bor dr';
r 2c¢
hence from (2), since 7' is equal to &', b, when 2’ is equal to ¢, 0,
B 1

.
= - I ‘.,
p— c+2czj; @ -r")dr;

but it is evident that

INGRES ar = [ @~ ar;

hence B _ ¢h o Jw @& - adr @)
2"I‘p - 262 ‘ e e 00 o

But since the corpuscle is in equilibrium we must have 4 = B,
and therefore by (3) and (4),

_];_ a-c s _ _lfb' . .
a—c+2c,f‘ ( r’)dr-c+2c2 ‘(b—r’)dr,
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1 (¥ .. .
hence a-2c-§}fq(b -1 dr:

performing the integration, and putting for &' its value (a*+ c”)*,
we shall get, after certain obvious simplifications,

@ -4 =(a'-25)(a + c’)*;
squaring both sides and simplifying,
12¢* - 8a% + 3a* =0,
an equation from which the value of ¢ is to be determined;
as an approximation ¢ = }a.
Drarian Repository, p. 629.

5. A weight W is sustained upon a smooth inclined plane
AB (fig. 21), by three forces, each equal to } W, one acting
vertically upwards, another along 4B, and the third parallel to
the horizontal line AC; to find the inclination of AB to the
horizon.

Required angle of inclination = 2 tan™ }.

6. Two forces P, Q, of known magnitudes, acting respec-
tively parallel to the base and length of an inclined plane, will
each of them singly sustain upon it a particle of weight W; to
determine the magnitude of W.

PQ
‘ ( P? - Q!)&

7. Two heavy particles, P and Q, (fig. 22), are connected
together by a fine thread passing over a smooth pulley at C;
P rests on a smooth inclined plane 4B, and Q hangs freely ;
to determine the position of equilibrium and the pressure on the
inclined plane.

Let a = the inclination of the plane to the horizon, R = the
pressure, and 0 = the angle CPB; then

W=

Psina
Q b
8. A particle P is placed within a thin parabolic tube AP,

(fig. 23), the axis Az of the parabola being vertical ; the particle

cos 0 = R = P cos a - (Q - P? sin’ a)*.
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is acted on by gravity and by a force u.PM tending from Az,
to which PM is perpendicular; to find the conditions of equi-
librium.

There will be no position of equilibrium unless the latus
rectum of the parabola be equal to %:Z; and under this condition
every point of the tube will be a position of rest.

9. The sides of an isosceles triangle are formed of slender
uniform prisms, attracting with forces which vary inversely
as the square of the distance; to determine the vertical angle
in order that a particle may remain at rest in a point which
divides the perpendicular from the vertex in a given ratio.

If a be the distance- of the particle from the vertex, and
b from the base, then

vertical angle = 2 sin™ (g) .

10. Two straight lines AB, AC, at right angles to one
another, attract a particle P placed at the point where the
perpendicular AP meets BC; to find the direction and mag-
nitude of the force necessary to keep the particle at rest, the
law of attraction being that of the inverse square.

Let AB=a, AC=5, BC=c, u=the absolute force of a
unit of length of the attracting lines condensed into a point;
then the direction of the required force will make an angle of
45° with 4 B, and its magnitude will be equal to

21!” J’
@b
11. The perpendiculars from a point in a triangle upon
the sides are @, b, ¢, and the angles which the sides subtend
at the point are a, 3, y; a particle is placed at this point,
and is acted on by the attraction of the sides, the law of attrac-
tion being that of the inverse square; to find the relations
between a, b, ¢, and a, f3, y, that the particle may be at rest.
The required relations are
1 1 1 sinja sinjB sinjy

a b’ 'c’ a B v
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Secr. 2. Friction.

1. Two heavy particles P and P (fig. 24) rest on two in-
clined planes C4, C’'4, and are connected together by a fine
string passing over a smooth pulley at O in the vertical line
through 4 ; to determine the positions of P and P’ when P is
only just sustained.

Let a be the length of the string POP, T'its tension, which
will be the same throughout; W, W', the weights of the
particles P, P’'; u, i, the coefficients of friction on the planes
CAd, C'A, and R, R, their reactions; a, a', the inclinations of
the two planes to the vertical.

Then, since by hypothesis the friction on P will be exerted
up CA, and that on P down 4C’, we have for the equilibrium
of P, resolving forces parallel and perpendicular to C4,

uR+ Tcos(a-0)= Wceosa...... (1),
R+ Tsin(a-0)= Wsina ...... 2);

and in the same way for the equilibrium of P,
uWR + W' cosa =Tcos(a-@)......(3),

R+ Tsin(d-60)=Wsina.......... (4).
From (1) and (2),
T {cos (a~0) — pu sin (a - 0)} = W (cos a—p sin a);
and from (3) and (4),

T {cos (a' = @) + ' sin (a' - 6)} = W' (cos o' + ' 5in a’).
Eliminating T between these two last equations, we obtain
W' (cos a' + 4 sin a') {cos (a — 0) — u sin (a - 0)}

=W (cos a - p sin a) {cos (a' - @) + ' sin (a' - §)}.

Assume u=tan ¢, u' =tan ¢; then this equation becomes
W' cos(a' —¢) cos (a—0+¢)=W cos(a+e)cos(a' — & -¢) ... (5)
Again, from the geometry, if C4 =%,

_ ksina _ ksind
“sin(a-6)’ “sin(a - 0)’

oP
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and therefore, since OP + OP =a,
ksina k sin o
a=- + = cees
sin(a—0) sin(a -0)
The angles 0, @, are to be determined from the equations (5)
and (6).

(6)

2. Given the semi-sum and semi-difference of the greatest
and least angles which the direction of a force, supporting
a hecavy particle on a rough inclined plane, may make with
the plane, and the least elevation of the plane when the par-
ticle would, without being supported, slide down it; to de-
termine the angle at which the same force, when inclined
to a smooth plane of the same elevation, would support the
same particle.

Tet e denote the least angle which the force may make with
the rough plane to support the particle, P the magnitude of the
force, I the reaction of the plane at right angles to itself,
p the coefficient of friction, a the inclination of the plane to the
horizon, W the weight of the particle. Then, since the friction
must in this casc act down the plane, we have for the equi-

librium of the particle, resolving forces parallel to the inclined

lane .
plane, Pcose=uR+ Wina;

and resolving forces at right angles to the plane,
P sin e+ R= W cos a.
Eliminating I between these two equations, we get
P (con et psin €)= W (u cos a+sin a). ... (1)

.Lct ¢ be the least clevation of the plane for the particle
without support to slide down it, then tan ¢ will be equal to u;
hence from (1),

P Wsin (a+¢)
cosGe—g)" T (2)

. If ¢ denotc the greatest angle which P may make with the
inclined plane consistently with the equilibrium of the particle,
then the friction will act with the greatest force it can exert up
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the plane ; hence, making ¢ negative, or putting — ¢ for ¢, we
shall have from (2), ¢ replacing ¢,

--------

Also, if € denote the angle of P’s inclination in the case of a
smooth plane of the same elevation, we have, putting ¢ = 0 in
(2), and replacing ¢ by ¢,

“From (2) and (3)
cos(s—¢)+cos(s'+¢)=—g—7{sin (a+¢)+sin (a - ¢)},

and therefore if §'=}(¢'+¢) and D =}(¢' - ¢), we get

2cosScos(D+¢)=2¥sinacos¢

= 2 cos ¢ cos ¢, by (4);

hence cos ¢ = :Zs :cos (D + ¢)

8. P is the lowest point on the rough circumference of a
circle in a vertical plane at which a particle can rest, friction
being equal to pressure; to determine the inclination of the
radius through P to the horizon.

- Required angle = E .
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CHAPTER IIIL

EQUILIBRIUM OF A SINGLE BODY.

LET any system of forces act upon a body consisting of a
system of points rigidly connected together. Take any three
straight lines 04, OB, OC, (fig. 25), in space, no two of
which are parallel to each other. Let 4, B, C, denote the
whole resolved part, parallel to each of these straight lines, of
any one of the forces of the system; 4, B, C, being positive .
or negative quantities according as they act in the directions
0A, OB, OC, or the opposite ones. Then, 2(4), =(B), =(C),
denoting the algebraical sums of the resolved parts of all the
forces of the system parallel to these three straight lines, it is
necessary for the equilibrium of the body that we have
2(4)=0, =(B)=0, =(C)=0...... @)

Again, let 04', OB, O'C’, be any three straight lines in
space, no two of which are parallel to each other. Let any
force of the system be resolved into two parts, the one at right
angles to 04, and the other parallel to it ; let 4’ be the magni-
tude of the part which is at right angles to 04, and o' the
perpendicular distance between 0’4’ and the direction of 4';
then A4'a’ is called the moment of A4’ about O’'4’, and the sum
of all such moments for all the forces of the system will be
denoted by =(4'a), those moments being considered positive
which tend to twist the body about 0’4’ in one direction, and
those which tend to twist it in the opposite direction being
considered negative. Similarly the algebraical sums of the
moments about O'B’, O'C’, respectively, will be denoted by
2(B%), =(C'¢). Then for the equilibrium of the body it is
necessary that we have

S(4'd)y=0, =2(B¥)=0, =(C¢)=0....(L)
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The three equations (I.), together with the three equations
(I1.), are universally sufficient and universally necessary for the
equilibrium of any body. It may be proper to remark, that any
of the lines 0’4, O'B, O'C’, may be taken to coincide with
any of the lines 04, OB, OC, according to convenience.

If all the forces of the system lie in one plane, then the
lines 04, OB, O0'A', OB, being taken within this plane, and
the line OC at right angles to it, the six equations of equilibrium
will be reduced to the three following,

£(4)=0, =(B)=0, =(C'c)=0....dIL);

for it is evident that the three other equations will be identically
satisfied.

The basis of the general equations of equilibrium consists in
the Theory of the Composition and Resolution of Forces, of
which we have treated in the preceding chapter, and in the
Theory of Moments. The latter theory, in the case of weights
acting at right angles to the arms of a straight lever, was
established by Archimedes.! In the year 1499, the condition
of equilibrium of a force acting obliquely on a lever, and
supporting a weight suspended from it, was correctly stated
by Leonardo Da Vinci,’ the celebrated painter, to whom must
therefore be ascribed the discovery of the theory of oblique
action, investigated at a later date by Stevin, in application to
the Equilibrium of a Particle. The following elegant geome-
trical proposition, the application of which to the general
Theory of Moments depends upon the Principle of the Pa-
rallelogram of Forces, was given by Varignon in his Nouvelle
Meécanique, sect. 1, lemma xvi: If from any point whatever
in the plane of a parallelogram we let fall perpendiculars upon
the diagonal and upon the two sides which comprehend this
diagonal, the product of the diagonal by its perpendicular is
equal to the sum of the products of the two sides by their

) "Apxiprdovs 'Ewiwidwy loofpowixay 1 xévrpa Papav dmimidwy To A. Hpor.
or. Z. .
* Venturi; Essai sur les Ouvrages Physico-Mathématigues de Léonard da Vinci,
avec des Fragmens tirés de ses Manuscrits appertés d'ltalie, Paris, 1797 ; quoted
in Whewell's History of the Inductive Sciences, vol. 11, p. 122.
E 2
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respective perpendiculars, if the point lie without the parallel-
ogram, or to their difference, if it lie within the parallelogram.
The six general conditions of equilibrium of a system of rigidly
connected points acted on by any forces whatever, were first
laid down by D’Alembert, in the second chapter of his Re-
cherches sur la Precession des Equinozes, published in the
year 1749.

Secr. 1. No Friction.

(1) A beam 4B (fig. 26) rests with one end against a hori-
zontal plane in a point 4, and with the other against a vertical
one in the point B; the vertical plane passing through the
beam intersects at right angles the former plane in the line AC,
and the latter in the line BC; the beam is attached to the point
C by a string EC without weight: to find the tension of the
string, E being any assigned point in the beam.

The actions of the horizontal and vertical planes upon the
beam at 4 and B, will be in the directions AR and BR,
which are parallel respectively to CB and C4; let them be de-
noted by R’ and R. Again, let T denote the tension of the
string EC. Let G be the centre of gravity of the beam, and
W its weight; then instead of supposing the beam to have
weight, we may suppose it to be a rigid rod without weight,
provided that we apply the force W vertically downwards at G.
Thus we have four forces, R, R', T, W, acting at four points
B, A, E, G, rigidly connected together. We proceed to ex-
press the equations of equilibrium. Let £ ECA=¢, L BAC=a,
AG =BG =a. Then resolving the forces parallel to the line
CAd, we have

R-Tcose=0........(1);
resolving the forces parallel to CB, we have
R-W-Tsineg=0...... 2);
and taking moments about the point C,

R.2asina+ Wacosa- R .2acos a=0,

or 2Rsina+ Wcosa=2R cosa....(3)
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From (1), (2), (8), there is
2T cosesina+ W cosa=2W cos a+ 2 T sin ¢ cos a,
2T (cos ¢ 8in a — cos a sin &) = W cos a,
27T sin (a — €) = W cos a,
_ Wcosa
" 2sin(a-¢)

If ¢« be equal to @ we have 7=, which shews that no
tension, however great, can sustain the beam in a position of
equilibrium. It is easily seen that in this case E coincides
with G; and that the length of CE is sufficient to allow the
beam to descend continually. ,

If ¢ be greater than a, T' will clearly be negative; and since
the string can pull but not push, the equilibrium is impossible.
Thus for the possibility of the equilibrium we must have a
greater than e.

and therefore T

(2) A smooth beam A4 B, (fig. 27), rests against two horizontal
bars which pierce the vertical plane through the beam at right
angles in the points A4', 4°; the beam passes under the lower
and over the higher bar, its lower extremity 4 being sustained
upon a smooth horizontal plane: to determine the pressures
upon the two bars and upon the horizontal plane.

The pressures upon the bars and upon the horizontal plane
will be equal to their reactions upon the beam; the reactions of
the bars upon the beam will be two forces R', R’, at right
angles to the beam; and the reaction of the horizontal plane will
be a vertical force R. Let G be the centre of gravity of the
beam ; then if we suspend its weight W from G, we may,
without affecting the circumstances of the equilibrium, conceive
the beam to be a rigid rod without weight. Thus we have
four forces R, R, R', W, acting respectively at four points
4, 4, 4°, G, rigidly connected together, so as to produce
equilibrium. Let AG =a, 4’4" =), and a = the inclination of
the beam to the horizon.

Then resolving forces parallel to the beam, we have
W sin a — R sin a = 0, and therefore R=W . ... (1)
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Nowmling aves at right angles to the beam,
R+Wcosa-R -Rcosa=0,

wd shereture by (1),

\xain, taking moments about A,
R.AA -R.AA - Wacosa=0,
awl therefore by (2),
Rb = Wa cos a;

whence R=R-= ll'_q_gcgs_g .

(8) A rigid rod 4B, fig. (28), rests upon a fixed point E,
while its lower extremity A presses against a vertical line FF" ;
to find its position of equilibrium and also the pressures at 4
and E.

‘Let G be the centre of gravity of the rod, and W its weight ;
we suppose the whole weight of the rod to be collected at its
centre of gravity. Let R be the reaction of the vertical line
FF' upon the rod, which will be at right angles to FF'; also
let R’ be the reaction of the fixed point E which will be at right
angles to the rod. Let EF be at right angles to FF'; and let
EF=c, AG=a, ¢ AEF=0.

Then, resolving forces parallel to the rod,

Rcos@=Wsinf..............Q0);
resolving forces at right angles to the rod,
R=Wcos@+Rsinf............ 2);
and taking moments about E,
R.AEsin 0= W.EG cos 0
= W(AG - AE) cos 0
= W (a cos 0 -c),

and thereforc Rcsin@ = H(acos’@-ccos@).......... (3);
hence from (1) and (3),
I3
e 22 0 = Wi(a cos’ 0-c cos 0)

cos 0
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£

cos 0

which gives the value of 0, and defines the position of the beam.
From (1) and (4) we have

R= Wtan 0 = W{l - (5)!}: W(ai—‘c’)‘ ,

G
a
which determines the pressures on the vertical line.
Also, from (1) and (2),
in3
R = Wcos 0+ Wsm._0=1,
cos 0 cos @

and therefore by (4), R = W(:_—l)&,

=acos’0,c050=(£)§..........(4),

which determines the presure on the fixed point.

If ¢ be greater than a, then we see by (4) that cos 6 would be
greater than unity, which is impossible ; thus equilibrium is im-
possible unless @ be at least equal to c.

Fontana, Memorie della Societa Italiana, 1802; p. 626, &c.

(4) One end 4 of a beam A B, (fig. 29), is connected to a fixed
point by a hinge, about which the beam is capable of revolving
in a vertical plane; the other end B is attached to a weight P
by means of a string passing over a pulley C in the same vertical
plane; to find the position of equilibrium.

Let a horizontal line AD through 4 meet a vertical line
through C in the point D. Let G be the centre of gravity of
the beam, at which we shall suppose its whole weight W to be
collected. Produce CB to meet AE at right angles to it.

AG =a, BG=b, AD=Fk, CD=1, L BAD=0, ¢ =the in-
clination of CE to the horizon.

Then taking moments about 4,

P.AE= W.AF
or P(a+d)sin(p-0)=Wacos............(1);
again, from the geometry,
(@ +5)sin § + BCsin ¢ =,
(@+b)cos @+ BCcos ¢ =k,
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and therefore, eliminating BC,

(a+8)sin0-1

(@+b)cos-£

The equations (1) and (2) are sufficient for the determination
of 0 and ¢, or of the position of equilibrium.

(5) A uniform beam 4B, (fig. 30), of which one end 4 is
placed upon a smooth horizontal plane 04, and of which the
other end B presses against a vertical plane OB, is attracted by
a centre of force situated in the point O, the intensity of the force
varying directly as the distance; to determine the position of
equilibrium.

Conceive the beam to be inclined at an angle w to the horizon.
Take P any point in the beam and join OP.

Let OP=r, AP=3, AG = BG=a, L POA =0, u = absolute
force of attraction, R, R, the reactions of the planes at 4, B.
Then, resolving forces horizontally, we have

R'=fyrds cos0=pf:‘ds(2a—s)cosw=2pa’cosw....(l).

=tan @ ..coieenenees (2

Resolving forces vertically,
R- W=fprdssin 0=,4Fsin wsds = 2ua’ sinw. .....(2)
o

Taking moments about O,
R.23cosw=Wacosw+ E.2asinw
2R cosw= Wcos w+ 2R sinw ....... . (3),
and therefore, substituting in this equation the values of R’ and
R from (1) and (2), we have .
2 cos w( W + 2ua’ sin w) = Wcosw + 2 sin w. 2ua’ cos w,
and therefore Weosw=0, w=}o,
or the beam lies in contact with the vertical plane OB.

It is evident, however, that this is not the only position of
equilibrium; the beam will plainly remain at rest if it be placed
in contact with the horizontal plane 04 with one extremity at
O. In writing down the equations (1), (2), (8), it is tacitly
assumed that the beam receives no pressure from the planes ex-
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cepting at its extremities, an hypothesis which holds good in the
former position of equilibrium while it evidently does not in the
latter : it is for this reason that, in our analytical investigation,
out of the two admissible values 0 and Jr for  we obtained only
the latter.

(6) A uniform bar 4B (fig. 31) is placed in the straight line
joining two centres of force K, L, which attract with forces
varying directly as the distance ; to find the position in which
the bar will rest.

Let u, u', be the absolute forces of the centres K, L; let
P be any point in the bar AB; KA=2z, LB=y, KP =3,
BP =5, AB=2a, KL =1; p = the density of the bar, x = the
area of a transverse section. Then for the equilibrium of the
bar we must have

+2a
r*xpwdhf xpu' 8 ds';
L ] y

or,since x and p are supposed to be the same for all points of the

bar,
's+da yida
pf 8d8=y’f s ds',

p{(@+20) - 2%} = W{(y + 20 - ¥’}
n+a)=p@y+a)=p(-a-2)
(p+p)z=pl-(u+py)a,
- "’l p—

= ; H

M+

l
similarl N
A

The value of z, or of y, determines the position of equilibrium.

(7) To find the force requisite to keep a door in a given posi-
tion, the post being inclined at a given angle to the vertical ;
neglecting friction.

Let A B(fig. 32) be the door-post, A BCD the door; Az a verti-
cal line through 4 ; Az at right angles to 4z and in the plane
of BAz; E the intersection of the line CD produced with the
horizontal plane through 4; join 4E. With 4 as a centre
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describe a sphere cutting 4B, Az, AE, in the poiuts p, ¢, 7;
and join these points by great circles of the sphere.

Let £BAz =3, and a = the inclination of the plane of the
door to the plane z4z; W = the weight of the door.

Then, since the angle pgr of the spherical triangle pgr is a
right angle, we have, by Napier’s rules,

cos prg = sin gpr cos pg = sin a sin 3;
but if ¢ denote the angle which W ’s direction makes with the
plane of the door, it is clear that

sin ¢ = cos prg;

hence, a denoting the distance of the centre of gravity of the
door from the post, the moment of W about 4B will be equal to

Wa sin a sin 3 ;
let P be the force applied at right angles to the door, at a point

distant from the door-post by a space &, sufficient to keep it in its
present position ; then, by the equation of moments, we have

Pb = Wa sin a sin 3.

(8) A rigid rod AB (fig. 83) rests against a smooth vertica]
wall CD, and has its lower extremity 4 attached to a hinge
about which it can revolve freely; to find the pressure on the
wall and upon the hinge.

Let G be the centre of gravity of the rod at which we may
suppose its whole weight 7 to be collected ; let AG =b, AB=a,
2BAC=a. Also let R denote the reaction of the wall against
the rod, which will take place at right angles to CD; and let R/,
S, be the vertical and horizontal parts of the reaction of the
hinge upon the rod. Then

R Wb
a tan a

-S,B=W.

This problem was first proposed under a vicious form in a
work by Stone; where the author proposes to determine the
position of AB corresponding to a maximum value of R. Ina
review of Stone’s work by John Bernoulli', the solution given
by Stone was declared to be erroneous, and a different one was

' Opera, tom. 1v. p. 189.
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offered by the reviewer. Bernoulli’s solution is, however, essen-
tially vicious. The problem was correctly solved for the first
time by Couplet’. The opinions however, both of mathematicians
and of architects, were for many years divided as to the respec-
tive merits of the solutions given by Bernoulli and by Couplet,
and even down to very late years numerous memoirs have ap-
peared on the subject by different mathematicians, with various
conclusions ; several of whom have arrived at results at variance
with the solutions both of Bernoulli and of Couplet. The
reader who may be curious to examine the various solutions of
this problem, which by the aberrations of the learned rather than
by any intrinsic difficulty has obtained considerable celebrity, is
referred to a memoir by Franchini in the Memorie della Societa
Italiana, tom. xv1. parte 1, p- 228; 18183.

(9) A ladder of uniform thickness rests with its lower end
upon a smooth horizontal plane, and its upper end on a slope
inclined at an angle of 60° to the horizon ; the ladder makes an
angle of 30° with the horizon: to find the force which must act
horizontally at the foot of the ladder to prevent sliding.

If W denote the weight of the _ladder;

i
required force = 82 w.

(10) A sphere rests upon two inclined planes; to find the
pressure experienced by each.

Let W be the weight of the sphere; a, a, the inclinations of
the inclined planes to the horizon; and R, R, their respective
pressures. Then

R= W sin o W sin a

sin(a+a)’  sn(a+a)
Leibnitz ; Opera, tom. 111. p. 176.
(11) A uniform beam rests upon two perfectly smooth inclined
planes; to find its position and its pressure upon the two planes.
Let a, o', be the inclinations of the two planes to the horizon;
R, R, the pressures which they experience ; then, supposing the
end of the beam which rests against the former plane to be the

* Mémoires de I' Académie de Paris, 1731, p. 69.



60 EQUILIBRIUM OF A SINGLE BODY.

lower one, and 0 to be the inclination of the beam to the horizon,
we shall have, W being the weight of the beam,

tan 0 = Bin(a'—a)’ R= W sin o _ ?Vsina )

2sina sin a sin (a + a))’ sin (a + a')

(12) A beam AB (fig. 34) leans against a smooth vertical
prop CD, the end A4 being prevented from sliding along the
horizontal plane 4D by a string 4D fastened at D; to find the
tension of the string.

Let G be the centre of gravity of the beam; 4G =a, CD=3,
AD = ¢, W = the weight of the beam, T = the tension; then

- % W
@+
(18) A uniform rigid rod 4B (fig. 28) rests upon a fixed
point E, while its lower end 4 presses against a vertical line
FF'; a weight P is suspended from the extremity B ; to find its
position of equilibrium.

Let W = the weight of the rod, 4 = the perpendicular distance
of E from the line FF', AE =z, a=the length of the rod; then

JP{W\

2= (a0 T )

Fontana, Memorte della Societa Italiana, 1802, p. 630.

If we suppose W = 0, then we shall have z = (ab’)i, whatever
be the magnitude of P. This problem is discussed by Euler,
Acad. des Sciences de Berlin, tom. vi1. p. 196, in illustration of
Maupertuis’ Principle of Rest.

(14) A sphere, of which C is the centre, is supported on an
inclined plane 4B by a string CB which is horizontal ; to find
the tension of CB.

If W be the weight of the sphere, and a the inclination of
the plane to the horizon,

tension of string = W tan a.

(15) A uniform rod of given length rests against a peg at the
focus of a parabola, its lower extremity being supported on the
curve; to determine the angle which it makes with the axis of
the parabola which is vertical.
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point where the beam presses against the hemisphere. Then the
position of equilibrium will depend upon the equations
tan ¢ =2 tan 0, 2a cos 0 = 7 cos ¢ + c.

(19) A uniform beam rests with one end upon a given in-
clined plane, the other end being suspended by a string from a
fixed point above the plane ; to determine the position of equi-
librium, the tension of the string, and the pressure on the plane.

Let 2a¢ be the length of the beam, @ its inclination to the
inclined plane, W its weight, and R the pressure which it exerts
on the inclined plane; let T be the tension of the string, ¢ its
length, and ¢ its inclination to the inclined plane ; also let  be
the distance of the fixed point from the plane ; and a the incli-
nation of the plane to the horizon.

Then the position of the beam will depend upon the two
equations

2 sin (¢ — 0) sin a = cos ¢ cos (0 + a),
csing + 2asin 0=256;
and thence R and T will be given by
R- W cos (a + ¢) , T= W sin a
cos ¢ cos ¢

(20) A uniform beam rests with one end against a smooth

vertical plane, its other end being supported by a string attached
to a fixed point in the plane; to determine the position of the
beam, its pressure against the plane, and the tension of the
string. :
Let b be the length and 7' the tension of the string ; 2a the
length of the beam, W its weight, and R its pressure against the
vertical plane ; also let ¢, 0, be the inclinations of the beam and
of the string to the vertical. Then

. 16a® - ¥\ . 16a® - 5\
0=—— =
o ( 3% )’sm'l’ ( 128 )’

stamr 16a* - & \4
ey
(48" - 160! 45" - 160
(21) A uniform beam AB (fig. 36) moveable in a vertical
plane about a hinge at 4, leans upon a prop CD situated in the
same plane ; to determine the strain upon the prop CD.
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Let AB=2a, CD=b, L BAC=a, £ACD=f3. Then the
resolved part of the pressure of 4B on CD at right angles to
CD, which measures the strain on the prop, will be equal to

Wa sin 2a cos (a + [3)
26 sin 3 ’

(22) A uniform isosceles triangle is placed within a smooth
hemispherical bowl, its three angles touching the bowl; to find
the position in which it will rest.

Let a=the length of each of the equal sides, 4 =the altitude
of the triangle, r = the radius of the hemisphere, 0 =the in-
clination of the triangle to the vertical ; then

3 (4= o
4% - 3a"

tan 0 =

(28) A uniform beam ABC (fig. 37) is placed with one end
4 in a hemispherical bowl, and, being of greater length than
the diameter of the bowl, rests upon the rim of the bowl at the
point B; to find the position in which the beam will rest, the
radius OB of the bowl being horizontal.

If r be the radius of the bowl, 2a the length of the beam, and
0 its angle of inclination to the horizon ; then

4r cos’ @ —acos 0 - 2r=0.

(24) A given weight P is suspended from the rim of a
uniform hemispherical bowl placed on a horizontal plane; to
find the position in which the bowl will rest.

If W denote the weight of the bowl, ¢ the distance between
its centre and its centre of gravity, and 0 the inclination of the
axis of the bowl to the vertical,

(25) An isosceles right-angled triangle rests in a vertical
plane with the right angle downwards, between two pegs
at a distance a from each other in the same horizontal line; to
determine its positions of equilibrium.



64 EQUILIBRIUM OF A SINGLE BODY.

Let % =the perpendicular from the right angle on the base,
and 0 = the inclination of the base to the horizon ; then

#=0, or 0=cos™ (i)
3a

(26) A uniform circular lamina is placed with its centre upon
a prop; to find at what points on its circumference three weights
w,, w,, w,, must be attached that it may remain at rest in a
horizontal position.

Let (w,, w,), (w,, w,), (w,, w,), denote the angles at the centre
of the lamina between the dmta.nces of w, w,; w,, w,; w,, W,
respectively. Then
0+ w0’ - w! '+ 0, - w}

o -3, cos (w, w)=— -1

8 (w,, 10,) =—
cos (10,, 1)) = 0, 2w, w0, ’

cos (10,10 = — Dot 0 =/
- — .
v 20,0,

Secr. 2. Friction.

Statical friction consists in the resistance arising from mutual
roughness, which is opposed to the production of relative motion
between two substances in contact. If the substances were
perfectly smooth, their mutual pressure at every point of the
surfaces of contact would take place in some determinate straight
line depending upon the forms of the surfaces; if the consider-
ation of roughness be introduced, the force of friction when
called into play will exert itself at each point in a direction at
right angles to the mutual pressure corresponding to perfect
smoothness. The estimation of the magnitude of friction for
assigned substances and for given surfaces of contact, can be
effected solely by experiment.

Suppose R to denote the total pressure of two substances, of
which the surfaces of contact are two planes, and let F be the
greatest force which friction can exert in the prevention of
relative motion ; then F is taken as the measure of the statical
friction. After the performance of numerous experiments,
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If the surfaces of contact be not plane areas, the coefficient of
friction will on this account receive a change of value; and
generally it will depend upon the forms of the surfaces of
contact, as well as upon the nature of the substances. The
friction of a solid cylinder against a hollow one has been con-
sidered by Coulomb and Ximenes, who have found it to be
much smaller than between two plane surfaces of the same
substance ; the coefficient of friction is, however, approximately
constant, as in the case of plane surfaces of contact.

The friction of which we have been speaking, is the friction
called into play by the rubbing of two substances against each
other; the roughness of substances, however, exerts force to
interrupt the production of relative motion also in the case
when one body is urged to roll along another without rubbing;
this may be called the friction of cohesion, depending probably
upon the mutual tenacity of the particles of the two bodies.
This species of friction was first noticed by Bossut, and after-
wards carefully investigated by Ximenes and Coulomb: in the
case of a cylinder rolling along a plane, the friction of cohesion
is found to vary inversely as the diameter.

The friction which exists between two substances in motion,
which may be called their dynamical friction, is very consider-
ably less than their statical friction. The dynamical friction is
measured by the force necessary to keep the bodies in motion ;
the statical friction by the force necessary to set them originally
in motion. The difference of the magnitudes of statical and
dynamical friction was noticed by Camus' and Desaguliers’, and
afterwards by various other experimenters. Professor Vince
ascertained by experiments, that dynamical friction is a constant
force for hard substances, whatever be the velocity of the
relative motion ; but that in the case of softer bodies it increases
considerably with an increase of velocity. The friction of pivots
has been fully considered by Coulomb in the Mémotres de
P Acad. des Sciences de Paris, 1790. The friction and rigidity
of ropes was first investigated experimentally by Amontons in
the memoir to which we have alluded above, and afterwards by
Coulomb and Ximenes.

' Traité des Forces Mouvantes. t Cours de Physique.
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(1) A uniform beam AB, (fig. 38), resting with one end 4
upon a rough horizontal plane KL, has its other end B attached
to a string which passes over a smooth pulley E, and supports a
weight P ; to determine the range of positions in which the beam
may be placed consistently with equilibrium.

Let G be the centre of gravity of the beam, and Wits weight;
0, ¢, the angles of inclination of 4B, BE, to the horizon for any
position of equilibrium ; 4G = BG = a, F the friction, estimated
along LK, which is called into play at 4, and which will be at
right angles to R the vertical reaction of the plane on the beam.
Suppoee the whole weight of the beam to be collected at its
centre of gravity.

Then for the equilibrium of the beam we have, resolving the
forces horizontally,

F=Pcos¢...cooonnvnnnn (1);
resolving vertically,
R+Psing=W.............. (2);
and taking moments about 4,
Wa cos 0 = P.2a sin (¢ - 0)
or WcosO=2Psin(¢p-0)......(3).

Assume F= AR, where, if u denote the coefficient of friction
between the end of the beam and the plane, A may havc any
value from zero up to u. Then by (1) we have

AR=Pcos¢p............(4)
From (32) and (4), we obtain

Pcos ¢ + APsin ¢ =AW,
or, putting A = tan ¢,

Pcos (¢p —€)= W sing,
which determines the angle ¢ in terms of W, P, ¢; and then 0
may be determined from (3). By giving then to ¢ any values
from gzero up to tan” u, we shall obtain a scries of positions
of equilibrium.

Suppose for instance A to be equal to zcro ; then from (4)

P cos ¢ = 0, and therefore ¢ = in;

hence by (3), Wcos 6 = 2P cos 0,



68 EQUILIBRIUM OF A SINGLE BRODY.

and therefore either W = 2P, in which case 0 remains indeter-
minate and may have any value whatever, or 6 =}r. Again
from (2), since ¢ = }r, we have .

RaW-P.......c.c.....(5),

and therefore, if 6 be not equal to }r, we must have R= P=}W.

Thus we see, that the end B of the beam must be in the ver-
tical line through E; and that, unless 4B be placed vertically,
the weight P must be equal to half the weight of the beam. If
the beam be placed vertically, it is clear from (5) that P may
have any value from 0 up to W, but no greater value, because
R cannot be negative.

If instead of taking A = 0, we were to give it any other value
between 0 and u, we should have to determine the values of 0
and ¢ as in the present case.

(2) A beam 4B (fig. 39) is sui)ported on a prop CD by a
given force P acting at a given angle of inclination to the hori-
zon; to find the position of the beam when it is upon the point
of sliding past the point C from 4 towards B, the prop and
beam being relatively rough.

Produce B4, PA, to meet the horizontal line KL in the
points F, E; let G be the centre of gravity of the beam. Let
AC=a, CG=z, t PEL =a, £t AFE = 0, R = the reaction of
the prop at right angles to 4B, and u the coefficient of friction ;
then uR will be the friction, of which BA is the direction.

Then for the equilibrium of the beam we have, resolving forces
vertically,

Psina+Rcos 0= W+uRsinf........ D;
resolving horizontally,
Pcosa=Rsin@+uRcosf............ (2);
and taking moments about C,
Wzcos=P(a+z)sin(a—0)........ (3).

From the equations (1) and (2) there is

cos @ —psin@ W- Psina
sin@+pucos@  Pcosa
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and therefore
Pcosa(l-ptan @) =(W - P sin a)(tan 0 + p),

P(cosa+psina)—uW={W+ P(ucosa—sina)} tan 0;
assume p =tan ¢; then, multiplying both sides of the equation
by cos ,

Pcos(e-a)- Weine= {Psin(e—a)+ Wcose}tan 0,

Pcos(e~a)- Wsine
Psin(e-a)+ Wecose’
which determines the inclination of the beam to the horizon.

Knowing 0 we may determine z from the equation (3); and
thus the position of the beam will be completely ascertained.

If the beam be on the point of sliding in a direction op-
posite to that which we have supposed, the quantity u must be

replaced by — u, or ¢ by — ¢; and the formula® for the former case
will all become adapted to the latter.

(8) A uniform rectangular board KLMN, (fig. 40), is placed
upon a rough inclined plane 4B; supposing the inclination of
the plane 4B to the horizon to be gradually increased, to find
whether the equilibrium of the board will be disturbed by the
commencement of a rolling or of a sliding motion.

First suppose that the board begins to slide ; let R be the whole
of the reaction of the plane at right angles to itself on the board,
u the coefficient of friction, and ¢ the inclination of the plane at
the commencement of sliding. Then, resolving forces parallel
to the inclined plane,

tan 0 =

pR=Wsng;
and resolving forces at right angles to it,
R=Wcos ¢;
hence, eliminating R,
tan 0 = p.

Next suppose that the board tumbles over the corner K be-
fore the commencement of sliding; then the vertical through G
will pass through K when ¢ has reccived the proper value;
draw G'H at right angles to the plane, let HK = a, GH = b; then

tan ¢ = tan LKGH=%.
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Hence, if p be less than %, sliding will take place before
rolling ; on the contrary, if u be greater than g , rolling will take

place before sliding; if u be equal to %, rolling and sliding will
take place simultaneously.

(4) A beam PQ, (fig. 41), which is capable of free motion in
every direction about a smooth hinge at P, rests with its end Q"
against a rough vertical plane 4BC; to determine the position
of the beam when it is bordering on motion.

From P draw PO at right angles to the plane 4BC; join
0Q; the locus of Q will be a circle in the vertical plane
having O for its centre; let G' be the centre of gravity of the
beam ; PHV be the projection on the horizontal plane through
PO of the line PGQ, H and V being the projections of G' and
Q; draw HK at right angles to PO; let W be the weight of the
beam, u the coeflicient of friction between the beam and the
vertical plane, and R their mutual pressure; uR will act in the
tangent to the locus of Q at the point Q, that is, at right angles
to OQ and in the plane ABC, and from A towards B ;

le¢ PG=a, QG=0%, L QPO=a, LQOA=0.

Then for the equilibrium of the beam we have, taking moments

about PO,
W.HK=pR.0Q............ (1);

and taking moments about the horizontal line through P, which
is at right angles to PO, it being observed that the vertical re-
solved part of uR is uR cos £ QOV,

W.PK=R.QV+pR.POcos £QOV......(2).

Now from the geometry,
HK = GK cos 0 = a sin a cos 0,

0Q=(a+b)sina, POcos £QOV =(a+ b)cos acos 0,

~ PK=acosa, QV=0Qsin0=(a+b)sinasin 0;
hence from the equations (1) and (2),

Wa sin a cos @ = pR (a + &) sin a,
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and Wacosa=R(a+d)sinasin 0+ pR(a+b)cos acos §;
dividing the latter of these equations by the former,
cosa _ sinasin @+ pcosacos
sinacos 0 psin a
pcos a=cos O (sin a sin O +p cos a cos ),

b

p cos a sin® O = sin a sin 0 cos 0,
ptan 0 = tan a,

tan0=1tana.
p»

‘We may solve this problem also in the following manner:
taking moments about the vertical line through P we have,
since uR sin 0 is the horizontal resolved part of uR,

R.OV=pR.sin 0. PO,
and therefore @0Q cos O = psin 0. PO;
but 0Q = OP tan a,

hence tan a cos 0 = usin 0, tan 0= > tan a.
M

(5) A beam 4B (fig. 42) is placed with one end upon a
rough horizontal plane Oz, and rests against a rough plane
curve KPL at any point P; supposing that, whatever be
the point P against which the beam leans, it is always in an
equilibrium bordering on motion, and that the coefficient of
friction is the same both for the curve and for the horizontal
plane, to find the nature of the curve.

Draw PM at right angles to Oz; let G' be the centre of
gravity of the beam, W its weight, AG.= a, £ BAdz = 0,
OM = z, PM = y, u = the coefficient of friction; let R and
R be the normal reactions of the curve and of the plane
against the beam; in consequence of friction the curve will
exert on the beam a force uR along PB, and the horizontal
plane a force uR' along Az.

Hence for the equilibrium of the beam, resolving forces
parallel to Oz,

Rsin @ =uRcos b+ uR,

R(En@-pucos@)=ulR ......(1);
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resolving forces perpendicularly to Oz,
Rcos@+uRsin 0+ R = W,

R(cos O +usin@)+ R =W ...... 2);
and taking moments about 4,
R.AP= Wacos 0,or R. AM= Wacos’0 ...... (3).

From (1) and (2) we get
Q1+u’)Rsin@=uW,
and therefore from (3)
(1+p’) WasinOcos’0=uW .AM,
(A+p)asin@cos’O=p. AM;

. dy _dz dz
bllt Bm0’=28—, COSO—E,AM ya—‘yt
hence we have,
w, W d_ dz
A+W)e g = "Way

d, ds’
a(l +#’)d%:=#y ot

put u = tan ¢, and this equation becomes
2a_dy' ds’
om 2ede Y dP
which is the differential équation to the curve.
If the friction of the curve and the plane be different, we

may obtain the differential equation to the curve with equal
ease. °

(6) A beam rests with its lower extremity on a horizontal,
and its higher against a vertical plane ; having given its length,
the position of its centre of gravity, and the coefficients of the
friction of the horizontal and of the vertical plane, to find
its position when in a state bordering on motion.

If a, b, be the distances of the centre of gravity of the beam
from its lower and higher extremity; p, p', the coefficients
of friction between the beam and the horizontal, and between
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the beam and the vertical plane; and 0 the inclination of the
beam to the horizon ; then

tano-:a—”“b

D)

(7) A straight uniform beam is placed upon two rough
planes, of which the inclinations to the horizon are a and a', and
the coefficients of friction tan A and tan X’; to find the limiting
value of the angle of inclination of the beam to the horizon
at which it will rest, and the relation between the weight of the
beam and each of the two perpendicular pressures upon the
planes.

Let 0 be the required limiting angle ; R, R, the pressures on
the planes ; and W the weight of the beam. Then

2 tan 0 = cot (a' + X') - cot (a + A),
R w .. __r
cosAsn(a +N) sin(a-A+a +X) cosA'sin(a—A)

(8) A uniform and straight plank rests with its middle point
upon a rough horizontal cylinder, their directions being perpen-
dicular to each other; to find the greatest weight which can be
suspended from one end of the plank without its sliding off the
cylinder.

Let W be the weight of the plank, and P the attached
weight ; » the radius of the cylinder, a the length of the plank,
tan A the coefficient of friction. Then P will be given by

the relation
. P rA

W a-r\"

(9) A uniform beam 4B, (fig. 43), of which the end B
presses against a rough vertical plane CD, is supported by
a fine string AC attached to a fixed point C in the plane; to
find the position of the beam when bordering upon motion.

Let the point B be on the point of ascending; u = the co-
efficient of friction; ¢ = the length of the beam, C4 = [,
2ACB =0, ¢ = £ ABD. Then 0 may be found from the
equation

(4a* - 4P - pP) tan® 0 — 2pl* tan 0 + 40’ - =0;
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and then ¢ may be determined by the equation
asin ¢ =/ sin 0.

If B be on the point of sliding downwards, s must be re-
placed by - .

(10) An elliptical cylinder, placed between a smooth vertical
plane and a rough horizontal one, with the major axis of the
ellipse inclined at an angle of 45° to the horizon, is just pre-
vented by friction from sliding; to find the coefficient of friction.

If e be the eccentricity of the ellipse, the coefficient of fric-
tion will be equal to }é.

(11) A homogeneous solid hemisphere is capable of rolling on
its curve surface upon a horizontal plane, the friction being such
as to prevent all sliding ; to find the moment of a couple which
may keep it at rest with its base inclined at an angle of 30°
to the horizon.

If W be the weight and a the radius of the hemisphere, the
moment of the couple will be equal to & Wa.
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CHAPTER 1V.

EQUILIBRIUM OF SEVERAL BODIES.

Ir there be a system of bodies mutually acting on each other by
contact, by connecting rods, or in any conceivable way, it will
be necessary, in the determination of the circumstances of
equilibrium, to represent the unknown actions and reactions
by appropriate symbols. We shall then have to write down
the equations of equilibrium for each body separately, including
among the known forces to which it is subject, the unknown
actions which it experiences from its connection with the other
bodies of the system. From these different sets of equations,
taken conjointly, we shall have to determine the circumstances
of equilibrium.

Secr. 1. No Friction.

(1) 4B (fig. 44) is a uniform beam, capable of motion about
its middle point D ; CE is a beam, moveable about a hinge C'in
the vertical line through D, and pressing against the beam 4B
from the extremity B of which a weight P is suspended ; to de-
termine the positions of the beams for equilibrium, having given
that CD is equal to AD or BD.

Let AD=CD=BD=a, L ACD=0; GC=5, G being the
centre of gravity of the beam CE; R = the action and reaction
of the two beams at 4; W =the weight of the beam CE.
Then for the equilibrium of CE, taking moments about C,
we have

R.2a cos =W .bsin 0;
and for the equilibrium of 4 B, taking moments about 1),

Racos 0= Pasin 20, or R=2Psin0;
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from these two equations, by the elimination of R, we get
Wb sin 0 = 2Pa sin 20 = 4Pa sin 0 cos 0,

bW

2aP 5

which determine the required positions of the beams.

and therefore =0, or cosf=

(2) Two spheres O and O, (fig. 45), rest upon two smooth
inclined planes AC and 4C’, and press against each other; to
determine their position.

Let W, W', be the weights of the spheres O, O'; R their
mutual action and reaction; a, a’, the inclinations of the planes
AC, AC',to the horizon; 0 the inclination of the line OO,
joining the centres of the spheres, to the horizon.

Then for the equilibrium of the sphere O, resolving forces
parallel to AC, '

Rcos(a+0)=Wsina;
and for the equilibrium of the sphere O/, resolving forces pa-
rallel to AC', :
Rcos(a' - 0)=W'sind.
Eliminating R between these two equations,
W sin a cos (a' - 0) = W' sin a' cos (a + 0),
W tan a (1 + tan o' tan ) = W tan o' (1 - tan a tan 0),

W' tan o'~ W tan a
and therefore tan 0__(W'+W) ton @ tan o

(8) Three spheres O, 0,0, (fig. 46), are placed in contact
within a hollow sphere; a vertical plane through the centre of
the hollow sphere being supposed to contain the centres of the
three solid spheres ; to find their positions of equilibrium.

Let C be the centre of the hollow sphere; O, O, O, the
centres of the solid spheres; join OC, O'C, O'C; let W, W', W",
be the weights of the three spheres; CO=r, CO' =7, CO'=1r";
L0CO=a, £0OCO=a"; 0=the inclination of O'C to the
horizon.

Then since the actions of the hollow sphere on the solid ones
all three pass through the point C, we have for the equilibrium
of the solid spheres, taking moments about C, and observing

L)
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that if each of the spheres be in equilibrium singly they would
likewise be at rest connectedly,

Wr cos (0 - a)+W's cos 0 +W'r cos (0 +a')=0,
¥Wr (cos a +sin a tan 6) + W'’ + W'r" (cos a’ - sin a" tan 0)=0;
W cosa’+ W'r'+ Wr cos a
W sin ' Wrsma

(4) A sphere and cone of given weights are placed in contact
on two inclined planes, the intersection of which is a horizontal
line; to determine the circumstances of equilibrium.

Let W, W', be the weights of the sphere and the cone,
which we may suppose to be applied at their centres of gravity
G, G, (fig. 47). Let R be the action of the plane 4B upon the
sphere, and § the mutual action of the sphere and cone: if ¢
denote the semiangle of the cone, then evidently the line of
action of § will make an angle ¢ with the plane 4B. The
plane AB’ will exert at right angles to itself an action upon
every element of the base of the cone ; the resultant of all these
actions will be some force R' applied at some point E of the
base of the cone in the line AB'. Let a, o, be the inclinations
of the two planes to the horizon.

For the equilibrium of the sphere we have, resolving forces
parallel to the plane 4B,

Wsina=Scos(a+a -¢)...... (1),
and resolving forces at right angles to the plane,
R=Wcosa+Ssin(a+a-¢)....(2);
the equation of moments is an identical equation, since all
the forces which act upon the sphere pass through its centre.

Again, for the equilibrium of the cone, resolving the forces
which act upon it parallel to the plane AB,

_and therefore tan 0 =

W'sinad=8cos¢........ 3);
resolving forces at right angles to the plane 4B,
R =W'cosa +Ssin¢...... (4),

and taking moments about G', the lines EH, mG’, being
represented by z, y,
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From the equations (1) and (3),

Wsina cos(a+d -9¢) 6)
WI sin al" c()s¢ ...... y

from which tan ¢ may be readily determined: this relation
is the only condition to which the cone and sphere are subject
to secure equilibrium ; as will be evident when it is observed
that the three equations (2), (4), (5), introduce four unknown
quantitics R, R, z, y, each of the three equations at least
one, which are not involved in (1) and (3). From this it is
evident that there will be an infinite number of positions of
equilibrium, or that if ¢ only have the value given by (6),
the ¢one and sphere will rest in contact in whatever manner
they may be placed on the two planes, and whatever be their
magnitudes.

The values of ¢ being determined by (6), § will be deter-
mined by (1) or (3), and therefore R, R, from (2), (4), respec-
tively. Then from the equation (5) we may determine z,
provided that y be given; and y can be given only by our
knowing the magnitudes of the cone and sphere, and the
particular position of equilibrium in which we may choose
to place them.

(56) Two uniform rods 4C, A4'C, of which the lower extremi-
ties are situated in the same horizontal plane, and prevented
from sliding, lean against each other at the point C, and are in
equilibrium ; to determine the relation between their angles of
inclination to the horizon, the small area of mutual contact at C
being vertical.

Let W, W, be the weights of the rods 4 C, 4'C, respectively,
and ¢, ¢', their angles of inclination to the horizon ; then

Witan g = W' tan ¢'.
Franchins, Memorte della Societa Italiana,
tom. xvI. P. 1. p. 237; 1813.

(6) An inextensible string binds tightly together two smooth
cylinders of given radii; to find the ratio of the mutual pressure
between the cylinders to the tension by which it is produced.
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If R be the mutual pressure, 7' the tension of the strmg,
r, 7, the radii of the cylinders; then

R 4(1'1'):
T r+r

(7) A sphere of given weight and radius is suspended by
a string of given length from a fixed point, to which point also
is attached another given weight by a string so long that the
weight hangs below the sphere; to find the angle which the
string, to which the sphere is attached, makes with the vertical.

If P denote the weight, Q the weight and sphere together,
a the radius of the sphere, and b the distance of its centre from
the point of suspension ; then the required angle will be equal to

sin™ {%}*

(8) A rod 4B (fig. 48) is fixed at a given angle of inclina-
tion to the vertical ; a rod CD is attached to 4B by connections
at the points B, C, a weight W being suspended from the ex-
tremity D ; to determine the pressures exerted by 4B upon CD,
the weight of CD being neglected.

Let F, G, denote the resolved parts of the pressures at B, C,
on CD, estimated along its length; and R, S, the pressures at
right angles to the former; let CD =3, CB =¢, then, a being
the inclination of the rods to the vertical,

R=’;’ W sin a, S=-b—c—_° Wein a,

F+G=Wcosa,
the single value of F or G being indeterminate.

Secrt. 2. Friction.

(1) Two equal uniform beams AK, AK', (fig. 49), which
are capable of revolving in a vertical planc about a point 4 to
which their lower extremities are attached, have their upper
extremities connected by a string KK'; a heavy sphere is



80 EQUILIBRIUM OF SEVERAL BODIES.

placed between the two beams ; supposing the string to contract,
to determine its tension when the sphere is just going to be
forced upwards, the friction between the sphere and each of the
beams being given.

It is plain that the two beams must make equal angles with
the vertical line 4L which passes through 4, because the centre
of gravity of the system consisting of the two beams and the
sphere must lie in this line.

Let R, R, denote the actions of the beams upon the sphere
at right angles to their lengths, and F, F, their actions along
their lengths which are due to roughness. Let 2a be the angle
at which the two beams are inclined to each other, T the tension
of the string KK'; W the weight of the sphere, W of each of
the beams, and 2a the length of each.

Then for the equilibrium of the sphere we have, resolving
forces parallel to LA,

(F+F)cosa+ W=(R+R)sina....... (1);
resolving at right angles to LA,
(F-F)sina=(R- R)cosa...... (2);

and taking moments about O, the centre of the sphere,
F.OE=F .OE,orF=F ......(3).
From (2) and (3) we have

Now supposing the sphere to be on the point of being
disturbed by the contraction of the string, one or both of the
points E, E’, of the sphere must be on the point of sliding
along the corresponding beams. Suppose that sliding is on
the point of taking place at E.

Then u being the coefficient of friction between the sphere
and the beam AK, we have

F=uR;
and therefore from (1), (3), (4),
2uR cos a + W= 2R sin a,
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and therefore, putting u = tan ¢,

_ W - Wecose T
" 2(ina-pcosa) 2sin(a-¢ """ )
Also from (3) and (4),
F' F_
E-E "

and therefore F'=puR.

Hence we see that, if u' be the coefficient of friction between
the sphere and the beam AK’, u is not greater than u', since
the greatest value of F' will be y'R. If u be less than
the sphere would, with the slightest increase in the tension
of KK', begin to roll along AK' without sliding; and if u
be equal to u', the sphere would begin to slide at both points
simultaneously.

Again, for the equilibrium of 4K we have, taking moments
about A4, it being remembered that the actions and reactions
between the sphere and the beams are cqual and opposite,

R.AE+W'.asina="T. 2a cos a;
and therefore, r being the radius of the sphere,
Rrcota+ W'asina=2Ta cos a;
hence, putting for R its value given in (5),

Wr cos € cos a

: ; + W'a sin a = 2Tu cos a,
2 sin a sin (a - €)

and therefore
3 Wr cos ¢
" 4a sin a sin (a - ¢)

+ W tan a.

(2) AB(fig. 50) is a uniform beam, capable of motion about its
middle point D; CE is a beam, moveable about a hinge C in
the vertical line through D, and pressing against the beam AB
from the extremity B of which a weight P is suspended;
CD, AD, BD, are equal lincs; from obscrving the magnitude
of the angle ACD when the end 4 of the beam AB is on the
point of sliding in the direction CE, to find the coefficient of
friction between the two beams.

G
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Let G be the centre of gravity of the beam CE; p the coeffi-
cient of friction ; R the mutual action of the two beams at right
angles to CE; £ACD =3=.CAD; AD=a=BD; CG=},
4Q the weight of the beam CE.

Then for the equilibrium of CE we have, taking moments
about C,

R.2a cos 3=4Q.bsin f3,
or aRcos3=20Qsinf3...... (1);
and for the equilibrium of 4 B, taking moments about D,
R.acos 3=pR.asin 3+ P.asin 23,
R(cos B-usin B)=Psimr23....(2).
From (1) and (2) there is

26‘10—0:1}6@ (cos 3 - u sin (3) = 2P sin 3 cos 3;
and therefore 5Q(1 - u tan 3)=aP cos f3,
_%Q-aPcos B
bQ tan 3

(8) A weight W (fig. 51) is suspended from the middle point
of a rigid rod without weight, connecting the centres O, O/, of
two equal heavy wheels, which rest on a rough inclined plane;
the wheel O is locked: to find the greatest inclination of the
plane which is consistent with the equilibrium of the carriage.

Let P be the weight, and r the radius of each of the wheels;
00 = 2a, ¢ = the inclination of the plane to the horizon ; R, R,
the reactions of the plane on the wheels at right angles to itself;
uR the friction on the wheel O, u being the coefficient of
friction; F the action of the plane on the wheel O at right
angles to R'; X, Y, the resolved parts, parallel and perpendi-
cular to the plane, of the action of the wheel O on the rod
00'; and X', Y’, the similarly resolved parts of the reaction.

For the equilibrium of the wheel O and the rod OO, re-
garded as one system, we have, resolving forces parallel to the
inclined plane,

uR=X+(P+W)sing...... 1);
resolving forces at right angles to the plane,
R+Y=(P+W)cos¢p........(2);
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and taking moments about O,
uRr + 2aY =Wacos¢...... (3).

Again, for the equilibrium of the wheel O, we have, taking
moments about the point of contact of this wheel with the plane,

Xr=Prsing, or X'=Psing....(4).

From the equations (1) and (4), observing that X' is by the
nature of action and reaction equal to X, we get

uR=2P +W)sing ........(5)
Again, from (2) and (3),
wR+2a(P+ W)cos ¢ - 2aR = Wa cos ¢,
(2a — ur) R=a(@P+W)cos ¢ ....(6)

From (5) and (6) we obtain for the required inclination of
the plane,

tan ¢ = gar ur’

Cor. Having ascertained ¢, we know R from (5) and X' or
X from (4), and therefore Y from (2); also F being the only
force acting on the wheel O' which does not pass through its
centre, it is evident that F must be equal to zero.

(4) Two equal beams A4C, BC, are connected by a smooth
hinge at C, and are placed in a vertical plane with their lower
extremities 4 and B resting on a rough horizontal plane;
from observing the greatest valuc of the angle ACB for which
equilibrium is possible, to determine the coeflicient of friction
at the ends 4 and B.

If 3 be the greatest value of £ ACB, and p be the coeffi-
cient of friction at each of the ends; then

p =} tan 3f3.

Sect. 3. Systems of DBeams.

(1) At the middle points of the sides of any polygon
ABCDE. ... (fig. 52), and at right angles to them, are ap-
plied a series of forces P, Q, R, . ..., respectively proportional
to the sides; the sides of the polygon are perfectly rigid, and

G2
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capable of moving freely about the angular points 4, B, C, D,...;
to determine the form of the polygon that it may be in equi-
librium, the lengths of the sides being given.

Let p, ¢, 7, 8, . ... denote the mutual actions of the sides of
the polygon at the angles 4, B, C, D,...., of which the
directions will lie in certain straight lines B3, ¢Cy, dD9,. ...

For the equilibrium of the side BC we have, resolving forces
at right angles to it,
Q=¢sin CBB +rsin BCc....(1);
resolving forces parallel to BC,
gcos CBB=rcos BCc......(2);
and taking moments about the middle point of BC,
¢gsin CBB =rsin BCe. ..... (3)
Dividing (3) by (2), we have
tan CBf3 = tan BC,
and therefore LCB@3=4¢BCec ........(4);
hence also, from (2)or (8), ¢=r ........(5)
Again, from (1) and (8), we have
Q = 2r sin £ BCe;
in precisely the same manner we may find that
R =2rsin LDC,

Q sin £ BCe
.and therefore R sn 2DCy’

but by hypothesis
Q _BC _sin ¢BDC,
R™DC sin ¢CBD’

sin £ BCe _sin 2BDC
sin £DCy sin £ CBD’
but from the geometry it is evident that
LB+ £ DCYy = BDC+ .CBD;

henee wo readily see that

¢BCc=tBDC........ (6).

hence
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In just the same way we might prove that
LCBf = ¢BAC,

LBDC=c¢BAC........ .

From this relation (7) it is plain that a circle passing through
the three points 4, B, C, must pass likewise through the point
D; similarly we might shew that this circle, since it passes
through B, C, D, must likewise pass through E, and so on
indefinitely ; hence we see that when the sides of the polygon
are arranged consistently with equilibrium, all its angular points
must be situated in the circumference of a single circle.

From (5) we gather that

and therefore by (4)

P=q=r=8=....,

or that the mutual pressures at all the angular points are equal.
It is evident also from the relation (6), that all the lines
aa, b3, ¢y, dd, . ... are tangents to the circle passing through
4,B,C, D,.... ‘

The value of the mutual pressure at each of the angular
points is easily obtained : thus, as we have shewn,

Q= 2rsin 2 BCec;

but since £ BCe is equal to half the angle subtended by BC at
the centre of the circle circumscribing the polygon, it is clear

that : §BC
sin £ BCc = radins ;
. Q
hence 7 = radius x BC’

and therefore p=g=r=s5....=4kp,

where p denotes the radius and % the ratio between any one of
the forces and the corresponding side of the polygon.
Fuss ; Mémoires de St. Pétersb. 1817, 1818, p. 46.

The following is a different solution of the same problem :—
Let the forces P, Q, R,.... be represented in magnitude by
the lines 24B, 2BC, 2CD, ... ., to which they are propor-
tional. Instead of the force 24 B acting at the middle point of
the side 4B, apply two forces, each equal to 4B, onc at the



86 EQUILIBRIUM OF SEVERAL BODIES.

end 4 and the other at the end B of the side 4B; each.of
these forces being at right angles to the side 4B. Again,
instead of the force 2BC acting at the middle point of BC,
apply a force BC at C, and a force BC at the extremity B
of the side 4B, (which we are at liberty to do, because the
point B of AB is rigidly attached to the point B of BC,? each
of these forces being at right angles to BC. Now, according to
this distribution of the forces, the only force which could twist
BC about C, is the action of the rod 4B upon the end B of
BC; and therefore for the equilibrium of BC it is necessary
that this action should take place exactly along BC. .Hem.:e
conversely the action of CB upon BA will take place entirely in
the direction CB. Let this action be denoted by R.

Thus, the line 4B is acted upon at the point B by a force
AB at right angles to AB, aforce BC at right angles to BC,
and a force R in the direction CB: but, by the principle of .the
parallelogram of forces, the forces AB and BC at B are equiva-
lent to a single force AC acting at right angles to AC; hence
for the equilibrium of 4B we have, taking moments about 4,

R.AB.sin £ABC=AC.AB . cos L BAC,
or Rsin £ ABC= AC cos £BAC.
Similarly for the equilibrium of the side CD,
R sin 2 BCD = BD cos £ BDC;
sin £ ABC_ AC cos 2BAC
sin £ BCD  BD cos ~ BDC
But by the geometry,

and therefore

BC .
sin £BAC A0 “4BC pp sin 2 4BC
L Py r—— e | e Z CD.
sin £BDC BB—g sin 2pop A€ sin 4B

Hence from these two relations we have

sin LBAC_cos 2BAC
sin £BDC cos 2 BDC’

tan ¢BAC=tan £¢BDC, . BAC= 2BDC;
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which shews, as in the former solution, that the sides of the
polygon must be so arranged that its angular points may all lie
in the circumference of a single circle.

(2) A quadrilateral 4BCD, (fig. 53), consists of four rigid
rods, which are capable of free motion about the angular points
4, B, C, D; supposing the points 4, C, and B, D, to be
attached together by strings AC and BD in given states of
tension, to determine the geometrical conditions necessary for
the equilibrium of the quadrilateral.

Let P, Q, represent the tensions of the strings AC, BD.
Let K, L, M, N, denote the actions and reactions between the
four pairs of points (4, B), (B, C), (C, D), (D, 4).

The force P acting upon the point 4 in the direction AC, is
equivalent to a force, in the direction 4B,

-P sin C'.AD=Psin ADB DO _ P OD.AB
sin BAD sin BAD A0 BD.04’
and to some force (F suppose) in 4.D.

Similarly, the force Q acting upon the point B in the direc-

tion BD, is equivalent to

a force, in B4, = Q

0C.AB
4C.0B’
and some force (G suppose) in BC.
Hence clearly the point A is solicited by a force '~ N in
AD, and a force
OD. AB

e — B...... 1);
P BD.0Ad Kin 4 ™
and therefore for its equilibrium we have
OD. AB
~N= -—— - HK=0.
F-N=0, and PB]).OA K
Similarly for the equilibrium of the point B there is
0C.AB

G-L=0, and Q -K=0....(2).

From (1) and (2) we have

OD.AB _ ,0C. 4B
BD. 04

4C. OB

P 4C. 0B’
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and therefore

P.OD Q.0C
BD.0OA AC.OB’

which is the condition for the equilibrium of the quadrilateral.
Euler; Act. Acad. Petrop. 1779, P. 11. p. 106.

The following is a different solution of the same problem :

For the equilibrium of the rod 4B ‘there is, taking moments
about B,

N.BD .sin £« BDA =P. BO.sin ¢BOC;
and for the equilibrium of the rod CD, taking moments about C,
N.CA.sin £CAD = Q. CO.sin £BOC;

hence obviously

BDsin . ODA _ BD.AO_P.BO
CAd sin 04D’ 4AC. DO Q.CO°

(8) Four rigid rods 4B, BC, CD, DA, (fig. 54), are so
joined together that they are capable of revolving freely about
the angular points of the quadrilateral which they form; these
rods are attached together, two and two, viz. those which are
contiguous, by strings aa, 3, cy, d¢, in given states of tension ;
to determine the form of the quadrilateral which shall corres-
pond to the equilibrium of the rods.

Let A, B, C, D, denote the tensions of the strings aa, 53,
¢y, d8. Then the force 4 in aa upon the point @ is equivalent
to a force, in BA, |

i aD Da
_ 4 SnaaD SOV Gr  da. Da
~TsindaD T T . DA ~ aa.DA’
sin ADa.——
Aa
and to a force, in a D,
in ad Aa
-4 sin daa s ada . _d:_ Aa. Da
" " sin daD T T AD ~ aa.DA
sin edD .—
aD

= A’ suppose.
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But the force A’ in a.D is equivalent to
. Ba
sin aBD . Da

. , sinaDB s
aforcemAD,—.A. m—A — BD 24—4—
sin .DA
,Ba.DA Aa. Ba
“.1 Da. BA~ 2 2a. B4’
. , sin ADa
and to a forcein BD, = A s ADB
. Aa
y sin DAa . 377 _ 4 4a.BD_  Aa.da.BD
AB =~ AB.Da aa.DA. BA"

in DAB.——
o DB
Thus we see that the force 4, acting upon the point @ in the

direction aa, is equivalent to the three forces
da.cB in AD upon A4,

aD. Aa .
p. | 2D .aa @ BAd upon 4, A4 AB . da
ad. Aa.BD .
and A4 B AD aa M BD upon B.
Similarly, the force A acting upon the point a in the direction

aa, is equivalent to
aB. Aa . Aa.aD .
A AB aa B DA upon 4, A4 D o @ AB upon A,
ad.Aa.DB .
and 4 D 4B aa ™ DB upon D.
Now these three forces are equal and opposite to the three

former, and therefore the string aa with a tension 4 produces
the same effect, and may therefore be replaced by a string BD

with a tension
P ad.Aa.BD
AB.AD .aa’

In the same way we may shew, that the tension of ¢y is equi-
valent to a string BD, of which the tension is equal to

CCCQYEI_)
CB.CD.cy’
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Hence the tensions of aa, cy, together, are equivalent to
a string BD with a tension

Aa.Aa.BD ,,Cc.Cy.BD
BA.DA.aa " BC.DC.cy’

Similarly it may be shewn, that the tensions 3, d8, are
equivalent to a string 4C with a tension

A

pBb.BB.CA , DS.Dd.AC
AB.CB.o3 ~ AD.CD.dd

Hence, by the result of the preceding problem, the condition
of equilibrium is expressed by the relation

OB.OD(B.Bs.B3 D.D3.Dd
BDF \4B.CB.t3 " 4D.CD.ds

04.0C( A.da.da  C.Cc.Oy
=T 4C° \B4A.DAd.aa " BC.DC.cy)’

Euler; Act. Acad. Petrop. 1779, P. 2, p. 106.

(4) Three uniform beams 4B, BC, CD, of the same thick-
ness, and of lengths 1/, 2/, I, respectively, are connected by
hinges at B and C, and rest on a perfectly smooth sphere, the
radius of which is equal to 2/, so that the middle point of BC
and the extremities of 4B, CD, are in contact with the sphere;
to compare the pressure at the middle point of BC, and the
pressures at 4 and D, with the weight of the three beams.

Let W be the weight of the three beams taken together ; R
the pressure at each of the points 4 and D; and R’ the pressure
at the middle point of BC. Then

R 3 R 91

W a0’ W 100
(5) Four equal uniform beams 4B, BC, CD, DE, (fig. 55),
connected together by joints at their extremities, rest in equi-
librium in a vertical plane; the distances 4E and CF, of which

the lat?er is perpendicular to 4AE and vertical, are given; to
determine the conditions of equilibrium.
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If a, 8, be the inclinations of AB and ED, BC and DC,

to the horizon ; we must have
tan a = 3 tan 3.

Draw BK at right angles to AE; let CF=a, AF=5, FK =2z,
BK=y; then from the equation in a and 3, and the geometry
of the figure, we may get

z_a’+2b’—(a_‘+a’b’+b‘)& _2a’+b’—(a‘+a’b’+b‘$

- 35 S e

These values of z and y are obtained by Couplet in his
Recherches sur la Construction des Combles de Charpente, in the
Mémoires de D Académie des Sciences de Paris, 1731, p. 69.

(6) 4 and C (fig. 56) in the same vertical line arc fixed
points, about which beams 4B, CD, are freely moveable by
hinge joints; 4B is supported in a horizontal position by CD,
with which it is connected by a hinge joint at D, and has a
weight suspended at B: to find the pressure at C, the weights
of the beams being neglected.

Let H and ¥V be the horizontal and vertical pressures at C,
and P the weight suspended from.B. Then

AB AB
¢’ "-Pap

and therefore the whole pressure at C'is equal to

1 1\
P.AB. ( 47(7‘ + E‘) .

(7) Two equal uniform beams 4B, 4C, moveable about a
hinge at A4, are placed upon the convex circumference of a
circle in a vertical plane ; to find their inclination to each other
when they are in their position of equilibrium.

Let 2a = the length of each beam, 20 = their inclination to
each other, and r = the radius of the circle. Then 0 will be
determined by the equation

H=P.

r cos 0 = a sin® 6.
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CHAPTER V.

EQUILIBRIUM OF FLEXIBLE STRINGS.

THE form of equilibrium assumed by a uniform flexible string
sustained at its two extremities and acted on by gravity, at-
tracted the attention of Galileo', who, from a want of sufficient
examination, concluded it to be a parabola; this mistake may
have arisen from the fact, that in the immediate neighbourhood
of its lowest point it approximates very nearly to the parabolic
form. The inaccuracy of Galileo’s conclusion was experi-
" mentally ascertained by Joachim Jungius®. This subject having
been at last successfully investigated by James Bernoulli’, he
proposed the problem of the chainette, the name which he gave
to the required curve, as a trial of skill to the mathematicians of
the day. The four mathematicians who succeeded in arriving
at correct solutions of the problem were, James Bernoulli, by
whom it had been proposed, his brother John, Leibnitz, and
Huyghens : their four solutions appeared without analysis in the
Acta Eruditorum for the year 1691, Jun. pp. 273—282 A
demonstration of the results of these four illustrious mathema-
ticians was first published by David Gregory, in the Philosophical
Transactions for the year 1697.

- The form of equilibrium of the chainette or catenary, of
which the thickness is supposed to be uniform, having been
thoroughly discussed, James Bernoulli* next directed his atten-
tion to more complicated problems of the same character; he

' Mechanica; Dialogo 2, p. 131.

* Geometria Empyrica.

? Acta Fruditorum, Lips. 1690, Mai. p. 217 ; Opera, tom. 1. p. 424,
¢ Acta Eruditorum, Lipa. 1691, Jun. p. 289; Opera, tom. 1. p. 449.
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investigated the form of equilibrium when the thickness varies
from point to point according to any assigned law, and, con-
versely, determined the law of its variation that the string may
hang in assigned curves: he likewise considered the problem of
the catenary when the string is cxtensible, the extension of
each element being assumed according to the law established
experimentally by Hooke' to vary as the tension. The analysis
of these problems, of which the solutions only were published by
James Bernoulli, was supplied by John Bernoulli®. The consi-
deration of the general conditions of the equilibrium of flexible
strings was first attempted by Hermann®, whose investigations,
however, were not free from error; a more accurate analysis
was furnished by John Bernoulli, who has particularly ex-
amined various cases of the equilibrium of strings acted on by
central forces.

Among the numerous mathematicians who afterwards dis-
cussed the theory of the equilibrium of flexible strings, may be
mentioned Euler’, Clairaut’, Krafft', Legendre®, Fuss’, Ventu-
roli, and Poisson.

Secr. 1. Free Inextensible String ; general Conditions
of Equilibrium.

To investigate the conditions for the equilibrium of an
inextensible string, of which the density and thickness vary
from point to point according to any assigned law ; the acccle-
rating forces which act upon the string being any whatever.

' De Potentia Restitutiva, or Spring.

* Lectiones Mathematica in usum Hospitalii, Opera, tom. 1v. p. 387.
% Phoronomia, lib. 1. cap. 3, and Append. §.v.

¢ Opera, tom. 1v. p. 234.

8 Comment. Petrop. tom. 111.; Nov. Comment. Petrop. tom. xv. and tom. xx.
¢ Miscellanea Berolinensia, tom. vii. p. 270, 1743.

' Nov. Comment. Petrop. tom. v. p. 143; 1754 and 1755,

* Mém. Acad. Par. 1786, p. 20.

* Noea Acta Petrop. tom. x11. p. 145, 1794.

Y Elements of Mechanics, by Cresswell, Part 1. p. 62.

" Traité de Mécanique, tom. 1. p. 564, seconde édition.
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- Let APB (fig. 57) be any portion of the string in a position
of rest; Pp being a small element of its length; z,y, z, and
z+ 8z, y+ 8y, z+ 8z, the co-ordinates of P and p respectively ;
s the length of the string reckoned from some assigned point.up
to P, and s + s the length up to p; ¢ the tension of the string
at P.

The resolved parts, parallel to the axes of z, y, z, of the force
exerted upon the point P of the element Pp by the portion AP
of the string, will evidently be

dz dy dz
I Baind _¢t Y —t—;
‘s ' Tl'a
and therefore, since each of these three forces must be some
function of 8, it is plain by Taylor’s theorem that the resolved
parts of the force exerted on the element Pp by the portion ¢B

of the string, will be
t£+ 1(tﬁ) os,

ds ds\ ds
dy df,dy
dz

d /[, d:
t+ A (t 3}) 3s.

Again, let X, Y, Z, be the sums of the resolved parts of the
accelerating forces which act upon the element Pp; p the
density of the string at P, and % the area of a section at
right angles to its length at that point. Then clearly the mass
of the portion Pp of the string will be %pds, which therefore
for a constant value of & will vary as Ap; hence evidently
the product 4p, which we will call m, may be taken to measure
the massiveness of the string at the point P; it will be con-
venient to call it the unit of mass at the point P. The impressed

moving force then of the element Pp, will have for its resolved
parts parallel to the co-ordinate axes,

mX3d, mYds, mZds.

Hcflcc clearly for the equilibrium of Pp we must have,
“quating to zero the sum of the resolved forces which act upon
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it parallel to each of the three axes, and dividing the three
resulting equations by Js,

d(tﬁ)+ mX =0,

ds\ d.
d(g:’: +mY=0,(........ (a);

d/(,d:
d (—d;) mZ=0,

which three equations constitute the conditions of equilibrium
of the entire string.

By the elimination of ¢ we readily obtain the three following
equations,
dz ([mYds = dy [mXds,
dy [mZds = dz [mYds,
d: ([mXds =dzx [mZds;
any two of which will be differential equations to the required-
curve of equilibrium. .
Cor. 1. From the equations (a) we have also

dz dy . dz .
t—d; = - [mXds, t =— [mYds, t = - [mZds;

squaring and adding these equations, and observing that
dz* (Il’ d:=’
ds* s
we obtain for the value of the tension at any point,
¢ = (/mXdsy + (fmYds) + (fmZds).
We may obtain also another expression for the tension:
differentiating (5) with respect to s, we get

dz d'z (I/ dy  dz d’ .

& dwds de s a0
hence, multiplying the three cquations («) by dr, dy, dz, in
order, and adding the resulting equations, we have, by the aid
of (5) and (c),

t=C- [m(Xdz + Ydy + Zdz),
where C is an arbitrary constant.
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Cor. 2. If the whole string lie entirely within one plane, let
the plane of zy be so chosen as to coincide with this plane;
then the three differential equations to the string will be
reduced to the single one

dz (mYds=dy fmXds ........ @);
and the two formule for the tension will become
£ = (/mXds) + (/mYds),
t=C - fm(Xdz + Ydy).
These two formule for the tension, and also the differential

equation (d) to the string, coincide with those given by Fuss,
Mémorres de St. Pétersbourg, 1794, p. 150, 151.

Skcr. 2. Parallel Forces.

(1) A flexible string fixed at any two points 4 and B,
(fig. 58), is acted_on by gravity; supposing the unit of mass
to vary according to any assigned law as we pass from one
point to another, to find the equation to the catenary of rest;
and conversely, the curve being known, to determine the law
of the unit of mass.

Let the axis of y extend vertically upwards, and let the axis
of z be horizontal, the plane zOy coinciding with the plane
which contains the catenary. Then since

X=0, Y=-g,
we have, by the first two of the equations (a) of section (1),

d ([, dx
= (t 2;) =0 e (a),

d(,dy
d_s(t‘—i;)=mg N ()

Integrating the equation (a), we get

tJE:C”
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where C'is a constant quantity: let r denote the tension at the
lowest point of the curve, then evidently = = C, and therefore

t % =T ieieens (o).
From (3) and (c), we have
P39 mg
ds dxz ’
and therefore r 3—% = | mg ds;

but evidently at the lowest point of the catenary Z——Z:O, and
therefore, supposing a to be the valuc of s at the lowest point,

hence T ;=9 mds.............. (d).

If m be given in terms of the variables z, y, s, the form of the
catenary may be determined from (d).

Again, differentiating (d), we obtain

&y
m = 9: % ................ (e),
dz

a formula by which m may be computed for every point of the
string when the form of the catenary is given. Also from (c)
we get

which gives the tension at any point of the catenary when its
form is known.

John Bernoulli ; Lectiones Muthematice,

Lect. 38, 39, 40; Opera, tom. 111.

(2) A flexible string 4 OB, (fig. 60), fixed at two points 4 and
B, is acted on by gravity; the unit of mass at any point P varies
inversely as the square root of the length OP mcasured from the

lowest point O; to find the equation to the catenary.
H
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Let the origin of co-ordinates be taken at O, z being horizon-
tal, and y vertical, and the plane of ry coinciding with the plane
of the catenary ; also let O be the origin of s.

Then if u be the unit of mass at a length ¢ from the lowest
point, A

m=pu—,
and therefore by (1, d), a being in the present case zero, we have
‘1-'1_9,,,,*"" = 2guc’ oy

hence, putting for the sake of brevxty

we get :—Z = (/—;

integrating with respect to z we obtain

2[3(14»(1—1:-)*:.:-} C;

but z =0, % = 0, simultaneously ; hence C = 23, and therefore

3(1+_-'/_')*=z+2@ ............ @);

squaring and transposing,
18 %z + 2Py - 4P,
2B dy = {(z + 2By - 43"} dz;
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integrating we have
C+ 2By = §(z + 2P)(2* + 4Bz) - 23" log {z + 2B + (& + 4B2)'};
but z = 0, y = 0, simultaneously ; hence

€= - 93 log (26);
hence, eliminating C,

20y =iz + 20) (& + 43,,)* - 20 log & + 23 +2_(g2 + 43y ’
which is the required equation to the catenary.
Cor. From (a) we get

ds _z+23
dz 23 °
and therefore by (1, f),
ds r

t=rd—x=m(.z:+2ﬁ),

which gives the tension at any point of the curve.
John Bernoulli; Lect. Math., Opcra, tom. 111. p. 497.

(3) To find the law of variation of the unit of mass of a
catenary acted on by gravity that it may hang in the form of a
semicircle with its diameter horizontal.

The notation remaining the same as in (2), the cquation to the

catenary will be
Z = 2ay - ¥,

where a denotes the radius of the semicircle: hence
a@-2=(@-y), y=a-(-25;
dy z &y @
(aﬂ _ x’.’)i
‘] 2 3
also d—". =14+ i"/— —— . “

dz 7 & -2 dr . ni;
(@ - 7%)

I(Iz’ T a ra .
gd ga-2 gla-yy’

or the unit of mass at any point varics inversely as the square of

its depth below the horizontal diameter of the semicircle.
"2
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Cor. By (1, f) we have for the tension at any point

fo B __Ta _ @

dz (a*- z’)* -y
John Bernoulli; Opera, tom. 111. p. 502.

(4) To find the length of a uniform chain ALB, (fig. 61),
suspended from two points 4 and B in the same horizontal
line, when the stress on each point of support is equal to the
whole weight of the chain; to find also the depth of the lowest
point L of the chain below the line 4B, and the direction of its
tangent at 4 or B.

Let yCLO be vertical, OL being equal to a length of the
chain of which the weight is equal to the tension of the lowest
point L, Oz horizontal; PM at right angles to Oz. OM =z,
PM=y, OL=¢, ALB=1, AC=BC=a.

Then the equation to the curve will be

y=3e(€+e innnnnnn (1),
and also I=c(€~¢€°) .ovevnnn.. (2).

Let m denote the unit of mass of the chain, which will be the
same at all its points ; then the tension at P will be equal to
mgy = 5"“‘9 (EE + E—Z)’

and therefore at Bto }meg (€€ + ¢ ©);

but by the hypothesis the tension at B is equal to mgl/, and
therefore by (2) to

mcg (&é - ;);

hence bmag (€ + %)= meg (- 93
TR
2a a
e =3, —=logt 3, c—=§log. 3...... (3)



EQUILIBRIUM OF FLEXIBLE STRINGS. 101
Hence from (2) we have

l=12a3(84__1)= ta_
o8 st/ stlog, s

which gives the length of the chain.
Again, putting z = @, we have from (1),

2 -2
0C=}c(e+¢ 9,
a

and therefore CL=(Qe¢+e °-1)¢

i, g4 ,
8"+ 3 2a
_( 5~ 1) fog. 3’ from (3),
_(3_1) 2¢  2a 2 - gt
3§ log, 3 log. 3 3&
which gives the depth of the lowest point of the chain below the
line 4B.

Again, from (1) we have
d; H
(_l% = ; (ic - & c)’

and therefore, ¢ denoting the inclination of the chain at B to
the horizon,

2 -2 i1 1
tn g =4 (- 9=3 (st 1) L
35 3:} '

hence ¢ = % .

(5) A uniform string A'ALBB (fig. 62) is placed over two
supports 4 and B in the same horizontal line, so as to remain
in equilibrium ; having given the length of the string, and the
distance of the points of support, to find the pressure which they
have to bear.

Let L be the lowest point of the curve ALB, OLy a vertical
line through L, where OL is equal to a length of the chain, the
weight of which is equal to the tension at L; Oz horizontal.
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Then Oz, Oy, being taken as the axes of co-ordinates, we shall
have for the equation to the curve ALB, putting OL = ¢,
x z
y=le(@+e 9.uunnnn. (1);
and if m be the unit of mass at each point of the string, the
tension at P will be equal to

mgy or ymeg (€ +¢ ©);
hence, if AC = BC = a, the tension at B will be equal to

But the tension at B is evidently equal to the weight of BB,
and therefore, if BB’ = s, to the expression mgs ; hence

a a
mygs = ymeg (&€ +¢ ©),
s _
or s=3c(E+e %) ciiunnns (3).

Suppose that the length of the whole string A'ALBB is 2/;
then the length of the portion LBB' will be /, and /-5 will be
the length of BL. Hence, by the nature of the catenary,

Adding together the equations (3) and (4), we obtain

e
l=c¢,
whence ¢ is made to depend upon the known quantities a and /:
hence the expression (2) for the tension at B is known.
Differentiating (1), we get

di r _I
=l
but, if LP = ¢,

x x d ! x x

3'=§C(e°—e—°-), d_z=5(f2+£_z);

hence evidently % = E:_ £ i’



EQUILIBRIUM OF FLEXIBLE STRINGS. 103

and therefore if ¢ denote the angle between the line BB and
the curve BL at B,

2 _s
C05¢=ea—£¢""""(5)'
€ +E

Let P denote the pressure on the point B, and r the tension
of the string at B; then
P = 27— 2% cos ¢
=2r*(1 - cos ¢);
and therefore from (2) and (5),

P = 1midg (e + {’f)z{l L. }

a'lg

8

& + €

2

e -2 e
=m’cg (e +e “)e °
20

= 'c’g’(l + t—_')

By
P=meg(1+e¢ ),
which gives the required value of the pressure, ¢ having been
previously determined.

(6) A uniform chain 4ABC (fig. 63) is suspended from a
point A above an inclined plane RS; having given the angle
which the chain at the point of suspension and which the plane
makes with the horizon, and also the length of the whole chain,
to find the length of the portion BC which is in contact with
the plane.

Let ABLA' denote the catenary, of which 4B is an arc,
L being the lowest point. Let P be any point in the curve
AL ; ¢ the inclination of the curve at P to the horizon, ¢ the
tension at B; a, 3, the values of ¢ at 4, B respectively; ¢ the
length of chain of which the weight is equ 1 to the tension
at L; m the unit of mass of the chain; L!’=s, ABC=1,
BC=1. '

Then, by the nature of the catenary,

tcosB=meg.......... (1),
s=ctang........(2)
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Now it is evident that the tension at B is equal to mgl sin 3;
hence from (1),

mgl sin (3 cos B=mecg, c=Csin BcosB....(3)
Again, from (2) we have
LBA =ctana, LB =ctanf,
and therefore ! -1 =c(tan a - tan 9);
hence, from (3),
{-U=10sin 3 cos (3 (tan a - tan 3),
lcos a =1(cos a + sin a sin (3 cos 3 - sin* 3 cos a)
=1'"cos 3.cos (a - f3)
U= lcos a
cos 3 cos(a-f3)

(7) AOB (fig. 60) is a flexible string acted on by gravity,
and is in a position of rest; the unit of mass at any point varies
as the cosine of the angle at which an element of the curve at
the point is inclined to the horizon ; to find the equation to the
catenary.

Assuming m = 3 Z-;:, where 3 is some constant quantity, the
equation to the catenary will be

2r
= =y;
By Y

which shows that the catenary is the common parabola.
James Bernoulli; Act. Erudit. Lips. Jun.; Opera, tom. 1.
p. 449. John Bernoulli; Opera, tom. 111. p. 501.

(8) To find the equation to the catenary when the unit of
mass varies as z cos ¢, where ¢ is the angle of inclination of the
element of the curve at any point to the horizon.

Assuming m = 8z % , the required equation will be
- bry = gf37,

which belongs to a cubical parabola.
James Bernoulli; 76. John Bernoulli; 7b.



EQUILIBRIUM OF FLEXIBLE STRINGS. 105

(9) To find the equation to the caten;u'y when the unit of
t

mass varies as ' cos ¢.

Assuming m = ﬁz*% , the equation will be

16¢9°(32" = 225 'y’
James Bernoulli; 74. John Bernoulli; 72.

(10) To find the equation to the catenary when the unit
of mass varies as y" sin ¢, where 7 is any positive quantity.

If the origin of co-ordinates be so chosen that the axis of z
passes through the lowest point of the catenary, and that y = o
when z = 0, the required equation will be
_@xDr

ng[3
James Bernoulli; 746. John Bernoulli; 75.
(11) To find the law of the variation of the unit of mass

when the catenary is the common parabola.
The construction and notation being the same as in (2),

2r

m=—/—,
g (@ + 4:02)&
a being the latus rectum of the parabola.
John Bernoulli; Opera, tom. 111. p. 504.

(12) A chain suspended at its extremities from two tacks in
the same horizontal line, forms itself into a cycloid ; to find the
unit of mass at any point of the string and the weight of the arc
between this and the lowest point.

Let w denote the weight of the arc; then taking the ordinary
equations to the cycloid

z=a(0 +sin @),y =a (1 - cos 6),
we shall have
m o (seciO)

sag ,w=rtan40.

(13) One end of a heavy chain is attached to a fixed point 4,
and the Sther to a weight which is placed on a rough horizontal
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plane passing throug]i A, and the ghain hangs through a slit in
the horizontal plane ; to find the greatest distance of the weight
from A, at which equilibrium is possible.

If a be the length of the chain, z the greatest distance of the
weight from A, u the coefficient of friction, and n twice the
ratio between the given weight and that of the chain,

ef_{ +{1+p (1 +n)’} pim)
u(l+n)

(14) A uniform chain is suspended from two tacks in the
same horizontal line at a distance 2a from each other; to
determine the length of the chain that the stress on the tacks
may be a minimum.

Let ¢ denote a length of the chain of which the weight is
equal to the tension at the lowest point; and let ! denote the
required length of the chain. Then

. g+l=I a _a
s‘:{a__}, l=c(e' B 3

-1
(4

from the former equation g— and therefore c¢ is to be determined,

and then / will be given by the latter.

If for instance 2a = 10 feet, then ¢ = 4 . 168 feet nearly, and
l=12.578 feet nearly. .

Dsarian Repository, p. 644.

(15) A chain acted on by gravity hangs in the form of a
curve, of which a’ = z* is the equation; to find where the unit
of mass is a maximum, and its maximum value.

When m is 2 maximum, z and y being the co-ordinates of the
point,

2.3*1'

a

r=—,y=4a, m=

gt

The law of the mass of the chain is erroneously investigated

in the Lady’s and Gentleman’s Diary for the year 1745 ; sec
also Diarian Repository, p. 435.
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Skcr. 8. Central Forces.

(1) To find the equation to a flexible string in a position
of equilibrium under the action of any central attractive force.

Let APB (fig. 64) be any portion of the string ; S the centre
of force; P any point in the string, PT a tangent at this point ;
SY a perpendicular from § upon PT'; p a point of the string
indefinitely near to P, and pk a tangent at p. Also let OP, Op,
be the normals at P, p, O being therefore the centre and OP
the radius of curvature at P ; let OP produced meet pk in &.

OP=p, SP=r,8Y=p, £S8SPT=¢, £kOp=1y, m=the unit
of mass at P; ¢ = the tension at P and ¢+ dt at p; Pp = ds,
F = central force at P.

Then for the equilibrium of the element Pp we have, resolv-
ing the forces which act upon it at right angles to PT,

Fimds sin ¢ = (¢ + d?) cos pkO = (¢ + df) sin ),
or retaining infinitesimals of the first order,

Fmdssin¢=t¢=tg€;
p

and therefore

and resolving forces parallel to PT we have
Fmds cos ¢ = (¢t + dt) sin Okp - ¢
=(t+ dt)cos ¢ - ¢,
or, retaining infinitesimals of the first order only,

Fmds cos ¢ = dt;
and therefore, ds cos ¢ being equal to dr,
Fmdr=dt........ (%)
From the equation (a), since
dr Y
p=—rd7’andsm¢— )

we have Endr+§7pt=0;
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and therefore from (8)

log (pt) = log C,
where C'is an arbitrary constant ; and therefore
c c
p=—t-=-f—m, e ss e e (0),

which is the equation to the catenary in p and r when the form
of F is known.
Let 0 be the angle between SP and any fixed line ; then

rdb
p=—
(dr* + rdfF)
and therefore from (¢), putting [Fmdr = R,

RPdO = C(dr + P dEP),

RrdGF = C*(dr + ¥ dfF),
and therefore

the differential equation to the catenary between » and 6. This
s the form in which the solution is given by John Bernoulli.'

The value of the tension at any point of the catenary is given
by (), when the expression for F in terms of r is known.

The relations at which we have arrived may be deduced from
the general equations of equilibrium of section (1); the method
however of the tangential and normal resolution is more con-
venient in the case of central forces.

If the central force be repulsive instead of attractive, we must
replace F' by ~ F, wherever it occurs in the above formule.

(2. To find the form of the catenary when the central force
is attractive and varies inversely as the square of the distance ;
the unit of mass being invariable.

' Opera, tom. 1v. p. 238.
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Let AOB (fig. 65) be the catenary ; S the centre of force;
SO the radius vector which meets the curve at right angles.
r = the tension at 0, and SO = ¢.
Then if % denote the attraction at the distance c,
R- medr fk mdr = C' - ”‘f”z

where C'is an arbitrary constant: but, by (1, 3), t= R, and
therefore

r=C' - mke;
hence t=R=r+ mkec ~ inrk.’ .......... (a).
Hence, from (1, d), we have
df = car 3
{(r+ ko - ’w)r’ m}

but from (1, ¢), since p = ¢ and ¢ = r at the point O, we see that
C = cr; therefore

o - erdr

{(r+mkc—--'—”f—c)r’ c'r}*

For the sake of simplicity put r = nmkc ; then
d0 - nedr

rfn+1—€2r’—n’c’}£
\ r
nedr

r{n+ 17 -2(@n+1er + ¢ —n’c’}*
the equation to the catenary resulting from the integration of
this differential equation will be of three different forms accord-
ing as » is greater than, equal to, or less than unity.

First, suppose that » is greater than unity ; then the integral
of the equation will be, supposing that 6 =0 when r = ¢,

(n-1)c

r=ncos{(n’—l)$g}—- 1
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Secondly, suppose that n = 1; then the equation to the cate-
nary will be, if 0= 0when r=¢, -
c
r= 1—_—07 .
Thirdly, let 1 be less than unity ; then, if as before 6 = 0 when
r = ¢, the equation will be

(] ]
W (O 2 o (1- m)e).
nr

Again from (1, ¢) we have, since C = cr,
: cr
P=7
and therefore by (a)

p= er ne
———-——r,: c,
remhkc - —— n+1--

r r

hence putting r = we have p = n_”fi » Which shews that the

three catenaries, corresponding to the three values of z, have all

nc

of them asymptotes passing within a distance from the

n+l1

centre of force. Put r = o in the equations to the three curves,
and we get for the inclinations of the pair of asymptotes of each
to the line SO,

n

- 1)

4
2
(:()s'l l’ and __n__ Iogll(:l;n)- .

" - :
John Bernoulli ; Opera, tom. 1v, p. 240.

Whewell’s Mechanics, 3rd edit. p. 183.

(8) To find the equation to a uniform catenary 4 0B, (fig. 65),
acted on by a central force tending to S, the intensity of which
varies as the u® power of the distance ; the tension at O being
(1 + ) of the weight of a dength SO of the string, each element
of which length is supposed to be acted on by a constant force
equal to that at O and towards S.

The notation remaining the same as in (2), the equation to the

catenary will be
(;)" =cos (u + 2)0.
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(4) To find the equation to a uniform catenary SAOB, (fig.
66), acted on by a central repulsive force emanating from S, at
which the two ends of the string are fastened, the intensity of
this force varying inversely as the ut® power of the distance ; the
tension at O being (u — 1)* of the weight of a length SO of the
string, each element of which length is supposed to be acted on
by a constant force equal to that at O and from §.

The notation remaining the same as before, the equation to

the curve will be
Y o\uo2
(S) =cos (u - 2)0.

Secr. 4. Constrained Equilibrium.

(1) A flexible string ab, (fig. 67), acted on by gravity, rests
on the arc of a curve APB in a vertical plane; to find the
tension of the string and the pressure on the curve at any point.

Let P, p, be any two points of the curve very near to each
other; PO, pO, normals at these points, the point O being the
centre of curvature when p approaches indefinitely near to P:
let az, ay, be the axes of z, y, the former being horizontal, the
latter vertical; aP =s, Pp=ds,; t=the tension at P and ¢ + dt
atp; R = the unit of pressure on the curve at P, m = the unit of
mass of the string, £ POp=¢, PO=p.

Then, resolving forces which act on the element Pp of the
string, parallel to the tangent at P, we have

(t+dt)cos ¢ -t = mgds.ﬁ,
or, neglecting infinitesimals of higher orders than the first,
dt = mgdy ;

integrating and observing that ¢ is equal to zero when y = 0, we
get

which gives the tension at any point of the string.
Again, resolving the forces on the element Pp parallel to the
normal OP,

mgda.:—f-+(t+dt)sin¢=Rds,
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or, neglecting infinitesimals of orders higher than the first,
dz

@ +®_nR.
mgds+tda R;

but % is equal to ! ; hence we have for the pressure on the
P

curve at any point

dz ¢t .

dz y
—"‘g(a; +;).

(2) Two equal weights Q, Q, are suspended at the extremi-
ties of a flexible string hanging over a smooth curve in a vertical
plane ; to find the pressure at any point of the curve, the weight
of the string being reckoned inconsiderable.

Let APB (fig. 68) be the curve; OP, Op, normals at two
consccutive points P, p; 0 the inclination of OP to some assign-
ed line in the plane of the curve, POp =df; PO=p, AP =3,
Pp = ds; p = the unit of pressure on the curve at the point P;
¢ = the tension of the string at P, ¢ + dt = the tension at p.

Then for the equilibrium of the element Pp of the string we
have, resolving forces at right angles to the tangent at P,

(¢ + dt) sin dO = pds = ppd0,
and therefore, retaining infinitesimals of the first order,
tdd=podd, t=pp........ (D).

Again, resolving forces parallel to the tangent at P,

(t+dt)cosdf-¢t=0,
and therefore, retaining infinitesimals of the first order,

dt=0, t=constant;
but evidently at 4 the tension is equal to Q; hence ¢ = Q.
Hence from (1) we have

Q=pp, p= 2 .

P

Cor. The whole pressure on the curve 4B is equal to

fl’d8=Qf?=Qf:d0=Q(0,—01),
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If the tangents at the points where the string leaves the curve
be vertical, we have »Q for the whole pressure along the curve ;
if they be not vertical there will of course be pressures at the
points 4, B, in addition to the pressure along the curve.

Euler; Nov. Comment. Petrop. 1775, p. 307.
Poisson ; Traité de Mécanique, tom. 1. ch. 3.

(3) To find the pressure on a curve 4B, (fig. 69), when two
weights Q, R, balance each other over it by means of a string of
negligible weight, the friction between the string and the curve
being taken into account ; and the weight Q being considered as
much greater than R as is consistent with equilibrium.

Let u be the coefficient of friction; the rest of the notation
being the same as in the preceding problem. Then the friction
on the element Pp will be upds, and will act nearly in the
direction of the tangent at P. Hence, resolving forces on the
element Pp parallel to PO, we have

(t + dt) sin dO = pds = ppdl ;
and therefore in the limit

td)=ppdd, t=pp........ (1);
again, resolving forces parallel to the tangent at P,
(t+ dt)cos dO - ¢t + upds = 0,
and therefore in the limit

dt + upds = 0,
and consequently by (1)

dt + ut ds=0;
integrating, we get P

logt=_"fi_8=_,‘fdo=0—-;zo....(2);

hence, the values of ¢ at 4 and B being Q and R,
log Q=C-pub, log R=C-yb,....(3),

and therefore log 1%: u (0, - 0), %= U
which expresses the relation which must subsist between Q and

R under the circumstances of the problem.
1
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Also, from (2) and (3),
log I% —u(0,-0), =RV L 4);
hence the whole pressure along the curve is equal to
[pds = f(—lpﬁ ¢, from (1),
_ ftdd =R [¢*Vd0-C- ’Il}_tnw.-m;

but when 6 = 0,, it is clear that the pressure along the curve
is zero; hence
R -
0=0-"= t"(e. 9.)’

and therefore the whole pressure from 6, to 0,, is equal to

R {Eme,-o,)_ 1.
I

In addition to this pressure along the curve there are the
pressures at the extremities 4 and B.

Cor. If the curve be a semicircle , - 6, = w, and we have

Q_

—_ =

R

Euler ; Nov. Comment. Petrop. 1715, p. 316,
Poisson ; Traité de Mécanigue, tom. 1. ch. 3.

SEct. 5. Extensible Strings.

If an extensible string of given length be stretched by any
force, it is found by experiment that the extension of the string
beyond its natural length is proportional to the force. From this
it is easily seen that, if the string be of variable length, the
extension will vary as the product of the force and the natural
length of the string. Hence if a denote the natural length
of the string, and &’ the length under the action of a stretching
force P, we shall have

a =a(l+AP),
where A is a constant quantity depending upon the quality of
the string.
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This theory was first announced by Hooke, in the form of an
anagram, among a list of inventions at the end of his Descrip-
tions of Helioscopes, published in the year 1676. The anagram
is cetiinosssttuu, from which may be extracted the proposition,
“ ut tensio sic vis.” He afterwards published a work entitled
De Potentia Restitutiva or Spring, in which the theory was
developed at large with cxperimental illustrations. Hooke’s
theory forms the basis of a memoir by Leibnitz, in the Acta
Eruditorum for the year 1684, entitled Demonstrationes Nore
de Resistentia Solidorum. For additional information on the
subject the student is referred to s’Gravesande’s Element. Physic.
Iib. 1. c. 26.

(1) An elastic string AC (fig. 70) is suspended from its ex-
tremity 4, and has a weight attached to it at a point B; the
natural lengths of 4B, BC, being given, to find the length
of the string AC in its present circumstances.

Let m denote the unit of mass of the string in its natural
state; @, b, the natural lengths of 4B, BC, and «, V', their
lengths under the circumstances of the problem; ¢ the length of
a portion of the natural string, the weight of which is equal to
the weight attached to B; let P. be any point in 4B, and p very
near to it, AP =z, Pp = dz ; t = the tension at P and ¢ + d¢ at p.

Then, since by Hooke’s Principle the unit of mass of the cle-
ment dz must evidently be diminished in the ratioof 1+ A¢: 1,
the weight of Pp will be

mgdz
1+t
and therefore for the equilibrium of I’p

mgdx
t+dt+ - =2 -t=0,
RN At
(1 + At dt + mgdr = 0;
integrating we get
t(1 +§A) + mye = C;
but it is evident that
t-mg(a+b+e¢) whenr=0,

and t=mg (b ) when r = d';
' 12
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hence we obtain
(@+b+c){1+§mg(a+d+c)}=(B+c){1+}Amg(b+0c)}+d,
and therefore
ad=a+}3xmg{(a+bd+cy-(®+c)}
=a + § Amg (@’ + 2ab + 2ac)
=a{l+}Amg(a+2b+20)}...... (1).
Again, if Q be any point in BC, BQ = y, and r = the tension
at Q, we shall have, as before,
r(1+4§Ar) + mgy = C;
but evidently :
r=mgb, wheny=0,
and r=0, wheny="0;
hence we have
O =b(1+3Amgb)........ (2.
Hence from (1) and (2), if ' denote the whole length of the
string 4C, we find that
U'=a+b+}2Img{a(a+2b+ 2)+ 5}

(2) An elastic string, of which the unstretched length is a, is
placed on a smooth inclined plane the length of which is also
equal to @; to find the length which will hang over the plane,
the string being stretched by its own weight.

Let ACD (fig. 71) be the string hanging from the point 4 in
the inclined plane AC; P any point in AC, and p a point near
to P; ¢ =the tension at P, Tat A,andrat C; AP =z, Pp=dz;
m = the unit of mass of the string when unstretched, a = the in-
clination of 4C to the horizon.

Then, by virtue of Hooke’s Principle, the mass of Pp will be
mdz
1+A¢’

and therefore, ¢ + d¢ being the tension at p, we have for the
equilibrium of Pp

dt+TIsma . _o
MDY ’

(1 +X)dt + mgsinadr=0;
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integrating we obtain

. t(1+4X)+ mgzsina = C;
hence r being the value of ¢ when # = @ and T when z = 0, we
have

r(1+3Ar)+mgasina=T(1+4}AT),
r-T){1+3AX(r+T)} +mgasina=0........ (1),

Let s be the natural length of CD; then a — s will be the

natural length of AC; hence clearly

r=mgs, T=mg {s + (a-8)sina};

we have then, by (1),
(@a-8)[1+4Amg {28 + (a - 8)sin a}] = q,

}Amg (a - 8) {28+ (a - 8) sin a} = 3,
whence 8 may be determined by the solution of a quadratic
equation.

If & be the actual length of the portion CD of the string, we
may shew that
s =38(1+§Ams),

and therefore s and s’ are both known.

(3) A slightly extensible string A4a (fig. 72) is attached to the
upper extremity 4 of the vertical radius 40 of a circular arc
AB along which it rests; having given its natural length, to
find its length as it rests on the arc.

Let P, p, be any two points very near together in the string
Aa; draw the lines PO, pO; let AP =3, Pp=ds, £AOP = ¢,
L POp=d¢, AO = a; m = the unit of mass of the string when
unstretched ; ¢, ¢ + dt, the tensions at P, p; s, ds, the lengths
of AP, Pp, without stretching.

Then, by Hooke’s Principle,

ds=(1+A)ds ........(1).

Again, for the equilibrium of the portion Pp of the string, we

have, resolving forces parallel to the tangent at P,
(t + dt) cos (d¢) + mgds' sin ¢ =¢;
and therefore, retaining infinitesimals of the first order,

dt + mgds' sin ¢ = 0;
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hence by the aid of (1), we have

(M1+A)dt+ mgsingds=0;
or, since s = a¢,

(1+At)dt + mag sin ¢ dg = 0;
integrating we get
t(1 +1Af) - mag cos p=C;
let 3 be the angle subtended at O by the arc Aa; then it is
clear that when ¢ = (3, ¢ will be equal to zero ; hence
— mag cos |3 = C,
and therefore #(1 +§At)=mag(cos ¢ ~cos ) ...... (2)-
From (1) we have, putting a¢ for s,
adg = (1 + X)) ds,
and A being by the hypothesis a small quantity,
ds' =ad¢ (1 —-At)=ad¢ —alldg . . .... (3).
Now from (2) we get approximately
t = mag (cos ¢ — cos f3),

and therefore, substituting this value of ¢ in the small term of
the equation (3),

ds' = adg — ma'Ag (cos ¢ - cos 3) dg:
integrating we get
s~ C=a¢ - ma'Ag (sin ¢ - ¢ cos 3):

but when ¢ = 0, it is evident that & = 0; hence C = 0. and we
have

§ =agp - ma’Ag (sin ¢ — ¢ cos 3);
let a3’ be equal to the natural length of .4a; then evidenuy
af3’' = af3 - ma’Ag (sin 3 - 3 cos 3\,
B =3 - marg (sin 3 - 3 cos 3);

but since 3 = 3’ nearly, we may substitute 3’ for 3 in the cveth-
cient of the small quantity A; thus we obtain

P = ' + marg (sin 3 - 3’ cos 3",
which determines the required length 4a.
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(4) Two weights P, Q, (fig. 73), resting on two smooth in-
clined planes CA4, CB, are connected by a given clastic string
PQ; to find their position of equilibrium.

Let 0 be the inclination of QP to the horizon; a, 8, the
inclinations to the horizon of the planes CA, CB; a = the
natural length of the string PQ. Then the position of equili-
brium will be defined by the two equations,

Pcot3- Qcota AP sin a
P+Q ’ PQ:a{l+cos(a-o_)}'

(5) Two equal weights P, Q, (fig. 74), are connected by an
elastic string PQ, of which the horizontal line BC is the natural
length ; to find the nature of the curves BP, CQ, on which they
will always remain in equilibrium with the string parallel to the
horizon ; the plane of the curves being vertical.

Bisect BC in A, and draw A M vertical ; let AB=a= AC,
AM =z, MP =y = MQ; then the equation to each of the
curves will be '

tan 0 =

(y - af = 2XaPxz,
or BP, CQ, are two semi-parabolas of which B, C, arc the
vertices.

(6) An elastic ring BC is placed round a vertical cone and
descends by its own weight ; to find the position of equilibrium.
Let O (fig. 75) be the centre of the ring in its position of
equilibrium, £ O4B = a; 2wa = the natural length of the ring,
and W =its weight; then
B0=a(1 + 21 W cot a),

™

which determines the required position.
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CHAPTER VL

VIRTUAL VELOCITIES.

THE Principle of Virtual Velocities consists in the following
general proposition :

“If any assignable system of bodies or points, solicited each
of them by any forces whatever, be in equilibrium; and we
conceive this system to experience consistently with its geome-
trical relations any small arbitrary displacement, by virtue of
which each point describes an indefinitely small space ; the sum
of the forces multiplied each of them by the resolved part,
parallel to its direction, of the space described by its point of
application, will be always equal to zero; this resolved part
being considered positive when it lies in the direction of its cor-
responding force, and negative when in an opposite direction.”

The resolved parts of the spaces described by the points of
application of the forces are called their Virtual Velocities.
Let P, Q, R, . ... denote any system of forces acting on a sys-
tem of points consistently with equilibrium ; and leta, 3, v, . . ..
denote their virtual velocities ; then, as far as the first powers of
a, 3, v,.... are concerned,

Pa+QB+Ry+83+....=0........ (A).

The Principle of Virtual Velocities was first detected by
Guido Ubaldi' as a property of the equilibrium of the lever and
of moveable pullies. Its existence was afterwards recognized by
Galileo® in the inclined plane, and the machines depending upon
it. The expression ‘ moment’ of a force or weight acting on any

' Mechanicorum Liber ; De Libra, De Cochlea.
* Della Scienza Mecanica, Opera, tom. 1. p. 265; Bologna, 1655.
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machine, was used by Galileo to denote its energy or effort to
set the machine in motion, who accordingly declared that for the
equilibrium of a machine acted on by two forces, it is necessary
that their moments should be equal, and should take place in
opposite directions ; he shewed moreover that the moment of a
force is always proportional to the force multiplied by its vir-
tual velocity. The word ‘ moment’ was used in the same sense by
Wallis', who adopted Galileo’s principle of the equality of mo-
ments as the fundamental principle of Statics; and deduced from
it the conditions for the equilibrium of the principal machines.
Descartes® has likewise reduced the whole science of Statics to a
single principle, which virtually coincides with that of Galileo;
it is presented however under a less general aspect. The prin-
ciple is, that it requires precisely the same force to raisc a weight
P through an altitude a, as a weight Q through an altitude 3,
provided that P is to Q as b to a. From this it follows, that
two weights attached to a machine will be in equilibrium when
they are disposed in such a manner that the small vertical paths
which they can simultaneously describe arc reciprocally as the
weights.

Torricelli® is the author of another principle which may be
immediately deduced from the principle of virtual velocities:
the principle is, that when any two weights rigidly connected
together are so placed that their centre of gravity is in the
lowest position which it can assume consistently with the geome-
trical conditions to which they are subject, they will be in equi-
librium. The principle of Torricelli has given birth to the
following more general one, viz.—that any system whatever of
heavy bodies will be in equilibrium when their centre of gravity
is in its lowest or highest position. .

John Bernoulli was the first to announce the principle
of virtual velocities under its most general aspect in the
form which we have given above, in a letter to Varignon®, dated
Bile, Jan. 26, 1717. The striking value of the principle,

v Mechanica, sive de Motu, Tractatus Geometricus.
® Lettre 73, tom. 1. 1657 ; De Mechanica Tractatus, Opuscu'a Posthuma.

3 De Motu gravium naturaliter descendentinm, 1644,
¢ Nouvelle Mécanique, tom. i1. sect 9.
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as an instrument of analytical generalization, has been splendidly
exhibited by Lagrange in his Mécanique Analytique.

From the principle of virtual velocities may be immediately
deduced the principle which was proposed by Maupertuis in the
Mémoires de P Académie des Sciences de Paris for the year 1740,
under the name of the Lot de Repos ; and which Euler has devel-
oped at large in the Mémoires de P Académie de Berlin for the
year 1751. Suppose that any number of forces P, Q, R, .. ..
tending towards fixed centres and functional of their distances
P> ¢> 7. ... from the centres, to act on a system of points rigidly
connected together. Then supposing the system of points to be
slightly displaced, so that p, ¢, 7, .... receive increments dp,

dq, dr, . ... we shall have, by the principle of virtual velocities,
Pdp + Qdg + Rdr + . ... =0.
Let d1I denote the left-hand member of this equation ; then
dll=0........ ®B).

From this it appears that if the system be so placed that II
may have a maximum or a minimum value, there will be equili-
brium : this proposition constitutes Maupertuis’ Principle of Rest.
It does not however follow conversely that, whenever the sys-
tem is at rest, IT shall have a maximum or minimum value, since
by the principles of the differential calculus we know that the
equation (B), although a necessary, is not the only condition for
the existence of such a value. Lagrange' has shewn that if IT be
a minimum the equilibrium will be stable, and if a maximum,
unstable.

As an example of this theory, it is evident that, if any system
be in equilibrium under the action of gravity, there will be
stable or unstable equilibrium accordingly as the centre of
gravity is in the lowest or highest position which is compatible
with the geometrical relations to which the system is subject.

The principle of equilibrium developed by Courtivron® is like-
wise grounded upon the principle of virtual velocities ; Courtiv-
ron’s Principle asserts, that if a system of bodies be in motion
under the action of any forces varying according to any assigned

' Mécanique Analytique. Premiére Partie, sect. 5.
 Mémoires de I' Académie des Sciences de Berlin, 1748, 1749.
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laws, a position of the system corresponding to a maximum or
minimum value of the vts viva will be a position of equilibrium ;
a maximum value of the ¢is viva corresponding to stable, and
a minimum to unstable equilibrium.

Secr. 1. Equilibrium.

(1) A particle P (fig. 76) is attracted towards two centres of
force 4 and B; to find the position of the particle that it may
be in equilibrium.

Let A, B, dcnote the two forces; AP =1r, BP=s, AB=u;
draw PM at right angles to AB, and let AM =2z, PM=y.
Then, supposing P to receive some slight arbitrary displacement,
the decrements dr, ds, of r, s, will be the virtual velocities of the
forces 4, B; hence, by the formula (A),

Adr + Bds=0........ (1).
But  r=@+yhe-{@-o7+ g
th, ds =@ D& ydy,
@ +9) {(e -2} + ¥}
and therefore by (1),
4% yly g2 45:‘.@?/ -0
& +y) {(a -2 + ¥}

but since dz and dy are independent quantities, whatever be the
small variation in the position of P, we have, equating their co-
efficients to zero,

4z B(a- ?)__.,_& =0 ... (2),
@+y) -2 +y)
Ay By 0......(3).

+ - =
@+ {@-ap+ gt

From (3) we have y = 0, and therefore from (2), we see that

A = B; thus it appears that if any particle be acted on by two

forces tending towards two fixed centres, the conditions for its
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equilibrium are, first, that it shall lie in the straight line joining
the two centres, and, secondly, that the two forces shall be equal.
Euler ; Mémoires de I’ Académie de Berlin, 1751, p. 184.

(2) A rigid rod 4B (fig. 77) without weight, rests over a peg
0, and against a smooth wall CD, and is acted on by a weight P
suspended from the extremity A4 ; to determine its position of
equilibrium and the pressures on the wall and the peg.

Draw EOF horizontally; let AB = a, OB = z, OF = 