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Preface 

In our experience, an understanding of the laws of physics is best acquired 
by applying them to practical problems. Frequently, however, the problems 
appearing in textbooks can be solved only through long, complex calcu­
lations, which tend to be mechanical and boring, and often drudgery for 
students. Sometimes, even the best of these students, the ones who possess 
all the necessary skills, may feel that such problems are not attractive enough 
to them, and the tedious calculations involved do not allow their 'creativity' 
(genius?) to shine through. 

This little book aims to demonstrate that not all physics problems are like 
that, and we hope that you will be intrigued by questions such as: 

• How is the length of the day related to the side of the road on which 
traffic travels? 

• Why are Fosbury floppers more successful than Western rollers? 
• How far below ground must the water cavity that feeds Old Faithful 

be? 
• How high could the tallest mountain on Mars be? 
• What is the shape of the water bell in an ornamental fountain? 
• How does the way a pencil falls when stood on its point depend 

upon friction? 
• Would a motionless string reaching into the sky be evidence for 

UFOs? 
• How does a positron move when dropped in a Faraday cage? 
• What would be the high-jump record on the Moon? 
• Why are nocturnal insects fatally attracted to light sources? 
• How much brighter is sunlight than moonlight? 
• How quickly does a fire hose unroll? 

vii 
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• How do you arrange two magnets so that the mutual couples they 
experience are not equal and opposite? 

• How long would it take to defrost an 8-tonne Siberian mammoth? 
• What perils face titanium-eating little green men who devour their 

own planet? 
• What is the direction of the electric field due to an uniformly 

charged rod? 
• What is the catch in an energy-generating capacitor? 
• What is the equivalent resistance of an n-dimensional cube of resis-

tors? 
• What factors determine the period of a sand-glass egg timer? 
• How does a unipolar dynamo work? 
• How 'deep' is an electron lying in a box? 

These, and some 180 others, are problems that can be solved elegantly by an 
appropriate choice of variables or coordinates, an unusual way of thinking, 
or some 'clever' idea or analogy. When such an inspiration or eureka moment 
occurs, the solution often follows after only a few lines of calculation or 
brief mental reasoning, and the student feels justifiably pleased with him­
or herself. 

Logic in itself is not sufficient. Nobody can guess these creative approaches 
without knowing and understanding the basic laws of physics. Accordingly, 
we would not encourage anybody to tackle these problems without first 
having studied the subject in some depth. Although successful solutions to 
the problems posed are clearly the principal goal, we should add that success 
is not to be measured by this alone. Whatever help you, the reader, may seek, 
and whatever stage you reach in the solution to a problem, it will hopefully 
bring you both enlightenment and delight. We are sure that some solutions 
will lead you to say 'how clever', others to say 'how nice', and yet others to 
say 'how obvious or heavy-handed'! Our aim is to show you as many useful 
'tricks' as possible in order to enlarge your problem-solving arsenal. We wish 
you to use this book with delight and profit, and if you come across further 
similar 'puzzling' physics problems, we would ask you to share them with 
others (and send them to the authors). 

The book contains 200 interesting problems collected by the authors over 
the course of many years. Some were invented by us, others are from the 
Hungarian 'Secondary School Mathematics and Physics Papers' which span 
more than 100 years. Problems and ideas from various Hungarian and 
international physics contests, as well as the Cambridge Colleges' entrance 
examination, have also been used, often after rewording. We have also been 
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guided by the suggestions and remarks of our colleagues. In particular, we 
would like to thank Masaaki Kato for several helpful observations and 
suggested clarifications and Alfonso Diaz-Jimenez for an interesting note 
on the launching of space probes (see solution 17). It is impossible to 
determine the original authors of most of the physics problems appearing in 
the international 'ideas-market'. Nevertheless, some of the inventors of the 
most puzzling problems deserve our special thanks. They include Tibor Biro, 
Laszlo Holies, Frederick Karolyhazy, George Marx, Ervin Szegedi and Istvan 
Varga. We thank them and the other people, known and unknown, who have 
authored, elaborated and improved upon 'puzzling' physics problems. 

P.G. G.H. 
Budapest 2000 

K.F.R. 
Cambridge 2000 



How to use this book 

The following chapter contains the problems. They do not follow each other 
in any particular thematic order, but more or less in order of d!tficulty, 
or in groups requiring similar methods of solution. In any case, some of 
the problems could not be unambiguously labelled as belonging to, say, 
mechanics or thermodynamics or electromagnetics. Nature's secrets are not 
revealed according to the titles of the sections in a text book, but rather 
draw on ideas from various areas and usually in a complex manner. It is 
part of our task to find out what type of problem we are facing. However, 
for i~/(Jrmation, the reader can find a list of topics, and the problems that 
more or less belong to these topics, on the following page. Some problems 
are listed under more than one heading. The symbols and numerical values 
of the principal physical constants are then given, together with astronomical 
data and some properties of material. 

The majority of the problems are not easy; some of them are definitely dif­
ficult. You, the reader, are naturally encouraged to try to solve the problems 
on your own and, obviously, if you do, you will get the greatest pleasure. 
If you are unable to achieve this, you should not give up, but turn to the 
relevant page of the short hints chapter. In most cases this will help, though 
it will not give the complete solution, and the details still have to be worked 
out. Once you have done this and want to check your result (or if you have 
completely given up and only want to see the solution), the last chapter 
should be consulted. 

Problems whose solutions require similar reasoning usually follow each 
other. But if a particular problem relates to another elsewhere in this book, 
you will find a cross-reference in the relevant hint or solution. Those requiring 
especially difficult reasoning or mathematically complicated calculations are 
marked by one or two asterisks. 

Some problems are included whose solutions raise further questions that 
are beyond the scope of this book. Points or issues worth further considera­
tion are indicated at the end of the respective solutions, but the answers are 
not given. 

X 



Thematic order of the problems 

Kinematics: 1, 3, 5, 36, 37, 38*, 40, 41, 64, 65*, 66, 84*, 86*. 
Dynamics: 2, 7, 8, 12, 13, 24, 32*, 33, 34, 35, 37, 38*, 39*, 70*, 73*, 77, 78*, 

79*, 80**, 82, 83, 85**, 90, 154*, 183*, 184*, 186*, 193*, 194. 
Gravitation: 15, 16, 17, 18, 32*, 81**, 87, 88, 109, 110*, 111*, 112*, 116, 

134*. 
Mechanical energy: 6, 7, 17, 18, 32*, 51, 107. 
Collisions: 20, 45, 46, 47, 48, 71, 72*, 93, 94, 144*, 194, 195. 
Mechanics of rigid bodies: 39*, 42**, 58, 60*, 61 **, 94, 95*, 96, 97*, 98, 

99**. 
Statics: 9, 10*, 11, 14*, 25, 26, 43, 44, 67, 68, 69*. 
Ropes, chains: 4, 67, 81 **, 100, 101 *, 102**, 103*, 104*, 105**, 106*, 108**. 
Liquids, gases: 19, 27, 28, 49*, 50, 70*, 73*, 74, 75*, 91*, 115**, 143, 200. 
Surface tension: 29, 62, 63, 129, 130*, 131 *, 132**, 143, 199*. 
Thermodynamics: 20, 21*, 133, 135**, 136, 145, 146*, 147, 148. 
Phase transitions: 134*, 137*, 138, 140*, 141 *. 
Optics: 52, 53, 54, 55, 56, 125*, 126, 127, 128*. 
Electrostatics: 41, 90, 91*, 92, 113*, 114, 117*, 118, 121, 122, 123*, 124*, 

149, 150, 151*, 152, 155, 156, 157, 183*, 192*, 193*. 
Magnetostatics: 89**, 119, 120**, 153*, 154*, 172, 186*. 
Electric currents: 22, 23, 158, 159, 160*, 161, 162*, 163*, 164*, 165, 169, 

170*, 172. 
Electromagnetism: 30, 31, 166, 167, 168*, 171*, 173*, 174*, 175*, 176, 177, 

178*, 179, 180, 181*, 182*, 184*, 185*, 186*, 187*. 
Atoms and particles: 93, 188, 189*, 190*, 191, 194, 195, 196, 197*, 198*. 
Dimensional analysis, scaling, estimations: 15, 57, 58, 59*, 76*, 77, 126, 139, 

142, 185*, 199*. 

*• **A single or double asterisk indicates those problems that require especially difficult reasoning or 

mathematically complicated calculations. 

xi 





Physical constants 

Gravitational constant, G 
Speed of light (in vacuum), c 
Elementary charge, e 
Electron mass, me 
Proton mass, mp 

Boltzmann constant, k 
Planck constant, h 
Avogadro constant, NA 
Gas constant, R 
Permittivity of free space, Bo 
Coulomb constant, k = 1 I 4n8() 
Permeability of free space, J.lO 

Some astronomical data 
Mean radius of the Earth, R 

6.673 X lo-ll N m2 kg-2 

2.998 x 108 m s-1 

1.602 X 10-19 C 
9.109 X 10-3l kg 
1.673 X 10-27 kg 
1.381 X 10-23 J K-1 

6.626 X 10-34 J S 

6.022 x 1023 mol-1 

8.315 J mol-1 K-1 

8.854 x 10-12 C v-1 m-1 

8.987 X 109 V m c-l 

4n X 10-7 V s2 c-l m-l 

6371km 
Sun-Earth distance (Astronomical Unit, AU) 
Mean density of the Earth, p 

1.49 x 108 km 
5520kgm-3 

9.8lms-2 Free-fall acceleration at the Earth's surface, g 

Some physical properties 
Surface tension of water, y 0.073Nm-1 

Heat of vaporisation of water, L 
Tensile strength of steel, u 

2256kJkg-1 = 40.6kJmol-1 

500-2000 MPa 

xiii 



xiv Physical constants 

Densitiesa, p (kg m-3) 

Hydrogen 0.0899 
Helium 0.1786 
Air 1.293 
Water (at 4 oq 1000 

a Densities quoted in normal state. 

Optical Refractive Indicesb, n 

Water 1.33 Glass 
Ice 1.31 Diamond 

bAt).= S90nm. 

Titanium 
Iron 
Mercury 
Platinum 

1.5-1.8 
2.42 

4510 
7860 
13550 
21450 



Problems 

Pl Three small snails are each at a vertex of an equilateral triangle of 
side 60 em. The first sets out towards the second, the second towards the 
third and the third towards the first, with a uniform speed of 5 em min-1• 

During their motion each of them always heads towards its respective target 
snail. How much time has elapsed, and what distance do the snails cover, 
before they meet? What is the equation of their paths? If the snails are 
considered as point-masses, how many times does each circle their ultimate 
meeting point? 

P2 A small object is at rest on the edge of a horizontal table. It is pushed 
in such a way that it falls off the other side of the table, which is 1 m wide, 
after 2 s. Does the object have wheels? 

P3 A boat can travel at a speed of 3 m s-1 on still water. A boatman 
wants to cross a river whilst covering the shortest possible distance. In what 
direction should he row with respect to the bank if the speed of the water 
is (i) 2 m s-1, (ii) 4 m s-1? Assume that the speed of the water is the same 
everywhere. 

P4 A long, thin, pliable carpet is laid on the floor. One end of the carpet 
is bent back and then pulled backwards with constant unit velocity, just 
above the part of the carpet which is still at rest on the floor. 

0 

----- I}= l c=== 

Find the speed of the centre of mass of the moving part. What is the 
minimum force needed to pull the moving part, if the carpet has unit length 
and unit mass? 

1 
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P5 Four snails travel in uniform, rectilinear motion on a very large plane 
surface. The directions of their paths are random, (but not parallel, i.e. any 
two snails could meet), but no more than two snail paths can cross at any one 
point. Five of the (4 x 3)/2 = 6 possible encounters have already occurred. 
Can we state with certainty that the sixth encounter will also occur? 

P6 Two 20-g flatworms climb over a very thin wall, 10 em high. One of 
the worms is 20 em long, the other is wider and only 10 em long. Which of 
them has done more work against gravity when half of it is over the top of 
the wall? What is the ratio of the amounts of work done by the two worms? 

P7 A man of height ho = 2 m is bungee jumping from a platform situated 
a height h = 25 m above a lake. One end of an elastic rope is attached to his 
foot and the other end is fixed to the platform. He starts falling from rest in 
a vertical position. 

h 

--=~----_-:_-_. __ ---:------== 

The length and elastic properties of the rope are chosen so that his speed 
will have been reduced to zero at the instant when his head reaches the 
surface of the water. Ultimately the jumper is hanging from the rope, with 
his head 8 m above the water. 

(i) Find the unstretched length of the rope. 
(ii) Find the maximum speed and acceleration achieved during the jump. 

P8 An iceberg is in the form of an upright regular pyramid of which 
10 m shows above the water surface. Ignoring any induced motion of the 
water, find the period of small vertical oscillations of the berg. The density 
of ice is 900 kg m-3. 

P9 The suspension springs of all four wheels of a car are identical. By 
how much does the body of the car (considered rigid) rise above each of 
the wheels when its right front wheel is parked on an 8-cm-high pavement? 
Does the result change when the car is parked with both right wheels on 
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the pavement? Does the result depend on the number and positions of the 
people sitting in the car? 

PlO* In Victor Hugo's novel les Miserables, the main character Jean 
Valjean, an escaped prisoner, was noted for his ability to climb up the corner 
formed by the intersection of two vertical perpendicular walls. Find the 
minimum force with which he had to push on the walls whilst climbing. 
What is the minimum coefficient of static friction required for him to be 
able to perform such a feat? 

Pll A sphere, made of two non-identical homogeneous hemispheres 
stuck together, is placed on a plane inclined at an angle of 30° to the 
horizontal. Can the sphere remain in equilibrium on the inclined plane? 

P12 A small, elastic ball is dropped vertically onto a long plane inclined 
at an angle IX to the horizontal. Is it true that the distances between con­
secutive bouncing points grow as in an arithmetic progression? Assume that 
collisions are perfectly elastic and that air resistance can be neglected. 

P13 A small hamster is put into a circular wheel-cage, which has a 
frictionless central pivot. A horizontal platform is fixed to the wheel below 
the pivot. Initially, the hamster is at rest at one end of the platform. 

When the platform is released the hamster starts running, but, because of 
the hamster's motion, the platform and wheel remain stationary. Determine 
how the hamster moves. 

P14* A bicycle is supported so that it is prevented from falling sideways 
but can move forwards or backwards; its pedals are in their highest and low­
est positions. A student crouches beside the bicycle and applies a horizontal 
force, directed towards the back wheel, to the lower pedal. 

(i) Which way does the bicycle move? 
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(ii) Does the chain-wheel rotate in the same or opposite sense as the rear 
wheel? 

(iii) Which way does the lower pedal move relative to the ground? 

P15 If the solar system were proportionally reduced so that the average 
distance between the Sun and the Earth were 1 m, how long would a year 
be? Take the density of matter to be unchanged. 

lm 

0 • Sun Earth 

P16 If the mass of each of the members of a binary star were the same 
as that of the Sun, and their distance apart were equal to the Sun-Earth 
distance, what would be their period of revolution? 

P17 (i) What is the minimum launch speed required to put a satellite 
into a circular orbit? 

(ii) How many times higher is the energy required to launch a satellite into 
a polar orbit than that necessary to put it into an Equatorial one? 

(iii) What initial speed must a space probe have if it is to leave the 
gravitational field of the Earth? 

(iv) Which requires a higher initial energy for the space probe-leaving the 
solar system or hitting the Sun? 

P18 A rocket is intended to leave the Earth's gravitational field. The fuel 
in its main engine is a little less than the amount that is necessary, and an 
auxiliary engine, only capable of operating for a short time, has to be used 
as well. When is it best to switch on the auxiliary engine: at take-off, or 
when the rocket has nearly stopped with respect to the Earth, or does it not 
matter? 

P19 A steel ball with a volume of 1 cm3 is sinking at a speed of 1 em s-1 

in a closed jar filled with honey. What is the momentum of the honey if its 
density is 2 g cm-3 ? 
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P20 A gas of temperature T is enclosed in a container whose walls are 
(initially) at temperature Tt. Does the gas exert a higher pressure on the 
walls of the container when T1 < T or when T1 > T? 

P21* Consider two identical iron spheres, one of which lies on a 
thermally insulating plate, whilst the other hangs from an insulating thread. 

Equal amounts of heat are given to the two spheres. Which will have the 
higher temperature? 

P22 Two (non-physics) students, A and B, living in neighbouring college 
rooms, decided to economise by connecting their ceiling lights in series. They 
agreed that each would install a 100-W bulb in their own rooms and that 
they would pay equal shares of the electricity bill. However, both decided to 
try to get better lighting at the other's expense; A installed a 200-W bulb and 
B installed a 50-W bulb. Which student subsequently failed the end-of-term 
examinations? 

P23 If a battery of voltage V is connected across terminals I of the 
black box shown in the figure, a voltmeter connected to terminals II gives a 
reading of V /2; while if the battery is connected to terminals II, a voltmeter 
across terminals I reads V. 

0=[]=0 I II 0 0 
The black box contains only passive circuit elements. What are they? 

P24 A bucket of water is suspended from a fixed point by a rope. The 
bucket is set in motion and the system swings as a pendulum. However, the 
bucket leaks and the water slowly flows out of the bottom of it. How does 
the period of the swinging motion change as the water is lost? 

P25 An empty cylindrical beaker of mass 100 g, radius 30 mm and neg­
ligible wall thickness, has its centre of gravity lOOmm above its base. To 
what depth should it be filled with water so as to make it as stable as 
possible? 
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P26 Fish soup is prepared in a hemispherical copper bowl of diameter 
40 em. The bowl is placed into the water of a lake to cool down and floats 
with 10 em of its depth immersed. 

A point on the rim of the bowl is pulled upwards through 10 em, by a 
chain fastened to it. Does water flow into the bowl? 

P27 A circular hole of radius r at the bottom of an initially full water 
container is sealed by a ball of mass m and radius R (> r). The depth of the 
water is now slowly reduced, and when it reaches a certain value, ho, the ball 
rises out of the hole. Find ho. 

• 
P28 Soap bubbles filled with helium float in air. Which has the greater 

mass-the wall of a bubble or the gas enclosed within it? 

P29 Water which wets the walls of a vertical capillary tube rises to a 
height H within it. Three 'gallows', (a), (b) and (c), are made from the same 
tubing, and one end of each is placed into a large dish filled with water, as 
shown in the figure. 

H' 

Does the water flow out at the other ends of the capillary tubes? 
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P30 A charged spherical capacitor slowly discharges as a result of the 
slight conductivity of the dielectric between its concentric plates. What are 
the magnitude and direction of the magnetic field caused by the resulting 
electric current? 

P31 An electrically charged conducting sphere 'pulses' radially, i.e. its 
radius changes periodically with a fixed amplitude (see figure). The charges on 
its surface-acting as many dipole antennae-emit electromagnetic radiation. 
What is the net pattern of radiation from the sphere? 

P32* How high would the male world-record holder jump (at an indoor 
competition!) on the Moon? 

P33 A small steel ball B is at rest on the edge of a table of height 1 m. 
Another steel ball A, used as the bob of a metre-long simple pendulum, 
is released from rest with the pendulum suspension horizontal, and swings 
against B as shown in the figure. The masses of the balls are identical and 
the collision is elastic. 

',, :B 

~~-~-------~-~ -----
' ' 

lm ' ' ' 
' ' ' 

Considering the motion of B only up until the moment it first hits the 
ground: 

(i) Which ball is in motion for the longer time? 
(ii) Which ball covers the greater distance? 

P34 A small bob is fixed to one end of a string of length 50 em. As a 
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consequence of the appropriate forced motion of the other end of the string, 
the bob moves in a vertical circle of radius 50 em with a uniform speed of 
3.0 m s-1. Plot, at 15° intervals on the circular path, the trajectories of both 
ends of the string, indicating on each the points belonging together. 

P35 A point P is located above an inclined plane. It is possible to reach 
the plane by sliding under gravity down a straight frictionless wire, joining P 
to some point P' on the plane. How should P' be chosen so as to minimise 
the time taken? 

P36 The minute hand of a church clock is twice as long as the hour 
hand. At what time after midnight does the end of the minute hand move 
away from the end of the hour hand at the fastest rate? 

P37 What is the maximum angle to the horizontal at which a stone can 
be thrown and always be moving away from the thrower? 

P38* A tree-trunk of diameter 20 em lies in a horizontal field. A lazy 
grasshopper wants to jump over the trunk. Find the minimum take-off speed 
of the grasshopper that will suffice. (Air resistance is negligible.) 

P39* A straight uniform rigid hair lies on a smooth table; at each end 
of the hair sits a flea. Show that if the mass M of the hair is not too great 
relative to that m of each of the fleas, they can, by simultaneous jumps with 
the same speed and angle of take-off, exchange ends without colliding in 
mid-air. 

P40 A fountain consists of a small hemispherical rose (sprayer) which 
lies on the surface of the water in a basin, as illustrated in the figure. The 
rose has many evenly distributed small holes in it, through which water 
spurts at the same speed in all directions. 

What is the shape of the water 'bell' formed by the jets? 

P41 A particle of mass m carries an electric charge Q and is subject to 
the combined action of gravity and a uniform horizontal electric field of 
strength E. It is projected with speed v in the vertical plane parallel to the 
field and at an angle () to the horizontal. What is the maximum distance the 
particle can travel horizontally before it is next level with its starting point? 

P42** A uniform rod of mass m and length t is supported horizontally 
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at its ends by my two forefingers. Whilst I am slowly bringing my fingers 
together to meet under the centre of the rod, it slides on either one or other 
of them. How much work do I have to do during the process if the coefficient 
of static friction is J.lstat. and that of kinetic friction is J.lkin (J.Lkin ~ J.lstat)? 

P43 Four identical bricks are placed on top of each other at the edge of 
a table. Is it possible to slide them horizontally across each other in such a 
way that the projection of the topmost one is completely outside the table? 
What is the theoretical limit to the displacement of the topmost brick if the 
number of bricks is arbitrarily increased? 

P44 A plate, bent at right angles along its centre line, is placed onto a 
horizontal fixed cylinder of radius R as shown in the figure. 

How large does the coefficient of static friction between the cylinder and 
the plate need to be if the plate is not to slip off the cylinder? 

P45 Two elastic balls of masses m1 and m2 are placed on top of each other 
(with a small gap between them) and then dropped onto the ground. What 
is the ratio m1/m2, for which the upper ball ultimately receives the largest 
possible fraction of the total energy? What ratio of masses is necessary if 
the upper ball is to bounce as high as possible? 

P46 An executive toy consists of three suspended steel balls of masses 
M,J.L and m arranged in that order with their centres in a horizontal line. 
The ball of mass M is drawn aside in their common plane until its centre 
has been raised by h and is then released. If M =f m and all collisions are 
elastic, how must J.L be chosen so that the ball of mass m rises to the greatest 
possible height? What is this height? (Neglect multiple collisions.) 

P47 Two identical dumb-bells move towards each other on a horizontal 
air-cushioned table, as shown in the figure. Each can be considered as two 
point masses m joined by a weightless rod of length 2t. Initially, they are not 
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rotating. Describe the motion of the dumb-bells after their elastic collision. 
Plot the speeds of the centres of mass of the dumb-bells as a function of 
time. 

m 

v · · ·-~ · -· 
~ 2t m 

··-· ·-- - --~---. v 

m 2t ---=--
........... . ..... 

m 

P48 Two small identical smooth blocks A and B are free to slide on a 
frozen Jake. They are joined together by a light elastic rope of length Jj.L 
which bas the property that it stretches very little when the rope becomes 
taut. At time t = 0, A is at rest at x = y = 0 and B is at x = L, y = 0 
moving in the positive y-direction with speed V. Determine the positions and 
velocities of A and B at times (i) t = 2L/ V and (ii) t = toOL/ V. 

P49• After a tap above an empty rectangular basin has been opened, the 
basin fills with water in a time T1• After the tap has been closed, opening a 
plug-hole at the bottom of the basin empties it in a time T2. What happens 
if both the tap and the plug-hole are open? What ratio of T1/T2 can cause 
the basin to overflow? As a specific case, let T 1 = 3 minutes and T2 = 2 
minutes. 

PSO A cylindrical vessel of height h and radius a. is two-thirds filled with 
liquid. It is rotated with constant angular velocity ro about its axis, which 
is verticaL Neglecting any surface tension effects, find an expression for the 
greatest angular velocity of rotation n for which the liquid docs not spill 
over the edge of the vessel. 

PSl Peter, who was standing by a racetrack, calculated that as one of 
the cars, in accelerating from rest to a speed of 100 km h-1, used up x litres 
of fuel, it could increase its speed to 200 km h-1, by using a further 3x litres 
of fuel. Peter, who bas learned in physics that kinetic energy is proportional 
to the square of the speed, assumed that the energy content of the fuel 
was mainly converted into kinetic energy. i.e. he neglected air resistance and 
other types of friction. 

A railway runs by the racetrack. Paul, who also knows some physics, 
saw the start of the race from the window of a train travelling at a speed 
of 100 km h-1 in the opposite direction to that of the car. He reasoned as 
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follows: since the car's speed increased from 100 to 200 km h-1 during the 
first stage, when the car accelerates from 200 to 300 km h- 1 in the second 
stage, it will need (3002 - 2002)/(2002 - 1002) x = (5/3)x litres of fuel. 

Who is right, Peter or Paul? 

P52 The distance between a screen and a light source lined up on an 
optical bench is 120 em. When a lens is moved along the line joining them, 
sharp images of the source can be obtained at two lens positions; the size 
(area) ratio of these two images is 1 : 9. What is the focal length of the lens? 
Which image is the brighter? Determine the ratio of the brightness values 
of the two images. 

P53 A short-sighted person takes off his glasses and observes a fixed 
object through them, while moving the glasses away from his eyes. He is 
surprised to see that at first, the object looks smaller and smaller, but then 
becomes larger and larger. What is the reason for this? 

P54 A glass prism whose cross-section is an isosceles triangle stands with 
its (horizontal) base in water; the angles that its two equal sides make with 
the base are each f). 

Water 

An incident ray of light, above and parallel to the water surface and 
perpendicular to the prism's axis, is internally reflected at the glass-water 
interface and subsequently re-emerges into the air. Taking the refractive 
indices of glass and water to be ~ and ~. respectively, show that f) must be 
at least 25.9°. 

PSS A glass prism in the shape of a quarter-cylinder lies on a horizontal 
table. A uniform, horizontal light beam falls on its vertical plane surface, as 
shown in the figure. 

Lig~~~ 
- R 
- n 

7/ 
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If the radius of the cylinder is R = 5 em and the refractive index of the 
glass is n = 1.5, where, on the table beyond the cylinder, will a patch of light 
be found? 

P56 How much brighter is sunlight than moonlight? The albedo (reflec­
tivity) of the Moon is oc = 0.07. 

P57 Annie and her very tall boyfriend Andy like jogging together. They 
notice that when running they move at more or less the same speed, but 
that Andy is always faster when they are walking. How can this difference 
between running and walking be explained using physical arguments? 

P58 A simple pendulum and a homogeneous rod pivoted at its end are 
released from horizontal positions. What is the ratio of their periods of 
swing if their lengths are identical? 

~ F F 

• 

P59* A helicopter can hover when the power output of its engine is P. 
A second helicopter is an exact copy of the first one, but its linear dimensions 
are half those of the original. What power output is needed to enable this 
second helicopter to hover? 

P60* A uniform rod is placed with one end on the edge of a table in 
a nearly vertical position and is then released from rest. Find the angle 
it makes with the vertical at the moment it loses contact with the table. 
Investigate the following two extreme cases: 

. ' .. · 

(a) 

~ 

~ 
(b) 

I 

... 
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(i) The edge of the table is smooth (friction is negligible) but has a 
small, single-step groove as shown in figure (a). 

(ii) The edge of the table is rough (friction is large) and very sharp, which 
means that the radius of curvature of the edge is much smaller than 
the flat end-face of the rod. Half of the end-face protrudes beyond 
the table edge (see figure (b)), with the result that when it is released 
from rest the rod 'pivots' about the edge. The rod is much longer 
than its diameter. 

P61.. A pencil is placed vertically on a table with its point downwards. 
It is then released and tumbles over. How does the direction in which the 
point moves, relative to that in which the pencil falls, depend upon the 
coefficient of friction? Will the pencil point lose contact with the table (other 
than when the 'shoulder' of the pencil ultimately comes into contact with 
the table)? 

P62 Two soap bubbles of radii R1 and R2 are joined by a straw. Air 
goes from one bubble to the other (which one?) and a single bubble of 
radius R3 is formed. What is the surface tension of the soap solution if the 
atmospheric pressure is Po? Is measuring three such radii a suitable method 
for determining the surface tension of liquids? 

P63 Water, which wets glass, is stuck between two parallel glass plates. 
The distance between the plates is d, and the diameter of the trapped water 
'disc' is D ~ d. 

,.:.._ __ D __ __,: 
: 

What is the force acting between the plates? 
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P64 A spider has fastened one end of a 'super-elastic' silk thread of length 
1 m to a vertical wall. A small caterpillar is sitting somewhere on the thread. 

vo ~ 
~=' =======mmn~~======~~ 

The hungry spider, whilst not moving from its original position, starts 
pulling in the other end of the thread with uniform speed, v0 = 1 em s-1. 

Meanwhile, the caterpillar starts fleeing towards the wall with a uniform 
speed of 1 mm s-1 with respect to the moving thread. Will the caterpillar 
reach the wall? 

P65* How does the solution to the previous problem change if the spider 
does not sit in one place, but moves (away from the wall) taking with it the 
end of the thread? 

P66 Nails are driven horizontally into a vertically placed drawing-board. 
As shown in the figure, a small steel ball is dropped from point A and reaches 
point B by bouncing elastically on the protruding nails (which are not shown 
in the figure). 

-2m---

A@ 
t 

Is it possible to arrange the nails so that: 

B 

1 
lm 

j 

(i) The ball gets from point A to point B more quickly than if it had 
slid without friction down the shortest path, i.e. along the straight 
line AB? 

(ii) The ball reaches point B in less than 0.4 s? 

P67 One end of a rope is fixed to a vertical wall and the other end pulled 
by a horizontal force of 20 N. The shape of the flexible rope is shown in the 
figure. Find its mass. 
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P68 Find the angle to which a pair of compasses should be opened 
in order to have the pivot as elevated as possible when the compasses are 
suspended from a string attached to one of the points, as shown in the figure. 
Assume that the lengths of the compass arms are equal. 

P69* Threads of lengths ht, h2 and h3 are fastened to the vertices of a 
homogeneous triangular plate of weight W. The other ends of the threads 
are fastened to a common point, as shown in the figure. 

What is the tension in each thread, expressed in terms of the lengths of 
the threads and the weight of the plate? 

P70* A tanker full of liquid is parked at rest on a horizontal road. The 
brake has not been applied, and it may be supposed that the tanker can 
move without friction. 

In which direction will the tanker move after the tap on the vertical outlet 
pipe, which is situated at the rear of the tanker, has been opened? Will the 
tanker continue to move in this direction? 
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P71 Two small beads slide without friction, one on each of two long, 
horizontal, parallel, fixed rods set a distance d apart. The masses of the beads 
are m and M, and they carry respective charges of q and Q. Initially, the 
larger mass M is at rest and the other one is far away approaching it at 
speed vo. 

M,Q 

Describe the subsequent motion of the beads. 

P72* Beads of equal mass are strung at equal distances on a long, 
horizontal wire. The beads are initially at rest but can move without friction. 

m m m m m m 

One of the beads is continuously accelerated (towards the right) by a 
constant force F. What are the speeds of the accelerated bead and the front 
of the 'shock wave', after a long time, if the collisions of the beads are: 

(i) completely inelastic, 
(ii) perfectly elastic? 

P73* A table and a large jug are placed on the platform of a weighing 
machine and a barrel of beer is placed on the table with its tap above the 
jug. Describe how the reading of the machine varies with time after the tap 
has been opened and the beer runs into the jug. 

P74 A jet of water strikes a horizontal gutter of semicircular cross­
section obliquely, as shown in the figure. The jet lies in the vertical plane 
that contains the centre-line of the gutter. 

Water jet 

~ 

Calculate the ratio of the quantities of water flowing out at the two ends 
of the gutter as a function of the angle of incidence ri of the jet. 
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P75* An open-topped vertical tube of diameter Dis filled with water up 
to a height h. The narrow bottom-end of the tube, of diameter d, is closed 
by a stop as shown in the figure. 

D 

h 

When the stop is removed, the water starts flowing out through the bottom 
orifice with approximate speed v = JiiJi. However, this speed is reached by 
the liquid only after a certain time •· Obtain an estimate of the order of 
magnitude of •· What is the acceleration of the lowest layer of water at the 
moment when the stop is removed? Ignore viscous effects. 

P76* Obtain a reasoned estimate of the time it takes for the sand to run 
down through an egg-timer. Use realistic data. 

_-_[~ 

P77 A small bob joins two light unstretched, identical springs, anchored 
at their far ends and arranged along a straight line, as shown in the figure. 

The bob is displaced in a direction perpendicular to the line of the springs 
~- 1 em and then released. The period of the ensuing vibration of the bob is 
2 s. Find the period of the vibration if the bob were displaced by 2 em before 
ldease. The unstretched length of the springs is to ~ 1 em, and gravity is 
• be ignored. 
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P78* One end of a light, weak spring, of unstretched length L and force 
constant k, is fixed to a pivot, and a body of mass m is attached to its other 
end. The spring is released from an unstretched, horizontal position, as in 
the figure. 

What is the length of the spring when it reaches a vertical position? 
(Describing a spring as weak implies that mg ~ kL, and that the tension in 
the spring is directly proportional to its extension at all times.) 

P79* A heavy body of mass m hangs on a flexible thread in a railway 
carriage which moves at speed v0 on a train-safety test track, as shown in 
the figure. 

The carriage is brought to rest by a strong but uniform braking. Can the 
pendulum travel through 180°, so that the taut thread reaches the vertical? 

P80** A glass partially filled with water is fastened to a wedge that 
slides, without friction, down a large plane inclined at an angle ex as shown 
in the figure. The mass of the inclined plane isM, the combined mass of the 
wedge, the glass and the water is m. 

If there were no motion the water surface would be horizontal. What 
angle will it ultimately make with the inclined plane if 

(i) the inclined plane is fixed, 
(ii) the inclined plane can move freely in the horizontal direction? 

Examine also the case in which m ~ M. What happens if the handle of the 
inclined plane is shaken in a periodic manner, but one that is such that it 
does not cause the wedge to rise off the plane? 

P81 ** If someone found a motionless string reaching vertically up into 
the sky and hanging down nearly to the ground, should that person consider 
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it as an evidence for UFOs, or could there be an 'Earthly' explanation in 
agreement with the well-known laws of physics? How long would the string 
need to be? 

P82 There is a parabolic-shaped bridge across a river of width 100 m. 
The highest point of the bridge is 5 m above the level of the banks. A car 
of mass 1000 kg is crossing the bridge at a constant speed of 20 m s-1. 

Using the notation indicated in the figure, find the force exerted on the 
bridge by the car when it is: 

(i) at the highest point of the bridge, 
(ii) three-quarters of the way across. 

(Ignore air resistance and take g as 10 m s-2.) 

P83 A point mass of 0.5 kg moving with a constant speed of 5 m s-1 

on an elliptical track experiences an outward force of 10 N when at either 
endpoint of the major axis and a similar force of 1.25 N at each end of the 
minor axis. How long are the axes of the ellipse? 

P84* A boatman sets off from one bank of a straight, uniform canal for 
a mark directly opposite the starting point. The speed of the water flowing 
in the canal is v everywhere. The boatman rows steadily at such a rate that, 
were there no current, the boat's speed would also be v. He always sets 
the boat's course in the direction of the mark, but the water carries him 
downstream. Fortunately he never tires! How far downstream does the water 
carry the boat? What trajectory does it follow with respect to the bank? 

P85** Two children stand on a large, sloping hillside that can be con­
sidered as a plane. The ground is just sufficiently icy that a child would fall 
and slide downhill with a uniform speed as the result of receiving even the 
slightest impulse. 
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For fun, one of the children (leaning against a tree) pushes the other with 
a horizontal initial speed vo = 1 m s-1. The latter slides down the slope with 
a velocity that changes in both magnitude and direction. What will be the 
child's final speed if air resistance is negligible and the frictional force is 
independent of the speed? 

P86* Smugglers set off in a ship in a direction perpendicular to a straight 
shore and move at constant speed v. The coastguard's cutter is a distance a 
from the smugglers' ship and leaves the shore at the same time. The cutter 
always moves at a constant speed in the direction of the smugglers' ship 
and catches up with the criminals when at a distance a from the shore. How 
many times greater is the speed of the coastguard's cutter than that of the 
smugglers' ship? 

P87 Point-masses of mass m are at rest at the corners of a regular n-gon, 
as illustrated in the figure for n = 6. 

How does the system move if only gravitation acts between the bodies? 
How much time elapses before the bodies collide if n = 2, 3 and 10? Examine 
the limiting case when n ~ 1 and m = Mo/n, where Mo is a given total mass. 

P88 A rocket is launched from and returns to a spherical planet of radius 
R in such a way that its velocity vector on return is parallel to its launch 
vector. The angular separation at the centre of the planet between the launch 
and arrival points is (J. How long does the flight of the rocket take, if the 
period of a satellite flying around the planet just above its surface is To? 
What is the maximum distance of the rocket above the surface of the planet? 
Consider whether your analysis also applies to the limiting case of (J ~ 0. 

P89** Two identical small magnets of moment 11 are glued to opposite 
ends of a wooden rod of length L, one labelled C, parallel to the rod, and 
the other labelled D, perpendicular to it. 

L 

[d. 0 v~] 
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(i) Show that the couples that the magnets exert on each other are not 
equal and opposite. 

(ii) Ignoring the Earth's magnetic field, explain quantitatively what would 
happen if the system were freely suspended at its centre of gravity. 

P90 A point-like body of mass m and charge q is held above and close 
to a large metallic fixed plane and released when a distance d from it. How 
much time will it take for the body to reach the plane? Ignore gravity. 

P91 * A plastic ball, of diameter 1 em and carrying a uniform charge 
of 10-8 C, is suspended by an insulating string with its lowest point 1 em 
above a large container of brine (salted water). As a result, the surface of 
the water below the ball wells up a little. 

How large is the rise in water level immediately below the ball? Ignore 
the effect of surface tension, and take the density of salted water to be 
1000 kg m-3. 

P92 A point charge is at rest inside a thin metallic spherical shell, but is 
not at its centre. What is the force acting on the charge? 

P93 Boron atoms of mass number A = 10 and a beam of unidentified 
particles, moving in opposite directions with the same (non-relativistic) speed, 
are made to collide inside an ion accelerator. The maximum scattering angle 
of the boron atoms is found to be 30°. What kind of atoms does the particle 
beam consist of? 

P94 A billiard ball rolling without slipping hits an identical, stationary 
billiard ball in a head-on collision. Describe the motion of the balls after 
the collision. Prove that the final state does not depend on the coefficient of 
sliding friction between the balls and the billiard table. (Rolling friction is 
negligible.) 

P95* A long slipway, inclined at an angle octo the horizontal, is fitted with 
many identical rollers, consecutive ones being a distance d apart. The rollers 
have horizontal axles and consist of rubber-covered solid steel cylinders each 
of mass m and radius r. Planks of mass M, and length much greater than d, 
are released at the top of the slipway. 
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Find the terminal speed Vmax of the planks. Ignore air resistance and 
friction at the pivots of the rollers. 

P96 A tablecloth covers a horizontal table and a steel ball lies on top of 
it. The tablecloth is pulled from under the ball, and friction causes the ball 
to move and roll. 

~ r"i"l ====0!!::::·~=-----., 
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What is the ball's speed on the table when it reaches a state of rolling 
without slipping? (Assume that the table is so large that the ball does not 
fall off it.) 

P97* If the law were changed so that traffic in Great Britain travelled 
on the right-hand side of the road (instead of on the left), would the length 
of the day increase, decrease, or be unaltered? 

P98 In a physics stunt, two balls of equal density, and radii rand R = 2r, 
are placed with the centre of the larger one at the middle of a cart of mass 
M = 6 kg and length L = 2 m. The mass of the smaller ball is m = 1 kg. The 
balls are made to roll, without slipping, in such a way that the larger ball 
rests on the cart, and a straight line connecting their centres remains at a 
constant angle 4> = 60° to the horizontal. The cart is pulled by a horizontal 
force in the direction shown in the figure. 

(i) Find the magnitude of the force F. 
(ii) How much time elapses before the balls fall off the cart? 

P99** The following equipment can be seen in the Science Museum in 
Canberra, Australia. A disc of radius R has been cut from the centre of a 
horizontal table, and then replaced into its original place mounted on a axle. 
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As illustrated in the figure, the disc is spun and a solid rubber ball is 
rolled onto the table. When it reaches the spinning disc, the ball leaves its 
straight-line course and follows a curve. On leaving the disc, it continues its 
original course, rolling without slipping, along a straight line. The final speed 
of the ball is the same as it was before it reached the disc. 

What are the conservation principles underlying this motion? 

PlOO A thin ring of radius R is made of material of density p and 
Young's modulus E. It is spun in its own plane, about an axis through its 
centre, with angular velocity w. Determine the amount (assumed small) by 
which its circumference increases. 

PlOt* A light, inelastic thread is stretched round one-half of the circum­
ference of a fixed cylinder as shown in the figure. 

A ~ 

0 
..... 

B 
~ 

~ 

As a result of friction, the thread does not slip on the cylinder when the 
magnitudes of the forces acting on its ends fulfil the inequality 

1 
2FA::;; FB::;; 2FA. 

Determine the coefficient of friction between the thread and the cylinder. 

P102** Charlie is a first-year student at university, studying integral 
calculus in mathematics. As an exercise, he has to determine the position 
C of the centre of mass of a semicircular arc which has radius R and a 
homogeneous mass distribution. 
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His younger sister, Jenny, only attends secondary school, but is studying 

rotation in physics. She eagerly watches the calculations of her brother, but 

as she has never heard of integral calculus, she does not understand much 

of it. The only clear thing to her is the problem itself. 

After thinking and calculating for a while, she calls out: 'I have got the 

result, and I can determine not only the position of the centre of mass of a 

semicircle but also that of any part of a circle or any sector of it!' 

How has she done it? 

P103* A table of height 1 m has a hole in the middle of its surface. A 

thin, golden chain necklace, of length 1 m, is placed loosely coiled close to 

the hole, as shown in the figure. 

One end of the chain is pulled a little way through the hole and then 

released. Friction is negligible, and, as a result, the chain runs smoothly 

through the hole with increasing speed. After what times will the two ends 

of the chain reach the floor? 

P104* A flexible chain of uniform mass distribution is wrapped tightly 

round two cylinders so that its form is that of a stadium running-track, i.e. 

it consists of two semicircles joined by two straight sections. The cylinders 

are made to rotate and cause the chain to move with speed v. 

V--?>-

-v 

For some reason, the chain suddenly slips off the cylinders and falls 

vertically. How does the shape of the chain vary during the fall? 

According to Steve, it takes a circular shape because of the centrifugal 

force. Bob accepts this point, but he considers that the initially 'elliptical' 

chain will be deformed beyond the circular by this effect and become a 

vertical ellipse with its new major axis at right angles to the original one. He 

expects that this process will repeat itself and that the chain shape will cycle 
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between the two 'ellipses'. Frank guesses that the chain retains its original 
shape, but he cannot give any reasons for his guess. Who is right- or are 
they perhaps all wrong? 

P105** A heavy, flexible, inelastic chain of length L is placed almost 
symmetrically onto a light pulley which can rotate about a fixed axle, as 
shown in the figure. 

What will the speed of the chain be when it leaves the pulley? 

P106* A long, heavy, flexible rope with mass p per unit length is stretched 
by a constant force F. A sudden movement causes a circular loop to form at 
one end of the rope. In a manner similar to that in which transverse waves 
propagate, the loop runs (rolls) along the rope with speed cas shown in the 
figure. 

(i) Calculate the speed c of the loop. 
(ii) Determine the energy, momentum and angular momentum carried 

by a loop of angular frequency ro. What is the relationship between 
these quantities? 

P107 Sand falls vertically at a rate of 50 kg s-1 onto a horizontal 
conveyor belt moving at a speed of 1 m s-1, as shown in the figure. 
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What is the minimum power output of the engine which drives the belt? 
How is the work done by the engine accounted for? 

P108** A fire hose of mass M and length L is coiled into a roll of radius 
R (R ~ L). The hose is sent rolling across level ground with initial speed 
vo (angular velocity vo/ R), while the free end of the hose is held at a fixed 
point on the ground. The hose unrolls and becomes straight. 

M 

F 
~ 
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(i) How much time does it take for the hose to completely unroll? 
(ii) The speed of the roll continually increases and its acceleration a is 

clearly a vector pointing in the same direction as its velocity. On 
the other hand, the vector resultant of the horizontal external forces 
(frictional force plus the restraining force at the fixed end of the hose) 
points in the opposite direction. How are these two facts consistent 
with Newton's second law? 

(To simplify the analysis, suppose the initial kinetic energy of the roll to be 
much higher than its potential energy (vo ~ jiR), thus allowing the effect 
of gravity to be neglected. Assume further that the hose can be considered 
as arbitrarily flexible, and that the work necessary for its deformation, air 
resistance and rolling resistance can all be neglected.) 

P109 Where is gravitational acceleration greater, on the surface of the 
Earth, or 100 km underground? Take the Earth as spherically symmetrical. 
The average density of the Earth is 5500 kg m-3, and that of its crust is 
3000 kg m-3. (The depth of the crust may be assumed to be at least 100 km.) 

PllO* The Examining Institute for Cosmic Accidents (EXINCA) sent 
the following short report to one of its experts: 

A spaceship of titanium-devouring little green people has found a perfectly 
spherical asteroid. A narrow trial shaft was bored from point A on its surface 
to the centre 0 of the asteroid. This confirmed that the whole asteroid is 
made of homogeneous titanium. At that point, an accident occurred when 
one of the little green men fell off the surface of the asteroid into the trial 
shaft. He fell, without any braking, until he reached 0, where he died on 
impact. However, work continued and the little green men started secret 
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excavation of the titanium, in the course of which they formed a spherical 
cavity of diameter AO inside the asteroid, as illustrated in the figure. 

A A 

0 

Then a second accident occurred- another little green man similarly fell 
from point A to point 0, and died. 

EXINCA asked the expert to calculate the ratio of the impact speeds and 
the ratio of the times taken to fall from A to 0 by the two unfortunate little 
men. What figures did the expert give in her reply? 

Plll* The titanium-devouring little green people of the previous prob­
lem continued their excavating. As a result of their environmentally de­
structive activity, half of the asteroid was soon used up and, as shown in 
the figure, only a regular hemisphere remained. The excavated material was 
carried away from the asteroid. 

What is the gravitational acceleration at the centre of the circular face of 
the remaining hemisphere if the gravitational acceleration at the surface of 
the original (spherical) asteroid was g0 = 9.81 em s-2 ? 

P112* The little green titanium-devouring people found another titanium 
asteroid with a radius of 10 km and a homogeneous mass distribution. They 
started to excavate and to convey the material of the asteroid to the surface. 
The excavation of the metal was effected by boring shafts along a strip 
1 m wide round the equator of the asteroid until they had cut the asteroid 
completely in two. Then the accident happened; the props separating the 
two hemispheres broke and the asteroid collapsed. 
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The experts from EXINCA need to calculate the total force exerted on the 
props just before they collapsed. Please help them. 

P113• A metal sphere, of radius R and cut in two along a plane whose 
minimum distance from the sphere's centre is h, is uniformly charged by a 
total electric charge Q. What force is necessary to hold the two parts of the 
sphere together? 

P114 A small positively charged ball of mass m is suspended by an 
insulating thread of negligible mass. Another positively charged small ball is 
moved very slowly from a large distance until it is in the original position of 
the first ball. As a result, the first ball rises by h. How much work has been 
done? 

h j 
f 

P115** Hydrogen gas is stored at high pressure in a small, spherical 
container. The gas is introduced into a light balloon and its pressure becomes 
equal to the external atmospheric pressure. Is it possible that the balloon 
could lift the container in its final state? Assume that the temperature of the 
gas remains constant. 

P116 In olden times, people used to think that the Earth was flat. Imagine 
that the Earth is indeed not a sphere of radius R, but an infinite plate of 
thickness H. What value of H is needed to allow the same gravitational 
acceleration to be experienced as on the surface of the actual Earth? (Assume 
that the Earth's density is uniform and equal in the two models.) 

P117• Electrical charges are evenly distributed along a long, thin insu­
lating rod AB. 

Show that at an arbitrary point C (see figure), the electric field due to the 
rod points in the direction of the bisector of angle ACB. 
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P118 Using the result of the previous problem, determine the direction 
and magnitude of the electric field in a plane which is perpendicular to a 
long, charged rod, and contains one of the rod's endpoints. 

P119 At the beginning of nineteenth century the magnetic field of wires 
carrying currents was the focus of investigations in physics, both experimen­
tally and theoretically. A particularly interesting case is that of a very long 
wire, carrying a constant current I, which has been bent into the form of a 
'V', with opening angle 28. 

~I 

p 

d 

According to Ampere's computations, the magnitude B of the magnetic 
field at a point P lying outside the 'V', but on its axis of symmetry and 
at a distance d from its vertex, is proportional to tan(O /2). However, for 
the same situation, Biot and Savart suggested that the magnetic field at P 
might be proportional to e. In fact they attempted to decide between the 
two possibilities by measuring the oscillation period of a magnetic needle as 
a function of the 'V' opening angle. However, for a range of e values, the 
predicted differences were too small to be measured. 

(i) Which formula might be correct? 
(ii) Find the proportionality factor in this formula and guess the most 

likely factor appearing in the other one. 

P120** A direct current flows in a solenoid of length L and radius R, 
(L ~ R), producing a magnetic field of magnitude Bo inside the solenoid. 

~cco:o:•··· 
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(i) What is the strength of the magnetic field at the end of the coil, i.e. 
at the point P shown in the figure? 
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(ii) What is the magnetic flux at the end of the coil, i.e. through a virtual 
disc of radius R centred on P? 

(iii) Sketch the magnetic field lines in the vicinity of P. 

P121 The inner surfaces of two close parallel insulating plates are each 
given a uniform charge of +Q. What force is required to hold the plates 
together? 

P122 Two parallel plate capacitors differ only in the spacing between 
their (very thin) plates; one, AB, has a spacing of 5 mm and a capacitance of 
20 pF, the other, CD, has a spacing of 2 mm. Plates A and C carry charges of 
+ 1 nC, whilst B and D each carry -1 nC. What are the potential differences 
VAB and V CD after the capacitor CD is slid centrally between and parallel 
to the plates of AB without touching them? Would it make any difference if 
CD were not centrally placed between A and B? 

P123* The distance between the plates of a plane capacitor is d and the 
area of each plate is A. As shown in the figure, both plates of the capacitor 
are earthed and a small body carrying charge Q is placed between them, at 
a distance x from one plate. 

A 

d 
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What charge will accumulate on each plate? 

P124* A point-like electric dipole is placed between the earthed plates of 
the plane capacitor discussed in the previous problem. Its dipole momentum 
vector p is perpendicular to the plates and the distances of the dipole from 
the plates are x and d - x, respectively. 

How does the charge which accumulates on each of the plates depend on 
x? (Ignore edge effects.) 

P125* The refractive index of the medium within a certain region, x > 0, 
y > 0, changes with y. A thin light ray travelling in the x-direction strikes 
the medium at right angles and moves through the medium along a circular 
arc. 

z 7 ly 
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How does the refractive index depend on y? What is the maximum possible 
angular size of the arc? 

P126 A compact disc (CD) contains approximately 650 MB of informa­
tion. Estimate the size of one bit on a CD using an ordinary ruler. Confirm 
your estimate using a laser beam. Can you suggest the shape of one unit of 
information? 

P127 When a particular line spectrum is examined using a diffraction 
grating of 300 lines mm-1 with the light at normal incidence, it is found 
that a line at 24.46° contains both red (640-750 nm) and blue/violet (360-
490 nm) components. Are there any other angles at which the same thing 
would be observed? 

P128* A parallel, thin, monochromatic laser beam falls on a diffraction 
grating at normal incidence. How does the interference pattern it produces 
on a viewing screen change if the grating is rotated through an angle 4> < 90° 
around an axis, which is 

(i) parallel to the lines of the grating; or 
(ii) perpendicular to the lines of the grating? 

P129 Two floating objects are attracted to each other as the result of 
surface tension effects, irrespective of whether they are floating on water or 
on mercury. Explain why this is so. 

P130* Water in a clean aquarium forms a meniscus, as illustrated in the 
figure. 

h 
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Calculate the difference in height h between the centre and the edge of the 
meniscus. The surface tension of water is y = 0.073 N m-1. 

P131* Is it possible to have a (spherical) drop of water that could 
evaporate without taking up heat or losing internal (thermal) energy? 

P132** Small liquid drops of various sizes are in a closed container, to 
whose walls the liquid does not adhere. Over a sufficiently long time, the 
size of the smallest drops is found to decrease whilst that of the larger ones 
increases, until finally only one large drop remains in the container. What is 
the explanation for this phenomenon? 
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P133 A horizontal frictionless piston, of negligible mass and heat capac­
ity, divides a vertical insulated cylinder into two halves. Each half of the 
cylinder contains 1 mole of air at standard temperature and pressure PO· 

A load of weight W is now suspended from the piston, as shown in the 
figure. It pulls the piston down and comes to rest after a few oscillations. 
How large a volume does the compressed air in the lower part of the cylinder 
ultimately occupy if W is very large? 

P134* How high could the tallest mountain on Earth be? And on Mars? 

P135** The sealed lower half of a straight glass tube, of height 152 em, 
is filled with air. The top half contains mercury and the top of the tube 
is left open. The air is slowly heated. How much heat has been trans­
ferred to the air by the time all the mercury has been pushed out of the 
tube? 

Make a plot showing how the molar heat of the enclosed air changes with 
its volume during the process. (Atmospheric pressure is 760 mm Hg.) 

P136 Vulcanism is very common in Iceland, but glaciers cover 11 per cent 
of its surface area. This is why volcanic eruptions quite often occur under 
glaciers, as one did in October 1996 under Vatnajokull, Europe's largest 
glacier. At the site of the eruption the glacier was 500 m thick and more or 
less smooth and flat. After a day's activity the visible sign of the eruption 
was a deep crater-like depression on the surface of the ice cap, in the 
form of a upside-down cone with a depth of 100 m and a diameter of 
1 km. Explain the formation of the depression. What would have been 
found under the ice crater at this time? Try to predict the subsequent 
events. 

P137* The most famous geyser in Yellowstone National Park is Old 
Faithful. This geyser can be considered as a large underground cavity with 
a narrow flue leading to the surface. 
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The surrounding earth is warm as a result of residual volcanic activity 
and boils the water in the cavity. After coming to the boil, the water in the 
flue is expelled, and approximately 44 tons of steam leave the geyser in 4 
minutes. After the eruption, underground springs refill the cavity and the 
flue to ground level in 20-30 minutes, and the process then repeats itself. An 
eruption occurs every 90 minutes. 

Geological experiments show that the underground temperature in this 
area increases by 1 oc for each metre of depth. Determine the minimum 
distance below the surface at which the cavity is situated. If the cavity is 
assumed to be located at this minimum depth, what is its volume? 

P138 The air above a large lake is at -2 °C, whilst the water of the lake 
is at 0 °C. Assuming that only thermal conduction is important, and using 
relevant data selected from that given below, estimate how long it would 
take for a layer of ice 10 em thick to form on the lake's surface. 
Data: 

Thermal conductivity of water, 
Thermal conductivity of ice, 
Specific latent heat of fusion of ice, 
Density of water, 
Density of ice, 

},w = 0.56 W m-1 K-1 

Ai = 2.3 W m-1 K-1 

Li = 3.3 X 105 1 kg-1 

Pw = 1000kgm-3 

Pi= 920kgm-3 

P139 If it takes two days to defrost a frozen 5-kg turkey, estimate how 
long it would take to defrost an 8-tonne Siberian mammoth. 

P140* A 0.6-kg block of ice at -10 oc is placed into a closed empty 
1 m3 container, also at a temperature of -10 oc. The temperature of the 
container is then increased to 100 oc. How much greater is the heat required 
than that necessary to raise the empty container alone to that temperature? 

P141* A strong-walled container is half-filled with water. The other half 
contains air, initially at standard temperature and pressure. The container 
is closed and slowly heated. When does the water in the container start 
boiling? In what state(s) does the water exist, as the temperature rises? 

P142 Two cobwebs each of length t and under a tension F are contained 
in a glass case at temperature T. Because they are struck by air molecules 
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they undergo random vibrations. What is the ratio of the amplitudes of these 
motions if cobweb A has twice the mass of cobweb B? 

P143 Outdoors at night, water vapour often condenses on cobwebs, on 
which we can find periodical lines of very small identical water drops. Find 
the minimum distance between these drops. 

P144* Imagine a cylindrical body that can move without friction along 
a straight wire parallel to its axis of symmetry, as illustrated in the figure. 

0-
Tiny particles moving horizontally at speed vo bombard the body uniformly 

from both left and right. Collisions with the right end of the cylinder are 
perfectly elastic whilst those with the left are perfectly inelastic, though the 
particles do not stick to the cylinder after the collision. What is the speed of 
the cylinder 

(i) after a long time, and 

(ii) after a very long time? 

P145 A totally black spherical space probe is very far from the solar 
system. As a result of heating by a nuclear energy source of strength I 
inside the probe, its surface temperature is T. The probe is now enclosed 
within a thin thermal protection shield, which is black on both sides and 
attached to the probe's surface by a few insulating rods. Find the new 
surface temperature of the probe. Determine also the surface temperature 
which would result from using N such shields. 
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P146* Two thermally insulated containers hold identical masses of water. 
The water is at temperature T1 in one of them, but at temperature T2, 
(T2 > TJ), in the other. What is the maximum work that this system can 
do if it is used as a heat engine? Take the specific heat of water as constant 
over the working range. 

P147 What is the change of entropy that occurs when two moles 
of helium and three moles of oxygen, both at s.t.p. (T ~ 273 K and 
P ~ 1.01 x 105 Pa) and in adjacent volumes, are allowed to mix by removing 
the partition between them? 

P148 By slowly pumping air into a 10-litre container, its pressure is 
increased to ten times atmospheric pressure. How much work is done during 
this process if the displacement of the piston in the pump is 1 litre? The 
walls of the container and pump are all good heat conductors and so the 
temperature can be taken as constant. 

P149 A distant planet is at a very high electric potential compared with 
the Earth. A metal space ship is sent from Earth for the purpose of making 
a landing on the planet. Is this mission dangerous? What happens when the 
astronauts open the door of the space ship and step onto the surface of the 
planet? 

P150 By what percentage does the capacitance of a spherical capacitor 
change when its surface is dented in such a way that its volume decreases 
by 3 per cent? 

P151 * A closed body, whose surface F is made of metal foil, has an 
electrical capacitance C with respect to an 'infinitely distant' point. The foil 
is now dented in such a way that the new surface F* is entirely inside or on 
the original surface, as shown in the figure. 

Prove that the capacitance of the deformed body is less than C. 
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P152 The plates of a parallel-plate capacitor have surface area A, and 
are initially separated by d. They are connected to a voltage V0 . What work 
is required to pull the plates apart to a separation of 2d? How does the 
energy of the capacitor change during the process? 

P153* What is the change in length of the spiral spring shown in the 
figure, which has N turns, radius R, length x0 and spring constant k, when 
a current Io is made to flow through it? 

2R 

~L 
P154* A very short magnet A of mass m is suspended horizontally by 

a string of length t = 1 m. Another very short magnet B is slowly brought 
closer to A in such a way that the axes of the magnets are always on the 
same horizontal level as each other. When the distance between the magnets 
is d = 4 em, and magnet A is s = 1 em away from its initial position, A 

spontaneously moves to attach itself to B. 

A B 
~ 

s' d ' 

(i) The dependence on distance of the interaction force between the 
magnets is given by the relation Fmagnet(x) = ±K/xn, the sign de­
pending on the relative orientation of the magnets. Using the given 
data, find the value of exponent n. 

(ii) Magnet B is placed in a vertical glass tube, which is closed at the 
bottom. Magnet A is then placed above it in the tube in such an 
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orientation that the magnets repel each other. Although magnet A 
may tend to reverse its direction within the tube, it is constrained by 
the tube and cannot do so. Find the distance apart of the magnets 
in static equilibrium. 

P155 A battery consists of N identical cells, each of e.m.f. t!. Is it true 
that the energy wasted when using the battery to charge a capacitor through 
a resistor can be reduced by charging it in N stages? That is by connecting 
it first across a single cell, and then across two cells, and so on, rather than 
across the whole battery in a single step. 

P156 An 'energy-generating device' consists of a parallel-plate capacitor 
with nearly all the space between the plates filled with an oil of relative 
permittivity e > 1. Calculate the stored energy in the capacitor when its 
plates are given charges of ±Q. The oil, which cannot come into direct 
contact with the plates, is now poured out and replaced by air; calculate the 
new stored energy and show that it has increased. Explain the catch in this 
world-beater! 

Pl57 An insulating sheet of relative permittivity Br is slowly slid between 
the plates of a parallel-plate capacitor, completely filling the space between 
the plates. What force acts on the sheet if (i) the charge, or (ii) the voltage 
of the capacitor is kept constant during the process? 

How does the insulating sheet affect the energy of the capacitor in cases 
(i) and (ii)? 

Pl58 Each element in the finite chain of resistors shown in the figure is 
1 n. A current of 1 A flows through the final element. 

=o:IJ~IA 
What is the potential difference V across the input terminals of the chain? 

What is the equivalent resistance of the chain? How does the equivalent 
resistance change if one or two more resistors are connected to it? Compare 
this result with the equivalent resistance of an 'infinite' chain. 

P159 All the elements in the 'infinite' grid shown in the figure are 
of the same resistance R. What is the equivalent resistance between two 
neighbouring grid points? 
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What would be the equivalent capacitance between two neighbouring grid 
points if all the elements in the grid were capacitors with capacitance C? 
What would be the equivalent inductance if the elements were inductors of 
inductance L? 

P160* A grid in the shape of a regular polyhedron (tetrahedron, cube, 
dodecahedron, etc.) is made up of identical, say 1-Q, resistors. What is the 
equivalent resistance between two neighbouring grid points? 

P161 The previous two problems were calculations about electrical net­
works consisting of identical resistors (an infinite grid or a regular poly­
hedron). Find the equivalent resistance of a grid between two neighbouring 
grid points, if the resistor joining them is removed. 

P162* A plane divides space into two halves. One half is filled with a 
homogeneous conducting medium and physicists work in the other. They 
mark the outline of a square of side a on the plane and let a current Io in 
and out at two of its neighbouring comers using fine electrodes. Meanwhile, 
they measure the p.d. V between the two other comers. This is illustrated in 
the figure. 

How can they calculate the resistivity of the homogeneous medium using 
this data? 

P163* You are given a large complex electrical circuit containing a lot of 
resistors and other passive elements and wish to determine the resistance of 
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a particular resistor in the circuit without unsoldering it (i.e. without taking 
it out of the circuit). A battery, an ammeter and a voltmeter, all of high 
quality, are provided. How would you carry out the measurement? 

P164* All the sides of a cube are made of 1-Q resistors. What is the 
equivalent resistance of the cube between the two endpoints of one of its 
body diagonals? 

Examine one-, two- and four-dimensional 'cubes' as well. Find a general 
formula for the n-dimensional case. 

P165 A current of 1 rnA flows through a wire made of a piece of copper 
and a piece of iron of identical cross-sections welded end-to-end as shown 
in the figure. 

1 rnA -Cu_IEFe 
How much electric charge accumulates at the boundary between the two 

metals? How many elementary charges does this correspond to? 

P166 The Earth's magnetic field approximates that of a dipole with a 
field of 6 x 10-5 T at the North Pole. Over London, the magnetic flux density 
is 5 x 10-s T and the angle of dip is 66°. 

The wing span of a jumbo jet is 80 m, its length 60 m, and its depth 8 m. 
Estimate the potential differences that could be detected over the surface of 
the jet when it flies horizontally at 720 km h-1 : 

(i) over the North Pole, 
(ii) northwards over the Equator, 

(iii) eastwards along the Equator, 
(iv) northwest over London. 

P167 A homogeneous field of magnetic induction 8 is perpendicular to 
a track of gauge t which is inclined at an angle rx to the horizontal. A 
frictionless conducting rod of mass m straddles the two rails of the track as 
shown in the figure. 

L 
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How does the rod move, after being released from rest, if the circuit formed 
by the rod and the track is closed by: 

(i) a resistor of resistance R, 
(ii) a capacitor of capacitance C, or 
(iii) a coil of inductance L? 

P168* One end of a horizontal track of gauge t and negligible resis­
tance, is connected to a capacitor of capacitance C charged to voltage Vo. 
The inductance of the assembly is negligible. The system is placed in a 
homogeneous, vertical magnetic field of induction B, as shown in the figure. 

s X X X X B X 

c~ X X X X X 

R F 

X X X X X 

m 
Vo X X X X X 

A frictionless conducting rod of mass m and resistance R is placed per­
pendicularly onto the track. The polarity of the capacitor is such that the 
rod is repelled from the capacitor when the switch is turned over. 

(i) What is the maximum velocity of the rod? 
(ii) Under what conditions is the efficiency of this 'electromagnetic gun' 

maximal? 

P169 A resistor and an inductor in series are connected to a battery 
through a switch. 

L R 

L:J 
v 

After the switch has been closed: 
(i) What is the magnitude of the current flowing when the rate of the 

increase of magnetic energy stored in the coil is at a maximum? 
(ii) When will the Joule heat dissipated in the resistor change at the 

fastest rate? 

P170* (i) Sketch qualitatively, as a function of x = wjw0, the magnitude 
of the current drawn from the source by the two circuits shown in the figure; 
here roo= (LC)-112. 
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L L 

(a) (b) 

(ii) Using three or more of the components shown in figure (a), construct 
five new circuits, each of which shows current resonance (maximum current 
drawn from the source at some frequency), but all at different frequencies. 

P171 * The circuit shown in the figure- consisting of three identical lamps 
and two coils- is connected to a direct current source. The ohmic resistance 
of the coils is negligible. 

rrn 
After some time, switch S is opened. What are the relative brightnesses of 

the three lamps immediately afterwards? 

P172 The turns of a solenoid, designed to provide a given magnetic flux 
density along its axis, are wound to fill the space between two concentric 
cylinders of fixed radii. How should the diameter d of the wire used be 
chosen so as to minimise the heat dissipated in the windings? 

P173* A solid metal cylinder rotates with angular velocity w about its 
axis of symmetry. The cylinder is in a homogeneous magnetic field B parallel 
to its axis. What is the resultant charge distribution inside the cylinder? Is 
there an angular velocity for which the charge density is everywhere zero? 

P174* Consider the result of the previous problem using a rotating frame 
of reference, fixed to the cylinder. Describe the electric and magnetic fields 
in this rotating (non-inertial) frame of reference. 

(Assume that the angular velocity of rotation is much smaller than the 
cyclotron frequency, roo = eB jm, where e and m are the elementary charge 
and mass of the electron, respectively.) 
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P175* Jack and Jill have been set a similar task to that in P173. They 
have to calculate what charge distribution is formed in a metal bicycle 
spoke, rather than a metal cylinder, when it is rotated in a homogeneous 
magnetic field. The spoke rotates about a perpendicular axis at one end of 
it. 

Jill knows the solution to P173, and she simply adopts it. Ignoring the 
electron mass she concludes that the charge density is p = 2e0Bw. Jack's 
solution is based on the fact that a bicycle spoke is a thin metal rod; and so 
he considers the problem to be one-dimensional. The induced electric field is 
E(r) = rBw at a distance r from the rotational axis. 

Applying Gauss's law to a short section of the spoke of length flr, Jack 
finds the charge density: (p/eo)Aflr = flEA = Bwflr x A, where A is the 
cross-sectional area of the spoke. From this equation he derives: p = e0Bw, 
which is only ha?f of Jill's value. 

Comment on these differing results. 

P176 A circular metal ring of radius of r = 0.1 m rotates about a 
vertical diameter with constant angular velocity. As shown in the figure, a 
small magnetic needle that can turn freely about a vertical axis sits in the 
middle of the ring. 

When the ring is stationary, the needle points in the direction of the 
horizontal component of the Earth's magnetic field. However, when it rotates 
at the rate of ten turns per second, the magnet deviates by an average of 2° 
from this position. 

What is the electrical resistance R of the ring? 

P177 A uniform thin wire of length 2na and resistance r has its ends 
joined to form a circle. A small voltmeter of resistance R is connected by 
tight leads of negligible resistance to two points on the circumference of the 
circle at angular separation (), as shown in the figures. 
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(a) (b) 

A uniform magnetic flux density perpendicular to the plane of the circle 
is changing at a rate B. What will the reading of the voltmeter be if the 
voltmeter is positioned: 

(a) at the centre of the circle, and 
(b) on the chord joining the two points of attachment? 

P178* A 'twisted' circular band (called a Moebius strip) is made from a 
strip of paper of length L and width d. A wire running along the edge of 
the strip is connected to a voltmeter, as shown in the figure. 

d 

What does the voltmeter register when the strip is placed in a homogeneous 
magnetic field which is perpendicular to the plane of the strip and changes 
uniformly with time, i.e. B(t) = kt? 

P179 A long solenoid contains another coaxial solenoid (whose radius 
R is half of its own). Their coils have the same number of turns per unit 
length and initially both carry no current. At the same instant currents start 
increasing linearly with time in both solenoids. At any moment the current 
flowing in the inner coil is twice as large as that in the outer one and their 
directions are the same. As a result of the increasing currents a charged 
particle, initially at rest between the solenoids, starts moving along a circular 
trajectory (see figure). What is the radius r of the circle? 

I 
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P180 Charge Q is uniformly distributed on a thin insulating ring of 
mass m which is initially at rest. To what angular velocity will the ring be 
accelerated when a magnetic field B, perpendicular to the plane of the ring, 
is switched on? 

P181* A metal disc of radius r can rotate with negligible friction inside 
a long, straight coil, about a shaft parallel to the axis of symmetry of the 
coil. One end of the coil wire is connected to the edge of the disc and the 
other to the shaft. The coil has ohmic resistance R and contains n turns per 
unit length. It is placed so that its axis is parallel to the Earth's magnetic 
field vector Bo. 

What current flows through the ammeter shown in the figure if the disc 
rotates with angular frequency w? Plot the current as a function of w for 
both directions of rotation. 

Prove that the power needed to rotate the disc is equal to the rate of Joule 
heating generated by the ohmic resistance of the coil. 

P182* A thin superconducting (zero resistance) ring is held above aver­
tical, cylindrical magnetic rod, as shown in the figure. The axis of symmetry 
of the ring is the same to that of the rod. The cylindrically symmetrical mag­
netic field around the ring can be described approximately in terms of the 
vertical and radial components of the magnetic field vector as Bz = Bo( 1-IXz) 
and B, = B0[3r, where B0, IX and [3 are constants, and z and r are the vertical 
and radial position coordinates, respectively. 

B, 
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Initially, the ring has no current flowing in it. When released, it starts to 
move downwards with its axis still vertical. From the data below, determine 
how the ring moves subsequently? What current flows in the ring? 
Data: 

Properties of the ring: 

Initial coordinates of 
the centre of the ring: 

Magnetic field constants: 

mass 
radius 
inductance 

m=50mg 
ro = 0.5cm 
L = 1.3 x 10-8 H 

z=O 
r=O 

Bo = 0.01 T 
ex= 2m-1 

f3=32m- 1 

P183* A small, electrically charged bead can slide on a circular, friction­
less, insulating string. A point-like electric dipole is fixed at the centre of the 
circle with the dipole's axis lying in the plane of the circle. Initially the bead 
is on the plane of symmetry of the dipole, as shown in the figure. 

. . : . 

How does the bead move after it is released? Find the normal force 
exerted by the string on the bead. Where will the bead first stop after being 
released? How would the bead move in the absence of the string? Ignore the 
effect of gravity, assuming that the electric forces are much greater than the 
gravitational ones. 

P184* A point-like body of mass m and charge q, initially at rest, is 
released in a homogeneous gravitational field. What path does the body 
follow if it is also acted upon by a homogeneous horizontal magnetic field? 

P185* A long, thin, vertical glass tube is surrounded by a much wider 
coaxial glass tube of outer radius r. Wound on the wider tube there are 
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many separate circular conducting loops, each of resistance R and spaced a 
distance h apart. 

If a small magnet bar of mass m and magnetic moment 11 is dropped into 
the thin tube, after a relatively short time it reaches a constant terminal 
velocity vo, with which it then sinks uniformly. 

In the course of each later investigation only one the five quantities 
mentioned above (m,f.J,,h,R,r) is doubled, whilst the other four remain at 
their original values. By what factor does the terminal velocity of the magnet 
change in each case? Ignore mechanical friction and air resistance, as well 
as the self- and mutual inductance of the conducting loops. 

P186* In a vacuum chamber a current of lOA is flowing in a long, 
straight wire, which has a very high conductivity. Electrons with an initial 
velocity vo start moving perpendicularly towards the wire from a point which 
is a radial distance ro away from the wire. Given that they cannot approach 
any closer to the wire than ro/2, determine v0. Ignore the effect of the Earth's 
magnetic field. 

P187* The distance between the plates of an initially uncharged capac­
itor is d. Parallel to its plates, there is a magnetic field of strength B, as 
shown in the figure. 

B 
X X X 

~F~v x xe,.x x 
lx X X X X X X 

X X X X X X 
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What voltage does the voltmeter connected to the plates of the capacitor 
register when an electrically neutral liquid of relative dielectric constant Br 

flows between the plates with velocity v? 

P188 The energy released by the fission of uranium nuclei would be 
higher if the uranium nucleus split into three parts rather than into two. 
Despite this, the fission of uranium only produces two nuclei. Why is 
this? 

P189* 7Be is a radioactive element with a half-life of 53.37 days. When 
isotope 7 of beryllium is heated to a few thousand degrees, its half-life 
changes. What is the explanation for this? 

P190* Part of the series of isotopes produced by the decay of thorium-
232, together with the corresponding half-lives, is given below: 

232Th ~ 228Ra ~ 228 Ac ~ 228Th ~ 224Ra ~ 220Rn ~ ... 
90 1.4Ix!Ol0y 88 5.7y 89 6.13h 90 1.91 y 88 3.64d 86 56s 

Thorium-232 and thorium-228 in equilibrium are extracted from an 
ore and purified by a chemical process. Sketch the form of the variation 
in the number of atoms of radon-220 you would expect to be present 
in w-3 kg of this material over a (logarithmic) range from w-3 to 103 

years. 

P191 Through what voltage must protons be accelerated if they are to be 
able to produce proton-antiproton pairs when they collide with stationary 
protons? The rest-mass energy of a proton is approximately 1 GeV. 

P192* How does a positron move in a Faraday cage if it is 'dropped' 
with no initial speed? Consider the positron as a classical particle, acted on 
by electrical forces and the gravitational field of the Earth, as indicated in 
the figure. 

mg 
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P193* Two positrons are at opposite corners of a square of side a = 1 em. 
The other two corners of the square are each occupied by a proton, as shown 
in the figure. 

e+o----------------·0 p 

Pb----------------6 e+ 

Initially the particles are held in these positions, but all four are released at 
the same time. What will their speeds be when they are a significant distance 
apart? The particles can be considered as classical point masses moving in 
each other's electric fields. Gravity can be ignored. 

P194 In an experiment on Compton scattering, stationary electrons are 
bombarded by photons whose energy is equal to the rest energy of an 
electron. For events in which the scattered photon and the recoil electron 
have momenta of the same magnitude, find the angle between them. What 
is the speed of the recoil electron in this case? 

P195 X-ray photons are scattered through an angle of 90° by electrons 
initially at rest. What is the change in the wavelength of the photons? 

P196 Imagine a 'classical electron' as a small, spherical ball. What is its 
minimum radius, if its electrostatic energy is not to be greater than its total 
rest energy, mc2? What is its angular velocity if its angular momentum is 
h/(4n)? To what 'equatorial speed' does this correspond, if the whole of the 
electron's rest energy is provided by the electrostatic field? 

P197* An electron is enclosed in a large rectangular box. Estimate the 
order of magnitude of the thickness of the layer (at the bottom of the box) 
which, as a result of gravitational effects, is occupied by the electron. 

P198* Classically, the Coulomb field of an atomic nucleus could confine 
an electron to that nucleus. However, the Heisenberg uncertainty principle 
prescribes such a high kinetic energy for an electron enclosed in such a small 
space that it would escape from the nucleus in any case. What would be the 
atomic number of a transuranic element able to confine an electron within 
its nucleus for a significant time, if only the element itself were sufficiently 
stable? 

P199* Show how the size of water molecules can be estimated using the 
speed of water surface (capillary) waves and the speed of sound waves in 
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water? The speed of propagation of surface waves of wavelength 1 em is 
approximately 10000 times smaller than that of sound in water. 

P200 Congratulations to the reader! You have reached the last problem 
in the book and the proper manner in which to congratulate you would be 
to drink your health in champagne. Unfortunately, this kind of recognition 
is not really practical- though we can at least make the last problem one 
about champagne. 

0 0 

The bubbles in champagne are familiar. They form almost exclusively at 
particular points in the champagne glass, and from these points they rise 
faster and faster. Why do the bubbles in champagne accelerate? 
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Hl Resolve the velocity vectors of the snails into suitable components. 
There is more than one way to do this, and they lead to different methods of 
arriving at the same solution. The equation of the path can be determined 
by expressing the velocity in polar coordinates. 

Hl Calculate the maximum possible value of the coefficient of friction 
if the object is not to stop on the table. 

H3 The solution of part (i) is trivial, since the boat is faster than the 
river. In part (ii), a suitably chosen vector addition can help determine the 
directions in which the boatman could go; the direction corresponding to 
the shortest path has still to be chosen. 

H4 Although the whole of the moving part of the carpet has unit speed, 
its centre of mass has a lower speed. The reason for this is the increasing 
mass of the moving part. 

H5 Draw the 'space-time' world lines of the snails. The result can also 
be obtained using the equivalence of different inertial frames of reference 
(Galilean symmetry). 

H6 Compare the amounts by which the centres of mass of the two worms 
are raised. 

H7 You can base your solution on the conservation of energy and the 
conditions for static equilibrium. 

H8 Determine how much additional volume is submerged if the berg is 
depressed by a small distance x. Use the flotation condition to relate the 
mass M of the berg to its overall dimensions. 

50 
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H9 The sum of the tensions in the suspension springs remains unaltered 
by parking on the pavement, and the net torque about any axis must be zero. 

HlO The trickiest part of the solution is to appreciate how frictional 
forces can balance both Jean Valjean's weight and the reaction forces of the 
walls at the same time. 

Hll The distance between the geometrical centre of the composite sphere 
and its centre of mass cannot be greater than a certain distance. Find this 
limiting distance. 

H12 Describe the motion of the ball in terms of its components perpen­
dicular and parallel to the slope. 

H13 Because of the acceleration associated with its motion, the hamster 
exerts a force on the platform. The torque resulting from this force can 
balance the torque about the pivot due to the hamster's weight. 

H14 Get a bicycle and try it. 

H15 Use Newton's law of gravitation and express the mass of the Sun 
in terms of its average density. 

H16 Compare the field produced by one of the stars at the position of the 
other, to that experienced by the Earth as a result of the Sun's gravitation. 

H17 The space probes should be launched from the Equator and directed 
eastward. 

H18 Examine the energies involved. 

H19 The centre of mass of the system, i.e. honey plus steel ball, moves 
steadily downwards. The total momentum of the system can be calculated 
using the speed of the centre of mass, and the momentum of the honey 
obtained by then subtracting that of the ball. 

H20 If the wall of the container is at a temperature different from that 
of the gas, then collisions of the gas molecules with the wall either take 
energy from the wall or give energy to it. 

H21 The difference in temperature between the two spheres arises be-
cause their centres of mass are displaced in opposite directions. 

H22 No student reading this book should need a hint. 

H23 The situation is possible - and using only two resistors! 

H24 Examine how the combined centre of gravity of the bucket and 
water changes as the water leaks away. 
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H25 Under what conditions does adding a little more water inevitably 
raise the overall centre of gravity? 

H26 Our assertion is that water does not flow into the bowl. In order to 
prove this, the effects of both the force and the torque exerted by the chain 
have to be considered. 

H27 The only unusual part of the solution is the calculation of the 
buoyancy force. 

H28 The average density of the bubble has to be the same as that of air, 
since the bubble floats. 

H29 At the end of the capillary tube, the pressure of curvature bal­
ances the difference between the pressure inside the liquid and atmospheric 
pressure. 

H30 The whole system (the current distribution and the electric field) 
is spherically symmetrical, and therefore the magnetic field also has to be. 
Consider which spherically symmetrical magnetic fields are consistent with 
the (experimentally observed) non-existence of magnetic monopoles. 

H31 Make use of the symmetry of the charge distribution. 

H32 It is not sufficient to simply compare the gravitational accelerations, 
since it isn't clear that the high-jumper would be able to take off with the 
same initial speed. The movement of the high-jumper's centre of mass during 
the jump has to analysed. 

H33 The time intervals of the motions and the lengths of the paths do 
not have to be found exactly; only the inequalities relating them need to be 
determined. 

H34 Resolving the tension in the string into radial and tangential com­
ponents, the direction of the string can be calculated using the dynamical 
conditions for uniform circular motion. 

H35 Prove that, at any instant, bodies which started at the same time, 
from the same point and slid down frictionless wires in different directions, 
all lie on the surface of a common (imaginary) sphere. 

H36 The problem can be solved in an elementary way using a rotating 
frame of reference fixed to the minute hand. 

H37 The stone moves away from the thrower until the component of its 
velocity parallel to its position vector has decreased to zero. If this never 
occurs, the condition imposed in the problem has been met. 
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H38 It is false to assume that the trajectory of the grasshopper (with the 
minimum take-off speed) just touches the trunk at its topmost point. 

H39 They clearly cannot jump directly towards each other without 
mishap, so consider jumping in some other direction whilst preserving the 
symmetry of the situation. Note that the mass of the hair is given! 

H40 The shape of the common surface of the water jets, their envelope, 
has to be determined. They start from the same place, have the same initial 
speed, and follow parabolic paths. Examine the condition for determining 
whether any water jet passes through a given point in space. 

H41 Show that 

Range= v2 [sin 20 + EQ (1 -cos 20)] , 
g mg 

and maximise with respect to 0. 

H42 The normal reactions exerted on the rod by my fingers are not 
equal in general. Thus the maximum static frictional force is smaller on one 
side than on the other, and sliding will occur there first. However, because 
of the increasing normal reaction at the finger where sliding is taking place, 
the kinetic frictional force there increases, and the moment it becomes larger 
than the static friction on the other side, slipping will stop at the first finger 
and start at the second. During the process there is alternating slipping and 
sticking at both fingers. The work done can be calculated from the length of 
each stage. 

H43 The process should be started from the top! The correct strategy 
is to slide the topmost brick as far as possible and then do the same thing 
with the two uppermost, considered as a unit, and so on downwards. 

H44 Use the balances of forces and torques acting on the plate to find 
connections between the frictional forces involved. A graphical method of 
treating the linear equations so derived is recommended. 

H45 The process has to be considered as a series of consecutive collisions. 

H46 Show that in the first collision the fraction of the initial kinetic 
energy transferred to the middle ball is 4J.LM I (J.L + M)2. 

H47 During the collision, the momentum, energy and angular momen­
tum of the system are all conserved. 

H48 Decompose the motion into that of the centre of mass and that in 
the centre of mass system. Show, by considering the conservation of energy 
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and angular momentum, that when the rope first tightens the centre of mass 
velocities of both particles are unchanged in magnitude but turned through 
n/2, with the result that they then travel parallel to the x-axis. 

H49 The usual reasoning which assumes that one-third of the basin is 
filled in 1 minute, and one-half of the basin empties in the same time, (and 
hence that ! -! = i of the basin becomes empty in 1 minute), is false. Water 
flows into the basin uniformly from the tap, but (according to Torricelli's 
law of efflux) it flows out more quickly when the water level in the basin is 
higher. 

H50 Show that the free surface is part of the paraboloid of revolution 
z = w2r2 j2g, where z is measured from the lowest point of the free surface 
and r is the radial distance from the central axis. Consider the volume of 
the air above the liquid but still inside the vessel. 

H51 In the context of mechanics, the car is not a closed system; it is in 
contact with its surroundings, in this case, the Earth. 

H52 The focal length can be obtained using the relationship between 
the lens formula and the magnification. The ratio of the brightness values 
depends not only on the size of the images, but also on the amount of light 
reaching the lens. 

H53 The apparent magnitude of the virtual image is not determined by 
the size of the image itself, but by the angle it subtends at the eye. 

H54 Obtain ng sin( 0 + c/>) ~ nw, where c/> is the angle in the glass between 
the ray and the normal to the surface at the point where it enters the prism. 

H55 No patch of light can be seen either right next to the quarter­
cylinder, or very far from it. The closer light patch is excluded by total 
internal reflection. The distance of the furthest part of the light patch can be 
determined by considering the part of the quarter-cylinder close to the table 
as a plano-convex lens. 

H56 Suppose that the sunlight falling on the Moon is diffusely reflected 
with the given coefficient. Calculate how much of it reaches unit area of the 
Earth. 

H57 The most comfortable walking rate can be related to the period of 
the human leg swinging freely like a pendulum. Running can be considered 
as a forced oscillation, with its period dependent on the moment of inertia 
of the leg and the torque applied by the muscles. 

H58 By choosing its length suitably, a simple pendulum can be made to 
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have the same angular velocity, in any position, as that of the rod pendulum 
given in the problem. Compare the periods of swing of this pendulum and 
the actual simple pendulum of the problem. The ratio of the periods of two 
simple pendulums of different lengths displaced through the same angle can 
be deduced using dimensional analysis. 

H59 Identify the physical quantities on which the power necessary for 
hovering depends. 

H60 Use conservation of energy to determine the rod's angular velocity w 
when its inclination is e, and relate the components of the reaction between 
the table and the rod to the accelerations they produce. In case (i), the 
smooth horizontal and vertical walls of the groove can exert only vertical 
and horizontal forces on the end of the rod, respectively. In case (ii), the 
edge of the table is a very small quarter-circle, so the normal force is always 
directed along the rod's axis. 

H61 When the coefficient of friction is small, the point of the pencil 
moves 'backward'. If the coefficient of friction is larger than a certain critical 
value (which can be shown to be about 0.37), the pencil moves 'forward'. 
Using the fact that kinetic friction decreases the mechanical energies, it can 
be shown that the point of the pencil never loses contact with the table. 

H62 Use the ideal gas equation to express the conservation of air mass. 
Also note that, after a sufficiently long time, the temperature of the system 
will not have changed. 

H63 Because of the surface tension (pressure of curvature) of the water, 
the pressure inside the trapped water is lower than atmospheric pressure. 

H64 Calculate the velocity of the points of the thread at any given 
moment. 

H65 Consider the ('elastic') frame of reference fixed to the thread. 

H66 Find a simple-mathematically easy to treat-trajectory, in which the 
ball reaches as high a speed as possible, and the time so gained compensates 
for the longer path involved. 

H67 From the figure you can determine the angle not given in the text. 

H68 The centre of mass (CM) of the compasses is directly below the 
attachment point. If the angle between the arms were changed, the horizontal 
position of the CM would have to remain the same, although the positions 
of the CM of the individual arms would change. Use this argument to find 
the solution to the problem with a minimum of actual calculation. 
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H69 Express the condition for equilibrium using vectors. 

H70 Note that the system as a whole has no external horizontal forces 
acting upon it. As well as keeping the centre of mass of the system fixed, you 
will need to use the law of conservation of linear momentum. You should 
be able to show that the tanker will initially move forward, but later reverse 
its direction of motion. 

It may seem surprising that the tanker alters its direction of motion, and it 
might help to first consider the following, rather than the original problem: 

A poor student and a zealous ticket collector, both of mass m, are in 
a stationary, frictionless railway carriage of mass M. When the collector 
realises that the student has no ticket, the student runs to the end of the 
carriage with the collector, who moves with speed v relative to the carriage, 
in pursuit. The student stops at the end of the carriage and jumps out. Find 
the velocity of the carriage when the ticket collector reaches the open door, 
stops there and watches the student making his escape. 

H71 Consider the motion in the frame of reference of the common centre 
of mass of the beads. 

H72 In the case of the inelastic collisions, after a sufficiently long time, 
a growing mass of the coalescing beads reaches a constant velocity. Apply 
Newton's law of motion to this cluster. For elastic collisions, first examine 
what would happen if the external force acted only until the first collision 
had occurred. 

H73 Consider what is happening to the centre of gravity of the table 
plus jug plus beer. 

H74 The viscosity of the water can be taken to be small and the change in 
potential energy of the liquid should be neglected compared with the kinetic 
energy. Note that the gutter cannot change the horizontal momentum of the 
jet of water and Bernoulli's equation is applicable (several times!). 

H75 Obtain expressions for the changes, over a very short time interval 
M, in the potential and kinetic energies of the initially stationary liquid, as 
it starts to move with (initial) acceleration a. 

H76 Experience indicates that the rate at which the sand runs through 
the constriction does not depend upon the amount of sand in the upper part 
of the egg-timer. The explanation for this is that, due to the friction between 
the grains of sand, the average speed of the emerging sand depends only 
on its nearby environment, primarily on the diameter of the hole, and not 
on effects originating from remote parts. (This is not true for liquids, where 
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pressure effects are transmitted through large distances; see P49.) Thus the 
time that the sand takes to run through the hole has to be proportional 
to the cube of the initial height H of the sand. Find the other quantities 
on which this time may depend and then apply the method of dimensional 
analysis. 

H77 For small displacements the net force exerted on the bob is F(x) ~ 
-kx3 I tij, where k is the spring constant. Using dimensional analysis one can 
deduce the dependence of the period on the spring constant, the mass of the 
bob and the amplitude of its motion. 

H78 In the given circumstances, both the horizontal and the vertical 
motion of the body can be approximated by harmonic oscillations. 

H79 Describe the motion in the (decelerating) frame of reference of the 
train. 

HSO Examine the motion in the frame of reference fixed to the wedge. 

H81 Under what conditions would a long, thin thread move uniformly 
above the Equator in a synchronous orbit, i.e. with the same angular velocity 
as the Earth? 

H82 The normal component of the acceleration of the car is an = v2 I p, 
where v is the speed of the car and p is the radius of curvature of the 
bridge. The latter can be deduced by considering the motion of a projectile; 
it follows a trajectory which has the same shape as the surface of the bridge. 

H83 Determining the radius of curvature of the track is the core of the 
solution (see H82). 

H84 In any time interval, the water carries the boat downstream by the 
same amount as the remaining distance to the mark has been reduced. 

H85 Calculate by how much the speed of the pushed child and its 
velocity component down the slope change in unit time. Find a relationship 
between the rates of change of these two quantities. 

H86 Compare the rate of decrease of the distance between the smugglers' 
ship and the coastguard's cutter, to the speed at which the latter moves away 
from the shore. 

H87 Because of the symmetry of the problem, the bodies are always at 
the corners of an ever-decreasing regular n-gon, and each of them moves 
as if only the gravitational attraction of a centrally placed single body (of 
a suitably chosen mass Mn) acted on it. The time taken for the system to 
collapse into the centre can be calculated using Kepler's third law. 
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H88 The solution needs the application of all three of Kepler's laws of 
planetary motion. 

H89 Recall the strengths and directions of the field associated with a 
magnetic dipole; B 11 = 2KJ1/ L 3 on its polar axis (A position of Gauss) and 
B1. = KJ1/L3 on its equator (B position of Gauss), where K has been written 
for J1o/4n. 

H90 The force acting on the charge can be found using the so-called 
method of image charges. The force- analogous to gravitational attraction­
is inversely proportional to the square of the distance. Therefore, the body's 
behaviour is similar to the motion described by Kepler's laws for a degenerate 
elliptical orbit. 

H91 Use the method of image charges to find the value of the electric 
field and the induced surface charge density in the region below the ball. 
The 'negative pressure' due to the electrostatic forces acting on the surface 
of the brine below the ball is balanced by the hydrostatic pressure of the 
water 'hump'. 

H92 Apply the method of spherical image charges. The basis of this 
method is that the electric field produced by two point charges, of opposite 
signs and different absolute values, has a sphere as its zero potential surface. 

H93 You need to use both the laboratory and the centre of mass reference 
frames. 

H94 If the sequence of events were re-played in slow motion, it would 
be seen that immediately after the collision, the first ball stops and rotates in 
a fixed place, whilst the second ball moves on but without rotation. Thus, in 
the overall collision, the first ball transfers linear but not angular momentum 
to the second ball. 

After the collision, friction moves the first ball forward, but slows its 
rotation. On the other hand, friction slows the translational motion of the 
second ball, whilst increasing its rotation. Thereafter, the angular momentum 
of each of the balls about its point of contact with the table remains constant. 

H95 Consider energy conservation, but don't forget to include dissipation 
as heat. 

H96 Examine the angular momentum of the ball about a point on the 
table which lies on the ball's path, but is otherwise arbitrary. 

H97 Convince yourself that it is only the east-west component of the 
traffic momentum that matters. 
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H98 Dynamical equations of motion and connections between transla­
tional and angular accelerations are central to the solution. 

H99 From the point of view of energy and momentum, the system is 
not closed and, therefore, these quantities are not conserved. Conservation 
of angular momentum explains the strange phenomenon described in the 
problem. 

HlOO Consider the forces acting upon a short length of the ring which 
subtends an angle 110 at the axis of rotation. 

HlOl Determine the difference, 11F, in the force stretching the thread 
around the surface of the cylinder at two points on the cylinder's surface 
whose azimuthal separation is Aa. This change in the force is propor­
tional to the force acting normally on the cylinder, and this in turn is 
proportional to F. Consider an equivalent phenomenon, in which the rate of 
change of some quantity is proportional to the quantity itself, (e.g. radioactive 
decay, capacitor discharge, etc.). Using the analogy, relations applying to the 
friction of the thread can be obtained. 

H102 Jenny suggests that Charlie considers a homogeneous ring rotating 
with constant angular velocity about an axis perpendicular to its plane and 
passing through its centre. He should determine which forces act on the ring, 
and consider how Newton's second law is satisfied for the centre of mass of 
a piece cut from the ring. 

H103 The gravitational force both accelerates the hanging part of the 
chain and impulsively sets into motion the next link. This means that the 
changing mass of the moving chain has to be taken into account. 

H104 Gravitation can be ignored in the frame of reference moving with 
the centre of mass of the chain; in this frame the chain will be weightless, 
but not massless. Examine in which directions forces act on a small piece of 
the chain, which has radius of curvature R and moves at a uniform speed 
v, and consequently determine how the shape of the chain is deformed (see 
also PlOO, PlOl and P102). 

We can reveal that Frank's guess is right- the chain keeps its original 
shape. 

H105 Calculate the tension in the chain when it leaves the pulley. Use 
the principle of conservation of energy (see also P104). 

H106 Examine the motion of the loop in the frame of reference moving 
at the same speed c as the centre of the loop. In this frame the pieces of 
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the loop travel with uniform circular motion. The conditions governing the 
dynamics of circular motion yield an equation for c. 

H107 Examine the change in the horizontal momentum of the sand 
falling onto the belt in unit time. Consideration of the energies involved is 
also useful. 

H108 Apply the law of conservation of energy; then find the force by 
using the change in the momentum calculated from the speed of the roll as 
a function of its position. 

H109 The gravitational field of a thin spherical shell of uniform mass 
distribution is zero inside the shell. Outside the shell, it is the same as if the 
total mass of the shell were concentrated at its centre. 

HllO The gravitational field inside a homogeneous sphere is directly 
proportional to the radius of the sphere (see P109). The gravitational field 
of the hollowed-out sphere can be found by superimposing the fields of a 
homogeneous sphere and a smaller sphere of 'negative mass density'. 

Hlll Divide the hemisphere into equally thick hemispherical shells. 
Prove that these shells each produce the same gravitational field at the 
point in question. 

H112 Calculate the force a 'mythical giant' would have to exert to pull 
the two halves of the asteroid (already cut in two) apart by 1 m. 

H113 The electric field exerts a force whose magnitude is proportional 
to the surface area exposed by the cut and is in a direction perpendicular to 
that surface. Note that this force is similar to that caused by liquid or gas 
pressure. 

H114 At first sight several parameters seem to be missing. Don't worry 
about it! Find the equilibrium condition and calculate the electrostatic energy 
of the system in that situation. 

H115 Find the maximum amount of hydrogen that the container could 
have contained initially without bursting. The material from which the 
container is made may be chosen freely, but only from real materials. 

H116 The laws of gravitational and electrostatic fields are very similar. 
Make use of this similarity and apply Gauss's law. 

H117 Examine the electric field due to a rod element which subtends an 
angle doc at the point C. 

H118 Consider two very long rods joined end-to-end. 
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H119 You can distinguish between the correct and false formulae by 
considering the case in which() approaches n. Apply the well-known expres­
sion for the magnetic field of a long straight current-carrying wire to find 
the proportionality factors. 

H120 Imagine that another identical coil is joined symmetrically to the 
original solenoid at point P, and that the same current is also allowed to 
flow in this second coil. Apply the principle of superposition. 

H121 It is easy to find the force if one imagines changing the positive 
charges on one of the plates into negative charges of the same magnitude. 
On the other hand the electric field line structure of the positive-positive 
plates is very different from that of the positive-negative arrangement. 

H122 Remember that the total charge on an isolated plate cannot 
change. 

H123 The total charge induced on each plate would not change if the 
point charge Q were considered to be spread uniformly over a plane a 
distance x from the lower plate. 

H124 The total electric field outside the plates must be exactly zero. What 
are the consequences of this well-known fact for the charge distribution? 

H125 Imagine that the medium is sliced into thin layers perpendicular 
to the y-direction. The individual layers can be considered as plane-parallel 
plates with different refractive indices, and the relation between the refractive 
index of a layer and the angle of incidence of the light ray can be determined. 

H126 Using simple geometry, you can measure the useful surface area of 
a CD. To obtain the required result divide this area by 650 M and also by 
8, because 1 byte = 8 bits. You can treat a CD as a reflection grating and 
measure its diffraction pattern using a laser beam of known wavelength. 

H127 Determine nA. for the composite line and consider possible values 
of n, the order of the diffraction spectrum. 

H128 In case (i), the optical path difference consists of two parts; one 
originates in front of the grating and the other behind it. 

In case (ii), instead of considering an optical grating, investigate the 
diffraction pattern from a single slit, which is tilted 'forward' through an 
angle 4>. 

H129 Draw diagrams showing liquid levels and pressures in the space 
between the objects and on either side of them. 

H130 Find the horizontal forces acting on the meniscus. 
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H131 During evaporation, the surface area of the drop shrinks, and 
its surface energy decreases. Compare this energy decrease with the energy 
needed for evaporation. 

H132 The equilibrium saturated vapour pressure is slightly higher near 
the surface of a smaller drop than near the surface of a larger one. The 
vapour pressure is uniform at the bottom of the container and its value 
is therefore higher than the equilibrium value for large drops, but lower 
than that for small drops. Consequently, vapour evaporates from the smaller 
drops, making them smaller, and condenses onto the large ones, making 
them larger. 

The relationship between the equilibrium pressure of saturated vapour 
and the curvature of the drop can be deduced by considering the pressure 
balance in a vessel containing a capillary tube hanging into some of the 
liquid. 

H133 The increase in internal energy of the air enclosed in the container 
is equal to the decrease in potential energy of the load hung from the piston. 

H134 If a mountain is very high then its base melts because of high 
pressure. Compare the energy needed to melt the bottom layer of a mountain 
with the gravitational energy that would be released if the mountain then 
sank. 

H135 If the state of the enclosed air is plotted on a p-V diagram, a 
straight line is obtained. The hidden elegance of the problem is revealed 
when the implications of the straight line's being tangential to an isothermal 
or adiabatic curve at certain points is realised. 

H136 Your explanation should be based on the interaction between the 
molten magma and the ice. 

H137 The hydrostatic pressure of the water in the flue increases the 
pressure of the water in the cavity, and so it boils at a temperature higher 
than the usuallOO oc. The relationship between the pressure and temperature 
of the saturated water vapour can be obtained from tables or by using the 
approximate law 

Here p is the pressure of saturated water vapour at its boiling point T, Lm 
is the molar heat of vaporisation of water, R is the gas constant and A 
is a constant with the dimensions of pressure. When the geyser erupts, the 
superheated water in the cavity reaches equilibrium again by boiling until it 
cools down to 100 °C. 
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H138 Consider the heat balance at the base of the layer when the layer 
thickness is x. 

H139 Establish that the time taken varies as the square of the linear 
dimensions for similarly shaped bodies. 

H140 The 'trap' hidden in this problem relates to the heat of vaporisation. 
The heat of vaporisation of water at 100°C and a pressure of 1 atm (the 
standard value of 2256 kJ kg-1 found in tables) takes into account not 
only the higher internal energy of the vapour but also the work done by 
expansion against atmospheric pressure. 

H141 A liquid starts boiling when its saturated vapour pressure reaches 
or surpasses the pressure of the gas above the liquid. 

H142 Consider how T could be incorporated in a formula for the 
amplitude. 

H143 Compare the surface energy of a long cylinder of water (assuming 
that the cobweb is uniformly covered with water) and the surface energy of 
the periodic water drops. 

H144 The cylinder keeps accelerating until the net momentum received 
per unit time, due to the particles colliding with it from both the left and 
the right, becomes zero. However, after a very long time, the cylinder stops 
moving, in agreement with the second law of thermodynamics. 

H145 Take into account both the emission and the absorption of heat by 
the space probe and the consecutive inner and outer surfaces of its protecting 
shields. 

H146 The entropy of the system cannot decrease during the process. 

H147 Consider entropy from the point of view of the number of micro­
states available. 

H148 Calculate the change in entropy of the air that is pumped into the 
container. 

H149 The electric field strength is zero inside the space ship, just as it is 
inside a Faraday cage. Examine whether the electric potential of the space 
ship changes during the journey. 

H150 Examine the change in energy of the spherical capacitor when it 
carries a set charge. 

H151 Compare the energies of the electrostatic fields of the dented and 
undented foils. 
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H152 The opposite charges on the capacitor plates attract each other, 
and therefore work has to be done to pull the plates apart. The capacitance 
of the capacitor decreases, and as, at a given voltage Vo, the electrostatic 
energy of a capacitor is proportional to its capacitance C, the energy of 
the capacitor decreases! The solution to this paradox is that a capacitor 
connected to a battery cannot be considered as a closed system. 

H153 Because the current flows in the same direction in each turn, the 
spring contracts. The force of contraction caused by the current can be found 
by considering a superconducting spiral spring (at a very low temperature in 
practice). A current can flow in such a superconducting coil even if its ends 
are short-circuited. Examine the dependence of the energy of this closed 
system on its length. 

H154 Find the net force (the sum of the magnetic force, the weight and 
the tension in the string) exerted on magnet A as a function F(x) of the 
distance x apart of the magnets. Use F(x) to determine the conditions for 
equilibrium and stability. 

H155 Calculate the total work done by the battery. 

H156 Remember that the charge is unchanged when the oil is removed. 

H157 The energy (per unit volume) of the electrostatic field is pro-
portional to the square of the electric field strength and to the dielectric 
constant of the medium: Wei = !eoerE2. The dielectric between the plates 
of the capacitor decreases the electric field (as a result of its polarisation), 
and therefore the energy of the system decreases as well. The force acting on 
the dielectric can be calculated from this change in energy (using the work 
theorem). 

H158 Apply Kirchhoff's laws, starting from the final element of the 
chain. Look for a relationship between the currents flowing through the 
consecutive resistors and the terms in the Fibonacci series. 

H159 Consider two different cases. In the first case, a current I flows into 
a grid point. In the second case, a current I flows out of the neighbouring 
grid point. In both cases make use of the symmetry of the system, and then 
superimpose the two current and voltage distributions. 

H160 Apply the method of superposition as in the previous problem. 
Be careful, since with a finite grid the current has to flow out of the circuit 
somewhere in order to conserve charge. Solve this difficulty without spoiling 
the symmetry of the problem. 
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H161 The key phrase of the solution is 'in parallel'. 

H162 As in the previous three problems, superposition is a great help. 

H163 The battery is to be connected to the terminals of the resistor 
through the ammeter. You need to ensure somehow that all the current 
measured by the ammeter flows through the particular resistor, and not 
partly via other electrical elements. 

H164 Establish sets of equipotential points on the cube, when a current 
I is flowing in at one end of the diagonal and out again at the other end. The 
circuit can then be simplified by notionally connecting together all points at 
the same potential. 

H165 Apply Gauss's law. 

H166 Use Fleming's right-hand rule. 

H167 The rod starts to accelerate down the slope under gravity. Electro­
magnetic induction causes a current to flow in the rod, which in turn brakes 
its motion according to Lenz's law. The equation of motion of the rod 
(written in terms of the current) is the same in all three cases. The different 
behaviours are due to the different relationships between the current flowing 
in the rod and the induced electromotive force. 

H168 The change in velocity of the rod is directly proportional to the 
change in charge of the capacitor. The rod accelerates until the induced 
e.m.f. balances the remaining voltage across the capacitor. 

H169 You can answer question (i) without solving the differential equa­
tion for the circuit. Express the rate of increase of magnetic energy as a 
function of the current. 

For (ii), note that the time dependence of the current for this circuit is 
well known and that the Joule heat is directly proportional to the square 
of the current. If you sketch a graph of the square of the current as a 
function of time, you can find qualitatively the time at which the rate of 
change of dissipation in the resistor is the fastest. Using the result from (i), 
the quantitative answer can be found without the need to use calculus. 

H170 Consider first a circuit containing only one inductor and one 
capacitor connected in series, and show that it has current resonance at a 
particular frequency. 

H171 According to the law of induction, the current flowing in a coil 
cannot change suddenly. 
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H172 Show that n, the number of turns per unit length of the solenoid, 
is proportional to d-2, and consider the resistance of one turn. 

H173 Examine the forces keeping the electrons in the metal in circular 
orbits. If the electric field strength is known, Gauss's law can be used to 
determine the corresponding charge distribution. 

H174 The electric field can be defined by the force acting on a unit 
charge, and the magnetic field can be interpreted with the help of the 
Lorentz force exerted on a moving charge. 

H175 Jill's result is correct, and Jack's answer is wrong. The crucial point 
is that the electric field lines within the rotating spoke are not parallel. 

H176 The magnetic field of the Earth induces a current in the rotating 
ring, which changes the average magnetic field at the centre of the ring. As 
a result the magnetic needle moves. 

H177 Let the current through the voltmeter be I and that through the 
major arc of the ring be i. Then, using consistent conventions for current 
directions and circuit traversal, apply Kirchhoff's laws to two different closed 
circuits. 

H178 A Moebius strip is a surface that has no associated direction and 
the law of induction must be applied only with great caution. Imagine the 
wire marking the edge of the band to be laid out on a plane in such a way 
that it does not cross itself. Determine the area of the plane enclosed by the 
wire and find its equivalent for the Moebius strip. 

H179 Consider not only the magnetic field and magnetic forces acting 
on the charged particle, but also the effects of the induced electric field. 

H180 As a result of the electromagnetic induction an electric field is 
established in the charged ring, and its tangential component causes the ring 
to experience a torque. One can show that the final angular velocity of the 
ring depends only on the final field, and not on the way it is turned on. 

H181 An electric field is induced in the rotating disc and this induces a 
current in the coil. The total magnetic field is that due the Earth, increased or 
decreased by that due to the coil, according to the direction of the rotation. 

H182 The total magnetic flux through the superconducting ring (consist­
ing of that due to the external field and its own flux) must not change during 
the motion. The flux of the external field changes during the motion, but the 
change is balanced by the magnetic flux due to the current induced in the 
ring. If the current is known, the Lorentz force can be calculated, and the 
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net force acting on the ring can be found as a function of its position. This 
resulting equation of motion is similar to a well-known mechanics equation. 

H183 The electrostatic field of a dipole can be calculated from its po­
tential $ = K (cos(} jr2), where K is a constant proportional to the strength 
of the dipole, r is the distance from the dipole and 0 is the polar angle 
measured from the dipole's axis. Calculate first the normal force exerted by 
the string on the bead. 

H184 Moving with velocity vo perpendicular to a magnetic field of mag­
nitude B, is equivalent to being in an electric field of magnitude voB. If vo 
is suitably chosen, this electric field can be made to cancel the gravitational 
field acting on the particle. 

H185 The changing magnetic field induces eddy currents in the loops, 
which brake the fall of the magnet. The terminal speed clearly depends 
on the resistance of the conductors. The dependence on other parameters 
can be found by applying dimensional analysis. Don't forget that formulae 
involving magnetism usually contain the vacuum permeability J.l.o, which has 
non-trivial dimensions. 

H186 Although it is possible to solve this problem in a reference frame 
fixed to the vacuum chamber, the solution is rather complex. It is much 
easier to handle the problem using a different frame of reference that moves 
with velocity vo parallel to the wire. In this frame of reference the motion 
of electrons is subject to both an electric field and a magnetic field. On the 
other hand, in this frame, when the electron is closest to the wire its velocity 
is zero and the work-energy theorem can be used to solve the problem. 

H187 Describe the phenomenon in the frame of reference of the liquid. 
Consider first the transformation of the electric and magnetic fields when 
they are viewed in two different frames of reference, one moving at speed v0 

relative to the other. Take vo as being much less than the velocity of light 
and ignore relativistic effects. 

H188 Consider the initial (activation) energy required for three fission 
products rather than two. 

H189 7Be decays via electron capture. 

H190 In equilibrium, abundances are proportional to half-lives. Use this 
to show that the equilibrium value for the number of radon-220 atoms is 
3.3 x 105. Then consider how this element can be produced from the purified 
sample. 
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H191 Use the relativistic formulae for energy and momentum conserva­
tion. 

H192 Examine the motion of the electrons in the wall of the Faraday 
cage. 

H193 The mass of the proton is much (nearly 2000 times) larger than 
that of the positron. For this reason, the positrons move with a much larger 
acceleration than the protons and there will be a period in the motion when 
the positrons have already moved far from the square, whilst the protons 
have hardly moved at all. 

H194 Apply the (relativistic) conservation laws of energy and momen­
tum. 

H195 In the course of this process (Compton scattering), the total energy 
and momentum of the colliding particles (photons + electrons) remains 
unchanged. It is convenient to take the rest energy of the electron Eo = 
mec2 ~ 510 keY as the unit of energy for the calculations. 

H196 Consider the electron as a spherical capacitor with radius r and 
a uniform surface charge distribution. The moment of inertia of a sphere 
of mass m and radius r is I = Kmr2, where K is a dimensionless constant 
depending on the mass distribution. For example, for a homogeneous sphere 
K -~ - s· 

H197 Apply the Heisenberg uncertainty principle and consider the total 
energy of the electron. 

H198 When an electron is enclosed in a sphere of radius r, the uncer­
tainty principle prescribes a minimum momentum for it of p ~ 1i/r. Using 
approximate relativistic formulae, calculate the total energy (the sum of the 
electrostatic and kinetic energies) of the electron as a function of the radius 
r and find the minimum of this function. 

H199 For small wavelengths, the speed of propagation of surface water 
waves is determined by the surface tension. Examine the dependence of the 
speed of these (capillary) waves on their wavelength and consider whether 
this implies a lower limit for the wavelength. 

H200 Take a bottle of champagne and try it. If you do not drink too 
little (or too much!) of it, you will almost certainly spot the reason for the 
acceleration. 
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Sl Resolve the velocity of snail 2 into a component pointing towards 
snail 1 and a component perpendicular to this (see Fig. Sl.l). These two 
snails approach each other at a relative speed ofv+!v = ~v = 7.5 em min-1, 

and therefore they meet after a time given by 60 cm/7.5 em min-1 = 8 min. 
In fact, they must all meet after this time and, as they actually travel at a 
speed of 5 em min-1, they each cover a distance of 40 em before doing so. 

3 

v v/2 2 

Fig. Sl.l 

The same result can be obtained if the velocity vector of one of the snails is 
resolved as shown in Fig. Sl.2 into a component pointing towards the centre 
of the triangle formed by the snails, and a component perpendicular to this. 
This shows that the snails approach the centre of the triangle (it is obvious 
that this is where they meet) at constant speed ( .J3/2)v = (5.J3/2) em min-1, 

whilst travelling around this point at a tangential speed of !v. 
3 

69 
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It is easy to show that the snails are initially at a distance of 60(J3/3) em 
from the centre of the triangle, and that therefore they meet in 

60(J3/3) em = 8 min. 
5(J3/2) em min-1 

Fig. 81.3 

Because of the geometrical symmetry of the situation, each snail always 
moves so that its direction of motion makes an angle of n/6 with the 
line joining its current position to the centre of the triangle. However, it is 
worth generalising the problem of calculating the trajectory. Consider the 
motion of a body moving at constant speed v around a fixed point with 
the angle between the velocity and position vectors equal to a fixed value oc, 
(0 < oc < 90°). If the position vector, of initial length r0, moves through a 
small angle f14J and its length changes by -tJ.r (see Fig. Sl.3), then, since oc 
remains constant, 

tJ.r( 4J) 
f14J = -r( 4J) cot oc. 

This equation is very similar to the radioactive decay equation, dm(t)jdt = 
-m(t)A., the known solution of which is m(t) = m0 e-A.t. Using this analogy, 
the equation of a snail's path (in polar coordinates) is 

r(4J) = roe-rfi cottX. 

This is the equation of the so-called logarithmic spiral and implies that the 
radius r tends to zero only after turning through an infinite angle, i.e. a 
point-like body reaches the centre in finite time and by covering a finite 
distance, but only after making an infinite number of turns about the centre. 

Note. Nocturnal insects try to follow straight flight paths by keeping a 
constant bearing with respect to a distant light source (e.g. the Moon). If a 
nearby lamp misleads them, then, according to the solution just found, they 
will follow a spiral path to disaster. As neither the insects nor the lamp are 
point-like, sooner or later the insects hit the lamp. 
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S2 The average speed of the object is ~m s-1• Since it decelerates uni­
formly, Vaverage = ~(Vinitial + VfinaJ), and thus its initial speed cannot be greater 
than 1 m s-1, (since Vfinal ;:::: 0). It follows that the speed of the body decreases 
by a maximum of 1 m s-1 in 2 s. Thus the absolute value of its acceleration 
lal is at most 0.5 m s-2, i.e. 2~ times the gravitational acceleration. Therefore, 
the coefficient of kinetic friction between the object and the table surface 
cannot be greater than 2~. This is much smaller than the coefficients of 
friction between ordinary materials and therefore it is very likely that the 
object does not slide, but that all or part of it rolls. 

S3 (i) The shortest path is one perpendicular to the bank and the boat 
goes in this direction if the boatman rows in the direction shown in Fig. S3.1. 

3 ms-1 

.[5 m s-1 Boat 

River 

Fig. S3.1 

The resultant speed of the boat (in the direction perpendicular to the 
bank) is J5 m s-1 ~ 2.24 m s-1. The boatman has to row upstream at an 
angle octo the bank, where cosoc =~;this gives oc ~ 48°. 

(ii) In this case, the current is so strong that the boat will move down­
stream even if the boatman rows at full speed against the stream. This 
means, in contrast to the previous case, he cannot choose his direction with 
respect to the bank and, in particular, he cannot travel across in a direction 
perpendicular to the bank. 

The possible directions he can take may be determined by adding all the 
possible still-water velocities of the boat to the velocity of the river. Draw 
the velocity vector of the river and, from the endpoint of this vector, draw 
velocity vectors in all directions, with a magnitude equal to the speed of the 
boat in still water. The endpoints of these vectors will form a circle as shown 
in Fig. S3.2. 

4 -1 ms 

River 

Fig. S3.2 
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The possible resultant velocities of the boat can be obtained by joining 
the starting point of the velocity vector of the river to the points on this 
circle. The resultant corresponding to the shortest path will be the one that 
makes the greatest angle with the direction of the current, i.e. when the 
line of action of the resultant velocity vector is a tangent to the circle (see 

Fig. S3.3). 

Fig. S3.3 

Thus, the velocity of the boat with respect to the shore is .J7 m s-1 ~ 
2.65 m s-1• Again, the boatman has to row upstream, but this time at an 
angle p to the bank, where cos p = l, yielding p ~ 41 o. The figure also 
shows that in this case the distance travelled by the boat will be t times the 
width of the river. 

84 Let the position of the moving end of the carpet be x as shown in 
the figure. It follows that the other end of the moving part is at x/2, and 
hence that the coordinate of its centre of mass is 3xj4. Although dxfdt = 1, 
the speed of the centre of mass of the moving part is only l ! 

c== 
x/2 x 2 X 

I • 

The linear momentum of the moving part is p = mv, where v = 1 and m 
is increasing uniformly with time. The net force acting on the moving part 
is thus 

dp dm dv dm 
F =- = -v+ -m = -1 +0. 

dt dt dt dt 

The rate of change of the mass of the moving part can be found with the 
help of the following argument. The moving end of the carpet starts from 
the origin and the whole carpet will be moving when it reaches x = 2; this 
it does after two units of time, i.e. dm/dt = ~· The corresponding minimal 
force (neglecting all dissipative forces) is F = ~· 

Note. (i) The centre of mass of the moving part of the carpet is initially 
at the origin and after two units of time at x = t• again showing that the 
speed of the centre of mass (vcM) of the moving part is i· 
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(ii) Notice that the linear momentum of the moving part (p = mv) is not 
equal to the product (mvcM) of its mass and the speed of its centre of mass. 

(iii) It seems tempting to try to find the minimum force required by using 
the conservation of energy, i.e. F x 2L = mv2 j2, where L is the length of 
the carpet, (L = 1). The result would be F = !, which is only one-half 
of the value calculated earlier. The error in this argument is to ignore the 
continuous inelastic collisions which occur when the moving part of the 
carpet is jerking the next piece into motion. Half of the work goes into the 
kinetic energy of the carpet, but the other half is dissipated as heat. 

S5 Solution 1. If space (planar) and time coordinates are established in an 
orthogonal frame of reference with axes x,y and t (a space-time diagram), 
the 'world-line' of a snail travelling with uniform rectilinear motion will 
obviously be straight. Encounters occur when two snails are at the same 
place at the same time, i.e. when their world-lines intersect as shown in the 
figure. 

According to the information given in the problem, the four world-lines 
(a, b, c and d) definitely intersect in pairs at five 'points'. Let us denote these 
encounters by A, B, C, P and Q. Points A, B and C determine a plane (the 
plane of world lines a, b and c). Since P and Q also lie in this plane, world 
line d must do so as well. This means that world lines c and d also cross 
each other, implying that the sixth encounter will also take place. 

Solution 2. As five encounters have already occurred, there has to be a 
snail who has already met all three of his fellows. Let us denote this snail 
by <X. In our imagination, let us sit on the back of <X, i.e. choose a frame of 
reference in which <X is at rest at the origin. 

The three other (moving) snails, ({3, y and b) have already met <X, and 
have therefore crossed the origin. Moreover, one of them ({3 say) has already 
met his two other moving fellows (since five encounters have occurred). 
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This is only possible if {3, y and b are moving along the same straight line. 
Consequently, sooner or later, y and b will have to meet as well. 

S6 The work done against gravity can be calculated from the increases 
in height of the centres of mass. The centre of mass of a worm 'folded in 
two' is located at the middle of either half, i.e. at a point one-quarter of the 
worm's total length from one end. This is illustrated in the figure. 

Thus, the centre of mass of the narrow flatworm travels 5 em up the wall, 
whilst that of the broad one moves 7.5 em. The ratio of the amounts of work 
done is therefore 2 : 3. 

Note. The centre of mass of the worm is not always in the same position 
with respect to the worm; indeed, it need not be at any point of the worm 
at all. The centre of mass of the straight worm is obviously at its centre, and 
that of the worm folded in two is at its quarter-length point. Thus the centre 
of mass of a flexible body does not remain at a fixed point within the body; 
its relative position may change. This principle is used by high-jumpers; 
when a high-jumper's body arches over the cross-bar, the body's centre of 
mass remains below it (see also P32). 

S7 (i) Let us denote the elastic constant (spring constant) of the rope 
by k and its unstretched length by tO· The maximum length of the rope is 
t 1 = h- ho = 23 m, whilst in equilibrium it is t 2 = (23- 8) m = 15 m. 
Initially, and at the jumper's lowest position, the kinetic energy is zero. If we 
ignore the mass of the rope and assume that the jumper's centre of mass is 
half-way up his body, we can use conservation of energy to write 

1 2 
mgh = 2k(tt-to) . 

In addition, in equilibrium, 

mg = k (tz- to). 

Dividing the two equations by each other we obtain a quadratic equation 
for to, 

t5 + 2(h- tt)to + (ti- 2htz) = t5 + 4to- 221 = 0, 

which gives to = 13 m. 
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(ii) When the falling jumper attains his highest speed, his acceleration must 
be zero, and so this must occur at the same level as the final equilibrium 
position (t = t2). 

Again applying the law of conservation of energy, 

1 2 1 2 
2mv + 2k (t2- to) = mg(t2 + ho), 

where the ratio m/k is the same as that obtained from the equilibrium 
condition, namely, 

m t2- to 
k g 

Substituting this into the energy equation, shows that the maximum speed 
of the jumper is v = 18 m s-1 ~ 65 km h-1. It is easy to see that his 
maximum acceleration occurs at the lowest point of the jump. Since the 
largest extension of the rope (10 m) is five times that at the equilibrium 
position (2 m), the greatest tension in the rope is 5mg. So the highest net 
force exerted on the jumper is 4mg, and his maximum acceleration is 4g. 

SS If the berg has base area A and height H, then M = ~AHPice· If 
the height showing above the surface is h, the flotation condition gives 
(H3 - h3)Pwater = H 3 Pice· When the berg is depressed by a small amount 
x the additional submerged volume is xA(h/ H)2 and the upthrust is this 
multiplied by Pwater&· This gives that the angular frequency of oscillation w 
is determined by 

2 3h2 Pwaterg w = --'--~-=-
PiceH3 

and, on substituting numerical values, that the period of oscillation is about 
11 s. 

S9 First of all we note that the right front suspension spring will be 
further compressed as a result of parking on the pavement. We can measure 
both the change of tensions in the suspension springs and the rise of the 
car body in centimetres, and will let the sign be positive if the spring is 
further compressed. The net torque must be zero about any axis, including, 
for example, the diagonals of the rectangle formed by the wheels; so the 
changes in tension at the opposite ends of a diagonal must be equal. This is 
why the springs of the right front (rf) and left back (lb) wheels are equally 
compressed, by an amount x, and the left front (lf) and right back (rb) 
suspension springs each lengthen by x. This equality of changes in length 
ensures that the net force provided by the springs to support the weight of 
the car does not change. 
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The rises of the car body both at the If and rb wheels are x, at the lb 
wheel the rise is -x and at the rf wheel (on the pavement) it is 8- x. The 
frame of the car is rigid, so, because of the equal movements at the If and 
rb wheels, the midpoint of the chassis also rises by x. Similarly, the other 
chassis diagonal remains a straight line, and so the rise at the rf wheel must 
be the same as the fall of the body at the lb wheel relative to the midpoint 
of the chassis, i.e. (8- x)- x = x- ( -x). From this very simple equation we 
get x = 2 em. We conclude that above the wheel on the pavement the body 
of the car rises 6 em, above the left back wheel it sinks 2 em and above the 
other two wheels it rises 2 em. 

Applying the same calculational technique, it is easy to show that com­
pressions in the suspension springs cannot change when the car is parked 
with both right wheels on the pavement. It follows that then the right side 
of the car body simply rises 8 em, the height of the pavement. You can also 
show that the result does not depend upon the number and the positions of 
the people sitting in the car; this is because we have only investigated the 
relative displacement of the body of the car before and after parking on the 
pavement. 

Note. In the solution above, a slight rotation of the body of the car was 
ignored. 

SlO Fig. SlO.l shows Jean Valjean's location on the wall. Figure Sl0.2 is 
a sketch showing his weight (mg), the normal reactions of the walls (N) and 
the static frictional forces (Frr) acting on his limbs. 

Fig. 810.1 Fig. 810.2 
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Top view 

Fig. Sl0.3 

Let the static frictional forces make a common angle () with the vertical. 
The conditions for static equilibrium (see Fig. S10.3) are 

mg = 2Frr cos() and N = Frr sin e. 
From these equations we can express the normal component, N, of the 

force exerted by the prisoner on the wall whilst climbing as 

N = ~mg tan8. 

Thus the total force required, F, is given by 

F2 =N2 +F2 =(mg) 2 1+sin2 8. 
fr 2 cos2 () 

We can also find the minimal force using the inequality 

Frr::::;; J.loN, 

from which it follows that 

. () 1 sm ~- or 
J.lO 

1 
tan8~ ~· 

yJ.l5 -1 

where J.lO is the coefficient of static friction. Using either of these inequalities 
we find the minimal force to be 

Fmin = ~g J ~ ~ ~ · 
This expression shows that the coefficient of static friction must be greater 
than unity if Jean Valjean is not to fall off the wall. If the coefficient of static 
friction approaches infinity, the force on each of his hands is equal to half 
of his body weight; this situation corresponds to his being glued to the wall. 

Sll If static friction is large enough, the sphere will not slide down 
the slope. However, this by itself is not sufficient for equilibrium; it is also 
necessary that the sphere does not roll down the inclined plane. 
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The sphere is made of two hemispheres, implying an inhomogeneous mass 
distribution. If the distance between its centre of mass and geometrical 
centre is less than !r, where r is the radius of the sphere, then, whatever 
the orientation of the sphere, its weight will produce a torque about P, the 
point of contact with the inclined plane (see Fig. Sll.l), which will make the 
sphere roll. 

Fig. Sll.l 

It will now be shown that this is the situation for any sphere made of two 
homogeneous hemispheres- whatever the densities of the two halves. 

Fig. Sll.2 

Consider the shaded area in Fig. Sll.2. By symmetry, the centre of mass of 
this part is obviously at point A, i.e. at a distance !r from the centre, 0. The 
rest of the sphere moves the centre of mass S of the whole even closer to 
point 0, i.e. OS < !r. From our previous considerations, this implies that the 
sphere cannot remain in equilibrium on the 30° inclined plane. In obtaining 
the solution, we have assumed that rolling resistance is small, i.e. no resistant 
torque can act at point P. In the case of a surface covered with Velcro, this 
is obviously not true, and the sphere may even adhere to a vertical surface. 

812 Viewed within a rectangular coordinate system which has one axis 
parallel to the inclined plane, the ball is seen to bounce on a 'horizontal' 
plane in a 'vertical' field of gravitational acceleration g' = g cos oc. It also 
experiences an additional constant 'horizontal' acceleration (of magnitude 
g sin oc). The 'vertical' motion consists of bounces of identical heights, i.e. 
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of identical periods. Meanwhile, since the 'horizontal' acceleration is con­
stant, the ball's average speed between bounces increases uniformly, and so 
the distances between two consecutive bounces increase in an arithmetical 
progressiOn. 

813 Let the midpoint of the platform be a distance h below the pivot 
and the hamster's distance from that midpoint be x, as shown in the figure. 

mg 

Because of gravity the hamster exerts a torque mgx about the pivot of the 
wheel-cage. On the other hand, as the hamster moves it accelerates using 
friction with the platform. When its acceleration is a this produces a reaction 
force of ma on the platform, directed away from its midpoint. The torque 
due to this force is mah. The wheel-cage (and the platform) remains in static 
equilibrium if these two torques are equal, i.e. 

mgx = mah. 

After making due allowance for its direction, the acceleration can thus be 
written as a = -(g I h) x. This shows that the required motion of the hamster 
is simple harmonic motion with an angular frequency co = /iJh. 

814 (i) The bicycle moves in the direction of the net force (the sum of the 
applied backward force and the frictional force directed forwards). In usual 
gearings the bike moves backwards, but extremely low gearings can cause 
forward displacement. Because the work done is always positive, it follows 
that the student's hand moves backwards relative to the ground. Normally 
the gearing N is greater than one, i.e. the rear wheel rotates more rapidly 
than the pedals. However, in the unusual case N < r I R < 1 (where R is the 
radius of the wheel and r is the length of the pedal arm), the bicycle could 
move forwards despite the oppositely applied force. 

(ii) The chain-wheel rotates in the same sense as the rear wheel. 
(iii) Usually backwards and upwards; the superposition of (i) and (ii), but 

with (i) larger because of the gearing and wheel sizes. 
Note. It is interesting to note that there is one position of the pedals at 
which an arbitrarily large force can be applied without moving the bicycle 
either way. 
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S15 Equate the force of attraction between the Sun and the Earth to the 
centripetal force that keeps the Earth in its approximately circular orbit, and 
express the angular velocity w in terms of T, the period of revolution. This 
gtves 

mM 2 4n2 
G7 = mrw = mr T2 , 

where m and M are the respective masses of the Earth and Sun, and r is the 
average distance between them. Divide by m and express M in terms of the 
average density p and radius R of the Sun as follows: 

~nR3p 4n2 

G3 r2 = T2 r. 

This yields 

T= 3n (!._) 3 

Gp R 

for the period of revolution. 
It can be seen that the Earth's rotation period only depends on the 

universal gravitational constant G, the average density of the Sun and the 
ratio r / R. Therefore if the density of matter remains constant, any scaling of 
the solar system leaves the length of a year unchanged. It can also be seen 
that only the density and size of the Sun are relevant; the Earth's data are 
not. Any body that is small in size relative to the Sun would have the same 
period and follow the same orbit. 

Note. This result can also be obtained using Kepler's third law T 2 f a3 = 

4n2 /GM, where a is the semi-major axis of the Earth's elliptical orbit. If 
the mass of the Sun is expressed in terms of its average density then it is 
clear that a proportional reduction does not change the period of planets 
in elliptical orbits. 

S16 The gravitational acceleration produced by the Sun at the position of 
the Earth is the same as that due to one of the stars at the position of the 
other. This is because, according to Newton's law of gravitation, g (the 
gravitational force acting on a unit mass) depends only on the mass at the 
centre of attraction and the distance of the second body from it. These 
quantities are identical in the two systems. 

Thus, the members of the binary star move with the same acceleration as 
the Earth but in an orbit of radius only half that of the Earth's orbit. This 
means that, since (a = rw2), the square of their angular velocity has to be 
twice as large as that of the Earth. The period of the binary star therefore 
equals that of the Earth around the Sun divided by .Ji, i.e. 8~ months. 
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817 (i) The acceleration of a satellite moving at speed v in a circular orbit 
of radius R is g = v2 / R. If R is the radius of the Earth (or more precisely, a 
slightly larger value), then g has to be the gravitational acceleration at the 
Earth's surface; this defines the 'first cosmic speed', v1 = .JRg = 7.9 km s-1 

for the speed of the satellite. 
All of this speed is not strictly necessary for launching a satellite if the 

'initial speed' provided by the rotation of the Earth is taken into account. 
This help is greatest at the Equator, approximately 0.5 km s-1, and means 
that an initial speed of 7.4 km s-1 with respect to the Earth is sufficient, but 
only if the satellite is launched eastward from on or near the Equator. 

(ii) The angular momentum of satellites in polar orbits (passing over the 
poles) is zero with respect to the axis of rotation of the Earth. This condition 
has to be fulfilled right from the launch, since the angular momentum will 
not change later. The 'help' described above cannot therefore be utilised. 
Indeed, the rotation of the Earth is a drawback, since, not only must the 
satellite receive the speed of 7.9 km s-1 in a north-south direction, but, in 
addition, the unacceptable west-east speed due to the rotation of the Earth 
has to be cancelled. The latter would not have to be taken into account if the 
satellite were launched from the neighbourhood of one of the poles; there 
are obvious technical difficulties in doing this! 

The initial speed necessary to put a satellite into a polar orbit is therefore 
at least 7.9/7.4 ~ 1.06 times greater, i.e. the necessary kinetic energy is at 
least 1.13 times as great. This does not seem a big difference, but in reality 
the slightest increase of the initial speed requires an enormous effort. The 
reason for this is that the carrier rocket has to be accelerated as well as 
the satellite, and the mass to be launched increases exponentially with the 
intended final speed. 

(iii) In order to escape the attraction of the Earth (i.e. to move far from 
the Earth), the probe has to acquire the escape or 'second cosmic' speed, 
v2 = .JiiR = .jiv1 ~ 11.2 km s-1• The rotation of the Earth can again be 
used. Launching eastward from the Equator, a launch speed of 10.7 km s-1 

relative to the Earth is sufficient. 
(iv) The Earth revolves around the Sun at a speed of approximately 

30 km s-1• In order to reach the Sun, a space probe has to be launched 
at an initial speed of 30 km s-1 (or more exactly, 29.5 km s-1; smaller by 
0.5 km s-1 due to the rotation of the Earth). If the aim is to leave the 
solar system, the space probe has to reach J2 times the speed of 30 km s-1, 

but the 'initial speed' of the Earth in its orbit can be subtracted from this 
value if the launching is well timed and directed, i.e. a speed of 12 km s-1 is 
sufficient. 
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Thus, it is easier to make a space probe leave the solar system than 
to send it into the Sun. (The former has been successfully attempted, the 
latter we are still waiting for.) The situation is even more favourable if the 
possibilities offered by the outer planets (Mars, Jupiter, Saturn, ... ) are taken 
into account. A space probe launched at the right time and in the right 
direction can be significantly 'pushed by' (i.e. receive energy from) these 
planets, a phenomenon known as 'gravitational slingshot'. Designed in this 
way, the space probe does not have to propel itself very far, it only has to 
reach Mars or Jupiter and the rest happens 'automatically'. 

Note. If the rocket driving the probe can be fired in two stages, one to 
induce an elliptical orbit and the other to bring the rocket to rest at the 
aphelion of the orbit, less total energy is needed to hit the Sun than that 
calculated above. 

SlS The rocket has to reach the highest possible total energy. If the zero 
level of gravitational potential energy is 'infinitely' far away, then the energy 
of the rocket standing on the surface of the Earth is negative. The energy 
released during the operation of the engines increases the total energy of the 
rocket, and the rocket can leave the Earth's gravitational field if the sum of 
its potential and kinetic energies becomes positive. 

The energy released in the course of the operation of the principal and 
auxiliary engines increases the total energy of the rocket and its ejected 
combustion products by a fixed value; this increase is independent of the 
moment when the engines are switched on. However, the speed at which 
the combustion products fall back to the Earth does depend on the timing 
of the rocket's operations. Indeed, if the auxiliary engine starts working 
when the rocket is at a greater height, the combustion products fall further 
and their speed and total energy are higher when they hit the ground. This 
means that the sooner the auxiliary engine is switched on, the higher the 
energy ultimately acquired by the rocket. The same argument is valid for 
the principal engine, and if only energy considerations apply, it is best to 
operate the engines for the shortest time and at the highest thrust. 

S19 The mass distribution, and thus the position of the centre of mass, 
changes from moment to moment as the ball sinks. In a time t, the centre 
of mass is displaced by 

PbV- PhV 
s = vt M , 

where M is the total mass of the system, V the volume of the ball, and 
Ph and Pb are the respective densities of the honey and the ball. This is so 
because when the ball has moved through a distance vt, it can be considered 
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to have changed places with a 'honey ball' of identical volume. Thus the 
total momentum of the system is 

Ms 
Ptotal =- = VPb V- VPh V. 

t 

The first term on the right-hand side is the momentum of the steel ball, and 
therefore the second is that of the honey: 

Phoney = -vph V = -2 g em s-1. 

The negative sign shows that the direction of the honey's momentum is 
upwards. Its magnitude is the same as that of a honey ball moving upwards 
with a speed equal but opposite to that of the steel ball. 

820 The (average) kinetic energy of the gas molecules is proportional to 
the square of their velocity. The internal energy of the gas is proportional 
to the temperature. Therefore v2 "' T. If the wall is warmer than the gas 
(T1 > T) then the average speed of the rebounding gas molecules will be 
increased by the collision (the wall warms the gas). If the wall is colder than 
the gas (T1 < T) then the situation is reversed; the molecules rebound with 
a lower speed (the gas cools down). 

From a molecular point of view, gases exert a pressure on the walls of 
their container because of the changing momentum of molecules that hit the 
wall and rebound from it. For a given initial momentum and collision rate, 
the rate of change in the momentum of molecules rebounding from a warm 
wall is greater than that of molecules rebounding from a cold one. Thus, the 
gas exerts a higher pressure on a warm wall than on a cold one. 

Note. This phenomenon explains the unexpected rotation of a radiometer 
('light wheel'). If one side of each blade of a wheel mounted on a delicate 
bearing is black and the other one is shiny, then the wheel starts to turn 
when it is illuminated. At first sight, one might be tempted to think that 
the pressure associated with the reflection of the light turns the wheel. This, 
however, is not true, since experience shows it is, in fact, the shiny side 
(the one reflecting rather than absorbing the light, and hence causing the 
greater change in photon momentum) of the blades that moves forwards! 
The correct explanation is that the black side of the blades warms up more 
and therefore the pressure of the air molecules rebounding from that side 
is greater than on the colder shiny side. 

821 As a result of thermal expansion, the size of both spheres increases. 
The centre of mass of the sphere lying on the plate rises, whilst that of the 
sphere hanging on the thread sinks. Thus, the potential energy of the first 
sphere increases, whilst that of the second one decreases as shown in the 
figure. 
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According to the first law of thermodynamics, the heat transferred to 
the spheres produces not only an increase in internal energy and the small 
amount of work done in expanding against the atmospheric pressure (this 
is the same for both spheres), but also a change in gravitational potential 
energy. The potential energy of the sphere lying on the insulating plate in­
creases a little, therefore its internal energy increases by less than the residual 
heat transferred. Conversely, the decrease in potential energy of the hanging 
sphere contributes positively to the increase in its internal energy. In sum­
mary, the temperature of the sphere suspended from the thread will be higher. 

It is worth giving a numerical estimate. If the temperature of the two iron 
balls, each with a radius of 10 em, is increased by 100 °C, a temperature 
difference of AT ~ 5 x 10-6 oc will result from this effect. This is undetectable 
in practice. 

S22 For quantitative purposes we assume that the resistances of the bulbs 
do not depend upon the voltages across them. This is far from accurate, 
but will give the correct qualitative conclusion. If the (r.m.s.) supply voltage 
is V, the resistance r; of a bulb is V2 jw;, where w; is the nominal rating 
of the bulb. When the two bulbs are connected in series across the supply, 
the (r.m.s.) current drawn is V /(rA + r8) and the power dissipated in bulb 
i (i = A or B) is 

y2 [ v ] 2 

P; = w; (V2/wA) + (V2/wB) 

According to the original agreement (wA = w8 = 100 W), both PA and P8 

should be 25 W. Actually, P A = 8 W and P8 = 32 W, and so A clearly failed 
his examinations. By comparison, student B might be considered a double 
winner: he gets 32 W, but pays for only (8 + 32)/2 = 20 W. On the other 
hand, 32 W is still a very poor light to study by and B also could well have 
failed his examinations. 

S23 A simple circuit consisting of two identical resistors connected as 
shown in the figure would behave as described. 

,----------, 

0=--+1--,.-____,__: -0 
O
J i 0 i II 

I I 0 

I I -----------
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824 When the bucket is full of water, the centre of gravity of the water 
is above that of the bucket and therefore the common centre of gravity is 
at its highest; correspondingly, the period is at its shortest. As the water 
starts leaking out, the common centre of gravity moves downwards and the 
period becomes longer. When the bucket is half full, the centre of gravity 
of the water is below that of the bucket and the common centre of gravity 
has moved even lower, significantly lower than the centre of gravity of the 
bucket. Thus the period has increased further. When there is no water left 
in the bucket, the centre of gravity coincides with that of the empty bucket, 
which is higher than in the previous cases, i.e. the common centre of gravity 
stopped moving downwards at some point and started to move upwards 
again. In summary: the longest period occurs when the common centre of 
gravity is at its lowest position. As is shown in the next problem, this occurs 
when the common centre of gravity lies in the water surface. 

825 Clearly, the first water to be added is placed below the centre of 
gravity of the empty beaker and therefore lowers the overall centre of gravity. 
If at some stage water is added above the current overall centre of gravity, 
the latter will be raised. Therefore for maximum stability the overall centre 
of gravity must lie in the water surface. 

x/2 

Thus 

10-1 x 10-1 + n (3 x 10-2)
2 103x~ = x [10-1 + n (3 x 10-2)

2 103x], 

giving x = 55.9 mm. 

826 Assume first that the centre of mass of the bowl remains at the same 
height as originally. Then the bowl only turns about its centre (and perhaps 
moves sideways) but does not sink any deeper into the water. Under these 
circumstances, the rim of the bowl is lowered to the water surface on the 
side opposite the chain, and water flows into the bowl. We will now prove 
that this cannot occur. 

The upthrust acting on the body in the assumed situation remains the 
same as in the initial one, i.e. it equals the total weight of the bowl and 
soup. Thus, the chain cannot be exerting any force on the bowl. On the 
other hand, the centre of mass of the bowl is not on the line of action of 
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the upthrust when the edge of the bowl is being raised, and the torques can 
only be balanced if the chain does exert a force and pulls the bowl upwards. 

The two contradictory conditions show that our initial assumption was 
wrong. The geometrical centre of the bowl cannot stay in the same place 
but has to rise (since a smaller upthrust is sufficient when the chain exerts 
an upward force). This implies that even the lowest point of the rim of the 
bowl has to remain above the surface of the water. 

The possibility of the soup flowing out into the water has also to be 
considered. This could occur if the level of the soup in the bowl were higher 
than the water level in the lake, i.e. if the density of the soup were lower 
than that of water. Realistically this would not be the case. 

827 The forces acting on the ball are the gravitational force mg, the 
buoyancy force of the water and the normal force exerted by the rim of the 
hole. When the buoyancy force just equals the weight of the ball, the normal 
force becomes zero and the ball leaves the hole. 

We first calculate the buoyant force exerted on the ball when the water 
depth is h. Denote the volume of the ball immersed in water by V, where 
V = V(r, R). Now, imagine the ball to have that part of it which protrudes 
through the hole removed and the space under the container filled with 
water. The buoyancy force would then be 

Ft = pg V(r, R), 

where p is the density of water. As in reality there is no water under the 
hole, a contribution 

Fz = pgh x nr2 

is missing. Thus the actual buoyancy force exerted on the ball is 

F = pg V(r,R)- pgh x nr2. 

It is clear that, for sufficiently large h, F can be negative and then the 
'buoyant' force is directed downwards. Decreasing h causes F to increase, 
and, provided the top of the ball is not uncovered, it will rise when F = mg 
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and the corresponding water depth is h0. Thus 

ho = V(r, R) _ __!!!____ 
nr2 nr2p · 

87 

Straightforward integration, or geometry books, give the volume of a 
spherical calotte (truncated sphere) as 

V(r,R) = i [2R3 + (2R2 + r2) ~R2- r2], 

and using this formula we can express ho as 

ho = 2R3 + 2R2 + r2 ~R2- r2- __!!!_____ 
3r2 3r2 r 2np 

Don't forget that the formula above is only valid if the top of the ball is 
still covered by water, that ish> R+~R2- r2• Otherwise we have to modify 
V(r, R); instead of a spherical calotte we have to calculate the volume of a 
sphere truncated at both ends of a diameter. This leads to a cubic equation 
for the critical ho, 

hij (3~R2-r2-ho) = ~;. 
Note. When calculating the buoyancy force F, instead of using the radius 
of the hole r we can work with another variable: t = ../R2 - r2 (see Fig. 
S27.1). 

Fig. S27.1 

Either by applying the previous argument or by integrating the vertical 
component of the upthrust over the submerged part of the sphere, we can 
calculate the buoyancy force to be 

{ 
3t2 (h- t) + 2t3 - (h- t)3 npg, if h ~ R + t, 

F(h) = 3 
2 (R3 + t 3)- 3 (h- t) (R2 - t 2) 

3 npg, if h ;::: R + t. 

The expression for the buoyancy force F as a function of h consists of 
two parts; in the interval 0 ~ h ~ R + t the force is a cubic function 
of h, whilst in the range h ;::: R + t it decreases linearly, as shown in 
Fig. S27.2. 
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F(h) 

3 
4F pqg/3 -----------------------

mg .. 

2F R+F 

Fig. S27.2 

We can find the critical water depth ho from the intersection of the graph 
of F(h) with the line F = mg. Differentiating F(h) shows that it has a 
maximum value of (4t3npg/3) at h = 2t. If the weight of the ball is larger 
than this value (which is just the weight of a water sphere of radius t), then 
the ball will not float out of the hole, whatever depth of water we have. 

828 The soap bubble floats and therefore the combined mass of its wall 
and the helium inside it is equal to that of the displaced air. Since the density 
of helium is less than half the density of air, the mass of the helium is less 
than half of the mass of the displaced air. Thus, the wall of the bubble has 
to be heavier than the gas it encloses. 

829 In case (a), it is clear that the water cannot flow out of the tube. If it 
could, a perpetuum mobile (perpetual motion machine) could be established 
using a paddle rotated ad infinitum by the outflowing water. 

Cases (b) and (c) are not so simple. The ends of both tubes are lower than 
the water level and the water pressures there are consequently lower than 
the atmospheric pressure. In each case, the water wells to such an extent 
that the pressure corresponding to its radius of curvature equals the pressure 
difference between it and the air. The water surfaces corresponding to cases 
(a), (b) and (c) are shown in the figure. 

(a)l__l (b)l__ll (<)[__] 

The greatest curvature (smallest radius of curvature) occurs for the hemi­
spherical shape and corresponds to the pressure of a column of water of 
height H, since this is the height reached by the water in a vertical tube. If 
the air-water pressure difference is greater than pgH, then surface tension 
cannot hold the water in the tube and it flows out. This is what happens 
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in tube (c) (assuming that the figure is to scale and H' > H); on the other 
hand, water does not flow out of tube (b). 

S30 The system described in the problem is spherically symmetrical. 
Therefore the magnetic field that is built up has to be spherically symmetrical 
as well. A spherically symmetrical vector field has to be radial everywhere 
and its magnitude can depend only on the distance from the origin: B(r) = 
B(r) r/lrl. 

On the other hand, a magnetic field contains no sources (magnetic mono­
poles) and the magnetic flux crossing any closed surface has to be zero at 
any given moment. In particular, consider a spherical surface of radius r 
around the capacitor. The consequences of sourcelessness can only be met 
if B(r) = 0 for any r. This means that the current described in the problem 
builds up no magnetic field, either inside or outside the spherical capacitor. 

Note. It is worth examining how the basic laws of electrodynamics are 
satisfied between the plates of the spherical capacitor. Is it true that a 
magnetic field builds up around a current flowing in a conductor, and that 
the rotation (curl) of this field is proportional to the current? 

S31 The radiation has to be spherically symmetrical, since both the 
distribution and the motion of the charges are spherically symmetrical. The 
magnetic field is always radial and should have the same magnitude at 
any given distance from the sphere, irrespective of direction. This, however, 
is impossible, since such a magnetic field (unless of zero magnitude) would 
imply the presence of a magnetic charge (magnetic monopole), something 
that experimentally is found not to exist in nature. Similar reasoning shows 
that the electric field is also spherically symmetrical and that its magnitude 
depends only on the total surface charge of the sphere and not on the pul­
sation parameters. Therefore, only the static Coulomb field can be observed 
outside the sphere, and the sphere emits no radiation at all ! 

If individual parts of the sphere are examined, they are found to behave 
like dipole antennae and emit radiation. But the radiation from different 
parts has to be summed, taking into account phases as well as magnitudes. 
The individual radiations from the many dipole antennae cancel each other 
out, a result which can be proved by direct (but lengthy) calculation without 
referring to spherical symmetry. 

S32 No high-jump competition has yet been held on the Moon. However, 
here we try to estimate the expected result. The men's high-jump record on 
Earth is over 240 em. A good male high-jumper is more than 190 em tall 
and has a mass of around 80 kg, with his centre of mass approximately 
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110 em above the ground. For a successful jump, all of his body must 
rise to the height of the cross-bar, but his centre of mass need not. This 
achievement requires a special jumping technique (the Fosbury flop), which 
can be studied in slow-motion video recordings. The centre of mass of the 
high-jumper remains approximately 20 em below the cross-bar, even when 
he is at the apex of his jump. For the western roll and straddle jumping 
techniques, the jumper's centre of mass has to rise above the bar. 

The most difficult part of our estimation is comparing the movement of 
a jumper at take-off on the Earth to that of a jumper leaving the ground 
on the Moon. Assume that the centre of mass of the high-jumper rises by 
s = 40 em from its lowest point (in the crouch just before the jump) to 
the highest point (when he has just left the ground) both on Earth and on 
the Moon. Then his muscles must have done enough work to subsequently 
carry his centre of mass from 110 to 220 em, i.e. raise it by h = 110 em on 
Earth. Any effect of the run-up has been ignored, or has been assumed to 
be identical in both places. 

The basis of our estimate is the assumption that the same work is done 
and the same jumping technique is employed in both cases. The work done 
is the sum of the kinetic energy of his body and the potential energy of his 
centre of mass, W = !mv2 + mgs. His speed when leaving the ground can be 
calculated using the relation v2 = 2gh. Thus, the total work done is 

W = mg(h + s) = 80 kg x 10m s-2 x 1.5 m = 1200 J. 

We assume that the work done by the high-jumper on the Moon is the 
same, and that the rise s of his centre of mass before leaving the ground 
is also unaltered. The gravitational acceleration on the Moon is only one 
sixth of that on Earth, i.e. the energy equation of the jump on the Moon is 
1200 J = i mg (s + h'), which yields h' = 8.6 m. This is the vertical height by 
which the jumper's centre of mass rises on the Moon. To this must be added 
the initial height of his centre of mass, 110 em, and the extra 0.2 m resulting 
from his special technique, to give an estimated record of 9.9 m ~ 10m. 

Note. This question is usually answered - recognising only the difference 
in the gravitational accelerations - by saying that the world record on the 
Moon would be six times that on the Earth, i.e. approximately 14-15 metres. 
According to the above analysis this is an optimistic expectation. Even our 
estimate is probably over-optimistic, since in our model the high-jumper 
has to do the same amount of work in a shorter time, i.e. a greater power 
output is needed. It can be shown that the jumper has to increase his power 
output by nearly 15 per cent when on the Moon. If, instead, the speed at 
which he leaves the ground is taken to be the same as on Earth, a result 
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of 8 m is obtained; this will be too low a value. All things considered, the 
most probable value seems to be a height of about 9 m. 

S33 (i) The vertical acceleration of ball B falling from the table is always 
g, which makes it possible to determine the time (approximately half a 
second) it takes to fall 1 m. The motion of the bob of the simple pendulum 
is rather complicated, as no small amplitude approximation is possible, and 
therefore the time during which it is in motion is not easy to determine. What 
can be stated with certainty is that, since the thread exerts an upward force 
on it, its vertical acceleration is always less than g. Therefore the vertical 
motion of ball A takes a longer time than the vertical free fall of ball B. Ball 
A stays in motion for longer. 

(ii) The bob of the pendulum describes one-quarter of a circle (a path of 
approximately 1.5 m). The other ball, B, follows a parabolic path, the length 
of which cannot be determined by elementary methods. However, it is easy to 
see that it hits the ground at a distance of vt = J2 x g x 1 J2 x 1 I g = 2 m 
from the edge of the table. The length of its path is therefore not less than 
the shortest distance between the beginning and end points of its motion, 
namely J5 m ~ 2.2 m. 

In summary: ball B moves on a longer path, but in a shorter time, than 
the bob of the pendulum. 

S34 For uniform circular motion the tangential acceleration of the body 
is zero, but the radial acceleration is v2 I R, where v is the speed of the 
body and R is the radius of the circle. 

Fig. S34.1 

As the radial and tangential components of the gravitational force are 
mg sin 0 and mg cos 0, respectively, as shown in Fig. S34.1, the force F 
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exerted by the string PQ on the bob must have components: 

Ft = mgcosO and 
mv2 

Fr = R -mgsinO. 

From these expressions we can deduce the direction of the force F, and 
hence the direction of the string, characterised by cjJ: 

Fr v2 1.83 
cotc/J = -F = R (}-tan(}= --0 - tan e. 

t g cos cos 

10 4 

5 9 2 

13 

24 

23 

16 22 

19 20 

Fig. S34.2 

In Fig. S34.2 corresponding positions of the two ends of the string are 
shown. The angle (} increases in 15° steps and the position of the other end 
( Q) of the string has been plotted from point P by marking off the length 
of the string in the direction of the calculated angle c/J. 

S35 Look at the two lines drawn in Fig. S35.1. The acceleration (g) is 
greater for the one in the vertical direction, but the path length involved 
is longer. The path perpendicular to the inclined plane is the shorter one, 
but the corresponding acceleration is less. We can presume that the path of 
shortest time lies somewhere between these two lines. 

p 

~ ... 
' ' 

i \\ 

y 
Fig. S35.1 
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We next prove the following auxiliary theorem: bodies starting at the same 
time t = 0, from the same point, and following frictionless slopes in different 
directions, all lie on a circle at any subsequent time. 

p 

Fig. S35.2 

As shown in Fig. S35.2, the topmost point of any such circle C is the 
starting point P. After time t, a body following a vertical wire and in free 
fall will have fallen through d = ~gt2 , and this must be the diameter of C. A 
body moving along a wire at an angle rt. to the vertical has an acceleration 
of g cos rt.. In the same time t it will have covered a distance, measured from 
P, of ~g cos rt. t2 = d cos rt.. But this is precisely the length of the chord of C 
cut off by the wire. Thus, independent of rt., the second body also lies on 
C- and the auxiliary theorem is proved. 

The original problem is easily solved using the auxiliary theorem. Bodies 
starting at the same time from point P and travelling in different directions, 
always form a circle that grows with time and has P as its topmost point. 
After some time, the circle will touch the inclined plane, with the plane 
tangential to the circle at the contact point P'. A body starting from point 
P reaches the plane in the shortest time by travelling along the line P P'. In 
fact, the problem is three-dimensional, and bodies starting from point P lie 
on a sphere at any one time. The shortest time direction is found by joining 
P to the point of the sphere that first touches the inclined plane. However, 
it is sufficient for the question in hand to examine the vertical cross-section 
through P parallel to the plane's line of greatest slope, as we have done so far. 

p 

Fig. S35.3 

It is clear from Fig. S35.3 that in the case of a plane inclined at angle rt. 

to the horizontal, the line P P' corresponding to the shortest time makes an 
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angle ('J./2 with the vertical, i.e. the optimium direction bisects those of the 
two lines mentioned in the first paragraph of the solution. 

836 The solution to the problem is surprisingly easy using a rotating 
frame of reference fixed to the minute hand. In this reference frame the 
minute hand is at rest, whereas the hour hand is moving 'anti-clockwise'. The 
separation between (the ends of) the minute and the hour hands increases at 
the highest rate when the line of action of the velocity vector of the end of 
the hour hand passes through the end of the minute hand. In this situation, 
the two hands and the line joining their ends form a right-angled triangle, 
as shown in the figure. 

Since the minute hand is twice as long as the hour hand, the angle between 
the hands will be 0 = cos-1(1/2) = n/3. We can now calculate the exact time 
after midnight when the angle between the hands is 0. As the minute hand 
moves 12 times as fast as the hour hand, the angle 4J between the hour hand 
and the 12 o'clock position is given by 124J- 4J = 0, i.e. 4J = /10. Thus, since 
midnight, the minute hand has moved through an angle of ~i 0 = 141n and the 
time is just before 11 minutes past midnight. There are several subsequent 
times (twice in each hour) when the angle between the hands is the same. 
The second occurs when the ends of the hands approach each other at the 
fastest rate. 

Note. Using calculus this problem can also be solved by brute force. From 
an expression for the distance between the ends of the hands of the clock, 
their relative velocity can be found, and hence the angular positions at 
which its stationary values occur determined. 

837 Using the coordinate system shown in the figure, the motion of the 
stone can be described by the following relations: 

X= VotCOS('J., 
. g 2 

y = vot sm ('J.- 2t , 

Vx= VQCOS('J., Vy = vo sin ('J. - gt. 
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y 

The stone is at the greatest distance from the origin when its velocity is 
perpendicular to its position vector. The condition for this is 

Y Vx , 
X Vy 

which yields a quadratic equation for the time t at which this happens: 

2 3vo sin IX 2v5 0 t- t+-=. g g2 

If this is not to happen, the discriminant of this equation must be negative, i.e. 

( 3vo ;in IX) 
2 < 4 ( ~25) . 

Thus, for the stone to be permanently moving away from the thrower, we 
must have sin IX< V879 = 0.94, i.e. IX< 70.5°. 

838 The trajectory of the grasshopper is a parabola, which touches the 
trunk at two symmetrically placed points, B and B*, on the two sides of the 
trunk (at the moment we don't know anything about these points-they may 
or may not coincide at the topmost point E of the trunk). The grasshopper 
takes off from point A with an initial speed v1 and at an angle e with the 
horizontal, as shown in the figure. At the tangential points B and B* the 
grasshopper's velocity is v2, making an angle f3 with the horizontal. 
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For the sake of simplicity we choose p as the independent variable of the 
problem. At point B the vertical component of velocity is 

where t2 is the time of flight for the BC section of the trajectory (C is the 
peak of the parabola). The corresponding horizontal displacement BF is 

v2t2 cos P = R sin {J. 

Multiplying these equations together we obtain 

2 gR 
v2 = cos[J' 

Conservation of energy between points A and B of the trajectory gives 

1 2 1 2 
2mv1 = 2mv2 + mg(R + R cos {J), 

and so 

Vf = vi+ 2gR(1 +cos {J) 

= gRP + 2gR(l + cos{J) 
cos 

= 2gR (1 +cos{J + 2c!sp). 
We can calculate the minimum value of v1 using differential calculus. How­
ever, there is a less complicated method available which uses the inequality 
between arithmetic and geometric means: 

1 J2 
cos{J2cos{J- 2· 

So the minimum value of cos p + 1/(2 cos {J) is equal to J2 and, therefore, 
p = 45°. The case {J = 0 requires a larger initial velocity, since 1.5 > J2; it 
follows that the trajectory with the minimum initial speed does not in fact 
touch the trunk at its topmost point. The gravitational potential energy of 
the grasshopper is greater at the peak of the parabola than at the uppermost 
point of the trunk, but its kinetic energy and total energy are smaller than 
they would be for a top-touching trajectory. 

The numerical value of the minimal initial speed is 

vflin = J2gR ( 1 + .Ji) ~ 2.2 m s-1• 
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Note. (i) It is not very difficult to show that the part of the parabolic 
trajectory above B does not intersect the trunk. 

(ii) We can also determine the take-off angle as () = 3n/8 = 67.SO, and 
the take-off distance as 

AD= R(l + J2/2) ~ 17 em. 

(iii) It is interesting to note that point F is the focus of the parabola. 

S39 The fleas jump in directions making angles !<n- 8) with the initial 
direction of the hair. During the period in which they are in the air, the hair, 
reacting to the impulsive couple it receives, rotates in the opposite direction 
through an angle of n- 8, so that both fleas land on the hair but with each 
at the opposite end from that at which it started. 

Fig. S39.1 

Let v and lX be the take-off speed and angle, respectively, and 2L be 
the length of the hair. The time of flight t is, as usual, 2v sin lX/ g and the 
range vt cos lX. From geometry (see Fig. S39.1) the range must also equal 
2L sin( 8 /2). Now, each end of the hair receives an impulse, but only the 
horizontal part of the tangential component contributes to the impulsive 
couple acting on the hair. Thus 

2mvLcoslXcos ~ = Iw, with I= ~ML2• 
It is also necessary that wt = n- 8. 

Eliminating lX, t and w from the equations obtained so far, shows that 8 
must satisfy the equation 

6m . 8 8 M sm + = n. 
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p h 

Fig. S39.2 

The function f(O) = nsinO + e has the property f(n) = n, whatever the 
value of n. In addition, f'(O) = n cos e + 1 = 0 has a solution in 0 < e < n 
provided n > 1. Thus, if n is strictly greater than 1, f(O) has a maximum for 
some value of e strictly less than n. This, combined with our observation 
about f(n), shows that f(O) = n has a solution for some value of e strictly 
less than n provided n > 1. In the context of the question, this condition 
becomes m > M /6. This is illustrated in Fig. S39.2. 

S40 The water 'bell' is cylindrically symmetrical about the vertical and 
so it is sufficient to solve the problem by considering a cross-section. Let the 
point-like rose be at the origin of an x-y coordinate system. The jets of water 
then follow parabolic paths starting from the origin, and our mathematical 
task is to find the 'envelope' (shown dotted in the figure) to this set of 
parabolas. 

y 

X 

It is well known that the equation of the path of a body projected with 
initial speed v at an angle o: to the horizontal is 

g 2 
y = x tan o: - 2 2 2 x , 

v cos 0: 

which can also be written as 

gx2 2 ( gx2) 
2v2 u - xu + y + 2v2 = 0, 

where u = tan o:. 
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If a point (x,y) is fixed, then the above relation is a quadratic equation 
for u, which has a real solution if its discriminant is non-negative, i.e. 

2 gx2 ( gx2 ) x - 4 2v2 y + 2v2 ;:;::: 0, 

i.e. 
v2 g 2 

y ~ 2g- 2v2 x · 

This inequality divides the x-y plane into two regions separated by a 
parabola. Water can reach the points under the parabola (a paraboloid 
of revolution in three dimensions), but not those above it. The limiting 
parabola is the sought-for envelope. 

The water 'bell' is therefore a paraboloid of revolution. It is clear from 
the equation for the limiting curve that the height of the 'bell' is v2 /(2g), 
as one would expect from considering an object thrown vertically upwards. 
The water 'bell' defines a circle on the surface of the basin water, the radius 
of which can be found using the condition y = 0; it is r = v2 /g. This means 
that the diameter of the basin should be at least four times the height of the 
water 'bell' if no water is to be lost. 

S41 There is uniform acceleration in both horizontal and vertical direc­
tions giving, in an obvious notation, 

1 EQ 2 . 1 2 
x = vtcos(} + 2.---;:;;--t and y = vtsm(}- 2.gt. 

When y = 0, elimination of t results in the equation for the range given in 
the hint. It has a maximum value of 

;;2 ( EQ + Jm2g2 + £2Q2), when tan20 =-;~. 
The negative sign of tan 2(} for positive Q indicates that (} needs to be more 
than n/4 to take advantage of the 'following wind' provided by the electric 
field. 

Note. It will be clear that this problem is essentially equivalent to that of 
finding the maximum range on an inclined plane of a mass projected with 
a given speed. 

S42 To satisfy the static equilibrium conditions for the rod (net vertical 
force and net torque each equal to zero) the reactions of my fingers at 
distances x andy from the centre of mass ofthe rod are (see figure): 

y X 
Fx = mg --, and Fy = mg--. 

x+y x+y 
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CM 

i~--y=---

Assume that the rod first slips on my left finger. At any moment the frictional 
force exerted on the finger is 

y 
Frr = Jl.kin Fx = Jl.kin mg --. 

x+y 

For slow movement (the horizontal acceleration is negligible) this force is 
equal to the static frictional force acting on the right finger, which has a 
maximum value of 

X 
Jl.stat Fy = Jl.stat mg -+ . 

X y 

Thus the left finger can slide so long as 

Jl.kin Y ~ Jl.stat X, i.e. X~ ky, 

where k = Jl.kin/ Jl.stat ~ 1. 
Initially xo = y0 = ~t, so my left finger slides to the position x =XI = kt /2 

whilst working against a continuously changing frictional force. The work 
done during this sliding can be found using integral calculus: 

W(xo -+ xi) = - r' Jl.kinFx dx 
lxo 

rkt/2 t/2 t 2 
= -JJ.kin mg lt/2 x + (t / 2) dx = mg Jl.kin 2 Ink+ 1. 

At the second stage my right finger is sliding; while x =XI and is constant, 
y is changing from t /2 to YI = kxi = k2t /2. 

The work done is 

1k2Yo XI t' 1 
W(yo-+ yi) =- Jl.kinmg-- dy = mg Jl.kin -2 kIn-k. 

Yo XI+ Y 

In the same way we can calculate the work during all of the following stages 
during which the rod slips alternately on my left and right finger. The total 
work done is 
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If J.Lkin ~ ,Ustat (i.e. k ~ 1), the work is done in just one step and its value is 

W ~ J.lkin mg t x In 2. 
2 

On the other hand, if ,Ustat ~ J.Lkin (i.e. k ~ 1 ), then 

k 1 
--In-~ 1 
1-k k ' 

which can be confirmed either with a calculator, or by writing k = 1 - {J, 

using ln(1- b)~ -{J, and then letting {J ---+ 0. Thus 

W ~ J.Lki; mg t. 

843 Take the length of the bricks to be unity and start the process from 
the top. The topmost brick can be displaced until half of it protrudes beyond 
the table, then the upper two have to be moved relative to the third one 
as shown in the figure. The combined centre of gravity of the upper two 
bricks must not be beyond the edge of the third one. Thus the second brick 
can only be displaced by i· The general strategy is to move each subpile of 
bricks until its combined centre of gravity is just above the edge of the brick 
below it. 

Before the third displacement, the combined centre of gravity of the top 
three bricks has to be found. That of the two uppermost bricks is over the 
edge of the third, and has to be given a double weighting, i.e. the distance 
of ! has to be divided in the ratio 2 : 1; with the third brick being displaced 
by only i· 

For the following (fourth) brick, the three placed above its edge carry 
triple weighting, and the distance of! between the centre of gravity of the 
fourth brick and its edge has to be divided in the ratio 3 : 1, i.e. the fourth 
brick can be displaced by only k· Adding up the displacements, the result is 
! + i + i + k = ~~ > 1, in other words, the topmost brick can hang beyond 
the table. 
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In the above solution, critically unstable equilibrium positions have been 
considered at each step. In practice, the displacements should be chosen to 
be a little smaller than those calculated above, but it is still possible for the 
topmost brick to hang outside the table. 

The solution can be extended to an unlimited number of bricks. The 
distance of ! between the centre of gravity and the edge of the kth brick 
has to be divided in the proportion (k- 1) : 1, since the common centre 
of gravity of (k - 1) bricks is situated above its edge. The kth brick can 
therefore be displaced by a maximum of i units. If a total of n bricks is 
available then the displacement of the topmost one can be calculated as 

! (1 + ! + ! + ! + ... + ! + ... + !) 
2 2 3 4 k n· 

Since the sum of the reciprocals of natural numbers tends to infinity, as is 
shown by considering 

1 1 1 1 1 1 1 1 
1+2+3+4+5+6+7+8+9+··· 

an arbitrary displacement can be realised by using a suitable number of 
bricks, i.e. there is no limit. 

S44 Let the mass of the plate be 2m, and denote the normal reactions 
and frictional forces by N1,N2 and F1.F2, respectively, as shown in Fig. 
S44.1. The equilibrium equations for the horizontal and vertical forces are 

Fig. S44.1 
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Balancing torques about the corner of the plate gives 

The conditions controlling the frictional forces are 

and 

Using the above equations, the following three relations can be derived. 

Ft + F2 = mg, 

. F pmg I.e. 1 :::;; -1--. 
-p 

In deriving the last of these relationships we have assumed that J-l < 1. 
These three relations can be plotted in an F1-F2 coordinate system. If 

the coefficient of static friction is quite large, the situation is as shown in 
Fig. S44.2. 

F.< )lmg i 
mg 1 -1-Jl: 

~.:..-~~__,____,___ Fl 
)lmg mg 

1-)l 

Fig. S44.2 

In this case the problem does not have a unique solution; in the region 
represented by the straight line segment between points A and B the static 
equilibrium conditions can be satisfied by a range of frictional forces. 

)lmg mg 

1-].l 

Fig. S44.3 
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If the coefficient of static friction is too small, the situation is as shown 
in Fig. S44.3 and the problem has no solution at all. The minimal possible 
value of the coefficient of static friction can be found by making 11 such that 
the crossing point of the boundaries of the two inequalities occurs on the 
F1 + F2 = mg straight line graph as shown in Fig. S44.4. In this case, instead 
of inequalities we can use equalities, and after some calculation we find the 
minimal value of static friction to be 11 = .Ji- 1 ~ 0.414. 

F. Jlmg: mg 1s-1 -: 
-jl: 

Fig. S44.4 

The possibility of F2 being negative should also be recognised. When 11 is 
greater than 0.5 the upper limit for F1 is larger than mg and this makes it 
possible for F2 to have negative values, as shown in Fig. S44.5. 

mg 

F < llmg = 1.5 mg 
I - 1 -jl Fz ~ llF; = 0.6F; 

\ _)---r 
~--····_.. . ..-·· 

Fig. S44.5 

845 Air resistance is neglected and the balls are considered as perfectly 
elastic. If the balls are dropped from height h, they reach the ground with 
speed v = Jiifi. The bottom ball first hits the ground, and then collides 
with the top ball, which receives the largest possible energy if the lower ball 
is at rest after the two collisions. 

The bottom ball rebounds with speed v and collides with the top ball 
moving downwards at speed -v. Since the speed of the ball of mass m2 is 
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to be zero after the collision, the equations expressing the conservation of 
momentum and energy are 

and 
v2 u2 

(m1 + m2)2 = m12· 

The speed u of the top ball after the collision and the ratio of the masses 
can be calculated from these equations, giving u = 2v and m1/m2 = ~­
With its speed doubled on rebounding, the upper ball rises to a height 
of 4h. 

Surprisingly, the top ball could bounce even higher than this. If m2 ~ m1 
then the top ball only takes a very small fraction of the total energy after 
the collisions, but its speed is 3v and the height of the bounce is, in an ideal 
case, 9h. This may sound rather incredible, but it is in agreement with the 
principle of conservation of energy. 

Readers interested in theoretical problems may generalise the problem to 
n balls, while those interested in practical experimentation may try dropping 
sets of non-identical balls-they bounce in very amusing ways! 

846 For the first collision, momentum and energy conservation give 

MJ2iji = MV + ,uv, 
1 2 1 2 

Mgh = 2Mv + 2.uv . 

Eliminating V gives vas 2M .J'IiT1/(M +,u) and the kinetic energy transferred 
to the middle ball as 4,uM2gh/(,u+M)2. As a fraction of the initial energy of 
the first ball, this is 4,uM I (,u + M)2. The fractional energy transfer to the final 
ball, is the product of two such expressions using different pairs of masses. 
Thus in order to maximise the energy of the final ball ,u should be chosen to 
maximise ,u2 /(,u + M)2(,u + m)2, i.e. ,u = .JMiii. With this choice the overall 
fractional energy transfer is 16Mm/(.JM + fo)4 and the height attained by 
the final ball is 16M2h/(.JM + fo)4• 

847 Since the dumb-bells approach each other at identical speeds, the 
sum of their momenta is zero in the reference frame of the air-cushioned 
table (the same as that of their combined centre of mass). Thus, conservation 
of momentum implies that the centres of mass of the two dumb-bells always 
move at identical speeds and in opposite directions. 

When the dumb-bells collide, both their energy and their angular momen­
tum are conserved, since the collision is perfectly elastic and no external 
torque acts on them. The states before and after the collision are shown in 
Fig. S47.1. 
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Fig. S47.1 

Before the collision the dumb-bells have only translational kinetic energy, 
while a rotational term appears after the collision. When writing down the 
conservation of energy and angular momentum equations for the dumb-bells, 
we calculate the latter with respect to their point of contact, P: 

2 (~ 2mv2) = 2 (~ 2mV2 + ~ 2mt2w2). 

Before the collision the dumb-bells only have orbital angular momentum, but 
a term describing their spin about their centres of mass has to be included 
after the collision, i.e. 

4tmv = 4tmV + 4mt2w. 

The non-trivial solution (V =f v, w =f 0) of the above set of equations 
is found to be V = 0, and w = vjt. That is that the centres of mass of 
the dumb-bells stop moving after the collision, and that the colliding point 
masses change velocities while the non-colliding ones keep their original 
velocities. This can be interpreted in the following way: point masses joined 
by a rigid but weightless rod are not aware of each other's presence in the 
course of a momentary collision. The rod only exerts a force directly after 
the collision, when the dumb-bell rotates about its stationary centre of mass. 

The hidden point of interest in the problem is that the dumb-bells collide 
again after half a turn of each, i.e. after a time, t = njw. Using the previous 
results, the resulting motion can be predicted without writing equations. The 
rotation of the dumb-bells stops, and they move again with the same speeds 
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as before the first collision. Their path is the same straight line but they are 
now travelling 'upside down'. In other words the dumb-bells spend the time 
between the two collisions turning round. The speed of the dumb-bells as a 
function of time is shown in Fig. S47.2. 

v 

............. 

Fig. 847.2 

,. ----
I 
I 
I 
I 
I 

:p/x 

S48 (i) At this time the two masses are travelling parallel to the x-axis 
in the centre of mass system and are both crossing the y-axis, one in each 
direction. This situation must be superimposed on that due to the motion 
of the centre of mass, which has moved along the line x = L/2 through a 
distance Land has a speed of V /2 in they-direction. Block A is at (!L, !L) 
with velocity (!V, !V); block B is at (!L, ~L) with velocity (-!V, !V). 

(ii) Establish that the centre of mass motion is cyclic with period 8L/ V. 
Block A is at (L, SOL) with velocity (0, V); block B is at (0, SOL) at rest. 

S49 Let x denote the ratio of the actual water level to the level at the 
top of the basin; the same number shows the ratio of the current volume of 
water to the maximum possible volume. 

During filling, x increases uniformly with time and, since it reaches the 
value x = 1 in time T1, 

(~~)in= ;1. 
When water flows out, the speed of efflux- and therefore the rate of 

decrease of x-is proportional to the square root of the height of the column 
of water, i.e. to the square root of x, 

( dx) = -KJX. 
dt out 

(1) 

The coefficient of proportionality has to be chosen so that x just decreases 
from 1 to 0 in time T2. 

Since the equation for the efflux is of the same form as the relation between 
the speed and the displacement for uniform acceleration, v = .jiaX, it can 
be concluded that the liquid level decreases to zero at a uniformly changing 



108 200 Puzzling Physics Problems 

speed. The initial rate of decrease is K, the final rate is zero; therefore the 
average rate of decrease of x equals K /2. This deceleration can be expressed 
in terms of the total time: K /2 = 1 I T2• The same conclusion can be reached 
by integrating the differential equation (1) and applying the initial and final 
conditions. 

When both the tap and the plug-hole are open, the net rate of change 
caused by the water flowing both in and out is 

dx = (dx) + (dx) = J:_ _ }:___ JX. 
dt dt in dt out T, Tz 

In a state of equilibrium, the water level does not change. The condition 
for this is 

X= Xe = (2iJ2 
For example, if the basin fills up in the same time as it empties, ( T1 = T2) 

then the stationary state obtained by opening the tap and the plug-hole 
together corresponds to x = !, regardless of the initial conditions. With the 
data given in the problem, this ratio is !· It can also be seen that overflow 
can only be a danger if it takes more than twice as long to empty the basin, 
as to fill it ( T2 > 2 T!). 

Note. One condition for the validity of Torricelli's law of efflux is that the 
size (diameter) of the orifice be much smaller than the depth of the water. 
This condition is certainly not satisfied when the basin is nearly empty, and 
therefore our results are only approximate. If the orifice is very small the 
viscosity of the water (neglected so far) also plays an important role. 

SSO When the vessel is rotating the free surface of the liquid must be 
an equipotential surface for the system; for if it were not, the energy of the 
system could be lowered by changing the surface profile. The total potential 
energy per unit volume at any point (r, z) in cylindrical polar coordinates, 
is made up of two parts, the gravitational potential energy pgz and the 
centrifugal potential energy. Since the centrifugal force is pw2r directed 
away from the axis, the potential energy at r is the integral of this with 
respect to r, i.e. -!w2r2• Both potentials are relative to arbitrary zeros. With 
the origin of z chosen as in the Hint and r = 0 taken as the zero for the 
centrifugal potential, the equation of the free surface is pgz- !pw2r2 = 0. 

If Z is the vertical distance of the lowest point of the surface below the 
rim of the vessel when the liquid is on the point of overflowing, then both a 
and Z lie on the free surface, and the volume of air in the paraboloid above 
the liquid but within the vessel is still one-third of the volume of the vessel. 
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Integrating to find this volume, Jcf nr2 dz with r2 = 2gzjw2, gives ngZ 2jw2. 
Thus we have 

w2a2 
Z=-

2g 

leading to Q = (4ghj3a2)If2. 

and 

S51 Solution 1. Whilst accelerating, a car 'pushes' the Earth back a little 
and changes its rotational angular velocity. This very small effect has to be 
considered in order to resolve the paradox. 

For the sake of simplicity, consider the car, of mass m, to be travelling on 
a body of mass M (M ~ m) that can move freely in the direction of the 
motion of the car. In the actual situation, the Earth can rotate freely under 
the car. A stationary observer would say that if the car accelerates to some 
speed vo and then subsequently to 2vo, the body of mass M reaches a speed 
u1 = -mvo/ M and then u2 = -2mvo/ M, whilst its kinetic energy increases 
from an initial zero to MuTf2 and then to Mu~/2. Since M ~ m, the kinetic 
energy of the body of larger mass and the change in its energy can be 
neglected. Thus the ratio of the fuel consumption values has to be 1 : 3. 

The situation is different for the observer moving with speed v0. He can 
see the speed of the car increasing from vo to 2vo and then to 3vo, while, 
in accordance with the law of conservation of momentum, the speed of 
the other body changes from the initial -vo to ( 1 - m/ M)vo and then to 
(1 -2m/ M)vo. The changes in the kinetic energy of the whole system (car 
plus Earth) are, therefore, firstly 

1 [ 2 2] 1 ( m )2 2 1 2 1 2 -m (2vo) -v0 + -M 1-- v0 - -Mv0 ~ -mv0 
2 2 M 2 2 ' 

and, then, secondly 

1 [ 2 2] 1 ( 2m) 2 2 1 ( m ) 2 2 3 2 -m (3vo) -(2vo) +-M 1-- v0 --M 1-- v0 ~-mv0 2 2 M 2 M 2. 

It can be seen that the energy (fuel consumption) ratio is 1 : 3 for both 
observers. 

Solution 2. Friction pushes the ground backwards, i.e. it accelerates the car 
forward through its wheels. In the Earth's frame of reference (Peter's frame), 
work is done only on the car and not on the ground. On the other hand, 
in the train's frame of reference (Paul's frame), static friction acting on the 
ground also does work. Viewed from this frame, the ratio of work done on 
the car in the two stages is 3 : 5, since the displacements of the car in time 
t are 3vot/2 and 5vot/2, respectively. The work done on the ground is -2 
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units, as the displacement of the ground is v0t. The total work done is thus 
3 - 2 = 1 unit in the first stage of acceleration and 5 - 2 = 3 units in the 
second; their ratio, when viewed from the train, is therefore again 1 : 3. 

S52 Since the object and image distances, respectively u and v, can be 
exchanged in the lens formula, the square of their ratio gives the ratio of 
the image sizes as (vju)2 = 9 (or !), implying that vju = 3 (or !). Thus, 
the object distance is 30 em (or 90 em) and the image distance is 90 em 
(or 30 em). The focal length can be calculated from the lens formula as 
f = 22.5 em. 

If the same amount of light passed through the lens in both cases, the 
nine-times smaller image would be 81-times brighter, as the smaller image 
occupies a surface area 81-times smaller on the screen than the larger one. 
However, when the lens is placed at the greater distance from the source it 
receives only one-ninth of the light reaching it when it is close to the source. 
As a result, the small image is only nine-times brighter than the large one. 

It can be shown in general, for such pairs of images, that the small image 
is always as many times brighter than the large one, as the large one is 
bigger in linear dimension than the small one. 

S53 The lenses of the glasses of short-sited people are divergent. Let -f 
denote the (negative) focal length of a divergent lens, d the distance between 
the object and the eye, and 0 the size of the object (see figure). According 
to the lens formula, the distance between the (virtual) image and the lens is 
given by 

1 1 1 -+-=-
-v u -f' 

. uf 
I.e. v = u + f' 

whilst the size of the image is 

1 = !!.-o= _f_o. 
u u+f 

d-u+v 
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The apparent size of the image is determined by the angle 4> it subtends 
at the eye, which, assuming the object is small, is 

Q> = I 
d-u+v 

f 0. 
u(d- u) +fd 

This angle is smallest as a function of u when the denominator on the right­
hand side of the above formula is a maximum. This condition is satisfied 
when u = d/2. In other words, the apparent size of the object is smallest 
when the lens is equidistant from the eye and the object. It is interesting that 
this condition is independent of the focal length of the lens. 

S54 With 4> as defined in the Hint, Snell's law applied to the initial 
entry into the glass gives sinG - 0) = ng sin Q>. Straightforward geometry 
then determines the angle between the incident ray and the normal to the 
glass-water interface at the point where the ray meets the boundary as () + Q>. 

Water 

For total internal reflection to occur this must exceed sin-1(nw/ng). These 
two conditions can be combined using the formula sin(()+ 4>) = sin 0 cos 4> + 
cos() sin 4> to eliminate 4> and obtain 

n~- n~ ~ cos2 O(n~ + 1 - 2nw). 

Substitution of the given values for the refractive indices yields the stated 
result. 

S55 Consider the light beam as consisting of parallel light rays. They 
cross the vertical plane face of the quarter-cylinder without changing their 
direction, and strike the curved surface of the cylinder at various angles of 
incidence. The normals at the points of incidence of the rays are radii of the 
cylinder. 
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The higher the position of a light ray entering the quarter-cylinder, the 
larger is its angle of incidence at the cylinder's curved surface. The angle 
of incidence for the ray shown in the figure is the critical angle for total 
internal reflection. Therefore only light rays closer to the table than this one 
can leave the quarter-cylinder (refracted to different extents). The limiting 
case is determined using the figure: 

. 1 2 
s1na: =- =­

n 3 
and 

R 
-R =cosa:, 

+x 

which yield x = 1.71 em. This is the closest to the quarter-cylinder that light 
can reach the table. 

As the angle of incidence of light rays close to the table top is smaller, they 
are deviated less from their original direction by refraction, and therefore 
might reach the surface of the table further away. One is inclined to think 
that, in principle, the light patch could reach to any distance along the table, 
since the direction of a light ray travelling adjacent to the surface of the 
table is not altered. This, however, is false; the path of each light ray can be 
parameterised (e.g. as a function of the angle of incidence), and it can then 
be shown that each ray does not get very far up the table. 

Instead of through tedious calculation, the furthest point of the light patch 
can be found by means of a simple 'trick'. Consider the part of the quarter­
cylinder close to the table as a plano-convex lens. The cylinder material 
before the lens behaves like a plano-parallel plate and can be ignored. The 
focal length of the plano-convex lens can be calculated using the thin lens 
formula: 

1 n -1 
f ~-

This yields f = 10 em, and this is the distance from the quarter-cylinder of 
the furthest point of the light patch. 

S56 If RM is the Moon's radius and R is the Moon-Earth distance, the 
light power diffusely reflected into a solid angle of 2n is rxnR~E, where E 
is the intensity of direct sunlight (on either the Earth or the Moon). The 
intensity received on Earth as moonlight is this divided by 2nR2. The Moon's 
diameter subtends about r, or 9 X 10-3 rad, at the Earth's surface, and so 
the ratio of moonlight intensity to that of direct sunlight is 

a:R~ = o.o7 ~ (9 1o-3)2 ~ 1o-6 
2R2 2 X 4 X X . 

Thus sunlight is about one-million-times brighter than moonlight. 
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Note. In fact, the reflectivity of the Moon was actually measured by com­
paring the brightnesses of sunlight and moonlight. Moreover, the albedo 
of the Earth could be similarly determined by measuring the (very low) 
brightness of the dark part of a new moon illuminated by reflected light 
from the Earth. 

S57 Let us approximate comfortable walking by a model in which the 
human leg is a freely swinging pendulum. The period of a freely swinging 
body supported at its upper end is 

T=2n 0, y;;gs 
where I is the moment of inertia of the body, m is its mass, and s is the 
distance between the pivot and the centre of mass of the body. Now introduce 
the so-called effective length Letr =I fms by expressing the period as 

T=2nf¥. 

We can assume that the effective length is directly proportional to the actual 
length of the leg and, for different people with the same leg length, we will 
find only very slight differences in the effective length. 

Using this result for the natural period, we can now estimate a person's 
natural gait-the one involving the least muscular effort. To a first approx­
imation, we assume that the length of a stride is proportional to the length 
of the leg. The time for a single stride is one-half the period given above, 
and the walking speed v depends on the leg length: 

L 
Vwalk OC T 12 OC JL. 

This equation predicts that people with longer legs have a more rapid natural 
walking gait. The prediction is made on the basis of an oversimplified 
model that assumes minimum energy expenditure and ignores differences 
in anything (e.g. shape, strength, etc.) other than leg length. However, the 
prediction is borne out by common experience. 

When analysing a person running, an important change must be made 
to our model. During running, the leg does not swing freely but is subjected 
to a torque acting about its pivot. The torque is produced by a force F 
supplied by the muscles. This force is roughly proportional to the cross­
sectional area of the muscles involved, and if we assume that, for people 
of different size, the relative proportions of the leg are the same, then the 
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cross-sectional area, and therefore the force F, depends on the square of the 
length L. The torque is then proportional to the product of F and L: 

roc FLoc L 2 x L = L3• 

The moment of inertia I is proportional to the mass and to the square of the 
length. Again, we assume that all legs have essentially the same proportions; 
that is, width and thickness are proportional to length. Thus the mass varies 
as the cube of the length and 

It can generally be shown that for a body oscillating about a fixed point 
and subject to a periodic torque, the period T depends on the maximum 
torque r and the moment of inertia I of the body about that point, and is 
given by 

T oc If. 
Upon substituting for I and r, we find 

Toc{gocL. 

The speed of running is the product of the frequency of taking steps and the 
length of a single step, and hence 

L L 
Vrun OC f X L OC T OC L = 1. 

So the model predicts, in accord with Annie and Andy's experience, that the 
speed of running does not depend on leg length. Whilst its predictions are 
not, of course, strictly accurate, the model does offer some explanation for 
the observation that the ordinary walking rate of people with long legs is 
usually greater than that of people with short ones, whereas the speed at 
which they can run is often not significantly different. 

S58 Consider a simple pendulum of length L and a pendulum consisting 
of a uniform rod of length t pivoted at one end. If both are released from 
a horizontal position, what are their angular speeds after they have each 
travelled through an angle rx? 
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The principle of conservation of energy yields 

~mL2oi = mgL sincx, i.e. w = J~ sin ex 

for the simple pendulum, and 

1 mt2 2 t . 
2 - 3-w = mg2 smcx, -~ I.e. w = y t smcx 
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for the rod. If L = ~t, then the angular velocities of the two motions are 
equal for all values of oc. It then follows that the two motions are identical 
at all times and their periods are equal. 

How can the period of this equivalent pendulum be calculated? The 
formula T = 2n...fL1i, valid for small oscillations, cannot be applied as 
the amplitude here is large. Exact calculations would require complicated 
mathematical analysis, but this is not necessary if, instead of calculating the 
period T, we only wish to determine its dependence on L. 

The period of swing of the simple pendulum may depend on its length 
L, the mass of its bob m, the gravitational acceleration g and the maximum 
angle of deviation OCmax· If the dimensions of the quantities involved are 
taken into consideration, this functional dependence can only be of the form 

T(L,m,g,ocmax) = f(ocmax)[!i. 

To justify this assertion, we note the following points. The dimension of mass 
is the 'kilogram', and since the 'kilogram' does not occur in the dimensions 
of any of the other quantities, the period (which has dimension 'seconds') 
cannot depend upon the mass of the bob. On the other hand, 'seconds' occur 
only in g, and therefore the required dimension of 'seconds' in T can only 
be obtained if T is inversely proportional to the square root of g. Finally, 
in order to settle the 'metre' dimension, the period has to be proportional to 
the square root of L. The form of the function f(ocmax) cannot be determined 
via dimensional analysis, since the angle is dimensionless. The only available 
information is that for small angles f(ocmax) ~ 2n. 

From the above reasoning, it can be concluded that (with the same initial 
displacements) the period of a simple pendulum of length (2/3)t is fil3 
times that of a simple pendulum of length t. Thus, the period of a pivoted 
rod of length t is approximately 82 per cent of that of a simple pendulum 
of the same length. This conclusion is valid not only for horizontal release, 
but for any common initial starting position. 
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S59 The required power for the hovering helicopter depends on the 
gravitational acceleration g, the linear size of the helicopter L, the average 
density of the helicopter Pheh and the density of air Pair· 

It is reasonable to assume that the mechanical power needed depends only 
on these quantities and that the dependence is a power relationship: 

p oc gcx X Lp X Phei X P~ir· 

The dimensions of the left- and right-hand sides must be equal: 

which yields 

kg m2 = (m)cx P (kg)Y (kg)h 
3 2 xm x 3 x 3 ' s s m m 

1' + <5 = 1, 
(X+ p - 3(y + <5) = 2, 

-2oc = -3. 

The solution of this system of linear equations is P = ~, ex = ~ and y = 1- <5. 
It can be seen that the mechanical power needed is proportional to the ~ 

power of the linear size. Consequently, the second helicopter should have an 
engine producing power (1/2f12 P = 0.088P. 

Note. (i) The efficiency of a mechanical engine can be characterised by the 
ratio of the power produced to the mass of the engine. According to the 
above result the 'specific power' 

p p 
m oc V oc Ji, 

i.e. the efficiency required increases as the linear size increases. This means 
that the smaller a helicopter is, the more easily it can hover. There are many 
small animals (bees, dragonflies, hummingbirds, etc.) that can hover like a 
helicopter, but larger birds are unable to do so. 

(ii) Using simple dimensional analysis we could find only the sum of the 
exponents y and ~- However, it is clear that P can depend only on the 
product of the density of the helicopter and g, because, when the helicopter 
is hovering, the relevant quantity is not its inertial mass, but its weight. 
Thus y must be equal to oc, i.e. y = f with~=-!. Finally, we get 

P OC (gPhei)312 X L 112 X P~!12 = (L3Phelg) X ..jLg X ~. yp;;; 
Here, on the surface of the Earth, we can change only the size and density 

of the helicopter. Nevertheless, for a space mission using robot helicopters, 
it could be useful to know how P depends on the gravitational acceleration 
and the atmospheric density of the target planet. 
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S60 The gravitational potential energy lost as the rod falls through an 
angle 0 is Mg~(l-cos 0), and this is converted into rotational kinetic energy 
about the edge of the table. Either by direct calculation or by using the 
parallel axes theorem, the relevant moment of inertia of the rod is found to 
be j-Mt2• Combining these two results gives 

oi = 3J (1 - cos 0). 

The centripetal acceleration ac, is t /2 times ro2 and therefore equal to 
~g(l-cos 0). Using the same moment of inertia and the instantaneous torque 
of M g~ sin 0 gives the tangential acceleration of the rod as at = ig sin 0. 

(i) The smooth (frictionless) horizontal and vertical walls of the groove 
can exert only positive vertical and horizontal forces, V and H respectively, 
on the end of the rod, (see Fig. S60.1). The rod will lose contact with the 
table as soon as one of these falls to zero and is required by the equations 
of motion to become negative, i.e. to become a (physically impossible) force 
of attraction. 

Fig. S60.1 

Resolving forces and accelerations horizontally and vertically (Fig. S60.1) 
gives 

H = M(at cos 0 - ac sin 0), 

Mg- V = M(ac cos 0 +at sin 0). 

Solving these two equations for H and V we obtain 

H = ~Mgsin0(3cos0-2), 
1 

V = 4Mg(3cos0 -lf 
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The first reaction component to vanish is H and this happens when (} = 
cos-1 ~ ~ 48°. At larger angles, H would be negative, so the rod really loses 
contact with the table because the smooth groove is not able to pull back 
the end of the rod. 

(ii) As the edge of the table is now a very small quarter-circle, the normal 
force N is always directed along the rod's axis. The static frictional force Frr 
is tangential to this quarter-circle and can have any arbitrary value because 
of the rough edge (see Fig. S60.2). 

Fig. 860.2 

The sum of the component of the rod's weight along the rod and the 
normal force of the table gives the centripetal force: 

t 3 
Mg cos(}- N =Mac = M 2ai = 2.Mg(1 -cos 0). 

We can thus express the normal force as 

N = ~g (5cos0- 3). 

The reaction of the table on the rod becomes zero when N = 0, i.e. when 
(} = cos-1 ~ ~ 53°. At larger angles the normal force should be negative, 
which is impossible, and thus the rod loses contact with the table. Because of 
the rough edge, the static frictional force is always large enough to prevent 
slipping except when the normal force becomes zero; consequently, it has no 
effect on the motion. 

Note. In this problem we considered two extreme cases represented by (i) 
and (ii). In general, the direction of the normal force is perpendicular to the 
common tangent to the table's edge and the bottom of the rod; this means 
that the normal force can act in virtually any direction. This shows that the 
motion of the falling rod strongly depends on the geometrical details of the 
touching surfaces, as well as on the value of the coefficient of friction (see 
also P61). 
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S61 Suppose, first, that the surface of the table is very smooth (the 
coefficient of friction is very small). Just after the pencil is released, its centre 
of mass accelerates in the direction of the fall and acquires both horizontal 
and vertical velocities. The horizontal component of the acceleration is 
produced by the frictional force between the pencil point and the table, but, 
since the surface of the table is smooth, the point soon slips, in the direction 
opposite to that of the fall. 

If the friction is very large, the pencil does not slip for a relatively 
long time. Initially, the horizontal velocity of the centre of mass, which 
is moving on a circular path, increases in the direction of the fall, but 
later it starts to decrease and, if the pencil continued moving this way 
until it was horizontal, it would tend to zero. The sign of the horizon­
tal acceleration of the centre of mass, and thus also that of the fric­
tional force, changes during the motion. If the pencil does not slip during 
the first stage, then it can only slip 'forward', i.e. in the direction of the 
fall. 

In the following we are going to prove that the pencil will slip in some 
way ('backward' or 'forward') but the point of the pencil never loses contact 
with the table. For sake of mathematical simplicity let us use quantities with 
a value of unity for the length and mass of the pencil, as well as for the 
gravitational acceleration: t = M = g = 1. Thus the weight of the pencil 
is 1, its centre of mass (CM) is ! measured from either end, its moment of 
inertia about its CM is /2 , and its moment of inertia about one of its ends 
. 1 
lS 3· 

1 (I- cos 

Fig. S61.1 

During the first stage of the motion the point of the pencil does not slip, 
and so the pencil rotates about its point (Fig. S61.1). We can find the angular 
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velocity of the pencil with the help of the conservation of energy: 

1 1 1 2 
-(1 -COS 0) = - X -W 
2 2 3 ' 

which yields w = .J3(1 -cos 0). The instantaneous torque of ! sine gives 
the angular acceleration of the pencil: 

1 . e 1 2 Sin = 31X, . 3 . e I.e. IX = 2 Sin . 

Vertically there are two forces acting on the pencil: its weight and the 
normal force of the table, N. The vertical component of the centripetal 

acceleration of CM is !w2 cos e and that of the tangential acceleration is 

!IX sin e. Thus the vertical component of the equation of motion is 

1- N =~IX sine+ ~w2 cose, 
which yields: 

N = ( 3 cos; _ 1 r 
It seems that the normal force is never negative, and that the point of the 
pencil cannot lose contact with the table during the rotational phase of the 
motion. The normal force is zero when e = cos-1 ! ~ 70.5°, which means 
that the frictional force is also zero at this angle, and the pencil will slip 
there if it has not done so before. 

The horizontal component of the equation of motion is 

1 e 1 2 . e F = -IXCOS - -(J) Sin 
2 2 ' 

where F is the frictional force. Substituting the angular acceleration and 
velocity into this expression, we get 

F = ~ sin0(3cose- 2). 

The condition for slipping is IFI > JJN, where fJ is the coefficient of (static) 
friction. We can reformulate the condition for slipping with the help of a 
function f(O), defined as the absolute value of the ratio of the forces FIN, 

f(O) =IF I= 13sin0(3cos0-2)1 >f-l. 
N (3cose -1)2 

The function f(O) is plotted in Fig. S61.2. 
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f(h) 

Fig. S61.2 

The frictional force changes sign at (} = cos-1 ~ ~ 48°, implying that 
'backward' slipping can occur in the region 0 < (} < 48°. Using numerical 
methods it can be shown that in this region f((}) has a maximum value of 
Jlcrit ~ 0.37 at an angle of(}~ 35°. It means that the pencil slips 'backward', 

if Jl < Jlcrit· 
If Jl > Jlcrit then the pencil slips 'forward' before it reaches the angle 

of(} ~ 70.5°, where f(()) approaches infinity. (Note that the pencil cannot 
start slipping in the range of 35° < (} < 51 o.) The 'backward' and 'forward' 
motions of the pencil are shown in Fig. S61.3. In both cases the slipping 
point of the pencil can stop again. 

1 > 1 crit 

Fig. S61.3 

Finally, it will be shown that the point of the pencil does not lose contact 
with the table. Let us consider first the case of 'forward' slipping shown in 
Fig. S61.4. According to the work-energy theorem and the cosine law for 
(vector) triangles, 

1 1 1 2 1 [(w) 2 
2 1 l 2(1- COS(})= Wrr + 2 X 12 OJ + 2 2 + Vpoint + 2Vpoint X 2(1) COS(} . 

If we neglect the work of friction and the two terms containing the velocity, 
Vpoint of the point of the pencil, (all three terms are positive), then we obtain 
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Fig. 861.4 

an inequality for the angular velocity: w2 < 3(1- cos 8). The instantaneous 
torque about CM gives 

~ N(sin 8 + ,u cos 8) = 1
1
2 rx, 

whilst the vertical component of the equation of motion is 

1 - N = ~rx sin 8 + ~w2 cos 8. 

(It will be recognised that this equation is the same as for the non-slipping 
case. The reason for this is that the point of the pencil experiences only 
horizontal acceleration, and so the vertical component of acceleration of 
CM remains unaltered, see Fig. S61.5.) 

Fig. 861.5 

From the two equations above we can express the normal force as a 
function of 8 and w2• However, we have an inequality for w2 which yields 

N _ 1 - (1/2)w2 cos 8 (3/2)[cos 8- (1/2)]2 + (5/8) 0 
- 1 + 3 sin 8(sin 8 + ,u cos 8) > 1 + 3 sin 8(sin 8 + ,u cos 8) > · 
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Thus the normal force is always positive, and the point of the pencil does 
not lose contact with the table. 

Fig. S61.6 

For the case of'backward' slipping our method is very similar. Figure S61.6 
shows the horizontal and vertical components of the velocity of CM, Vx and 
vy, respectively. As the point of the pencil has zero vertical velocity, there is 
a connection between vy and w, namely vy - !w sin(} = 0. We can again use 
the work-energy theorem to give 

1 1 ( 1 2 2 2) 2(1-cosO)= Wrr+ 2 12w +vx+vy , 

in which we (again) neglect work against friction and another positive term 
containing Vx to obtain 

2 1-cose 
w < (1/12) + (1/4) sin2 (} · 

Considering again the net torque about CM and the vertical component of 
the equation of motion, we obtain a further inequality for the normal force, 
namely: 

N = 1- (1/2)w2 cos(} > 1 + 3(cos (}- 1)2 . 

1 + 3 sin O(sin (}- J.lCOS 0) [1 + 3 sin (}(sin(}- J.lCOs 0)](1 + 3 sin2 0) 

The numerator is always positive and the denominator is positive (for 
0 ~ (} ~ 90°), if J.l < j. However, in the 'backward' slipping region J.l < 0.37, 
so, again, the point of the pencil does not lose contact with the table. 

If the pencil point stops slipping at some stage, it cannot lose contact 
again, because then w2 < 3(1- cos 0), and thus N > (3 cos(} -1)2 /4;;:::: 0 (see 
the first part of this solution). 
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862 The pressure in a soap bubble of radius R is greater than the 
atmospheric pressure p0 by 11p = 4y I R. The factor of 4 arises because both 
directions of curvature and the fact that the film is two-sided have to be 
taken into account. Clearly, the pressure is higher in the bubble of smaller 
radius and, therefore, the air flows into the larger bubble, as if inflating it to 
finally form a single bubble of radius R3. 

The volume of air in the bubbles is proportional to R3, and therefore the 
ideal gas equation and the conservation of mass require that 

(Po+~) R~ +(Po+~:) R1 = (Po+~) R~. 
For bubbles of ordinary size, the pressure of curvature is many orders of 
magnitude smaller than the external atmospheric pressure. If the pressure of 
curvature is neglected the radius of the resulting bubble is 

3/ 3 3 R3 ~ yR1 +R2 . 

If the radii are measured 'accurately', in order to determine the surface 
tension, the formula 

_ Po R~ - R~ - Ri 
'l' - 4 R2 + R2 - R2 

1 2 3 

is appropriate. In practice, however, this method cannot be applied, as the 
numerator is, as shown, almost equal to zero and thus would carry a large 
fractional uncertainty as a result of measurement error. Any measured data 
are likely to provide only a rough estimate of the surface tension. 

863 The cross-sectional edge of the disc of water is a semicircle of radius 
r = !d (see figure). Thus, the curvature of the surface of the water is 2ld, 
which corresponds to a pressure of curvature of 11p = 2y I d, where y is the 
surface tension. (The other component of the curvature is negligible because 
D~d.) 

D 

The pressure inside the disc is therefore Po - 2y I d when the atmospheric 
pressure is PO· This pressure difference acts over a surface area between the 
water and each of the glass surfaces of nD2 14. This implies that a force, 

F = nD2 2y 
4 d 

'pulls' the glass plates together. 
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Note. If dis much smaller than D, this force can be quite considerable. It is 
in fact very difficult (if not impossible) to separate two parallel glass plates 
by pulling them in a direction perpendicular to their common plane when 
there is water between them. In order to be separated, they have to be slid 
in a direction parallel to that plane. 

864 The velocity of the thread at a distance of x metres from the wall is 
obviously proportionately smaller than the velocity of the end of the thread, 
i.e. it is xvo. 

-- -
lm xm 

If this value is greater than the speed of the caterpillar, then the latter will 
move away from the wall. Its situation will become more and more hopeless, 
and it will never reach the wall. 

On the other hand, if Vcaterpillar > xvo, the net velocity of the caterpillar 
is towards the wall and increases as time passes, with the consequence that 
the caterpillar will certainly reach the wall. The limiting case corresponds 
to x = Vcaterpillar/vo = 0.1 m. Starting at this point, the caterpillar does not 
move in either direction. 

865 Imagine signs attached to points on the thread and labelled with 
the ratio of the distance from the wall to the total length of the thread. 
These figures are precisely the coordinates x mentioned in the solution to the 
previous problem: x = 0 corresponding to the position of the wall and x = 1 
to that of the spider. Now, however, these 'stretch' as the thread stretches. 

We first calculate how long it takes the caterpillar to get from a point x to 
a nearby point x - 8x when the spider has been moving for a time t. Since 
the distance between the points in question is (1 + vot)8x and the caterpillar 
moves at speed c, the relationship 

8 x = c8t 
1 + vot 

holds. Summing (integrating) this relationship for the whole motion of the 
caterpillar, which starts from xo and reaches the wall in time T, gives 

'"" c8t loT c c xo=~ 1 ~ 1 dt=-ln(1+v0 T). + vot o + vot vo 

Since the above integral can be made arbitrarily large by a suitable choice of 
T, the perhaps surprising result is that however quickly the spider pulls the 
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end of the thread (i.e. with an arbitrarily large v0, an arbitrarily small c and 
an arbitrary x0 ), the caterpillar will still reach the wall within a finite time. 

866 (i) Suppose that the ball falls freely for 1 m, then reaches point B 
by bouncing practically horizontally along a row of closely spaced nails near 
the bottom edge of the drawing-board. The duration of the vertical fall is 
t1 = 0.45 s, at the end of which the ball has reached a speed of v1 = 4.4 m s-1, 

and covers the remaining distance of 2 m in a time t2 = 0.45 s. As the ball 
would have reached point Bin a time t3 = 1.01 s by sliding down the straight 
line AB (with acceleration g/ JS), the answer to the first question is that the 
quickest way for the ball to get from A to B is not by following the shortest 
route. 

Note. It can be proved by means of complicated mathematics (the calculus 
of variations) that the curve along which the transit time is the shortest is 
a cycloid. 

(ii) A body dropped from rest at point A has maximum vertical velocity 
if it is in free fall. Its maximum kinetic energy, and therefore its maximum 
speed, is determined solely by the magnitude of its vertical displacement. 
Thus, a bouncing ball cannot reach the bottom of the drawing-board faster 
than a body in free fall, i.e. in less than t 1 = 0.45 s. The answer is therefore 
no! 

867 The puzzling aspect of the problem is that insufficient data have been 
given in the text. However, the figure can be used as a source of information. 
Using a protractor you can measure with sufficient accuracy that the tangent 
to the fixed end of the rope makes an angle of 30° with the vertical, as 
shown in the figure. This means that the tension at the fixed end of the rope 
is T = 20 N/ sin 30° = 40 N. Similarly, the weight of the rope is equal to the 
vertical component of the tension there; mg = T cos 30° = 34.6 N, giving 
the mass of the rope as m = 3.5 kg. 

___ :~----------=------­
p'-
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Note. Further information can be obtained from the figure. The centre of 
gravity of the rope must be vertically above the point P, because the lines 
of action of all three forces acting on the rope must meet at a single point. 

S68 Using the argument described in the Hint it is possible to prove 
that the compasses have to be opened to the extent necessary to make the 
lower arm hang horizontally when the compasses are suspended, as shown 
in Fig. S68.1. 

Fig. S68.1 

Starting from that situation, let us imagine for the moment that the upper 
arm of the compasses is fixed. If the lower arm is then bent either upwards 
or downwards, the horizontal position of the CM of the compasses moves 
towards the pivot. After the release of the upper arm the pivot moves 
downwards, because that is the only way that the CM of the compasses 
can again position itself below the attachment point. So, in either case, 
the vertical position of the pivot is lowered, and we can conclude that the 
originally described situation is the one required. 

Instead of a real pair of compasses let us consider a simplified model of 
two identical thin rods joined by a pivot of negligible mass as shown in 
Fig. S68.2. 

Fig. S68.2 

Let the angle between the arms of the compasses be 20, and the length of 
each of the arms be 2 units. It is easy to find congruent angles in Fig. S68.2 
and to apply the sine rule to the shaded triangle. Figure S68.3 shows a 
magnified version of this triangle. 
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Fig. 868.3 

According to the sine rule it follows that 

sin 0 sin(90° - 20) 
-

1 sin 0 

After a simple calculation we obtain 

. 0 1 
sm = J3' 

so 0 ~ 35.3°, that is to say the compasses should be opened to 20 ~ 70.5°. 

Note. The result 20 = 2 sin-1 ( 1/ .J3) = cos-1(1/3) is so simple, one might 
suppose that a more elegant solution exists. Actually, it is possible to find 
the angle 20 with the help of the theorem of parallel transversals. 

B 

cv 2h 
u~~\ 

A----+---.:...L-.-____._.!.......40 
D F G 

Fig. 868.4 

In Fig. 868.4 two verticals are drawn, one through the overall centre 
of mass C of the compasses, and the other through the centre of mass 
E of the upper arm alone. By considering the lines forming the angle 20, 
it can be seen that the equality of OE and EB implies that FG = GO. 
Similar consideration of the angle 4J, and the fact that DC = CE, shows 
that FG = DF. Thus points F and G trisect the section OD, which in turn 
is equal to OE, thus implying that OE = 3GO. As EGO is a right-angled 
triangle, it follows that 20 = cos-1(1/3) ~ 70.SO. 

S69 Clearly, the centre of mass S of the triangle has to be below the 
point of suspension. Denote the vectors pointing from the centre of mass 
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S to the vertices of the triangle by r1, r2 and r3, and that to the suspension 
point by m (see figure). The forces F1,F2 and F3 exerted on the plate by 
the threads can now be expressed in terms of the vectors defining the thread 
directions: 

Since the plate is in equilibrium, the vector sum of the forces acting on it 
is zero, i.e. 

Making use of the fact that the vector pointing to the centre of mass of the 
triangle (the origin of the vector reference frame) is the arithmetic mean of 
the vectors pointing to its vertices, we have 

r1 + r2 + r3 = 0. 

We note that W and m are parallel and, therefore, W = -km. Eliminating 
r3 from the above equations gives 

Since r1, r2 and m are not in the same plane, a linear combination of them 
can only be zero if the coefficient of each is zero. 

Thus A.1 = A.2 = A.3, which implies that the tensions in the threads are 
proportional to their lengths. This deduction would become invalid if one 
of the threads were slack, since the plane of the plate would then become 
vertical and m would lie in it. 

870 Initially the tanker and the liquid in it are at rest. As the outlet pipe 
is at the rear of the tanker, when the tap is opened the centre of mass of the 
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liquid will move backwards. As the centre of mass of the whole system is fixed, 
the tanker itself must move forward. However, the outlet pipe is vertical and 
so the emerging liquid will acquire a forward horizontal-velocity component. 
This does not contradict the law of conservation of linear momentum, 
because the liquid inside the tanker will be moving backwards (relative to 
the ground). Nevertheless, the forward direction of motion of the tanker 
must subsequently change to backwards, since if it did not, the position 
of the centre of mass of the whole system would ultimately start to move 
forwards. The dynamical reason for the change in the direction of motion 
is the force exerted on the rear of the container by the backward-moving 
liquid as it is brought to rest relative to the tanker just before discharge. 

Note. (i) It could be that the direction of travel of the tanker changes several 
times during the motion, but a detailed analysis is virtually impossible as it 
depends on too many parameters. 

(ii) Finally, we give the solution to the scenario proposed in the Hint 
to this problem. Consider the situation when the student has reached the 
end of the carriage and stopped, but the ticket collector is still moving 
backwards with speed v relative to the carriage. In accord with linear 
momentum conservation, the carriage must be moving forward with speed 
u = mv/(M +2m). So, when the student jumps out, he carries away a 
forwards-directed momentum of mu = m2vj(M +2m). When the collector 
stops, the carriage (with the collector aboard) changes its direction of motion 
and moves backwards, having a total linear momentum of -mu. Thus the 
final velocity V of the carriage is 

m2 
V=- v. 

(M + 2m)(M + m) 

871 Taking motion to the right as positive, the initial velocities in the 
centre of mass frame of the beads (see Fig. S71.1) are 

M m 
Vm = m + M vo and VM = - m + M vo. 

Since their centre of mass is at rest in this frame, the ratio of the two 
velocities remains constant (at M /m) throughout the motion. 

~-V 
M 

Fig. S71.1 
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As the beads approach each other, their speeds will decrease if q and Q 
have the same sign, but increase if their charges are opposite. In the latter 
case, when they are finally sufficiently far apart, their speeds will return to 
their initial values, since their energies are conserved. In the original frame 
of reference, after a temporary acceleration, the body of mass m slows until 
its speed has the original value v0, while the body of mass M is finally at 
rest having been displaced (to the left) through a certain distance. 

If the beads repel each other, a more detailed discussion is required. If 
their initial energy is sufficient, the beads pass by each other, and as they 
part their speeds return to their original values (as viewed from either the 
centre of mass frame or the 'lab' frame). If, on the other hand, their initial 
kinetic energy is too low for them to approach within a distance d, they 'turn 
back'. In the centre of mass system, the body of mass m then moves to the 
left at speed -vm, whilst the body of mass M moves to the right with speed 
-VM (Fig. S71.2). 

-um 
~ 

====2l:::q====::;:~=C=M===== ..• J~ 

Fig. S71.2 

The condition for this to happen is 

1 2 1 2 1 qQ 
2mvm + 2MvM < 4nao d' 

i.e. 
1 mM 2 1 qQ 

2m+Mv0 < 4nao d" 
The quantity mM/(m + M) is called the reduced mass of the system. The 
velocities of the bodies in the laboratory frame can be obtained by adding 
those in the centre of mass frame to the relative velocity of the two frames; 
the latter is lvMI· Explicitly, 

* m-M * 2M 
Vm=m+Mvo and vM=m+Mvo. 

In the limiting case, when the initial kinetic energy is just sufficient to allow 
the two beads to approach within a distance d, the two beads stop with respect 
to each other (Fig. S71.3), i.e. when viewed in the 'lab' frame, they move on 
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with a common speed v~ = VM = mv0 j(m + M). In fact, this theoretical final 
situation is unstable, since any small disturbance of the relative positions 
will grow as a result of the mutual repulsion between the beads. 

eM: 
m, q ; Stopped 

==~OJ==== .. r~ 
M, Q : Stopped 

Fig. 871.3 

Note. The three cases discussed above model one-dimensional mechanical 
collisions. The limiting case, when the two bodies move on together, models 
an inelastic collision. In this case only the mechanical momentum remains 
constant; the mechanical energy decreases. The velocities in the case in 
which the bodies approach each other and then move away again are the 
same as those calculated from the laws of elastic collisions (conservation of 
energy and momentum). The motion in which the bodies pass each other (in 
essence, they do not collide and keep their original velocities) is obviously 
in agreement with the conservation laws. The solution corresponding to this 
case is usually not used for mechanical collisions since bodies cannot pass 
through each other. 

872 (i) Let v0 denote the asymptotic common speed, d the original 
distance between the beads and m the mass of one bead. 

In a given time interval ll.t, the cluster collides with vo!lt/ d further beads, 
which increases its mass by ll.m = mvoll.tfd and its momentum by ll.p = 
voll.m = mvijfltjd. According to Newton's law of motion, 

F = ll.p = mvij 
flt d ' 

which yields vo = .jFd/m for the ultimate speed in the case of inelastic 
collisions. 

(ii) In an elastic collision between two equal mass bodies with one of 
them initially at rest, their velocities are exchanged. The initially moving 
body stops, whilst the second one moves away with the same velocity as that 
initially possessed by the first. 

The leftmost bead accelerates uniformly and reaches a speed of 

Vt=f!J=A 
before the first (elastic) collision takes place. It then transfers its speed to the 
second bead and stops, after which it starts accelerating again as a result of 
the external force. What happens to the bead it has set in motion? It moves 
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at a constant speed v1, collides with the third bead and stops. The third and 
subsequent beads behave similarly, and a 'shock wave' propagates forward 
at speed vr. 

Meanwhile, the leftmost bead is again accelerated to speed v1, collides 
with the second bead, which is now at rest, and the process is repeated, 
thus starting a new 'shock wave'. The speed of the accelerated bead varies 
uniformly from zero to v1, its average value is vr/2 = vo/ .Ji = JFd/(2m). 

Note. The case of partially elastic collisions is also interesting. In this case 
(according to the results of computer simulations) it can be stated that 
sooner or later, the interacting beads condense into a single cluster that 
behaves like a perfectly inelastic body with a final speed of vo = .jFd/m. 
The time necessary for the cluster to condense depends upon the degree of 
inelasticity (the coefficient of restitution). The more elastic the elementary 
collisions, the longer the time necessary for an inelastic cluster to condense. 

873 At any time, the weight of the beer that is in free fall will not be 
registered by the weighing machine, although the momentum destroyed as 
the beer is brought to a halt by the jug will be, as will the force experienced 
by the tap as the direction of the beer flowing through it is changed; there 
are several such effects to consider. However, if the overall system of table 
plus jug plus beer is considered these are internal actions and reactions 
and the only two external forces (ignoring air resistance) are gravity and 
the upward reaction from the weighing machine. The net result of these· 
two has to be such that the centre of gravity of the system falls, initially 
accelerating (until the first beer reaches the jug), then sinking with constant 
velocity, and finally (when the beer runs out) decelerating. Consequently the 
machine reading, relative to the original, will be: increasingly negative- no 
change- increasingly positive- no change. 

874 If the cross-section of the incoming water jet is A and its speed 
is v, then the mass of water of density p flowing into the gutter in unit 
time is of pAv. This quantity of water has a kinetic energy of pAv3 /2 and 
a horizontal momentum of pAv2 sin oc. These quantities cannot change if 
viscosity is neglected, and so 

1 3 1 3 1 3 
2pAv = 2pArv1 + 2pAzv2, (1) 

(2) 

The law of conservation of matter has to hold as well, and so we also have 

(3) 
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where At and A2 are the respective cross-sectional areas of the water flowing 
out of the gutter to the right and left, while Vt and v2 are the corresponding 
speeds. 

Equations (1), (2) and (3) are insufficient to determine the four unknown 
quantities (the two cross-sectional areas and the two speeds); a further 
relationship has to be found. According to Bernoulli's law, the quantity 
pv2 /2 + p + pgh is constant along a streamline of a non-viscous liquid. Inside 
the liquid and far from the initial impact point, the pressure is constant and 
equals the atmospheric pressure. If the difference in the heights of the streams 
or, more exactly, the change in the energy corresponding to that difference, 
is neglected (this is correct for a rapidly flowing liquid), the consequence of 
Bernoulli's equation is that v = Vt = v2. This means that the liquid leaves the 
gutter at the same speed at both ends! This is rather surprising, but correct, 
within the accuracy of the above approximation. 

The equations for the conservation of mass and momentum therefore take 
the forms A= At +A2 and AsiniX =At -A2, which yield 

At 1 +sin IX 

S75 In a time interval At, the level of the liquid with initial acceleration 
a decreases by Ah = a(At)2 /2 and the corresponding mass of liquid which 
flows out is Am = (D2nj4)(11h)p. This is equivalent to a decrease of (Am)gh 
in the potential energy of the liquid as a whole (see figure). Meanwhile, the 
whole of the liquid is accelerated to a speed Av = al1t and its kinetic energy 
increased by (D2nj4)hp(l1v)2 /2. The speed of the emerging liquid is higher 
than this, but its effect can be neglected as the quantity of water involved is 
small compared with the total. 

h 

d 

It 
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According to the law of conservation of energy, the changes in the potential 
and kinetic energies are the same: 

nD2 ~(d )2 h = nD2hp (aL\tf 
4 2 t pg 4 2 ' 

which yields a= g. 
This means that initially some of the water starts to free fall. According to 

the mass conservation law, the speed of the emerging water is (D I d)2-times 
higher than that of the water surface. Consequently, its acceleration must be 
greater than g by the same factor. For example, if the diameter of the orifice 
is one-tenth of that of the tube, then the initial acceleration of the emerging 
liquid is 100g! 

For how long is it true that the liquid is practically in 'free fall'? Ac­
cording to Torricelli's law of efflux, the speed of the efflux is .J2iTi and 
the rate of decrease of the liquid level is (dl Df .JliTi. The time interval r 

between the start of the efflux and the attaining of (nearly) constant veloc­
ities by the surface and the emerging water can be estimated roughly using 
the relationship 

d2 
gr ~ D2 Vfih. 

If, for example, h = 20 em and the ratio of the diameters is 1 : 10 then 
r ~ 0.002 s, which is negligible for most purposes. 

S76 The sand flows through the aperture almost uniformly, and therefore 
the total operating time T of the sand-glass is proportional to the volume 
H 3 of the sand. (As our aim is to obtain only a rough estimate, the difference 
between the volumes of a cone and a cube is ignored.) The time T may also 
depend on the gravitational acceleration g, the diameter d of the aperture 
and the density p of the sand, and so T ~ H3 x f(g,d,p). 

As T is a time and only g contains a time dimension, the function f has to 
be proportional to the reciprocal of the square root of g. Similar reasoning 
shows that T cannot depend on p, but is proportional to d-512 ; in summary, 
T ~ H 3 I #g. The coefficient of proportionality is a dimensionless number, 
and since it does not depend on anything, can be assumed to be of order 
1 (though such assumptions are notoriously dangerous in some branches of 
physics!). 

Consider some realistic data. If, for example, H is a few centimetres and d 
is around a millimetre, T is a few minutes, which is indeed the sort of time 
for which an egg should be boiled. 

Note. In principle, the average diameter of the grains of sand could be 
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included in the formula. However, this is in general much smaller than 
the other dimensions involved, therefore (in the same way as the size of 
the atoms constituting the sand is ignored) it does not play a role in the 
dimensional reasoning. The trickiest point in all dimensional analysis is that 
of choosing the relevant parameters for the phenomenon in hand. 

S77 Let the displacement of the bob be x and let us calculate the net 
force (F) exerted on it (see Fig. 877.1). 

Fig. 877.1 

The length of the extended spring is 

x2 
I = V 15 + x2 ~ I o + 2t o, 

and so the tension in it is 
x2 

Fspring = k 210 . 

The net force acting on the bob (see Fig. 877.2) is 

F = -2Fspring sin 0 ~ -2Fspring: = - k2 x3, 
t-O lo 

Fig. 877.2 

and the resulting equation of motion is 

d2x k 3 
m dt2 =-15 x. 

This is a differential equation which cannot be solved by elementary methods. 
However, to solve the problem as posed it is not necessary to solve the 

equation explicitly, only to apply dimensional analysis to it. Writing the 
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equation in the form 

d2x k 3 3 
-=--x =-Cx 
dt2 mt~ ' 

we can suppose that the period of the motion T, depends only on C and A, 
the amplitude of the vibration. The dependence can be written as 

T ex:: ex x AP 
' 

implying the dimensional relationship 

( k 1 1 )ex s = [T] = [C]cx X [A]P = s~ X kg X m2 x mP = s-2cx x m-2cx+P. 

This equation is satisfied if -2cx = 1 and -2cx + P = 0. Therefore ex = -! 
and p = -1, implying that T ex:: 1/A. Accordingly when the amplitude is 
doubled (2 em), the period is halved (1 s). 

Since for dimensional analysis the choice of variables to include appears 
more or less arbitrary, thus casting some doubt on the validity of the 
conclusions reached, we now give another method for the solution of the 
current problem. 

The velocity of the bob as a function of its position can be calculated 
from the law of conservation of energy. The stored energy in the two springs 
when the bob is at rest at its maximum displacement must be equal to the 
sum of the kinetic energy of the bob and the stored spring energy for a 
general displacement. As the elongation of each spring is 

the equality may be written as 

1 x2 

llt = 2 to' 

~~; ~ 0+2 X ~k (t.)' ~ 2E~ ~ ~mv2 +2 X ~k (;.)'. 

where A is the maximum displacement (amplitude) of the bob. From this 
equation the velocity of the bob can be expressed as 

dx =v = _!_ {k .JA4-x4. 
dt toY 2,;, 

After separating the variables we get 

to {2; {A dx = {T/4dt= T 
Y k lo .JA4- x4 lo 4 · 
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Using y = xj A as a new variable, our final result becomes 

T =to {32; ]:_ {1 dy . VT A}o .jl-y4 

This expression shows directly that the period is inversely proportional to 
the amplitude, again leading to the conclusion that doubling the amplitude 
of the motion to 2 em, reduces its period to 1 s. 

Note. The definite integral in the final expression for the period can be 
evaluated using no more than a programmable calculator: 

11 dy 
~~1.31, 

o v~-r 
thus giving the complete solution to the problem. 

S78 Because of the weakness of the spring, the body falls virtually 
freely at first. The length of the spring is soon several times larger than 
its unstretched length (which can be neglected during subsequent motion). 
With this approximation, the body executes simple harmonic motion, both 
vertically and horizontally. As it is released with no initial speed, it arrives 
vertically under the suspension point after a quarter of the period of the 
horizontal motion. Meanwhile, the vertical motion has also completed a 
quarter-cycle, and the body has sunk to its equilibrium position at a depth 
of mgjk (this is much larger than L). 

The motion can be described quantitatively. In the coordinate system 
shown in the figure, the equations of motion of the body at point (x, y) are: 

max = -k (J x2 + y2 - L) x , 
Jx2 + y2 

may = -k ( J x2 + y2 - L) J x: + y2 + mg. 

During the first part of the motion, whilst the extension of the spring is not 
much larger than L, the force exerted on the spring can be neglected. On the 
other hand, when 

Jx2 + y2 ~ L 

the original length of the spring can be neglected and the equations of 
motion take the following simple forms: 

max = -kx and may = -ky +mg. 

These equations describe harmonic oscillations of identical periods, about 
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the origin in the x-direction and about the equilibrium position Yo = mg/k 
in the y-direction. Incorporating the initial conditions gives the solution: 

x(t) ~Leos ( fmr), 
The body is under the point of suspension when x(t) = 0, andy =Yo = mgjk, 
in agreement with our previous conclusion. 

y :/jmg 
' 

Note. For the early part of the motion t <:: Vm7k (when the assumed 
equations of motion are not strictly valid), the above expressions for x and 
y can be approximated by x(t) ~ Land y(t) ~ gt2 /2, which are in agreement 
with the formulae describing free fall, as is appropriate to that part of the 
motion. 

S79 If the carriage brakes with deceleration a, then in the carriage 
reference frame, a 'virtual inertial force' of magnitude rna, in the direction of 
the carriage's motion, will appear to act on the body. 

If this inertial force acted permanently, the pendulum could certainly 
not reach the vertical, since, if it did, the net work done by the inertial 
force would be zero (the net displacement of its point of application would 
be perpendicular to its line of action) and the gravitational force would 
be negative, implying that the kinetic energy of the pendulum should be 
negative. This is impossible. 

Consider now the fact that the carriage only brakes for a certain length of 
time (until it stops). If it stops when the thread of the pendulum is horizontal, 
the work done by the inertial force is W = maR, where R is the length of the 
thread. If the pendulum subsequently reaches a vertical position with speed 
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v then, from the conservation of energy, 

mv2 
maR- 2mgR = 2 . 

For the thread to remain taut, even at the topmost point, requires mv2 j R > 
mg, which, together with the above relation for the velocity, implies that the 
deceleration of the railway carriage a > 2.5g. The conclusion is, therefore, 
that the taut thread can reach the vertical provided the deceleration is great 
enough and vo is large enough for the pendulum to have time to reach the 
horizontal before the carriage has come to a halt. 

880 The forces acting on the wedge are its weight mg and a force K, 
perpendicular to the inclined plane; the magnitude of the latter may change 
with time. As a result of these two forces, the only component of the 
wedge's acceleration a parallel to the inclined plane is g sin (X (as measured 
in an inertial frame). Newton's equations of motion remain valid in an 
accelerating frame of reference fixed to the wedge only if an 'inertial force' 
-m'a is added to the forces actually causing the motion of a body. Here m' 
is the mass of the body under examination (e.g. that of a small volume of 
water). 

m'g sin 

The resultant of the gravitational and inertial forces acting on the mass 
m' must be perpendicular to the inclined plane as the components parallel 
to it cancel each other. The bodies on the wedge (the glass and the water in 
it) 'feel' as if they were in a gravitational field perpendicular to the inclined 
plane, with the consequence that the surface of the water lies parallel to the 
plane. 

This statement does not depend on the motion of the plane; it can be 
fixed or move freely or even- as the result of a small force- be shaken to 
and fro. As long as the friction between the inclined plane and the wedge is 
negligible and the wedge does not rise off the plane, the shape of the water 
surface cannot be other than a plane parallel to the inclined surface. 

The case m ~ M deserves an additional comment. In this case, the wedge 
'pushes away' the inclined plane, and falls nearly freely. The weight of the 
bodies on the wedge (including the water) are nearly completely 'lost'; but 
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even so, the small force keeping the water inside the glass is still sufficient to 
set the water surface parallel to the inclined plane. 

Note. The water surface would only become parallel to the inclined plane 
after a long time, and on a correspondingly long plane. This is why this 
interesting phenomenon cannot be observed experimentally in normal cir­
cumstances. 

881 Assume that the string is of uniform cross-section and mass distri­
bution, and is free at both ends. It orbits the Earth in such a way that its 
position relative to the Earth is always the same. Obviously, if the string is 
in a vertical position, the phenomenon could only occur at the Equator. 

In the Earth's reference frame a body of mass m orbiting above the Equator 
at a distance r and with angular velocity w experiences a gravitational force 
of -GMmjr2 and a centrifugal force of mrw2• Here M is the mass of the 
Earth and G is the gravitational constant. The condition for the equilibrium 
of the string is that the net force due to gravitation, which varies with r, is 
equal to that due to the centrifugal effect, which also changes from point to 
point. This condition can easily be derived using integral calculus, but it can 
also be found without using such sophisticated mathematics. 

Imagine that the string is pulled down a little by some external force. Since 
(in the rotating frame of reference) the string was initially in equilibrium, it 
can be displaced from its equilibrium position by an arbitrarily small force 
and, to first order, the net work done in the course of the change must be 
zero. The displacement of the whole string- from the point of view of the 
work done- is equivalent to the slow migration of a small piece of the string, 
of mass L\m, from its top to its bottom. The work done is the sum of two 
terms, the change in the gravitational potential energy and the work done 
by the average centrifugal force (since the centrifugal force changes linearly). 
If the bottom end of the string of length L just touches the Earth's surface, 
the work in question is 

W = GML\m (_!.- - 1-)- L\mR + (R + L) w2 L = 0 
R L+R 2 ' 

where R is the radius of the Earth. This is a quadratic equation in L, which 
gives 

L ~ ~ ( -3+ I+!~::, "' 140000 km 

using known data. This length is several times r8 = (GM/w2)113 ~ 42000 km, 
the distance of telecommunications satellites from the centre of the Earth! 
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What is the maximum stress in the string? It is easy to establish that the 
greatest stress O'max occurs at the position r = r5, and satisfies O'max/ p = 

4.8 x 107 N m kg-1, where pis the mass density of the string. This figure for 
the ratio of tensile strength to density is much greater than that for known 
materials (for steel it is 2.6 x 105, and for carbon 1.7 x 106). Therefore, whilst, 
in principle, a 'hook to the sky' is consistent with Newton's laws, at the 
present time it is impossible (at least with a string of constant cross-section) 
to find suitable materials from which to build it. 

882 (i) At the highest point of the bridge the equation of motion of the 
car is 

v2 
mg-N=m-, 

p 

where N is the normal force acting on the car (and the negative of the 
required answer), v = 20 m s-1 and p is the radius of curvature of the 
bridge there. The most difficult part of the problem is to find this radius of 
curvature. 

If we could find a motion with this trajectory for which the normal accel­
eration is well known, the radius of curvature could be easily calculated. For 
a parabolic trajectory the flight of a projectile offers the required analogue. 
Let the projectile have an initial velocity of vo making an angle tX with the 
horizontal. 

The range (d = 100 m) and height (h = 5 m) of the projectile can be 
expressed using the initial data, 

d = 2vij sin tX cos tX 
g 

and 

The quotient h/d gives tantX = 4h/d (so tX ~ 11.3°), and the horizontal 
component of the initial velocity is 

Vx = vo cos tX = d/[;,_ =50 m s-1. 

Now the radius of curvature at the highest point can be calculated as 
p = v;; g = 250 m. 

So the normal force at the highest point is 

N = m ( g - ~) = 8.40 kN. 

(ii) The force exerted on any other part of the bridge can be calculated in 
the same way, i.e. using the radius of curvature. At a point three-quarters of 
the way across the bridge, the radius of curvature is approximately 254 m 
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and the normal force about 8.37 kN. Away from the centre of the bridge 
there is also a tangential (frictional) force; here its value is 995 N, and so 
the net force acting on the bridge is approximately 8.43 kN. 

S83 We can prove that the radii of curvature of the ellipse at the 
endpoints of its axes are b2 I a and a2 I b, where 2a and 2b are the lengths 
of the major and minor axes, respectively. This geometrical result can be 
deduced using calculus or by considering one of a number of physical 
situations; what follows is one possibility. 

Consider a planet orbiting the Sun in an ellipse. Newton's second law of 
motion applied at the endpoint of the major axis, a distance r from the 
Sun, gives 

M v2 

Gf3 = R' 

where R is the radius of curvature at the endpoint and M is the mass of the 

Sun. According to Kepler's third law the period of the orbit is 2n J a3 I G M 
and the radius vector sweeps out area at a constant rate. The area of the 
ellipse is nab, and so equating two expressions for that constant rate when 
the planet is at the endpoint of the major axis, we obtain 

vr _ ab {Gii 
2- 2V7· 

Comparing the above two equations we conclude that R = b2 I a. For this 
argument we utilised the fact that the foci of the ellipse are on the major 
axes; we cannot therefore apply the same proof at the endpoints of the 
minor axis. However, in respect of their corresponding radii of curvature, 
the two axes are symmetrical. 

The uniformly moving point mass of the problem obeys the equation of 
motion F = mv2 I R, where R is the appropriate radius of curvature. Using the 
data given we obtain: b21a = 1.25 m; a21b =10m and, hence, 2a =10m; 
2b=5m. 

Note. The radii of curvature of the ellipse could also be calculated using well­
known formulae from SHM. Consider the point mass moving in the x-y 
plane around an ellipse with semi-axes a and b according to the equations 

x = acosmt and y = b sin mt. 

At t = 0 the mass is moving at the end of the major axis with velocity 
v = bm and acceleration A = am2• On the other hand, the acceleration is 
A = v2 I R; so the radius of curvature is R = b2 I a. Similarly, we find the 
radius of the curvature at the end of the minor axis to be a2 /b. 
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884 Denote the width of the canal by d and draw a straight line perpen­
dicular to its banks a distance d downstream from the boat's starting point 
A (see figure). 

d / 

The boat is initially at distance d both from the mark F on the opposite 
bank and from this straight line. As both the speed of the water and that of 
the boat with respect to the water are v, the water takes the boat downstream 
by the same distance as is covered by the boat in the direction of F. 

This means that the boat is always equally far from point F and the 
straight line. The path of the boat is therefore a parabola, with F as its 
focus and the straight line as its directrix. After a very long time, the boat 
approaches the opposite bank at a point d/2 from F. Because the speed of 
the current equals that of the boat, the boatman cannot land closer than this. 

885 If, after the slightest of pushes, the child would slide (straight) 
downhill at a steady speed, the component F of its weight parallel to the 
inclined plane must have the same magnitude as the frictional retarding force 
S, i.e. F = S. 

The force of kinetic friction- the direction of which is always opposite 
to that of the instantaneous velocity- causes the speed to decrease, while 
the force F increases the component of the velocity parallel to the inclined 
plane. These two effects are of course present together and result, in general, 
in a rather complicated motion (on a curved path and with a changing 
acceleration). Despite this, the final speed can be determined without the 
need for a detailed description of the motion. 

The figure shows a coordinate system for the general situation in which 
the child's trajectory is not straight downhill. Denote the magnitude of the 
instantaneous velocity of the sliding child by v, and its component in the 
y-direction by vy. We first calculate the change in these two quantities in a 
short time interval At. According to Newton's second law: 

mAv = ( -S + F cos cx)At, mAvy = (F- S cos cx)At. 
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Adding these two equations and using F = S gives 

Av + Avy = A(v + vy) = 0, 

i.e. 

v + vy = constant. 

From the initial conditions, the value of this constant is vo = 1 m s-1. 

The final speed Vmax of the sliding child is directed down the slope, and its 
magnitude is determined by the above 'conservation law' with v = Vy = Vmax. 

i.e. 
vo -1 

Vmax = 2 = 0.5 m S • 

S86 Let kv denote the speed of the coastguard's cutter, i.e. k is the 
required ratio of the speeds of the two vessels. 

y 

a 

1---- a -----: 

At a general time t, as shown in the figure, the distance d between the 
ships (initially a) decreases by 

Ad= kvAt- v sinoc At (1) 

in time At. Meanwhile, the distance of the cutter from the shore increases by 

Ay = kv sin oc At, (2) 
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where a is the angle the instantaneous velocity of the cutter makes with the 
shore. 

We now sum the small displacements occurring in equations (1) and (2), 
knowing that the three sums L: Ad, L: 11y and L: vAt must all equal a. The 
potentially awkward angle a can be eliminated prior to the summations and 
a surprisingly simple quadratic equation is obtained for k, 

with k = 1 +2 .J5 ~ 1.618 

as its positive root. This figure is the famous 'golden mean' associated with 
the Fibonacci series. In the current situation, it is the ratio of the speeds 
of the coastguard's cutter and the smugglers' ship if they are to meet as 
described in the problem. 

S87 From the symmetry of the layout and initial conditions, we deduce 
that all the bodies fall towards the centre of the n-gon with the same 
non-uniform acceleration. The formation keeps its original shape, but the 
distance r from the centre decreases at a non-uniformly accelerating rate. 
The resultant force acting on one (say the nth) body when it is at distance r 
from the centre is 

m2 n-1 1 
F(r) = G---r L 4 . ( k/ ) r k=1 sm n n 

This force, made up of the gravitational forces exerted by all the other 
bodies, or, more precisely, of those components of these forces which are 
directed towards the centre, is identical to the gravitational attraction of a 
fixed body situated at the centre, and of mass 

m n-1 1 

Mn = 4 {; sin(nk/n) · 

The values of the masses Mn (in units of m) can be calculated numerically 
for all values of n as 

M2 = 0.25, M3 = 0.58, M4 = 0.96, ... ' M10 = 3.86, 

The time T of the collapse from an initial distance R onto a central 
mass M can be considered as half of the period Te for a severely flattened 
(degenerate) elliptical orbit of major semi-axis R/2. The period Tc of a 
circular orbit of radius R can be calculated directly from the dynamical 
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equation for circular motion, 

Mm (2n) 2 
G R2 = mR Tc ' 

0 0 2 [R3 
gtvmg Tc = ny ""GM" 

But, according to Kepler's third law, 

Thus, finally, we obtain T = nJ R3 j8GMn for the time. 

Note. The limiting case n ~ 1 is interesting. As the number n of bodies 
increases, Mn increases even if the total mass of the system is fixed at 
Mo, i.e. m = Mo/n. The more finely a given amount of matter is spread 
around a circle, the shorter the time it takes for it to collapse under 
its own gravitational attraction. However, there is no point in examining 
a continuous matter distribution spread along an arbitrarily thin line; 
the extent of the matter in the transverse, i.e. radial, direction cannot be 
neglected. 

888 According to Kepler's first law the orbit of the rocket is an ellipse 
with one of its foci at the centre of the planet. The launch and return 
velocities are parallel to each other (though in opposite directions) if the 
launch and return points are at the ends of the minor axis of the ellipse. 
But, for an ellipse, the distance from a focus to either end of the minor 
axis is equal to the length a of its major semi-axis; consequently a= R (see 
Fig. S88.1). 

Fig. S88.1 

From Kepler's third law, satellites in orbits having different eccentricities, 
but the same lengths of major axis, have equal periods, and so in our case 
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the period for a full orbit would be the given T0. The rocket, however, covers 
only one-half of the ellipse. The time required for this is not half of the full 
period, but proportional to the fractional area swept by the radius vector 
joining the rocket to the focus (Kepler's second law). The area of the whole 
ellipse is 

A b 2 . () 
0 = na = na s1n 2. 

The swept area for the half orbit is 

nab 1 1 2 . () 2 . () () 
A1 = T + 2 x 2bc = 2a nsm 2 +a sm 2 cos 2. 

So the flight time is 

T1 =At To= To(!+.!_ cos~). 
Ao 2 n 2 

The maximum distance above the surface of the planet is 

() 
2a- a- (a- c)= c = Rcos 2 ~ R. 

If the angle between the launch and arrival points is allowed to approach 
zero (()--+ 0), the calculated flight time approaches a maximum value of 

To(~+*). 
and the maximum height achieved approaches the radius of the planet 
(c--+ R). But, in fact, if the take-off and landing sites are the same (() = 0), 
the rocket can reach any arbitrary height, large or small. This implies that 
the period and maximum height are not continuous functions of () at the 
point()= 0. 

Fig. 888.2 

If the launch speed is sufficiently great (equal to or larger than the first 
cosmic speed, v = JRi,) and the initial velocity is tangential to the surface 
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of the planet, then the orbit shown in Fig. S88.2 is possible. Again the return 
velocity is parallel to the launch one, but this time in the same direction. The 
maximum height achieveu can be anything, but the periou must be at \east 
T0 . These are the orbits corresponding to the special case (J = 0. 

S89 (i) Writing K for J.Lol4n, the couple on C due to D is KJ.l2 I L3 anti­
clockwise; that of C on D is 2KJ.L2 I L3, also anti-clockwise. 

(ii) Couples are not the only potential result of the magnetic fields; forces 
will result if a dipole is positioned in a non-uniform magnetic field. The force 
on C due to D is non-zero as the strength of B 1. is slightly less at the position 
of one of the poles of C than at the other. The magnitude of the net force is 
J.l X a B 1.1 ar where the derivative is evaluated at r = L, and is thus 3Kj.l2 I L 4 ; 

its direction is the same as that of B1_. This force and its reaction on D 
produce a couple on the rod which has magnitude 3KJ.l2 I L 3 and acts in the 
clockwise sense. It thus exactly cancels the other two couples acting on the 
rod and when the system is suspended, nothing at all happens- something 
that must be clear on the grounds of symmetry and the impossibility of free 
perpetual motion! 

Note. This is an unusual example of a non-central force and its reaction, 
which act along parallel, but not identical, lines. 

S90 The charge distribution induced on the plane by the charge q, 
produces (in the region above the plane) an electrostatic field identical to 
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that of a charge -q situated below the plane at the point which is the mirror 
image of the body's position, if the plane were considered as a mirror. This 
is the principle of image charges. Thus, the force of attraction acting on the 
body (moving non-relativistically) can be calculated using Coulomb's law as 

q2 
F(x) = k 4x2' 

where k is the Coulomb constant and x is the distance between the plane and 
the body at any given instant (initially the body is a distance 2d from the 
image charge). This expression for the force can be treated as the analogue 
of the gravitational force exerted by a body of mass M = kq2 /(4Gm) on 
another body of mass m situated a distance x from it, i.e. F = GMmjx2. 

In this analogy, Kepler's third law gives the relationship between the period 
of revolution T of a planet and the major semi-axis a of its elliptical orbit, 
namely, 

If the charged body is released at a distance d from the metal plane then 
its orbit can be considered as a very flat (degenerate) ellipse with major 
semi-axis a = d/2. The time at which the charge hits the plane T11, is half of 
the period of the degenerate orbit, and can be calculated by substituting the 
corresponding variables: 

S91 Brine is a good conductor, because positive and negative ions can 
move easily within it. When the charged plastic ball is placed close to the 
surface of the water, opposing charges are induced in the surface, whilst like 
charges are repelled from it. The resulting electric field lines above the water 
surface will be perpendicular to it, whilst beneath it the net electric field 
vanishes. 

The charged ball attracts the water below it, and the surface wells up in 
a hump. The electrical forces exerted on the hump are balanced mainly by 
gravity and the effect of surface tension can be ignored. We don't know the 
shape of the hump exactly, but can be sure that the rise in water level will 
be small and there will be only a slight deviation from a plane surface; this 
is why we can use the so-called method of image charges. It will be sufficient 
to consider the maximum effect and find the rise at the point P shown in 
Fig. S91.1. 
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Fig. 891.1 

At P the electric field due to the charge Q is 

Et = - 1- _R__ 
4neo (3r)2 
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The effect of the unknown surface charge distribution can be replaced by 
that due to an image charge of -Q situated at a depth below the surface of 
3r (see Fig. S91.2). The electric field at P due to the image charge has the 
same magnitude and direction as Et, and so the net electric field is 

1 Q 
E=2Et=- --. 

2neo (3r)2 

p 

-Q • 

Fig. 891.2 

3r 

3r 

According to Gauss's law the surface charge density at P is 

u = eoE = _!_ _g__ 
2n (3r)2 

At the water surface the force exerted on a unit area is the product of the 
surface charge density u and the electric field E1 due to the ball: 

F 
A= (jEt. 

This is the upward force at P per unit area and is balanced by the hydrostatic 
pressure associated with the maximum rise h in water level: 

F 
A= pgh. 
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Substituting for the electric field and surface charge gives an expression 
for has 

h- 1 1 Q 1 Q 
- pg 2n (3r)2 4neo (3r)2 • 

Inserting the numerical data into this equation, yields h ~ 0.29 mm, which 
is very small compared to the diameter of the ball and justifies our treating 
the water surface as being close to flat. 

S92 The method of spherical image charges can be applied. Let two 
point charges of opposite signs be +Q1 and -Q2. In the field produced by 
them the locus of points of zero potential is given by 

kQ1 -kQ2 = 0, 
rt r2 

where r1 and r2 are the distances from the two charges of a general point 
on the locus. A straightforward rearrangement gives Qt!Q2 = r1jr2, i.e. the 
distance ratio rtfr2 is constant. According to Apollonios's theorem, points 
with this property lie on a sphere (the Apollonios sphere). Therefore the zero 
potential surface is a sphere. 

Fig. S92.1 

If the spherical metal shell mentioned in the problem is earthed, then it is 
at zero potential. The point charge +Q inside it induces an inhomogeneous 
charge distribution on the inner surface of the shell as shown in Fig. S92.1. 
The electric field inside the shell, due to the actual charge and the induced 
charge distribution, is the same as if it were caused by the actual charge 
and a negative point charge outside the spherical shell. The latter is what is 
called a spherical image charge. 

The charge distribution inside the spherical metal shell is independent 
of the potential of the shell. If the shell were not earthed then charge +Q 
would appear uniformly distributed over its outer surface, regardless of the 
inner charge distribution. This is because the electric field strength is zero 
everywhere inside the material of the shell and therefore the charge on the 
outer surface is not aware of the presence of that on the inner one. The 
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external electric field makes it appear as if the enclosed charge were at the 
centre of the sphere. 

B A -nQ 

X 

Fig. S92.2 

The force acting on the charge Q inside the shell is equal to the Coulomb 
force acting between the charge and the corresponding image charge. Using 
the notation in Fig. S92.2, the charge +Q is a distance d from the centre of 
the sphere of radius R, while the image charge -nQ is a distance x from 
the shell. The ratio of the charges is therefore n, an expression for which 
can easily be found using the two points A and B in which the straight line 
connecting the charges intersects the spherical shell: 

x x+2R 
n= R-d= R+d. 

This yields for nand x that n = R/d and x = R(R- d)/d. The force acting 
on the charge inside the spherical metal shell is therefore 

nQ2 2 Rd 
F = -k (x + R- d)2 = -kQ (R2 - d2)2. 

It is clear that this force is zero when d = 0 and tends to infinity as d - R. 
The negative sign shows that it is directed towards the position of the 
(imaginary) image charge. 

Note. The electric charge distribution on the inner surface of the spherical 
metal shell can be calculated using Gauss's law. The magnitude of the 
surface charge density is proportional to the electric field strength obtained 
by superimposing the fields of the real and image charges. 

S93 Denote the mass of the boron atoms (actually boron ions) by M 
and that of the unknown colliding particles by m. 

\LA~ 
M )CM 

o--------
~ -; 

Fig. S93.1 
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Before the collision the particles have opposing velocities of the same 
magnitude Vo as measured in the laboratory (LAB) frame of reference. 
We can easily transform to the centre of mass (CM) frame of the colliding 
particles shown in Fig. S93.1. The total linear momentum of the two particles 
in the LAB frame is M V0 - m V0, thus the velocity of CM in this frame is 

M-m 
u= M Vo. 

+m 

In the CM frame the total momentum is always zero and the two particles 
must always move in opposite directions with linear momenta of equal 
magnitudes. However, in accord with conservation of energy, the magnitude 
of the momentum and therefore the velocity of each particle must be the 
same before and after the collision- only their directions can change. The 
speed of the boron atoms in the CM frame before the scattering is 

V=f/;o-u=f/;o-M-mv;- 2m v; 
M+m o- M+m 0' 

and so it must also have this value after the collision (Fig. S93.2). 

)CM' 

IV 
M V / v m 

0 ------::~-------------E--® 

iv' 
Fig. S93.2 

We can return to the LAB frame by adding u, the relative velocity of the 
frames, to the CM velocity vectors. In the LAB frame the velocity of the 
boron atom after scattering u + V, is a vector pointing to some point on the 
circle shown in Fig. S93.3. The maximum angle between the final and initial 
velocities of the boron atom occurs if u + V is tangential to this circle of 
radius V, i.e. V is perpendicular to u + V. 

~------, 
M o / V \ 

0 ~~ ': 
u \,_ CM // 

. ..~' 

Fig. S93.3 
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In this case 

lVI = sin30o lui, i.e. 2m VI = ! M - m VI 
M+m 0 2 M+m O· 

This gives m = !M. Thus the unknown particle has a mass number of A= 2, 
and is actually not unidentified any longer; the particle is the deuteron, the 
nucleus of deuterium. 

S94 Friction between the two balls is negligible, and so, during the 
collision, they can only exert forces normal to their surfaces. Thus, the first 
ball stops after the collision, while the second acquires the first's initial speed 
v0. The rotation of the balls, however, does not change, and so, immediately 
after the collision, the first ball rotates on one spot and the second slides 
without rotation at speed vo. 

F 
fr -F. fr 

Fig. S94.1 

The friction between the balls and the table is of course important and 
affects the motion of the balls. The first is accelerated forward by the force 
of kinetic friction Frr = pmg, whilst the second is slowed by the same force, 
as shown in Fig. S94.1. The rotation of the first ball is reduced by friction, 
that of the second one is increased. The part played by the frictional force 
lasts until both balls reach the state of rolling without slipping. After that 
their motion is unchanged. 

It will be shown that the final motion of the balls depends neither on the 
frictional coefficient, nor on the possible variation of it with position. After 
the collision, the initially moving ball rotates with an angular velocity w = 
vofr. Its angular momentum about its axis is therefore I w = ~mr2 (vo/r) = 
~mvor. The angular momentum about the point of contact with the table P, 
must be the same, since the centre of mass of the ball is at rest, i.e. the angular 
momentum attributable to translation is zero. The angular momentum of 
the ball about P cannot be changed by friction any more, as the line of 
action of this force runs through P. (The sum of the gravitational force and 
the reaction of the table is zero, and so they can produce no net torque 
either.) 
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Fig. S94.2 

The angular momentum of a ball, rolling without slipping at speed v, is the 
sum of its own angular momentum ~mvr and the angular momentum mvr 
due to the motion of its centre of mass. Figure S94.2 shows (on the left) the 
initially moving ball and the forces acting on it shortly after the collision. On 
the right of the figure, the ball is shown ultimately rolling without slipping. 
According to the law of conservation of momentum ~mv0r = ~mvr + mvr, 
which yields v = ~vo. Similar reasoning shows that the final speed of the 
other ball has to be ~vo, regardless of the magnitude of the coefficient of 
friction. 

895 When travelling a distance L, the plank causes L/ d rollers to acquire 
an angular velocity Wmax = Vmax/r. The decrease in potential energy of 
the plank is MgLsina., whilst the kinetic energy of each roller becomes 
!I w~ax = !mv~ax· Notice that the final tangential surface speed of each 
roller is equal to the terminal speed of the plank, and the moment of inertia 
of each roller is I = !mr2. 

It is false reasoning to suppose that the lost gravitational potential energy 
of the plank is simply converted into kinetic energy of the rollers. This would 
lead to concluding from the equation 

. Ll 2 () MgLsma. = d 4mvmax 1 

that the terminal speed of the plank is 

Vmax = 
4dMgsina. 

m 

However, this result is wrong, because it does not take into account the fact 
that the speeding-up of the rollers involves kinetic friction and, consequently, 
there is heat dissipation in the process. 

Denote by F(t) the kinetic frictional force between a single roller and the 
plank. (It is not necessary to assume that this force is constant in time.) 
During a short interval ilt the change in the angular momentum of the 
roller is 

I Aw = rF(t)ilt. (2) 
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These changes can be summed to give an equation containing the final 
angular velocity of the roller 

"'"" Vmax r ~F(t)M = Iwmax =I --. 
r 

(3) 

On the other hand, during time interval M the work done against friction 
(heat gain) .1Q is the product of the kinetic frictional force and the relative 
displacement of the surfaces involved: 

.1Q = F(t) [Vmax- rw(t)] dt. 

From (2) and (3), the total dissipated energy is 

Q = L F(t) [Vmax - rw(t)] dt 

= rWmax L F(t) dt -I L w dw 
2 2 

= I (1)2 _ I Wmax = I Wmax 
max 2 2· 

In the final line we have used the fact that w .1w = !.1 ( w2). This result 
shows that the dissipated heat is equal in magnitude to the kinetic energy 
acquired by the rollers. It is remarkable that the result depends on neither 
the magnitude of the frictional force nor its time-dependence. The correct 
energy balance is not equation (1), but 

. Ll 2 Ll 2 
MgLsma. = d 4mvmax + Q = 2 d 4mvmax• 

which shows that the terminal velocity is 

Vmax = 
2dMgsina. 

m 

S96 Treating the problem as two-dimensional, choose a point P on the 
surface of the table and examine the angular momentum of the ball about 
this point. The line of action of the frictional force passes through this point, 
and so there is no frictional torque about P. The gravitational force and the 
supporting reaction of the table nullify each other. No other force acts on 
the ball, which therefore has constant angular momentum about the chosen 
point. As the ball is initially at rest, the value of that angular momentum is 
zero. 
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When the tablecloth is pulled out from under it, the ball starts sliding and 
rolling. Following the notation in the figure, its angular momentum J can 
be written as the sum of two terms: 

J = Iw + r x (mv). 

Here I is the moment of inertia and m the mass of the ball. The first term 
in the expression is the internal spin, and the second the orbital angular 
momentum due to the linear motion of the centre of mass. Taking into 
account the directions of the vectors involved, the magnitude of the angular 
momentum can be written as J = I w + mvR, where R is the radius of the 
ball. 

It is easy to see that, when any ball is rolling without slipping, the sign of 
its orbital angular momentum has to be the same as that of its spin. On the 
other hand, here the sum of the two has to be zero at all times. These two 
conditions can only be fulfilled at the same time if the body has stopped. 
The reader can check this experimentally. 

The final state depends neither on the size of the frictional force, nor 
on how the tablecloth is pulled out. (It can be pulled out evenly, with a 
uniform acceleration, or by means of several sudden movements.) However, 
it is important that air resistance and rolling resistance are negligible since 
their effects can change the angular momentum about P. 

S97 Taking the Earth's actual direction of rotation (from west to east) 
as positive, the angular momentum of the traffic about the axis of rotation 
would increase if the change were made. This is because the traffic that is 
travelling eastward would move to a greater distance from the Earth's axis 
thus increasing its (positive) contribution to the total angular momentum; 
conversely the westward-bound traffic would reduce its negative contribution. 
Assuming equal amounts of east-west and west-east traffic, the moment of 
inertia of the system is unchanged and, since the total angular momentum 
of the system cannot change, the Earth's rate of rotation must decrease. The 
length of the day would therefore increase- but you would hardly notice it! 

Note. One can also arrive at the same conclusion in a different way. In Great 
Britain there are a lot of traffic roundabouts. Any change in the direction in 
which these were negotiated would cause a change in the angular momentum 
of the traffic, which in turn would cause a small change in the rotation of 
the Earth. The whole traffic system can be considered as a series of many 
roundabouts. 

S98 Let the angular acceleration of the smaller ball be cx 1, that of the 
larger one cx2, their common horizontal acceleration a1 and the acceleration 
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of the cart a2. As the balls are rolling without slipping, we have 

Rrx2 = a2- a1 

and, because R = 2r, 

N 

and 

N 
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The moment of inertia of the smaller ball is ~mr2, while that of the larger 
one with the same density is ~ x 8m x (2rf = 6imr2. Using the notation of 
the figure, we can write the following dynamical equations of motion: 

F -Fer= Ma2, 

8mg + N 1 - N = 0, 

mg-N1 =0, 

N1r cos</>- N2r sin</> = ~mr2rx1, 

2rFrr + 2rN2r sin</>- 2rN1r cos</>= 6
5
4 mr2rx2. 

From these equations we can express the force F as 

F = (9m + ~ M) 1 ::i~ </> g ~ 79 N. 

The acceleration of the balls relative to the cart is 

5 cos</> 
da = a2- a1 = -2 1 . </> g. 

+sm 
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At the timet when the balls fall from the cart, the distance they have moved 
relative to the cart is L/2. As their initial velocities are zero, 

t = #. = 0.55 s. 

Note. It is interesting that this stunt can also be performed with the smaller 
ball in the horizontal position, ¢ = 0. In this situation the frictional force 
between the balls balances the entire weight of the smaller ball. What is 
more, it is even possible for ¢ to be negative, if the coefficient of friction 
between the balls is sufficiently large! 

899 Consider the motion of the ball with respect to an arbitrary point 
P in the plane of the table. Since the forces acting on the ball due to 
gravity and the normal reaction of the table are equal and opposite, and the 
frictional force acts in the plane of the table, their total moment about P 
has no horizontal component. Consequently, the horizontal component of 
the angular momentum of the ball about P must remain constant. 

When the ball is rolling without slipping, the horizontal component of its 
angular momentum is perpendicular to its velocity v and its magnitude is 
directly proportional to lvl. (For a solid ball of radius R, the total horizontal 
component of its angular momentum is J = /0. + mvR = ~mvR see also P96 
and S96.) At the end of the motion, when the ball again rolls on the table 
without slipping, this component of the angular momentum must therefore 
be the same as it was at the beginning. It then follows that the direction and 
magnitude of the ball's velocity v are also unchanged. 

Thus, the ball leaves the table at the same speed, and with the same 
momentum vector, as it had originally. Further, its total kinetic energy is 
unchanged. This last fact is especially strange, as both when the ball arrives 
at the disc and when it leaves it, friction does work on the ball and changes 
its kinetic energy. However, the algebraic sum of the work done on the ball 
is zero; this is not a consequence of the conservation of either momentum 
or energy, but of the conservation of angular momentum. 

Note. Rather more complicated calculations (using the equations of trans­
lational and rotational motion) show that when the ball is on the rotating 
disc it moves uniformly along a circular path, as viewed from the reference 
frame of the table. (To obtain this result it is assumed that the coefficient 
of kinetic friction is large enough that we can ignore the period during 
which the ball slips on the disc. For the solid rubber ball used in the Science 
Museum, this assumption is quite reasonable.) The circle, however, is not 
centred on the axis of the disc, and the motion's angular velocity is different 
from that of the disc, being ~ times smaller. If the disc rotates steadily, the 
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ball ultimately continues along the extrapolation of its original track. This 
is not true if the disc does not rotate uniformly, or the period of slippage 
is not negligible; in either case, the magnitude of the ball's momentum is 
unchanged, but its track deviates sideways as a result of its encounter with 
the disc. 

SlOO Let the tension in the ring be T. Its resolved component acting 
along the radius towards the centre of rotation is 2 T sin(AO 12) ~ T MJ and 
this must balance the centripetal force of RMJApRw2 (see figure). 

~ 
2Tsin /:ih/2 

It follows that the longitudinal stress in the ring, T I A, is pR2ro2 ; the strain 
e is E-1 times this. Finally, the increase in circumference, given by 2nRe, is 
2npR3w2 I E. 

SlOl When one end of the thread is pulled by a force Fo, let the maximum 
force with which the other end can be pulled without the thread slipping 
on the cylinder be Fmax· Specify a general point of the thread in contact 
with the cylinder by the angle ex, which the radius of the cylinder at that 
point makes with a fixed radius. When the thread wound onto the cylinder 
is tightened, it exerts a normal force on the cylinder resulting in 'a frictional 
force which opposes any relative motion of the thread and the cylinder. The 
tension in the thread increases as ex increases, but the excess tension at one 
end of a piece of the thread is balanced by the frictional force acting on that 
piece. 

Rl:ia 

Fig. SlOl.l 

Consider a small length of thread that subtends an angle Aex at the centre 
of the cylinder. If, as shown in Fig. SlOl.l, the tension at one end of the 
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small piece is F whilst it is F + ll.F at the other, then the excess force ll.F is 
balanced by a frictional force, which can be calculated as 

AF=pN, (1) 

where N is the force exerted by the thread normal to the surface of the 
cylinder and Jl is the required coefficient of friction. 

N 

Fig. S101.2 

The normal force can be determined as the vector resultant of the forces 
F and F + ll.F ~ F, shown in Fig. S101.2. This is 

N = 2Fsin ~IX~ FAlX. (2) 

Substituting this into equation (1) shows the relationship between F and the 
angle IX to be 

ll.F(1X) = JlF(1X) ll.IX. 

This relationship is formally similar to the equation governing radioactive 
decay, 

ll.m(t) = -A. m(t) At, 

where m(t) is the mass of radioactive material, t the elapsed time, and A. the 
decay constant. As is well known, the mass of radioactive material decreases 
exponentially with time, i.e. 

m(t) = mo e-J.t. 

Thus, using the established correspondence, with -A. replaced by Jl, the law 
of 'thread friction' can be expressed as 

F(IX) = FoeJ.Lrx. (3) 

Both of the inequalities stated in the problem are equivalent to 

2F(O) = F(rc) = F(O)eJ.Ln, which yields Jl = .!_ In 2 ~ 0.22. 
rc 
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Note. The force exerted on the thread increases exponentially with the angle 
oc. The ratio of the forces at the two ends of the thread can reach a large 
order of magnitude after only a few turns. Climbers make use of this 
interesting fact when they anchor the ropes that prevent them from falling. 
Sailors use the same technique to stop large boats with their bare hands! 

S102 Jenny considers a homogeneous ring of radius Rand linear density 
p, rotating with constant angular velocity w about an axis perpendicular 
to its plane and passing through its centre. The centripetal acceleration of 
points on the ring is Rw2, and so unit length of it experiences a centripetal 
force of p = pRw2• If a cylindrical container of height 1 m were surrounded 
by a gas at pressure p then the force exerted by the gas on the wall of 
the cylinder would be exactly the force required to sustain the rotation (see 
Fig. S102.1). 

p 

\~til 
~\Y!~ 

\ :' R .. . ' . ' . ' 
" ' 

Fig. S102.1 

In reality, the elements of the ring are not kept in their circular orbit by 
some imaginary external pressure, but by the ring's own internal tension, 
whose magnitude is 

F = pR2 w2. 

This can be proved by referring to PlOO or by examining, for example, a 
1-m length of a container with a semicircular base, surrounded by a medium 
at pressure p (see Fig. S102.2). A force of 2Rp acts on the rectangle of area 
2R, and has to be balanced by a force of magnitude 2F acting tangentially 
within the wall. 

Fig. S102.2 
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Now examine an arc of the ring which subtends an angle at its centre of 
2ex, and see how Newton's second law of motion is fulfilled, continues Jenny. 
The resultant of the forces acting on a body of mass m = 2R p ex is 2F sin ex, 
and the acceleration of the centre of mass is a = s ai, where s denotes the 
distance between the centre of mass of the arc and the centre of the ring 
(see Fig. S102.3). 

Fig. S102.3 

According to Newton's law, 

2F sinex =rna, 

which, using the previous formulae, yields s = (Rsinex)jex. For a semicircle, 
as in Charlie's original problem, ex= n/2 and, therefore, s = 2Rjn. 

If the centre of mass of a sector has to be determined, it can be divided 
into thin arcs and each one replaced by a point-like body of appropriate 
mass positioned at the centre of mass of the arc. The same procedure could 
be adopted to find the centre of mass of a triangle made up of thin stripes. 
This implies that the centre of mass of a sector has to be in exactly the 
same place as that of a symmetrical triangle of height Smax = (Rsinex)/ex 
(see Fig. S102.4), i.e. at a distance of ~(Rsinex)/ex from its vertex. With this 
deduction Jenny concludes her display of extraordinary logic . 

• -r--~ 
smax v 

------------ ----------

Fig. S102.4 

S103 Let us denote the common height of the table and total chain 
length by L ( = 1 m) and the length and mass of the vertically moving part 
of the chain by x and m. The equation of motion (taking into account the 
changing mass of the moving part) is 

d(mv) dv dm 
mg= --=m-+-v 

dt dt dt ' 



Solutions 165 

which on rearrangement gives 

dv dm 
m-=mg--v. 

dt dt 

The left-hand side is the product of the instantaneous mass and acceleration 
a, whilst the right-hand side can be converted and simplified using dm = 
(m/x)dx and dx/dt = v to yield 

v2 
a=g--. 

X 

This result shows that the acceleration of the chain is less than g. The second 
term on the right-hand side can be simplified further, since v2 jx = 2f in 
the case of rectilinear motion with constant acceleration f and zero initial 
velocity. This means that in the current problem the acceleration of the chain 
is constant and satisfies 

a=g-2a, yielding a = ~. 

As the chain runs down from the table during a time of t1, its first link 
falls a distance L with acceleration g/3. Consequently, 

,, = 1¥ = ~ =0.78 s. 

When the lower end of the chain reaches the ground, the whole chain is 
vertical and its velocity is 

"'=at,=~~={¥ =2.56 m ,-t. 

From this moment on, the chain goes into free fall. Its last link has an initial 
velocity v1, accelerates with g, and covers a distance Lin time t2. Thus 

1 2 
L = v1t2 + 2gt2• 

From this equation we obtain 

t2 = fJ = i = 0.26 s. 

So the final link of the chain reaches the floor at a time 

4 
tl + t2 = 3tl = 1.04 s 

after the start of the process. 



166 200 Puzzling Physics Problems 

Note. (i) Attempting to apply the law of conservation of energy leads to 
false results. For example, setting 

1 2 L 
2mvl = mg2, 

where Ll2 is the loss of height of the centre of mass of the chain, and then 
substituting Vt = ..j2Lgl3 leads to the contradictory result 

It would appear that one-third of the energy has disappeared. This is, in fact, 
accounted for by the energy dissipated in the series of inelastic collisions 
occurring when the chain jerks the successive links into motion. 

(ii) The problem can also be solved in a different way. Let M be the total 
mass of the chain. When the hanging part of the chain of mass m = (M I L)x 
causes the next piece, of mass (MIL)11x = (MIL)vl1t, to move, it accelerates 
the piece from rest to a velocity v in a time interval of 11t. This acceleration 
needs a force of 

[(MIL)v11t] v M 2 
11t = Lv · 

The corresponding reaction decelerates the hanging part of the chain, so we 
can write 

M 
ma=mg- yv2• 

Inserting m = (M I L)x into this equation, we recover the earlier solution. 
(iii) Assuming that the chain consists of n links with an otherwise uncon­

strained separation of e =Lin between links, leads to the correct answer in 
the limit n --+ oo. 

(iv) It is possible, using calculus techniques, to solve the (non-linear) 
differential equation 

v2 
a=g--, 

X 

subject to the initial conditions v = 0, x = xo (x0 <: L) at t = 0. The 
solution 

r dx 
t = lxo v(x) 

approaches our more heuristic result in the limit x0 --+ 0. 

8104 It will be shown that a chain (flexible rope), moving at a uniform 
speed along a closed curve of arbitrary shape, continues moving in the same 
way even if no constraints (e.g. pulleys, cylinders, etc.) are placed on it. 
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F 

Fig. S104.1 

Consider the chain (shown in Fig. S104.1) moving steadily along some 
closed, winding space-curve at speed v. The force stretching the chain has to 
have the same magnitude, F, everywhere, as the tangential acceleration of its 
links is zero. If the radius of curvature of the chain, of mass per unit length 
p, is R at some point (R can vary from place to place), then the mass of a 
piece of length Rd.rx is d.m = pRd.rx, whilst its acceleration is v2 I R, as shown 
in Fig. S104.2. Its equation of motion is 

v2 
PRd.rx - = F d.rx R , 

which leads to the relation F = pv2• 

v 

-----

Fig. S104.2 

F!:J.a 

Notice that R does not occur in this equation, i.e. F is independent of the 
radius of curvature. The resultant of the tangential forces, F, is just the right 
force to make the chain curve as it does at the given place. If the chain is 
straight, the resultant force acting on a small piece of it is zero. The more 
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curved the chain, the greater the resultant force acting on each small piece. 
The direction of the resultant force is also just what is needed. 

This means that the chain falls keeping its original shape and speed, just 
as Frank guessed. 

8105 As shown in the solution to the previous problem, a flexible chain, 
or rope, of mass p per unit length moving with a speed v has an internal 
tension of 

F = pv2 

if it is not contact with any other body. It should be noted that this result is 
independent of the radius of curvature R of the arc formed; it also applies 
to chains or ropes moving in a straight line when R can formally be taken as 
infinite. In the present case, the chain becomes detached from the pulley, as 
a result of its accelerating motion, when this freedom condition is satisfied. 

Denote the displacement of the chain by x and the acceleration of the 
right-hand side of the chain by a. The equations of motion for the two sides 
are 

F-p(~-x)g=p(~-x)a, 

p ( ~ + x) g - F = p ( ~ + X) a. 
The speed of the chain for any x can be determined, without using inte­
gration, from the conservation of energy. The decrease in potential energy 
relative to that of the original situation (for which negligible speed is as­
sumed) is the same as if a piece of the chain of length x had been lowered 
by x (see figure). Hence 

U2 
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The displacement and speed when the chain leaves the pulley can be 
calculated by eliminating F and a from the above equations: 

1 
x = nL ~ 0.35L, 

2y2 

_jLi 
v- 2 . 

Thus, the chain becomes detached from the pulley when 15 per cent of its 
length is still moving upwards and its speed is less than one would obtain by 
naively substituting x = L/2 into the conservation of energy equation. (This 
false value would be JLg/2 ~ 0.71JLi.) 

Note. The subsequent motion of the chain is also interesting. After the 
chain has become detached from the pulley, it is in the form of two vertical 
sections of unequal length joined by a semicircular arc, with the left-hand 
section, whose links move upwards, getting shorter at an increasingly rapid 
rate, whilst the right hand section correspondingly accelerates downwards. 
If the radius of the pulley is negligible, the speed of the links in its left-hand 
vertical section, which has decreasing mass, tends, in principle, to infinity. 
In reality, the finite pulley radius and link size, together with air resistance, 
place an upper limit on the speed. The kinetic energy of the piece of chain 
moving upwards remains finite despite its rapidly increasing speed because 
the decrease in the mass of the relevant part of the chain is more rapid than 
the increase in its speed. The same phenomenon can be observed when a 
whip cracks; a section (of decreasing length) of the whip moves at an ever 
increasing speed, and when it reaches the speed of sound, it causes a sharp 
supersonic bang. 

8106 (i) Examine the motion of the loop in the frame of reference, which 
moves with the loop at speed c. In this system, the pieces of a circular loop 
of radius R rotate uniformly. The acceleration of a piece of the rope, which 
subtends central angle da and has mass pR da, is c2 I R, whilst the net force 
due to the tension in the rope is Fda (see S105). The Newtonian law of 
motion yields 

c2 
Fda = pR da R, 

i.e. the 'loop-wave' moves with speed c = JFTP,- identical to the speed at 
which small transverse waves would propagate along the same rope. 

(ii) The angular frequency of the rolling loop of radius R is w = cj R, 
and the loop has mass, m = 2nRp. The energy carried by the loop can be 
expressed in terms of these quantities as 

1 2 2 2 
E = Etransl + Erot = 2 (2nRp) (c + R W ), 
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which can be written in the form 

1 1 
E(w) = 2nFc- = K -. 

(1) (1) 

The quantity K = 2nFc is a constant, characteristic of the rope and the 
tension in it. Of course, several (n) loops can be simultaneously excited and 
their total energy is 

1 
En(w) = nK- (n = 0, 1,2,3, ... ). 

(1) 

The momentum of the loop(s) can be calculated in a similar way, 

1 
Pn(w) = n(2nRp)c = nK- (n = 0, 1,2,3, ... ), 

cw 

as can the angular momentum 

1 
ln(w) = ±n(2nRp)Rc = ±nK2 (n = 0, 1,2,3, ... ). 

(1) 

In this latter formula, the two signs correspond to loops moving 'above' and 
'below' the rope, i.e. to the two possible 'polarisations'. 

It can be seen that- provided only circular excitations of a single fre­
quency are allowed- the energy, momentum and angular momentum can 
only assume discrete values, those that can be written as the product of an 
integer and a basic 'quantum'. The following relationships are valid between 
these (frequency-dependent) 'quanta': 

E(w) = cP(w) = wJ(w). 

It is not difficult to recognise that the same relationships are valid for photons 

Ephoton = 1iw; P photon = 1iw / c; J photon = ±n. 
Naturally, this formal analogy must not be taken too seriously, e.g. by 

thinking of a photon as equivalent to a loop. However, the similarity can 
be used to show that, even in classical physics, there are objects more 
complicated than a point mass which are easy to understand, but which can 
still be excited to many discrete energy, momentum and angular momentum 
levels. 

8107 A volume of sand of mass dm = 50 kg reaches a speed of v = 

1 m s-1 in time M = 1 s. The change in its horizontal momentum is therefore 
dp = dm v = 50 kg m s-1• This means that a force 

F = dp = v dm = 50 N 
dt dt 
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accelerates the sand. The work done by the engine- taking only the acceler­
ation of the sand into account-is 50 J s-1, i.e. its power output is 50 W. 

The sand loses its vertical momentum when it lands on the conveyor belt. 
(It hits the belt vertically with a force greater than its weight.) The sand 
on the belt is slowed down vertically and then accelerated horizontally; the 
belt's kinetic energy is increased. The kinetic energy of the sand increases by 
fim v2 /2 = 25 J in M = 1 s. This means that one-half of the power of the 
engine (25 W) is converted into kinetic energy of the sand; the rest is the 
work done against friction and converted into heat. 

Note. The average speed of the sand during the acceleration is v /2. Therefore 
the power of the frictional force (F = 50 N) is Fv /2 = 25 W. The belt 
experiences a force -F, the power of which is -Fv =-50 W. Thus, exactly 
one-half of the power of the engine is used to accelerate the sand. 

8108 (i) First, we determine the speed of the roll as a function of 
the distance it has covered. The mass of the moving part of the hose 
after travelling a distance, x, is m(x) = M (1- xj L). Its speed v(x) can be 
determined using the conservation of energy: 

1 2 1 ( 1 2) ( vo) 2 1 2 1 ( 1 2) ( v) 2 
2 Mv0 + 2 2M R R = 2mv + 2 2mr r 

The change in potential energy and the small vertical speed acquired as 
a result of the decrease of the radius of the roll have been neglected. Using 
the known variation of the mass with distance, the velocity v is found to be 
given by 

vo 
v(x) - -77=:::::::::;;::;:: 

- J1-x/L 

As x increases, so does the velocity, i.e. the roll accelerates as it unrolls. 
The total time taken to unroll can be obtained by integrating the reciprocal 

of the function v(x) = dxjdt: 

T= {Tdt= {L dx =_!_ {L /1-xjLdx=L f 1 .J[=Udu=~L. 
lo lo v(x) vo lo Y vo lo 3 vo 

Since the hose accelerates, the time taken to unroll is obviously shorter than 
if the hose had unrolled with uniform velocity. In fact, it is two-thirds of 
that figure. 

(ii) The system consisting of a roll of decreasing mass and increasing speed, 
and of a motionless horizontal part of increasing length can obviously not 
be considered as a point mass! Therefore the basic law of dynamics cannot 
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be applied to it in the simple form F = rna, but must be used in the more 
general form 

d L Fexternal = dtPtotal. 

where Ptotal is the momentum of the system as a whole. 
The total momentum of the moving roll (and of the whole system) is 

p(x) = m(x) v(x) = M(1- xj L) vo = MvoJ1- xj L. 
J1-x/L 

Clearly, as x increases, p(x) decreases-reflecting the fact that the mass of the 
piece in motion decreases faster than the rate at which its speed increases. 
The direction of the resultant force K(x) acting on the system is, therefore, 
opposite to the direction of the motion, with 

dp dp(x) Mv5 1 
K (x) = dt = CiXv(x) = -L 2(1 - xj L)' 

8109 The gravitational field due to a thin spherical shell of uniform mass 
distribution is zero inside the shell. Outside it is as if the total mass of the 
shell were concentrated at its centre. At a distance of 100 km below the 
surface of the Earth, two factors affect the gravitational field. On the one 
hand, the mass of the part of the Earth still 'underneath' is smaller than the 
total mass of the Earth, meaning that the gravitational acceleration will be 
reduced. On the other hand, the centre of the Earth is closer, which will tend 
to increase g. Which effect is the stronger? 

The shell of thickness 100 km corresponds to 4.6 per cent of the total 
volume of the Earth, which has a radius of 6400 km, but its mass is only 
2.5 per cent of the total mass of the Earth. Gravitational acceleration can be 
calculated as g = GM/r2, where M is the mass inside the radius r. At a depth 
of 100 km below the surface, the effective mass of the Earth (without its 
crust) isM' = 0.975 M, with radius r' = (6300/6400) r = 0.984 r. Substituting 
this data into the above equation, we find that 100 km below the surface of 
the Earth, the gravitational acceleration is 0.7 per cent greater than at the 
surface! 

More generally, it can be proved that g increases as the centre is ap­
proached if the density of the crust is not greater than two-thirds of the 
average density. 

8110 First consider the trial bore, which is of negligible volume compared 
with that of the whole asteroid. Let the density of the asteroid be p and its 
radius R. The gravitational acceleration at radius r is the same as if only the 
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sphere of radius r below it were present: 

( ) = Gm(r) = G(4/3)nr3p = 4nGp 
g r r2 r2 3 r. 

Thus the gravitational acceleration is directly proportional to the distance 
from the centre of the asteroid and always points towards it. 

This means that the first unfortunate little green man approached his fate 
whilst executing a harmonic oscillation of amplitude R, and reached it after 
the first quarter-period of the oscillation. The coefficient of r in the above 
expression corresponds to ro2, i.e. to the square of the angular frequency. 
Therefore the duration of the fall was 

T1 =: = ~vg. 
The speed at which he collided with the bottom of the hole can be obtained 
as the product of his amplitude and angular frequency, 

VI= Rw = 2R#. 
By the time of the second accident, the little green people had already 

excavated one-eighth of the material in the asteroid. The gravitational field 
in the spherical cavity, extending from the surface of the planet to its centre, 
has to be determined. This can be done using a 'cunning' application of the 
principle of superposition: imagine the cavity to be filled with a mixture of 
'normal' titanium and 'negative density' titanium. 

The gravitational fields of the complete asteroid and of the sphere of 
'negative titanium' have to be added. The vector r pointing to an arbitrary 
point P in the cavity, the vector c pointing from the centre of the cavity to 
the centre of the asteroid and the vector r + c pointing from the centre of 
the cavity to point P are shown in Fig. SllO.l. 

Fig. SllO.l 
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The gravitational accelerations (of the homogeneous asteroid, of the cavity 
and of their resultant) are proportional to the position vectors, the coefficient 
of proportionality being the constant previously denoted by -w2• The 'lack 
of matter' in the cavity is represented by a negative density. 

The resultant acceleration (see Fig. Sl10.2) is 

g = -w2r + w2(r +c) = w2c. 

A 

Fig. Sll0.2 

This gravitational acceleration is a constant vector, regardless of the 
position of point P inside the cavity. This means that there is a homogeneous 
gravitational field in the cavity, with a magnitude -w2 R/2, the gravitational 
acceleration in the middle of the trial bore (i.e. at the centre of the cavity). 

Note. It can similarly be shown that there is a homogeneous field in any 
spherical cavity; it has a magnitude equal to the gravitational acceleration 
at the position inside the solid sphere on which the cavity is to be centred. 

The duration T2 of the fall and the speed of impact v2 of the second 
unfortunate little green man can be calculated by applying the equations for 
uniform acceleration: 

T2= 2: = j3 
(J) v ;Gp 

and /nGP 
V2 =2RV3" 

The ratios reported by the expert were therefore 

T1 - n and ~ = 1. 
T2 4 V2 

It can be seen that the second unfortunate little green man took a slightly 
longer time to fall than the first one, but that they both hit the centre of the 
asteroid with the same speed. 

The fact that the speeds are the same- and, by implication, so are their 
kinetic energies-is not a coincidence! In the first case, because the gravita­
tional potential is lower at the centre of the asteroid than at its surface, the 
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first unfortunate man is accelerated and gains the corresponding amount of 
kinetic energy. The second case is different in that the gravitational potential 
of the 'negative density' cavity has to be taken into account as well. However, 
the man fell from one edge of the cavity to the other, and so his gravitational 
potential with respect to the cavity did not change. Applying the principle 
of superposition to the gravitational potentials gives the final result, namely 
that the total change in the potentials is the same in both cases, and so the 
speeds acquired by the two victims are the same. 

Slll Imagine the hemisphere to be divided into many concentric hemi­
spherical shells of identical thickness. What is the force exerted by these 
shells on a probe of unit mass sitting in the centre of the sphere? Since the 
mass of a shell is directly proportional to the square of its radius and the 
force exerted by a given-mass shell on the probe is inversely proportional to 
the square of its radius, the gravitational accelerations at the centre due to 
the different hemispherical shells are all equal (see Fig. Slll.l). 

R Rln 

Fig. Slll.l 

If there are n shells, then the mass of the outermost shell is 2nR2(R/n)p, 
where R is the radius of the asteroid and p is its density. The total gravita­
tional field due to the hemisphere is n times that due to its outermost shell, 
i.e. it is the same as if the surface of the hemisphere had mass M = 2nR3 p. 
This mass is, in fact, three times the actual mass of the hemisphere. 

What force is exerted by this hemispherical shell of mass M on the probe? 
Considering only its magnitude, the force is the same as that exerted by the 
unit-mass probe on the shell, i.e. p = G(M/2nR2)(1/R2) = Gp/R per unit 
surface area. To integrate this effect over the whole shell, the situation can 
be compared with that of finding the force exerted by a liquid at pressure p 

on a similar hemispherical shell (see Fig. Slll.2). 

Fig. Slll.2 
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Since the resultant force of a liquid acting on a complete hemisphere would 
be zero, the total force acting on its curved surface would be the same in 
magnitude as the force acting on its plane surface. Thus g = pnR2 = GpRn 
(see Fig. S111.3). 

0 
t t t t t t t t t t t p 

Fig. Slll.3 

Now consider the initial gravitational acceleration, 

4nR3 1 
go= G-3-p R2' 

at the surface of the asteroid. The value calculated above is therefore g = 
igo = 7.36 em s-2• Knowing the density of titanium, the (original) radius of 
the asteroid can be determined as R ~ 78 km. 

8112 If we could calculate the work W necessary to pull the two halves 
apart by d = 1 m, the attractive force F could be found from W = F d. But 
how can W be determined? Certainly not directly, as the product force x 
displacement, since that would lead us back to the original problem. Some 
other method has to be found. 

The gravitational potential energy of the system increases when the hemi­
spheres are pulled apart. W has the same value as this increase. The increase 
can be calculated by determining the work done by the little green people 
when carrying to the surface the titanium originally in the disc of radius 
R and thickness d. The extracted metal can be considered as having been 
carried to the surface by means of frictionless devices and then spread evenly 
over the asteroid's surface. 
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If g denotes the gravitational acceleration at the surface of the asteroid 
of mass M, then the gravitational acceleration at a distance x from the 
centre is g(x) = xgj R. The density of the asteroid, and hence of titanium, 
is p = 3M/(4nR3). Consider the metal, of volume dV = d2nxdx and mass 
dm = pd V, which was originally situated between radii x and x + dx (see 
figure). The metal has all to be brought up from the same depth and can, 
therefore, be considered together when calculating the work done. A force, 
dmgxj R acts on this metal at its original position, whilst at the surface, the 
corresponding force is dmg. Since the gravitational field increases uniformly 
when moving from inside the asteroid to its surface, the arithmetic mean of 
the initial and final forces can be used. The total displacement is R - x, and 
the work done is therefore 

AW=d l+(x/R)(R- )=d R2-x2 =~Mgd(R2- 2) d 
u mg 2 X mg 2R 4 R4 X X x. 

The total work involved is the sum of that for bringing the titanium up from 
the different depths, explicitly 

""" 3Mgd """ 2 2 W = L..., d W = 4R4 L...,(R - x )x dx. 

In the limit of layers of vanishingly small thickness, the above sum becomes 
an integral with value 

{R R4 
L(R2 - x2)x dx => lo (R2 - x2)x dx = 4 . 

Therefore the total work done is W = {6Mgd. 

Note. The same result can be obtained without using integral calculus. 
Introduce a new variable u = x21R2, instead of x, (0 ~ u ~ 1), and replace 
the summation over the layers at different depths by a summation over 
the terms corresponding to different values of u. Using the relationships 
u = x2 I R2 and u + L\u = (x + ..1x)2 I R2 (and neglecting terms containing the 
square of the small quantity ..1x), the work done can be expressed as 

3 
W = SMgd L:(l-u)L\u. 

This sum can be readily evaluated since 1 - u changes uniformly from 1 to 
0, and can therefore be taken to be ! on average, whilst the sum of the 
terms in L\u is 1. In the end, the previous expression for the work done is 
obtained. 

A 'mythical giant' does work W = {6 Mgd when separating the hemi­
spheres by d, and the force required to do this is therefore F = 3Mg/16. 
This is the force of attraction between the hemispheres and is the force the 
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props should have borne. Knowing the radius of the asteroid and the density 
of titanium, this force can be determined numerically as 

= 2_ M GM = 2_ (4nR3p)2 _Q_ = GR4p2n2 ~ 4 5 1013 N 
F 16 R2 16 3 R2 3 . x . 

In order to get a feel for the order of magnitude of this force, we calculate the 
average pressure exerted on unit surface area asp= F /(nR2) = 1.4 x 105 Pa 
(i.e. one and a half times the atmospheric pressure on Earth). This is the 
weight, on Earth, of 14 tons of matter; sufficiently strong props should bear 
such a load. 

Note. The result for the total force can also be obtained in the form 
of a double integral using a pure calculus approach. Taking a volume 
element d V = 2n r sin (} r d(} dr in the right-hand hemisphere with the axis 
of symmetry of the same hemisphere as the polar axis, the force dF acting 
on it, and directed towards the centre of the sphere, is p d V G (Mr3 f R3)jr2. 

The component of dF towards the left is dF cos(}, and the total force pulling 
the right hemisphere to the left is the double integral of this: dr from 0 to 
R;d(} from 0 to n/2. Then, using GM/R2 = g and p = 3M/(4nR3) gives 
the same answer as above. 

S113 At the surface of the charged sphere, whether it consists of a single 
piece or two pieces close together, the electric field strength is 

E = _1 _ _R 
4neo R2 · 

The electric charge per unit surface area is 

Q 
a= 4nR2 · 

This electric field exerts a force AF = !EAQ on the charge AQ = aAA which 
resides on a surface area AA, as illustrated in the figure. The reason for the 
factor of ! is that the electric field strength is E at the outer surface of the 
sphere and zero inside; its average value is therefore E /2. 
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The force per unit area exerted by the charges on the pieces of the sphere 
is therefore 

ilF Q2 

ilA = 32 n2eoR4 = p. 

The required force can be compared with the force with which a liquid at 
pressure p would push apart the two pieces of the sphere. As this force is 
also the product of p and the cross-sectional area of the intersection of the 
plane and sphere, i.e. pn(R2 - h2), it follows that the two parts of the sphere 
can be held together by a force 

F = 32 ;~R4 (R2 - h2). 

8114 Using the notation in the figure, the equilibrium condition for the 
first ball is 

mg t 
-=-
F x' 

where 

F =kqQjx2 

is the Coulomb force acting on the first ball and x is the distance between 
the balls carrying charges q and Q. 

mg 

It is clear that the triangles ABD and CAE are similar, and that conse­
quently 

X 
2: t = h: x. 

From the three equations above we can calculate the separation of the 
charges and the electrostatic energy of the system: 

qQ qQ 
X = k-- and Eelectro = k- = 2mgh. 

2mgh x 
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The work done is the sum of the changes in electrostatic and gravitational 
potential energy, 

W = 2mgh + mgh = 3mgh. 

It is perhaps surprising that the work done does not depend on either the 
magnitudes of the charges or the length of the thread. 

8115 Hydrogen of pressure p is enclosed in a spherical container of 
radius R with walls of thickness d. Let p be the density of the wall material 
and a its tensile strength, as illustrated in the figure. 

d 

We first calculate the maximum pressure the container can sustain without 
bursting. If the container were cut in two, the gas would push the two pieces 
apart with a force of pnR2 (the external pressure is negligible compared 
with p). This force must not exceed the product of the surface area of the 
cut, 2nRd, and the tensile strength, i.e. 

pnR2 < 2nRad. (1) 

If the gas is released into a large balloon, its pressure decreases to Po, the 
external atmospheric pressure. Its final volume is therefore 

V = 4nR3 p_. 
3 Po 

This volume of gas certainly cannot lift a load any greater than V Pairg (where 
Pair is the density of air), as the weight of the balloon and the hydrogen have 
still to be subtracted from the upthrust. 

The weight of the container is 4nR2dpg. In accordance with the above 
reasoning, this cannot be greater than the force available to lift it, i.e. 

2 4nR3 p 
4nR dpg < - 3-- Pairg. (2) 

Po 
Inequalities (1) and (2) give a relationship between the properties of the 
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container material and the pressure and density of the external air, 

u 3po 
->--. 
P 2Pair 
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(3) 

It is interesting that neither the radius, nor the thickness of the walls of 
the container occur in (3)! (A thicker-walled container can sustain a higher 
pressure but has a greater weight.) Despite leafing through several tables of 
physical properties, we could find no material that would fulfil condition 
(3). None of the materials known today are strong enough, relative to their 
densities, to be lifted by the upthrust available from releasing a gas stored 
inside them. 

8116 Gravitational acceleration at the surface of the spherical Earth, of 
radius R, mass M and density p, can be written as 

M 4nR3p 4n 
g = G R2 = G3Ji2 = 3"GRp. 

In order to solve the given problem, we have to find the magnitude of the 
gravitational acceleration on the surface of a very large disc of thickness H 
and density p, at a point far from the edge of the disc. The result is relatively 
easy to obtain using an analogy between the two sets of laws governing 
electrostatic and gravitational interactions. 

We draw analogies between a mass m (the 'gravitational charge') and 
an electric charge q, the gravitational constant G and 1/(4neo), and the 
gravitational acceleration g = F /m and the electric field strength E = F I q. 
In both cases, F is the force experienced by the 'test charge'. We next 
determine the electric field strength (outside the disc) of an infinitely large 
disc carrying a homogeneous charge distribution, and then substitute the 
analogous quantities to obtain the gravitational acceleration for a mass 
distribution of similar geometry. 

E 

H 

The electrostatic field strength can be calculated by applying Gauss's 
theorem to a disc of area A, 

1 
<l>E =- Lq, 

eo 

where <l>E = 2AE is the electric flux (see figure). If the electric charge density 
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is Pq then the total charge surrounded by the closed surface is I: q = pqAH. 
Therefore 

which yields 

1 
2EA = -pqAH, 

eo 

E = _!_pqH 
eo 2 

for the electric field strength. Substituting the relevant analogues, the gravi­
tational acceleration is found to beg= 2nGpH. This has to be equal to the 
gravitational acceleration measured at the surface of the Earth, i.e. 

4nRp 
G-3- = gsphere = gdisc = 2nGpH, 

which we can write as 
2 2 

H = 3 R = 3 6370 km = 4250 km 

for the thickness of the 'flat Earth'. 

S117 It follows from the similarity of triangles FHC and GKH in 
Fig. 8117.1, that for the short length of rod KH determined by the small 
angle L\oc, the following equalities hold: 

r r r2 
L\x = GH h = rL\oc h = hL\oc. 

c 

h 

G 

K H F 
llx 

Fig. S117.1 

There is a charge L\Q = uL\x on KH, where u is the charge per unit 
length, and the magnitude of the electric field strength corresponding to this 
charge is 

1 L\Q 1 (J 
L\E =--=- -L\oc. 

4neo r2 4neo h 

This quantity is independent of the value of angle oc itself. It only depends 
on the angle L\oc which the piece of rod subtends at C. Thus the electric field 
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vectors due to the lengths of charged rod situated symmetrically with respect 
to the bisector of angle C are of the same magnitude and their resultant 
points in the direction of the bisector (see Fig. S117.2). 

A B 

Fig. S117.2 

For any given point C there is some particular value of oc such that 
ACB = 2oc, and by superimposing the results for matched pairs of elementary 
lengths of the rod, the stated result is established. 

S118 Using the result of the previous problem, it can be stated that 
the direction of the electric field at a point on the plane, and a distance 
h from the end of the infinitely long rod, makes an angle of 45° with the 
rod. 

The magnitude E of the electric field strength can be found using the 
following 'trick'. Imagine two very long, uniformly charged rods joined end 
to end. The resultant field strength will be the vector sum of the field 
strengths of the two 'half-rods' (see Fig. S118.1). 

E~ E 
' 

h 

======*:::::::::" 

A 

Fig. S118.1 

The direction of the resultant will obviously be perpendicular to the rod­
in view of the symmetry- and its magnitude, J2 times the field strength E 
for an individual rod, can be found using Gauss's law for electric field lines. 
Enclose a section of length t of the infinitely long rod in a notional cylinder 
of radius h (see Fig. Sll8.2). 
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Fig. Sl18.2 

There is a charge Q = t(J inside the cylinder, where (J is the charge per 
unit length, and the number of field lines crossing the cylinder (the electric 
flux) is 

According to Gauss's law, 

. . E J2 (J gtvmg = -4- -h. 
neo 

S119 (i) When the angular opening approaches 2n, point P is in between 
the wires and arbitrarily close to them, and so both halves of the current­
carrying wire produce very large magnetic fields at P, and in the same 
direction. Thus in this case the magnitude of the net magnetic field at P 
approaches infinity. As tan(8 /2) also approaches infinity when 8 approaches 
n, Ampere's formula may be correct. However, the expression given by Biot 
and Savart must be wrong, because it gives a finite value for B(P). In fact, 
Ampere's result was later embodied in Maxwell's electromagnetic theory, 
and is now universally accepted. 

(ii) When the angular opening is 28 = n, the 'V' becomes a straight 
infinite wire. For this case, the magnitude of the field B(P) is known to be 
B = p0Ij(2nd). Since tan(8/2) = tan(n/4) = 1, the proportionality factor in 
Ampere's formula is pol /(2nd). 

Biot and Savart chose their formula in such a way that it agreed with the 
expression for the magnetic field due to a straight infinite current-carrying 
wire already generally accepted. Thus they had as their proportionality factor 
pol /(n2d). 

Note. In the region () < n/2 the difference between the two predictions 
is relatively small. The ratio of the predicted values for B, 2() / n tan(() /2), 
shows the greatest difference from unity when () - 0 and has a maximum 
value of 4/n. 
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S120 (i) If the magnetic field strength at point P is denoted by B1 then 
a symmetrically placed second coil, as shown in Fig. S120.1, would also 
produce a field of strength B1. 

Bt j Bt Bo 
------------~~---~--

Fig. S120.1 

Since the resultant magnitude of the superimposed fields is clearly B0, it 
follows that B1 = Bo/2. 

(ii) Similar reasoning shows that the horizontal component of the magnetic 
field vector through P is Bo/2; this would be true for any P whose distance 
from the axis is less than R (Fig. S120.2). 

~L 
N 
~ 

Bt f---+ P 
:..------: 
[/) vr 

Fig. S120.2 

Therefore a total magnetic flux of nR2 (Bo/2) crosses the end of the 
solenoid. This is exactly half of the flux inside the solenoid; what happens 
to the other half? 

(iii) A qualitative sketch of the field lines can be seen in Fig. S120.3. 

~--~7~-
--- ___ 1/}._ 

~ ~------

Fig. S120.3 
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The field line crossing the endmost turn of the solenoid (point Q) continues 
travelling perpendicularly to the solenoid. Half of the flux travels to the left 
of this, the rest leaves the coil between the turns. Deep inside the solenoid, 
the field lines on the boundary between these two halves are at a distance 
R/ .J2 from its axis. 

8121 In theory it is possible to calculate the force between the plates 
by dividing the charges on the plates into many small point charges and 
summing the Coulomb forces of all point-charge pairs. If we imagine the 
positive charges on one of the plates changed into negative ones of the same 
magnitude, then the magnitudes of the Coulomb forces remain the same, but 
their signs are reversed. Instead of repulsion, we get attraction between the 
plates, as for parallel plate capacitors. The energy stored in such a capacitor 
with plate separation x is E = Q2 j2C, where the capacitance C is given by 
C = e0Ajx. Hence E = Q2xj2e0A, and the force F is the rate at which this 
changes as x is changed, i.e. F = dE I dx. Hence the force required to hold 
together plates of area A is 

8122 The net charges on the plates cannot change, but the charges on 
the plates on either side of any of the spaces must be equal and oppo­
site. Consequently, the charges on C and D must be -1 nC and + 1 nC, 
respectively, on their outside surfaces and +2 nC and -2 nC, respectively, 
on their inside surfaces. The capacitance of any pair of plates is inversely 
proportional to their separation, with 5 mm corresponding to 20 pF. 

2mm 

x 3-x 

A C D B 

Thus if AC is x mm and DB is (3- x) mm, the capacitances of the three 
successive capacitors are 100/x, 50 and 100/(3- x) pF. The voltage Vcv is 
therefore 40 V, and VAB is lOx+ 40 + 10(3- x) = 70 V, independent of the 
value of x. 
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S123 The charge between the capacitor plates could be notionally divided 
into two parts, which are then moved away from each other in a direction 
parallel to the plates. The (induced) charges on the capacitor plates would 
also move but their totals on each plate would remain unaltered (using the 
principle of superposition). Continuing in the same manner, the charge Q 
could be further subdivided until it was 'spread' uniformly on a plane of the 
same size as, and parallel to, the capacitor plates. 

We can now consider two plane capacitors connected in parallel, the 
distances between their plates being x and d - x. Since one plate of each 
of the capacitors is earthed, and the other is common, the voltages between 
the pairs of plates are identical. Their electric field strengths are therefore 
inversely proportional to their plate separations, i.e. Ed E2 = (d- x)jx. The 
electric flux emanating from the charge Q is divided in the same proportion 
(Gauss's law), and the ratio of the charges on the earthed plates is the same 
as well. Since a total charge of -Q accumulates on the plates, respective 
charges of 

d-x 
Qt=-Q­

d 
and 

accumulate on the two sepllrate plates. 

X 
Q2 = -Q­

d 

S124 Very far from the capacitor the electric field is determined by the 
total electric charge of the system. The electric field outside the capacitor 
is zero; therefore the total electric charge (the sum of the charges on the 
plates) must also be zero. That means Q1 = -Q2 = Q. 

The long distance behaviour of the electric field of an electrically neutral 
system is determined by its total electric dipole. In our case, taking the 
component of this dipole moment normal to the plates gives 

p-Qd=O, 

which gives the charges on the plates as 

Q = 1!1 
d" 

Thus the charges on the plates do not depend upon the position of the 
dipole. 

Note. (i) The same method can also be applied in P123. The relevant 
equations are: 

Q, +Q2+Q 0, 
Q,x- Q2 (d- x) = 0, 
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and their solution is 

Q1 = -Q(d-x)fd, Q2 = -Qxfd. 

(ii) Alternatively, we can use the result from the case of a single charge 
by placing two charges of opposite signs into the parallel plate capacitor 
and applying the superposition principle. This is a simple way to find the 
solution of the general problem, in which the dipole momentum is not 
necessarily perpendicular to the plates. 

8125 Figure S125.1 shows a light ray passing through succesive plano­
parallel plates of different refractive indices. 

According to Snell's law, 

sinoc2 n1 
-

sin oc1 

Fig. S12s'.1 

sinoc3 
sin oc2 

It can be seen that the product of the sine of the angle of incidence and the 
absolute refractive index has the same value at all interfaces, i.e. n sin oc is 
constant along the light ray's trajectory. 

y 

-------~ 
R-y ______ }~--~:-! 

... ~ 
--~----+-~--~---7------x 

y 

Fig. 8125.2 
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This relationship is also valid for a medium whose refractive index con­
tinuously changes in one direction, since the medium can be considered as 
consisting of thin plano-parallel plates. Place the origin of the coordinate 
system at the point where the light ray enters the medium. In this case, 
the angle of incidence for the first 'plate' starting at y = 0 is 90° and the 
refractive index is no, which gives the above constant as n(y) sinoc =no. 

The light travels along a circular arc of radius R and we first examine its 
relationship to coordinate y. From Fig. S125.2 it is clear that 

R-y 
no= n sinoc = n(y) ~-

This gives the space-dependence of the refractive index as 

R 
n(y)= -R no. 

-y 

The material with the greatest known refractive index is diamond, but even 
the refractive index of this material does not reach the value nmax = 2.5. It 
is this limit that sets the maximum angular size of the arc the light ray can 
cover. If the refractive index changes from no = 1 to nmax = 2.5 then the 
maximum value of y is ~R, corresponding to an arc of angular size 66.4°. 

In practice, it is difficult to constrain light to a circular arc. However, it 
is possible to make up solutions in which the concentration of solute, and 
therefore the refractive index, shows a continuous vertical change. For such 
a medium, the light ray does not propagate along a circular arc but follows 
some other continuous curve. 

Note. Why does the light ray entering along the x-axis start to bend at 
all? The reason is that there is no such thing as an infinitely thin light 
ray; a 'ray' always implies a beam of finite width, with the refractive index 
and, hence, the speed of propagation varying across the beam profile. As a 
consequence, the wavefront becomes non-planar and the beam bends. 

8126 Using a ruler you can check that on a CD the inner diameter of 
the area for storing information is approximately 4.4 em, whilst the outer 
diameter is approximately 11 em. This means that the useful surface area 
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is about 80 cm2• As the unit of information is 1 bit (1 byte = 8 bits) the 
surface area per bit is 

80 cm2 -8 2 
A = 650 X 106 X 8 = 1.54 X 10 em . 

Assuming that the 'shape' of a single unit of information is a square (A = a2), 

the linear size of a bit is a = 1.24 x 10-4 em = 1.24 J.lm. 
The information on a CD is stored in a very long spiral starting near 

the centre and working outwards; this is the reverse of what happens on 
traditional LPs. A small piece of a CD can be used as a reflection grating 
and you can measure its diffraction pattern using a laser beam of known 
wavelength. The effective grating spacing is the width of the grooves and it 
is simplest to use normal incidence and measure the distance between the 
two first-order interference maxima on a screen. The typical wavelength of 
an optical laser is 670 nm and it is convenient to choose 1 m as the distance 
between the CD and the screen. 

The condition for the first-order intensity maximum in the interference 
pattern of a grating is d sin lh = A., where d is the grating spacing. Experi­
mentally, (Jt ~ 25°, and inserting the data into the grating equation gives the 
grating spacing as d ~ 1570 nm = 1.57 J.lm. Although close, this estimate 
is somewhat larger than our previous one. The difference between the two 
results is not a measurement error, but a consequence of the separating 
walls between neighbouring grooves. The effective width of the information 
is only about 0.5 J.lm. This means that the total effective area of information 
is only some (80/3) cm2 ~ 27 cm2, and that 1 bit has a rectangular shape 
approximately 1 J.lm long. 

Note. The information density on COs is uniform, but the rotation rate 
changes according to the position of the reading head. 

S127 nA. = d sin 0 = (lo-3 m/300) sin 24.46° = 1380 nm and the only 
possible values for n and A. to put the red and blue/violet light into the 
appropriate parts of the spectrum are nR = 2, AR = 690 nm and nsv = 3, 
A.av = 460 nm. In all physically possible cases 

nA. ::5; d sin 90° = 3333 nm, 

and the only other pair of integers which are in the ratio 3m : 2m, with m 
less than (3333/1380) = 2.4, is 6 and 4. Thus there is only one more angle 
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at which a two-component line will be observed; i.e. at 

. -1 (6 X 460) _ 55 90 
sm 3333 - · · 
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8128 (i) When the monochromatic laser beam falls on the diffraction 

grating at normal incidence, the positions e of maxima of the interference 
pattern are given by 

dsine = mA., (m = 0, ±1, ±2, ±3, ... ), 

where d is the grating spacing and A, is the wavelength of the laser beam. 

If the grating is rotated through an angle <P around an axis parallel to the 

lines of the grating, we have to modify the above equation. It is enough 

to consider the interference from only two slits of the grating, as shown in 
Fig. S128.1. 

Fig. S128.1 

The optical path difference consists of two parts: 

d1 + dz = dsin<P + dsin(e- </J). 

Thus the modified equation for the interference pattern is 

d[sin <P + sin(8- <P )] = mA.. 

The principal result is that the pattern becomes asymmetrical, with only the 

position of the zeroth-order maximum remaining unchanged. If <Pis counted 

as positive when the grating is rotated anticlockwise (and e is counted as 

positive in the same sense), then the density of interference maxima becomes 

larger at positive angles, whilst it decreases for negative ones. If the lines of 
the grating are vertical, all the interference maxima lie along a horizontal 

straight line; this is to be contrasted with what happens in (ii). 

Note. The na·ive idea that the effect of rotating the grating is to decrease the 
'effective' size of the grating spacing is false. 
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(ii) Since the diffraction grating is an array of a large number of identical 
parallel slits, as a first step it is enough to investigate the diffraction from 
a single slit. If the beam falls on a very narrow slit at normal incidence, 
the diffraction pattern is a weak straight line. If the slit is a little wider, 
interference minima along this line can be identified. 

When the slit is tilted 'forward' (i.e. rotated around a horizontal axis which 
is perpendicular to the slit as well as to the direct beam), the zeroth-order 
maximum remains unchanged. Though the incoming beam strikes different 
parts of the slit with different phases, beyond the slit, in the direction of the 
direct beam, there are no phase differences (Fig. S128.2) and no change in 
the pattern results. 

Fig. S128.2 

It may be easier to consider the slit as a series of closely spaced very small 
holes. Now, we need only recognise that, if the wavelets originating from the 
holes produce constructive interference in the direction of the direct beam, 
then the same must be true for all directions (in three dimensions), which 
make the same angle with the direction of the (rotated) slit. If the slit is 
tilted by an angle </>, then the angle between the slit and the direct beam is 
y = 90°- <f>. The same angle y between the slit and a diffracted ray occurs 
for any ray that lies on the cone which has semi-angle y and the direction of 
the slit as its axis. On the screen we would see a plane section of this cone 
(see Fig. S128.3). 

Fig. S128.3 

Direction of 
the rotated 
grating 

Direction of 
direct beam 
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The apex of the cone is the midpoint of the slit, and its semi-angle is 
y. The conic section can be ellipse, parabola or hyperbola. A parabola is 
obtained if y = 4> = 45°. 

Returning to the original problem, we conclude that the interference 
pattern of the tilted grating consists of bright spots lying on a conic section. 

Sl29 Because of the surface tension of the liquid, its height between the 
two objects is not the same as it is outside the objects; in the case of (a) 
water it is higher, whilst for (b) mercury (which has a negative angle of 
contact) it is lower. 

Po- gh 

(a) Water 

Po 

Po 

gh 

(b) Mercury 

Po 

Just above the liquid surface between the objects the pressure has to be 
atmospheric in both cases and, correspondingly, just below the surface it 
has to be less than atmospheric for water and more than atmospheric for 
mercury. As can be seen from the figure this leads to net inward forces 
(acting on the shaded areas) in both cases and a tendency for the objects to 
move towards each other. 

Sl30 The pressure of the water changes linearly with the increase in 
height. At the bottom of the meniscus it is equal to the external atmospheric 
pressure po, and at the top to Po- pgh. The average pressure exerted on the 
wall is Paverage = Po - pgh/2. The force corresponding to this value, for an 
aquarium with side walls of length t, is Ft = tPaverageh. 

F 
3 

Consider the horizontal forces acting on the volume of water enclosed by 
the dashed lines in the figure. The wall pushes it to the right with force F1, 
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the external air pushes it to the left with force F2 = tpoh, and the surface 
tension of the rest of the water pulls it to the right with a force F3 = ty. 
The resultant of these forces has to be zero, since the volume itself is at rest. 
This means that 

(vo- ~pgh) th- poth + ty = 0, 

which we can write as 

2 X 0.073 
1000 x 10 = 0.0038 m. 

Water rises by approximately 4 mm up the wall of the aquarium. 

S131 When the radius R of a drop of water with surface tension y (also 
equal to the energy per unit surface area) decreases by d.R, the energy of the 
surface decreases. It changes by 

d.Esurface = 4ny [R2 - (R- d.R)2] ~ -8nRyd.R. 

At the same time, the volume of the drop decreases by 4nR2 d.R. For this 
quantity of water to evaporate, energy 

d.Eevaporation = 4nLpR2 d.R 

has to be supplied. Here p is the density of water and L its latent heat of 
evaporation. 

The decrease in the surface energy could provide the evaporation energy 
of the drop if ld.Esurfacel > d.Eevaporation. i.e. if 

R <~I~ 7 X w-ll m. 

Since this radius is of the same order of magnitude as the size of one water 
molecule, a drop of water with this radius cannot exist. Therefore, there is 
no water drop that can evaporate without absorbing heat, or losing internal 
energy. However, the above reasoning can be used to estimate molecular 
sizes using macroscopic properties. 

S132 Consider a closed vessel containing a volume of liquid, with satu­
rated vapour of this liquid filling the rest of the vessel. As illustrated in the 
figure, let a capillary tube of radius r be immersed in the liquid, which does 
not wet its walls. 
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y • 

=rh 
:::: I 

-------- -------- ---· 

In such circumstances, the level in the capillary tube falls to a depth 
h below the liquid surface. The magnitude of h can be found using the 
equilibrium relationship between hydrostatic force and the surface tension 
of the liquid 2nry = p1gh nr2, where y is the surface tension of the liquid and 
PI is its density. This gives h = 2y / (p1gr ). 

The liquid is in equilibrium with its saturated vapour, both in the capillary 
tube and at the plane surface of the liquid. In the capillary tube, however, 
the pressure of the vapour is a little higher at the interface. The difference 
is caused by the pressure of the vapour column, of height h and density Pv. 
above it. It follows that 

2y Pv 
flpv = Pvgh =- -. 

r PI 

As Pv < Pt. this difference between the pressures is much smaller than the 
pressure of curvature corresponding to the radius r, but, given long enough, 
it is sufficient to bring about the phenomenon described. 

8133 Let A denote the cross-sectional area of the piston and y the vertical 
displacement between its initial and final equilibrium positions (see figure). 

h 

~----~--]~ 

The decrease in potential energy of the weight W increases the internal 
energy of the air inside the cylinder. Conservation of energy between the 
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initial and the final states gives 

5 
Wy = 2 [p1A(h- y) + P2A(h + y)- 2poAh], (la) 

where Pl is the final pressure in the lower part of the cylinder and P2 that in 
the upper part. The internal energy of a gas made up of diatomic molecules 
has been written in the form ~pV. If W is very large, the decrease in its 
potential energy (and the corresponding increase in the internal energies of 
the gases) is very large, and the initial internal energy of the air can be 
neglected. Thus 

5 
Wy = 2 [p1A(h- y) + P2A(h + y)]. (lb) 

When the load is finally at rest, 

(PI- P2)A = W. (2) 

The temperatures and the masses of the gases in the two halves are identical, 
and so their internal energies must be equal: 

(3) 

Equations (lb), (2) and (3) yield y = JSfih for the displacement of the 
piston, i.e. the gas in the lower part is compressed to 1 - J5fi ~ 15 per cent 
of its original volume. 

Note. The surprising result is that the volume of air in the lower part does 
not tend to zero, however large the weight is, even though gases are supposed 
to be compressible! The large load increases the internal energy, and hence 
the temperature, of the enclosed gas. This causes considerable increases in 
not only the absolute pressures, but also in the difference between the upper 
and lower pressures. 

In practice, the applied weight is limited by the mechanical load-bearing 
capacity of the structure and the melting points of the materials used. We 
should also consider whether the increased temperature is one at which air 
can still be treated as an ideal diatomic gas. 

If the initial internal energy of the air is not neglected then the result is 

y J35W2 + 25pijA2- 5poA 
h= 7W 

8134 Consider a 'box-shaped' mountain of average density p, base area 
A and height h. In order to melt its bottom layer of thickness d and 
specific latent heat L, energy AdpL would be required. The total mass of the 
mountain is approximately Ahp, and the energy released if it sank a distance 
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d would therefore be Ahpgd. The base of the mountain does not melt under 
its load if 

AdpL > Ahpgd, . h L I.e. < -. 
g 

Approximating the required latent heat by the latent heat of melting of 
metals (200- 300 kJ kg-1 ), we estimate the maximum possible height of 
mountains on Earth to be 20-30 km. This is of the right order of magnitude. 
Allowing for the fact that the base of the mountain does not actually have 
to melt, but rather that the size of mountains is limited by the yield strength 
of their constituent materials, the estimated height of the highest mountains 
on Earth is surprisingly accurate. 

Gravitational acceleration is significantly smaller on Mars than on Earth 
(gMars ~ 4 m s-2). Therefore mountains, consisting of similar rocks, could 
be higher on Mars than on Earth. Indeed, the highest mountain on Mars, 
Mons Olympus, is 26 km high! 

8135 In order to simplify the calculation, choose a system of units in 
which the initial volume and the external pressure are unity, and the units 
of the number of moles and the gas constant have a product that is also 
unity. This reduces the usual ideal gas equation p V = nR T to p V = T. In 
this system, the molar heat has to be multiplied by the gas constant to yield 
the normal molar heat capacity. 

The initial pressure of the air is given by the sum of the pressure of 
the 76 em-high column of mercury and the atmospheric pressure, a total 
of 2 units. Any increase in length of the air column implies a corre­
sponding decrease in the mercury one. Therefore as the air expands from 
1 to 2 units, its pressure decreases linearly from 2 to 1 units as shown in 
Fig. S135.1. 

T=914 

2 

2 

Fig. S135.1 
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The temperature of the enclosed air is initially 2 units, and is still 2 units 
at the end of the straight section shown in the figure, since both points 
lie on the isothermal p V = 2. In our representation, the isothermals are 
symmetrical about the bisector of the axes (i.e. about the line p = V). Thus 
the highest temperature reached corresponds to the isothermal to which the 
straight-line segment is tangential. As shown in Fig. S135.1, this occurs at the 
middle of the process, when p = ~ and V = ~. The maximum temperature 
is therefore 1. 

The equation of the straight line representing the process is p = 3- V. 
Applying the first law of thermodynamics to a typical section of the line gives 

5 
""iilT = C ilT- pilV, 

where the left-hand side of the equation is the change in the internal energy 
of the air (diatomic molecules have, Cv = iR), and on the right-hand side, 
C is the molar heat in question. Expressing p as p = 3 - V in the equation 
p V = T, gives (3 - V) V = T. From this it follows that small changes in 
V and T are connected by (3- 2V)ilV = ilT. The change in the internal 
energy of the air then becomes 

which simplifies to 

5 3- v 
""iilT = C ilT- 3 _ 2V ilT, 

c 

6 

C = 21-12V 
6-4V. 

)I 
____ .,: : 

3 -------t---L-----~:----
,' 

-3 

Fig. 8135.2 

Figure S135.2 shows this result for the molar heat plotted against volume. 
The curve is singular (the molar heat approaches infinity) at V = 3/2 because 
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at this point the straight line is a good approximation to the isothermal 
corresponding to the maximum temperature. During an isothermal process, 
heat is transferred but the temperature does not change, and this is why 
the molar heat tends to infinity. Beyond this point, the molar heat becomes 
negative, which means that in spite of the positive heat transfer, the internal 
energy of the air decreases because the work done by it in expanding is 
greater than the heat transferred. 

The most interesting part of the process occurs when V = t' i.e. when 
only a quarter of the mercury is left in the tube. At this point the molar 
heat is zero and implies that the process is adiabatic, since there is a change 
of temperature without any heat transfer; at this point, the straight line 
describing the process is tangential to an adiabatic curve. Beyond this point, 
the temperature decreases further but the molar heat becomes positive; this 
can only correspond to the system being cooled. 

If more heat is given to the system, the representative point no longer 
follows the straight line but continues along the adiabatic one. The tem­
perature of the air does decrease, but not by as much as the straight line 
would suggest. The decrease in the internal energy of the air is equal to the 
work done against atmospheric pressure (whilst lifting the mercury) and in 
accelerating the ejected mercury. 

Returning to the original question, that of the heat transfer necessary to 
push the mercury out of the tube, it can be seen that it is only necessary to 
transfer heat whilst V is in the range V = 1 to V = i· Simple arithmetic 
shows that the work done by the air up to this point is (in this system 
of units) j~, whilst the increase in internal energy is j~. The required heat 
transfer is therefore Q = i~. In standard units, this means that if the column 
of mercury originally enclosed n moles of air, then the heat transfer required 
to remove it is i~ nR. 

8136 The molten magma came into contact with the ice, and huge 
volumes were melted at the base of the 500-m-thick ice cap. As the density 
of water is greater than that of ice (i.e. the volume of meltwater is smaller 
than that of the ice from which it was formed), and moreover some part of 
the water could flow away, a huge conical hole would have formed under the 
ice. But the extremely heavy ice above the hole sank, leaving the depression at 
the surface. Under the ice crater we could have found the recently solidified 
magma intrusion, the meltwater in a conical cavity and the ice cover (see 

figure). The amount of meltwater depends on the quantity of magma, but 
the shape of the ice crater is determined by the hydrostatic pressure of the 
ice and water. 
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Ice Ice Ice 

The eruption broke through the ice cap on the second day and a hot, 
black ash-cloud, 500 m high, was formed. This was carried up to an altitude 
of 3000 m by the buoyancy force of the cold air. At the end of two weeks 
the cloud column had become white and reached a height of 10 km. 

Altogether the eruption melted 3 km3 of ice in two weeks. The meltwater 
flowed under the ice of the glacier into a lake situated within a nearby 
volcanic depression, the Grimsvotn caldera. A deep depression, 8 km long 
and a few hundred metres wide was formed in the ice surface at the eruption 
site. The rate of melting was extremely high, 0.5 km3 per day for the first four 
days. At the same time a new mountain, 0.6 km long and 150--300 metres 
high, was built under the ice by the eruption. 

The meltwater was held in Grimsvotn caldera under the glacier for five 
weeks, before it escaped. A gigantic wave swept across part of the south-east 
lowlands, destroying everything (roads, bridges, etc.) in its path. 

S137 Assume that the cavity is located at a depth h below the surface. 
When the flue is filled with water, the pressure in the cavity is p =Po+ pgh, 
where Po is the atmospheric pressure and p is the density of water. Boiling 
starts at that depth when the temperature is such that the pressure of 
saturated water vapour (Ae-L.,/(RT)) is equal to p. The value of the molar heat 
of vaporisation Lm occurring in the formula is approximately 40 kJ mol-1 

and that of the molar gas constant R is 8.3 J mol-1 K-1• Using these data, 
the constant A can be determined from the boiling point of water (373 K) 
at atmospheric pressure; the result is A = 4.1 x 1010 Pa. 

For the purposes of the calculations, the temperature of the ground at the 
surface can be assumed to be To = 290 K and, as it increases by one degree 
per metre, the temperature at depth h is given by T = To +h. The following 
equation can now be formulated, using the equality of the pressures when 
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the water starts to boil: 
Lm 

Po + pgh = Ae- R<To+h). 

This transcendental equation can be solved by numerical methods, i.e. by 
carefully considered guesses! The solution ish= 197(~ 200) m. The pressure 
at such a depth is approximately 20 atm and the temperature 487 K = 214 °C. 

When boiling starts, the first steam bubbles rise and push the water out of 
the flue, the pressure decreases to 1 atm and the superheated water at 214 oc 
starts to boil violently, producing as much steam as is necessary to reduce 
its temperature to l00°C. The temperature drop of 8T = 114 oc implies an 
excess internal energy of cm8 T, where c is the specific heat of water and m 
is the mass of water in the cavity. This surplus energy is sufficient to produce 
m5 = 44 tons of steam, implying 

cm8T = Lm5, 

where L is the heat of vaporisation of water. After substituting the relevant 
data, we find the mass of the water in the cavity to be m = 207 tons. Since 
the density of water is only around 850 kg m-3 at such a high temperature, 
this gives an approximate value of 244 m3 for the volume of the cavity. 

S138 The heat conducted away in a given time must equal (minus) the 
latent heat of fusion of the additional ice formed in that time. Thus for an 
area A of the lake 

8T d 
AiA- = Li-d (piAx). 

X t 

Simple integration gives that t = !x2B, where B = (piLi)/(A.i8T). Inserting 
the relevant numerical values gives the time as about 90 hours. 

S139 According to the law of heat conduction the heat transferred is 
directly proportional to the thermal gradient (temperature difference divided 
by distance), the area and the time. So 

T. Heat capacity L3 L 2 1me ex: ex: -- = 
Area x Temperature gradient L2 L -1 · 

Since M ex: L3, the time is proportional to M 213 and a mammoth should take 
2(8000/5)213 days, i.e. about nine months, assuming that the turkey and the 
mammoth both start to thaw from the same temperature and are defrosting 
in similar environments. (In fact, the Siberian summer is too short to defrost 
a mammoth.) 

S140 Consider first the state of the ice and the pressure in the container at 
100 oc. Since the density of saturated water vapour is 0.5977(::::::: 0.6) kg m-3 
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and its pressure is 1 atm, the 0.6 kg of ice is completely transformed into 
vapour at 100 oc, indeed into saturated vapour at a pressure of 1 atm. 

How does ice, at a temperature of -10 °C, turn into saturated water 
vapour at 100 °C? If the temperature is increased very slowly, the system 
passes through a number of equilibrium states. First, the ice sublimes and 
the ice phase is in equilibrium with the vapour phase. This lasts until the 
temperature and pressure of the triple point (0.01 °C, 610 Pa) is reached. 
At the triple point, a liquid state appears alongside the ice and water 
vapour. Further heating makes the solid phase disappear, and only water 
and saturated water vapour remain in the container. It is interesting to note 
that subsequently the water boils steadily at 100 °C, until all the water has 
been transformed into vapour. 

From the point of view of heat absorption, only the initial and the final 
states are important. The heat Q absorbed by the system, as it passes with 
increasing internal energy through the 'ice-water-vapour' states, is indepen­
dent of the intermediate states. For calculational purposes, the heating of 
0.6 kg of ice should be divided into four stages (warming the ice, melting 
the ice, warming the water and boiling the water) to give: 

where Cj = 2.1 kJ kg-! oc-1 is the specific heat of ice, dT, = 10°C, Lr = 
334 kJ kg- I is the heat of fusion Of ice, Cw = 4.2 kJ kg- I oc-l is the specific 
heat of water, d T2 = 100 oc and Lv is the specific heat of vaporisation of 
water. 

The specific heats of ice and water are slightly dependent on temperature 
and pressure, and the heat of fusion of the ice also depends a little on 
pressure. But these variations are small and can be neglected. However, the 
situation is different for the heat of vaporisation of water. It is true that the 
heat of vaporisation only varies a little with temperature, but its dependence 
on pressure is significant. 

The value usually given in tables, Lv = 2256 kJ kg-1, covers, not only 
the higher internal energy of the vapour, but also the work done against 
atmospheric pressure. In the present problem, this work was done when 
the container was evacuated, i.e. the heat to be transferred to the system is 
smaller by this amount, which is - pd V = -101.3 kJ. As this figure is that 
for 0.6 kg of water, 

Lv = (2256- 101.3) = 2087 ~ 2090 kJ kg-! 
0.6 
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is the more accurate value to be used for the present calculation. After 
substitution of the data, the heat transfer is found to be Q = 1720 kJ. 

Neglecting the work done against atmospheric pressure would have intro­
duced an error of nearly 6 per cent, while ignoring the slight dependence 
of the other coefficients on temperature and pressure causes an inaccuracy 
of approximately 1 per cent. The main reason for this is that the normal 
change in the volume in the course of a water-vapour transition is very 
significant (a factor of about 1600). The volumes of the water and ice are 
negligible compared with that of the vapour, and they are tacitly neglected 
in the solution. 

S141 Water continues to vapourise in the closed container until the space 
above it is saturated. The total pressure above the liquid, therefore, is the 
sum of the pressures of the saturated vapour and the air enclosed in the 
container, i.e. it is always higher than the pressure of the vapour alone. This 
means that the water cannot start boiling at any temperature. 

p 

c 

Ice 

T Vapour 

T 
L---------------~~---

365 °C 374.2 °C 

If the container is strong enough, it can withstand a large rise of the 
temperature. We can ask the question: up to what temperature could liquid 
water still be found in the container? Data tables for saturated water vapour 
tell us that the critical temperature of water is 374.2 °C. Its critical density 
is 326.2 kg m-3, which means it is not possible for all the water to evaporate 
before the critical point C is reached. If it did, the density of water in 
the container would have to be around 500 kg m-3. Indeed, a strange 
change of state occurs at lower temperatures! The density of water is 
500 kg m-3 at approximately 365 °C, but the density of saturated vapour is 
160 kg m-3 at this temperature. This means that at 365 °C, liquid water fills 
the whole container. The explanation for this is that, as the temperature rises 
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in this range, the density of water decreases more rapidly than the density 
of water vapour increases. 

At temperatures above 365 °C, the water in the container remains in liquid 
state, but its pressure increases. As shown in the figure, the system departs 
from the boiling curve and continues above it, in the region of the phase 
diagram corresponding to the liquid phase. The terms 'liquid' and 'vapour' 
lose their meaning above the critical temperature; rigorous application of 
the terminology would imply that water is then in a gaseous state. 

In what state is the air in the container? In the relevant temperature range 
(360-380 °C}, its pressure is around 200-300 atm. At such a pressure, part of 
the air is dissolved in the water, and the rest is compressed into very small 
bubbles filling only 0.1-0.2 per cent of the container. Thus, the air has no 
noticeable effect on the behaviour of the water. 

8142 Only the energy of the air molecules can be relevant and so T 
appears in the combination kT. Dimensional analysis using t,F,m and kT 
shows that the amplitude must depend on combinations of variables of the 
form (kT /F)qtl-q, where q can take any value; m does not appear and so 
the amplitude is independent of the mass of the cobweb. 

8143 Let us compare the surface energy of a cylindrical water thread 
on the cobweb with that of the periodic water drops formed from the 
thread. Denote the initial radius of the water thread by r, the 'wavelength' 
(separation) of the drops by A and the radius of the drops by R, all as shown 
in the figure. We can ignore all energies (including gravitational) other than 
the surface energy of y per unit area. 

' k ' 

_l_~ 
2r 
-r-~ 

.-----. 
·zR· 

Initially the surface energy of the cylindrical water thread of length L is 

Et = 2nrLy. 

Ultimately L/ A drops, each of radius R, are formed, and their surface energy 
is given by 

2L 
E2 = 4nR Iy, 

where we have ignored the thickness and surface area of the cobweb threads 
themselves. 
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The radius R is determined from the conservation of matter. 

2 4nR3 L 
nr L=-3- 2. 

During drop formation the surface energy must decrease, E2 < EI. Elimi­
nating R from these equations, we obtain 2 > ~r. This result shows that the 
'wavelength' of the drops must be larger than a certain critical value Acrit. 

which is proportional to the initial radius of the water thread. 

Note. (i) A Belgian physicist, Joseph A. F. Plateau (1801-1883) first showed 
that the critical 'wavelength' is larger than stated above. He found that 
Acrit = 2nr by investigating the constriction of the water thread caused by 
surface tension. He assumed a periodical change in the diameter of the 
thread and considered the effect of pressure differences associated with the 
curvature of the liquid surface. 

(ii) The Nobel-laureate English physicist, John W. S. Rayleigh (1842-
1919) investigated the stability of the water thread and, according to his 
very careful and detailed calculations on drop formation, the 'winning 
wavelength' is Awin = 9.02r. 

S144 (i) Early on, particles coming from the right, and rebounding 
elastically, transmit a greater momentum to the body than those colliding 
inelastically from the left. For this reason, a resultant force acting to the left 
accelerates the body. The faster the body moves to the left, the lower the rate 
at which particles collide with it from the right, and the lower their relative 
velocity when they do. For those impinging from the left the converse is true, 
and the net force acting on the body decreases with time. 

After a sufficiently long time, the body moves at uniform speed VI. The 
condition for this equilibrium situation is that, in unit time, the particles 
impart the same momentum from the right as from the left. 

The particles from the right reach the body with a relative speed vo - VI 

and rebound with the same relative speed. In a short time interval At, the 
particles coming from within a distance of (vo- vi)At reach the cylinder, 
and each imparts an impulse proportional to 2(v0 - vi) to the body. Thus 
the force from the right is proportional to 2(v0 - vi)2• Similarly, particles 
inelastically colliding from the left at a relative speed of (vi + vo) produce a 
force proportional to (vo + vi)2. The condition for constant speed is 

J'i-1 
VI= n vo:::::; 0.17vo. 

v2+ 1 

(ii) Assume that the colliding particles are the molecules of a gas at a 
certain temperature. If the body continued to move uniformly, even after a 
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very long time, it would imply that a perpetuum mobile (perpetual motion 
machine) of the second kind were possible, i.e. a heat engine could be 
built that could continually extract energy from a single heat reservoir. All 
experience indicates that such an engine cannot be made. 

Where is the mistake in the above reasoning? The heat produced by 
the inelastic collisions has not yet been taken into account! The particles 
inelastically bombarding the left end of the cylinder heat it up. If the heat so 
produced is continuously removed (i.e. the body is cooled), then the motion 
described in part (i) is sustainable. The result is a normal heat engine working 
between two heat reservoirs, the gas of bombarding particles and the cooling 
medium. 

However, if the body is not cooled, sooner or later it warms up. The 
molecules forming the sides of the warm body vibrate at the average speed 
corresponding to its temperature, and the gas particles rebound from it, 
sometimes at a greater speed, and sometimes at a lower speed, than they 
would from a colder body. The result is that finally the body cannot ab­
sorb any more heat from the gas at either end (or it would warm up 
further). Then the collisions are effectively elastic on both ends- taking 
time averages-and so the impulsive forces are equal. Thus, after a very 
long time, when thermal equilibrium has been reached, the body has to 
stop. 

8145 As the space probe is very far from the solar system we may neglect 
the solar and cosmic background radiation. Without any protecting shields, 
the heat production of the nuclear energy source is radiated away by the 
surface of the space probe according to the Stefan-Boltzmann law: 

where u is the Stefan-Boltzmann constant, A is the surface area of the 
space probe and T is its surface temperature. When a thin protecting shield 
encloses the space probe, the same radiation process occurs at the outer 
surface of the shield, and so the temperature of the shield must be T. 
However, the shield also emits inwards, and consequently the surface of the 
probe absorbs an amount of radiation equivalent to that radiated into space 
(see figure). This means that the surface of the probe must re-radiate a total 
received intensity of 21 at a new temperature T1, where 

21 = uATi. 

It follows that T1 = ,:j2 T. 
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For N protecting shields, the net radiation through them will still be I. 
Repeated application of our previous argument shows that the space probe 
radiates (N + 1)/ and implies that the temperature of the surface of the 
probe is TN= .:j(N + 1) T. 

Note. This result cannot hold for very large N, because we have ignored the 
increase in surface area of successive shields. 

S146 When a body at absolute temperature T absorbs a quantity of heat 
AQ, the change in entropy AS ;::: AQ/ T. The equality holds when the process 
is reversible. 

Let A T1 and A T2 denote small changes in temperatures of the bodies at 
temperatures T1 and T2, respectively, as a result of receiving quantities of 
heat AQ1 and AQ2 by a reversible process. The change in the entropy of the 
whole system is 

which we can write as 

The ratio of the heat transfer to the change of the temperature is the same for 
both bodies, since their masses are equal. The above equation can therefore 
be written as 

This means that the geometric mean of the temperatures of the two bodies 
cannot decrease during the process (though it may increase). 

This relationship is valid throughout the process, and hence for the initial 
and final states, i.e. the common final temperature has to be at least ..)T1 T2. 
If no energy were taken out of the system the common final temperature 
would be the arithmetic mean of the two initial temperatures. Thus the 
maximum energy that can be taken out is 

( Tl+T2 ~) 
2 - v T1T2 me, 

where m is the total mass of the water and c is its specific heat. 
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S147 The number of microstates available to a system of N objects 
confined to a space of volume V is proportional, both classically and quantum 
mechanically, to vN. In the current case, initially there are 2NA molecules of 
helium occupying 2Vo (Vo ~ 0.0224 m3), and correspondingly for the oxygen. 
After the partition is removed there are 5NA molecules occupying 5Vo and 
the ratio of the new number of microstates to that before is 

w2 (SV)2NA (SV)3NA (SV)SNA 
- = X ..:..,---'-:::~ - ...,.,...__,..:,,.,.,-'-:-:---,-,,....,-;-
Wt (2V)2NA (3V)3NA (2V)2NA(3V)3NA. 

Thus the change in entropy is 

w2 1 11S = k ln- = kNA(51n 5- 2ln2- 3ln 3) = 27.9 J K- . 
W1 

Note. If we had investigated the mixing of two identical gases (e.g. two 
moles of helium with three moles of helium) both at s.t.p., the calculated 
entropy change would seem to be the same. However, it is obvious there 
can be no entropy change, because physically nothing happens then. This 
is called the Gibbs paradox. The resolution of this paradox depends upon 
the indistinguishability of identical particles. 

S148 Consider the compression stroke of the pump (shown in the figure) 
in two stages. Initially, both valves are closed and the piston isothermally 
compresses the air. When the pressure in the pump equals that in the 
container, the inner valve opens and the total amount of air is isothermally 
compressed. The moment when the inner valve opens becomes later and 
later, which makes calculation of the total work done rather complicated. 
Fortunately, there is a simpler method! 

Consider the amount of air that is in the container at the end of the 
process. This is the 10 litres initially present and a further nine times this 
amount, i.e. 90 litres (initially at atmospheric pressure). This amount of air 
occupies a volume of 10 litres. 

According to the first law of thermodynamics, the sum of the work W 
done on the air and the heat Q transferred to it, is equal to the increase in 
the internal energy of the air. In the present situation, the temperature of 
the air does not change, and therefore its internal energy is unaltered. Thus, 
W + Q = 0, i.e. the work done on the air equals the heat -Q it gives out. 
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Further, the change in entropy of the air at constant temperature T, in a 
reversible process, is ilS = ilQ/ T. If the change in entropy of the air can be 
calculated, the heat given out and the work done can also be determined. 

If N molecules are compressed into a ten-times smaller space than they 
originally occupied, then the number of possible microstates is 1/10N times 
their original number. According to the statistical interpretation of entropy, 
the change in entropy of the gas is the logarithm of this number multiplied 
by the Boltzmann constant, 

ilS = k ln ( 1~N) = -Nk ln 10. 

This gives 

-ilQ =-T ilS = NkT ln 10 = nRT ln 10 = 10p0 V0 ln 10 

for the heat given out by the gas. The work done is thus 

W = 10 X 105 Pa X 10-2 m3 X ln 10 ~ 23 kJ. 

8149 There has to be an electric field between the Earth and the distant 
planet, as there is a potential difference between them. This electric field 
causes a charge separation in the wall of the spaceship, and therefore the 
electric field inside the spaceship is zero (the Faraday cage effect). 

The potential difference between the spaceship and the planet changes in 
the course of the flight, being roughly proportional to the distance from the 
planet; it is very large at the beginning of the flight but slowly decreases 
and becomes zero at the end. Thus, when the spaceship lands on the planet, 
its electric potential is exactly equal to that of the planet and the astronauts 
can get out safely. 

8150 The energy of a capacitor of capacitance C carrying a charge Q is 
Q2 /(2C). If the change in energy of the capacitor can be found, the change 
in its capacitance can also be calculated. 

The energy of the capacitor is higher when it is dented, since the surface 
charges have been moved in a direction opposite to that in which their 
mutual repulsion acts. Further, an electrostatic field E has an energy eE2 /2 
per unit volume, and an alternative view is that, when the capacitor is dented, 
the electric field exists in a volume where it was not previously present. 

If the surface of the capacitor is only changed a little, the electric field 
near the surface can be taken as the same as the original one. Thus, the 
change in energy depends purely on the change in volume and not on the 
actual shape of the indentation. 
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Imagine that the original capacitor is hammered so that its volume de­
creases by 3 per cent, but its shape remains spherical. Its radius is thus 
reduced by 1 per cent (as the volume of the sphere is proportional to the 
cube of its radius). The ratio of the energy of such a reduced spherical 
capacitor to that of the original sphere is the same as the ratio of the energy 
of the dented capacitor to the original one. Thus, the relative changes in 
their capacitances are the same as well. 

Finally, the capacitance of a spherical capacitor is proportional to its 
radius. The capacitance of the reduced capacitor is therefore 1 per cent 
smaller, and the capacitance of the dented capacitor in the original question 
must have decreased by the same amount. 

S151 It can be proved that if equal amounts of charge are carried by F 
and F* then the electrostatic energy of the configuration belonging to F is 
lower. 

Let us start from the new surface F*. Imagine that the charges on it are 
'fastened' to the surface, and that the surface is then hammered in such a 
way as to displace the charges perpendicular to the original surface. The 
charges have then moved in the direction of the force acting on them. As the 
surface was originally an equipotential, the field direction was perpendicular 
to the surface. Thus, the energy of the system decreases in the course of the 
deformation. (An outward force acts on the surface charges, regardless of 
their signs- a field directed outwards emanates from the positive charges, 
while an inwardly directed field is produced by the negative ones.) 

The new surface will not be equipotential, but, if the fixed charges are 
'released', they migrate, warming the metal up a little whilst doing so. The 
electrostatic energy of the system is therefore lower in the new equilibrium 
position. 

This process can be repeated until surface F* is transformed into surface 
F. The electrostatic energy decreases all the time, while the total charge Q 
on the metal does not change. Since the electrostatic energy depends on the 
capacitance, C as Q2 /2C, the capacitance of the surface F has to be greater 
than that of the surface F*. 

S152 The capacitance of the plane capacitor of surface area A is C = 
e0(A/d). The energy of the capacitor, when connected to a voltage V, can be 
expressed as 

1 AV2 

w = 2CV2 = eo---u-· 

When the distance between the plates is increased from d to 2d, both the 
capacitance and the energy of the capacitor decrease to half of their original 
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values. This may be a surprising result, as pulling apart the plates of the 
capacitor requires positive work. However, when charge L\Q leaves the plates 
of the capacitor it increases the energy of the battery (charges the battery) by 
L\Q V. Since L\Q = L\C V, the increase in the energy of the battery is exactly 
twice the decrease in the energy of the capacitor. The increase in the energy 
of the battery is due half to the decrease in energy of the capacitor and half 
to the work done in pulling the plates apart. 

Note. The above statement can be verified by direct calculation of the work 
done in pulling the plates apart. The force of attraction acting between 
the plates of a plane capacitor can be calculated using the relation F = 
Q2 /(2eoA). Substituting for the charge in terms of voltage and capacitance 
gives 

If the distance between the plates is denoted by x, the work done can be 
calculated as 

(d eoA V2 f 2d dx eoA V2 1 eoA V2 

W = Jd F(x) dx= -2-}d x2 = -2- 2d = 4d" 

So the work done in pulling the plates apart is equal to the decrease in 
energy of the capacitor, and these two quantities together increase the energy 
of the battery. 

8153 Imagine that the current / 0 flows in a superconducting, short­
circuited coil of N turns, with cross-section A = nR2 and length x0. The 
magnetic field strength inside the coil is then B = Jlol N I xo and the total 
magnetic flux <f) = BAN = Jlol oN2 A/ xo. Even if the length of the coil 
changed for some reason, the magnetic flux would not change, as to do 
so would induce a voltage and hence an 'infinitely' large current in the 
coil of zero resistance. Thus the current must vary with the length x as 
I(x) = I 0xjx0. The inductance of a coil of length xis L(x) = JLoN2Ajx, and 
the magnetic energy of a coil with current I flowing through it is 

W - !L/2- N2IJA 
m- - Jlo 2 x. 2 2x0 

Thus the energy of the coil is proportional to x, i.e. Wm(x) oc x. The 
proportionality constant Fo is the magnetic force of contraction, since work 
W =Fox is needed to re-stretch the coil by length x. 

The coil is in equilibrium when the magnetic force of contraction balances 



212 200 Puzzling Physics Problems 

the elastic force F(x) = k(xo- x), i.e. when the change of spring length is 

Fo nJ2N2R2 
.l\x = XO - X = - ~ JlO --=0----:...---

k 2kxij · 

S154 (i) The horizontal force (measured in the direction of increasing x, 
i.e. to the left in the figure in the problem) exerted on magnet A is 

F( ) K (d + s- x) 
x =--+mg , , xn , (1) 

where d + s is the distance from magnet B to the unperturbed position of 
magnet A. The condition of equilibrium is 

F(x)lx=d = 0. (2) 

The stability of equilibrium depends on the behaviour of the function F(x) 

close to x =d. The function can be monotonically increasing or decreasing 
(Fig. S 154.1 ). 

F(x) 

Stable Unstable 

X 

Fig. S154.1 

For stable equilibrium, its derivative has to be negative. In the unstable 
case the derivative is positive, and in the limiting case of neutral equilibrium 
it is zero, i.e. 

F'(x)lx=d = 0. (3) 

Using the expression in (1) for the force F(x), condition (3) can be formulated 
as 

nK mg 
dn+l -{ = 0. 

But condition (2) can be written in the form 

K mg 
- dn +{s=O. 

From these equations we get 

d 
n=- =4 

s 
and 

(4) 

(5) 

(6) 
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(ii) In the vertical tube (Fig. S154.2) the repulsive force acting on magnet 
A is Fvert(x) = +Kjx4 - mg. 

)~' 
mg + 

h 

B 

Fig. S154.2 

Equilibrium levitation occurs with the magnets a distance h apart, where 

Fvert(X)Ix=h = 0. 

Taking into account result (6) we get 

h = (:gr 14 = d (~r14 = 4 em X C~or14 ~ 1.3 em. 

S155 The energy ultimately stored in the capacitor is !CN28 2 in both 
cases. Direct connection results in an equal amount of wasted energy. For 
charging by stages, the total work done by the battery is 

AQ L)AV) = C8(8 + 28 + ... + NS) = ~C82N(N + 1). 

The wasted energy is thus 

~C82[N(N + 1)- N 2] = ~C82N, 
i.e. only 1 IN of the original loss. 

Note. You can obtain the same result by considering the following graph. 

v 

B Q 
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The triangle OAB represents the stored energy of the capacitor, and the 
triangle OAC corresponds to the energy wasted by charging it in a single 
step. The small shaded triangles show the energy wasted when using multiple 
(e.g. N = 4) steps. The total area of the shaded triangles is 1/ N of that of 
OAC. 

8156 The stored energy is Q2 /2C in both cases and Coil = eCair· Thus 
the energy is increased by a factor of e when the oil is poured out. The catch 
is that the oil is attracted to where the field is strongest and work has to 
be done to extract it from there; the work needed is at least as great as the 
increase in stored electrical energy. 

8157 (i) Let the distance between the capacitor plates of area A be d, 
and the charge on them be Q. Examine the situation when a length x of 
the insulating sheet has already been slid between the plates of length t as 
shown in the figure. 

A 

X -X 

The capacitance of the plane capacitor can be calculated as that of two 
capacitors connected in parallel, one filled with dielectric and the other 
empty: 

Ax A t-x eoA 
C =eo erd t +eo d -t- = td [(er- l)x + t]. 

The total capacitance can be seen to increase linearly with x from eoA/ d to 
er times its initial value. As the charge is constant in the present case the 
energy of the capacitor Wcap can be written as 

Q2 Q2td 

Wcap = 2C - 2eoA [(er -l)x + t] · 

It is clear that the energy of the capacitor decreases as x increases! This 
means that the work done in sliding the insulator in is negative, i.e. the plates 
effectively suck in the insulator. 

The size of the force involved can be calculated by equating the work 
corresponding to a small change in x with the resulting change in energy 
(F8x = 8Wcap), and differentiating the expression for W, 

F= dW = 
dx 2eoA [(er -l)x + t] 2 ' 
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The magnitude of the force is greatest at x = 0, since the denominator in 
the above expression increases with x. It is easy to show that when x = t, 
the magnitude of the force has decreased by a factor e;. 

Note. How does the electric field exert a force on the dielectric parallel to 
the plates? If the electric field between the plates were homogeneous and 
perpendicular to the plates, and zero outside them (i.e. the usual picture of 
capacitors), then no force could act on the insulating sheet. The phenomenon 
is explained by the curvature of the electric field that is inevitably present 
at the edge of the plates. 

(ii) The force acting on the dielectric cannot depend on the interaction 
of the capacitor with its surroundings. Therefore the previous result would 
be valid in the constant voltage case if it were not for the fact that the 
charge on the capacitor changes in accordance with Q = C V as soon as 
the insulating sheet is placed between the plates. Substituting for the charge 
(which depends on x) into the above expression gives 

eoA(er- 1) V 2 

F= 2td 

i.e. in this case the force acting on the insulating sheet is constant. 
An interesting conclusion can be drawn from the expression for the energy 

of the capacitor at constant voltage, 

JtV: = CV2 eoA [(er- 1)x + t] V 2 

cap 2 2td 

This shows that, in this case, the energy of the capacitor increases linearly 
with x, and that the change of energy d Wcap corresponding to a small 
displacement dx of the insulator is 

dWcap = eoA(er -l)V2 

dx 2td 
Apart from the sign, this formula is exactly the same as that for the force 
acting on the insulating sheet. These results can be summarised in the 
following way: when the dielectric is slid between the plates, the system does 
work on it (i.e. pulls it in), while the energy of the capacitor increases by the 
same amount. This is possible because the energy of the battery decreases 
by twice this amount during the process. The decrease in stored battery 
energy occurs because the capacitance of the capacitor (and therefore its 
charge) increases, and the battery has to supply the additional charge. The 
calculation of the work done by the battery is left to you the reader. 

8158 Number the resistors, starting with the last element in the chain. 
As a current of 1 A flows through the first resistor, a current of 1 A has 



216 200 Puzzling Physics Problems 

to flow through the second one as well, thus there is a potential difference 
(p.d.) of 1 V across each resistor. As a consequence, the p.d. across the third 
resistor is (1 + 1) = 2 V, and the current flowing through it must be 2 A. 
The current flowing through the next resistor is (1 + 2) = 3 A. The current 
in the fifth resistor can be determined using the p.d. (2 + 3) = 5 V across the 
resistors with currents of 2 and 3 A, respectively, flowing through them, and 
so on, as shown in Fig. S158.1. 

SA lA 

Fig. S158.1 

Consider the chain of resistors to be built starting with the last element and 
then connecting the consecutive elements, alternately in series and parallell, 
throughout the chain. The sum of the currents flowing through the two 
previous resistors flows through the following series resistor (Kirchhoff's 
first law). The next element connected in parallel creates a new loop in the 
chain, and therefore the p.d. across this resistor equals the sum of the p.d.s 
across the two previous ones (Kirchhoff's second law). Since the numerical 
values of the p.d. and the current are identical for a 1-Q resistor, the sum 
of the currents of the two previous resistors is the same as the current of 
the new resistor connected in parallel. Thus, in this so-called ladder circuit, 
Kirchhoff's laws are satisfied in such a way that the current flowing through 
each resistor (and the p.d. across it) is equal to the sum of the corresponding 
quantities for the two previous elements. 

Notice that the numerical values of the currents (or p.d.s) are the terms 
of the Fibonacci series: 1, 1, 2, 3, 5, 8, 13, 21. The p.d. across the two last 
resistors is (21 + 13) = 34 V, and this must also be the p.d. across the circuit 
input. As a total of 21 A flow as the result of applying a p.d. of 34 V, the 
equivalent resistance of the circuit is of 34/21 = 1.619 05 n. 

If one more element is connected to the chain (in parallel) then the 
p.d. across it is unchanged at 34 V, but the total current increases to 
(21 +34) =55 A. In this case the equivalent resistance is 34/55 = 0.61818 n. 
If yet another element is connected to the circuit, a current of 55 A flows 
through it and the input p.d. increases to (34 + 55) = 89 V. The total 
resistance of the chain is then 89/55 = 1.61818 n. 

If the ladder circuit is extended further and further, an 'infinite' chain is 
obtained. The equivalent resistance of this chain can be calculated using the 
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fact that adding two more elements does not change its resistance. Thus, 
the whole chain can be replaced by a single resistor of resistance R, which 
is such that if two 1-Q resistors are connected to it, one in parallel and the 
other in series with the combination, the equivalent resistance of the new 
circuit will also be R (see Fig. S158.2). 

Fig. S158.2 

The condition for this is 

1 
R= 1 0+ (1/1 0)+(1/R)' 

which yields the following quadratic equation for the numerical value of R, 

R2 -R-1 =0. 

The positive root of this equation gives the equivalent resistance for an 
'infinite' chain as, 

R = 1 + J5 ~ 1.61803 n. 
2 

We see that the equivalent resistance of a chain of eight-ten elements 
approximates very well that of the 'infinite' chain. Hence a ladder circuit 
with relatively few elements can be considered as infinite. 

Note. (i) In practice, the neutral wires of overhead electric supply networks 
can be considered as ladder circuits; the neutral wires are fastened to poles 
and earthed at, say, every tenth pole. Such a ladder circuit consists of two 
types of resistors, but the equivalent resistance of the 'infinite' chain can be 
calculated using the above method. 

(ii) It is of interest to note that the above quadratic equation is the golden 
ratio equation, the solution of which is the golden mean, (1 + JS)/2 = 

1.618 03 .... As shown, this is the same as the numerical value of the 
equivalent resistance of the infinite ladder circuit. Furthermore, the ratio 
of consecutive elements of the Fibonacci series was shown to approach the 
golden mean surprisingly quickly. It is also easy to prove that dividing the 
even elements by the previous odd ones, the golden mean is approached 
from below, while dividing the odd elements by the previous even ones, it 
is approached from above. 



218 200 Puzzling Physics Problems 

Finally, for the sake of the aesthetic pleasure produced by multiple-level 
fractions, it is worth expressing with 1 s the equivalent resistance of the infinite 
chain made up of 1-Q resistors. This time, the elements are considered in 

order, not from the end but from the beginning, i.e. starting at the left hand 
end of the chain: 

1 
R = 1 + ----------

1 
1+--------

1 
1+-------

1 
1+-----

1 
1+----

1 
1+--

1 + ... 
If the · · · at the end of the formula is replaced by a 1, then the equivalent 
resistance of the original eight-element chain is obtained. 

8159 We discuss first the grid of ohmic resistors and reason as follows. 
Consider first a grid point at which a current I enters and then flows away 

'to infinity'. From symmetry, identical currents of magnitude I /4 will start 
from this point and travel along the four possible directions as shown in 
Fig. S159.1. 

I/4 

/' 
I 1' 

Fig. 8159.1 

Now consider the neighbouring grid point and let current I flow out of 
it (independently of the previous reasoning). Again, identical currents of 
magnitude i I flow through the four identical resistors adjacent to the point 

(see Fig. S159.2). 

I/4 

\\ 
~ 
I 

Fig. 8159.2 
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Now consider superposing these two cases. Because of the linearity of 
the circuit equations, scalar quantities (e.g. currents and potentials) simply 
add. A voltage (p.d.) V appears between the two neighbouring grid points, 
current I goes into one of them and current I flows out of the other. The 
currents flowing elsewhere in the grid cannot be easily determined, but the 
current flowing between these two neighbouring points can. The two currents 
discussed above add in this resistor, i.e. a total current of !I flows through 
it (see Fig. S159.3). 

112 

I I 

Fig. S159.3 

But if current !I flows through a resistance R then a p.d. of V = RI /2 
appears across it. The equivalent resistance between the two neighbouring 
points is therefore Re = VI I = R/2. 

The equivalent values for infinite grids of capacitors and self-inducting 
coils can be calculated similarly as Ce = 2C and Le = ! L. 

S160 Denote the number of grid points of the polyhedron by c and 
the number of lines meeting at a grid point by n (e.g. in the case of a 
dodecahedron, c = 20 and n = 3). If a current of 1 amp flows in at one grid 
point and 1/(c- 1) amps are taken out at all other grid points, then, by 
symmetry, the current flowing in each of the lines which meet at the point 
where the current enters is I = 1/n amps. 

Superimpose on the previous current distribution, that produced by a 
current of 1 amp flowing out of the neighbouring grid point and currents of 
1/(c-1) amps flowing into all the other points (including the original point). 
The current of I = 2/n amps flowing through the 'direct' resistor (i.e. the one 
directly joining the two neighbouring grid points) causes a p.d. of V = 2/n 
volts to appear across it. Since the current flowing through the whole circuit 
is I= 1 + 1/(c- 1) = cj(c- 1) amps, the equivalent resistance is 

Re = 2(c- 1)/nc. 

This figure is 19/30 Q for the dodecahedron and 1/2 Q for the infinite square 
grid. It can be calculated similarly for any regular shape. 
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S161 Let us denote the equivalent resistances of the original grid by ~rig 
and of the truncated circuit by .R!run. We can consider the original grid as a 
circuit of two resistors connected in parallel; the two resistors are .R!run and 
R, the latter being the removed resistor. It is then easy to write an equation 
which involves .R!run, namely, 

R Qtrun 
QOrig = __ x_ .. _::_'e_ 

.. 'e R +~run or 
R ,orig 

R!run = X ne .. 
R-~ng 

For example, in the case of the infinite two-dimensional square grid the 
equivalent resistance between two neighbouring grid points is ~rig = R/2. 
It follows that the equivalent resistance of the truncated circuit is .R!run = R. 

S162 The 'trick' of superposition is again employed to combine separate 
discussions of currents flowing in and out. Let A denote the corner of the 
square where the current 10 flows in and B the neighbouring corner where it 
flows out. The p.d. V is measured between the other two corners ( C and D) 
as shown in the figure. 

a a 

a D...____::;. _ _. C 

If the current 10 is introduced at point A (and flows towards points at zero 
potential infinitely far away), it is distributed (hemi)spherically symmetrically 
in the half-space containing the matter, i.e. at a distance r from point A, the 
current density j(r) is j(r) = I0 j2nr2. This relation is not valid for very small 
values of r, i.e. when r is not much greater than the size of the electrode 
at A. 

The local version of Ohm's law is the differential law that expresses the 
current density j in terms of the electric field strength E and the local 
resistivity p, namely j(r) = E(r)/ p. 

The magnitude of the electric field strength in the half-space can be 
determined using this relation as 

lop 
E(r) = -2 2' nr 

The potential function (and hence the p.d.) could be determined from the 
field strength by integration. In this case, however, it can be obtained using a 
simple analogy. The electric field of a point charge Q is inversely proportional 
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to r2, its potential is inversely proportional to r and the proportionality 
coefficient is the same in both cases (E = kQjr2 and V = kQ/r, respectively). 
This means that the potential field corresponding to the electric field strength 
determined above is V = I oP / (2nr ). 

The nearer a point is to the electrode where the current flows in, the higher 
its potential. The potential Vv = J0pj(2na) of point Dis therefore higher than 
Vc = lop/(2J2na). The p.d. between the two points is J0p(2- J2)/(4na). 

We next discuss the flow of the current Io out through point B. Everything 
is the same as in the previous case, except that the signs of the quantities 
(current, current density, field strength and potential) are reversed. The 
potential in the half-space under investigation is described by the function 
V = -Iop/(2nr'), where r' is the distance from point B. The potential of 
point C is lower than that of point D, i.e. point D is again more positive 
than C. The p.d. between the two points is the same as previously. 

If the two previous cases are now superposed we return to the original 
problem, and the p.d. between points C and D is exactly twice either of 
the above p.d.s, i.e. Vo = lop(2- J2)/(2na). Apart from given data, this 
expression contains only the resistivity p. Therefore the solution of the 
problem is 

p = (2 + .Ji)naVo/lo. 

Note. This method is widely used in 'real life', e.g. to determine the average 
resistivity of rocks. The measurements are, naturally, not made on infinite 
half-spaces, but on volumes and planes with linear sizes much larger than 
the side a of the square. 

S163 First connect the battery to the terminals of the resistor through 
the ammeter, and then connect the voltmeter across the same terminals, as 
shown in Fig. S163.1. 

Fig. S163.1 

It is naYve to assume that the quotient of the measured potential difference 
and current gives the resistance, because we cannot be sure that at junction 
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A all the current coming from the ammeter flows through the resistor R, and 
that some does not flow towards other parts of the circuit. 

The problem can be readily solved with the help of short circuits. Using 
zero-resistance wires we connect all of A's neighbouring junctions to the 
same terminal of the battery as that to which the ammeter is connected, as 
shown in Fig. Sl63.2. 

Fig. S163.2 

As the internal resistance of the ammeter is negligible, the junctions 
(B, C, D, .. . ) and A are equipotential points. Consequently, there is no current 
flowing between them and the current from the ammeter must all flow 
through the resistor R. It is possible that the battery has to provide additional 
currents flowing towards junctions B, C, D, ... , but these have no influence 
on our measurement. 

Note. If resistor R is connected in parallel with other resistors, then there 
is no way to measure the resistance of these resistors separately- only their 
equivalent resistance can be found. 

8164 Let current I flow into the cube at one point and flow out at the 
point diagonally opposite to it (see Fig. S164.1). 

X _f/3._ t( 
~----,--=-=x J j m 

X 

I 

Fig. S164.1 

Symmetry prescribes that the current flowing through the three resistors 
that meet at each endpoint of the diagonal is I /3, and hence that the voltages 
across these resistors are identical. Thus, the sets of points denoted by 0 and 
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X in the figure are each equipotentials, i.e. the members of each set can be 
joined together without disturbing the system. 

When the equipotential points are joined, the circuit can be redrawn 
as shown in Fig. S164.2, and the equivalent resistance can be calculated 
mentally. If all the resistors have resistances of 1 n, then the equivalent 
resistance is 516 n. 

---.--..---,.--- B 

A 

Fig. S164.2 

A one-dimensional 'cube' is simply a straight section, its resultant resistance 
is itself, i.e. 1 Q. The two-dimensional 'cube' is the square. Two resistors 
emanate from one end of a diagonal and two resistors converge at the 
opposite end of the same diagonal. If current flows through the square, 
the endpoints of the other diagonal are equipotential. Therefore two lots of 
two parallel resistors are connected in series. For a square the equivalent 
resistance is again 1 n. As we have already seen, for a three-dimensional 
cube, three resistors start from each end of the diagonal and the remaining 
six resistors join equipotential surfaces. 

A four-dimensional 'cube' can be obtained by a parallel displacement of a 
three-dimensional cube in the direction of the fourth dimension, followed by 
the joining of corresponding points. The four-dimensional 'cube' therefore 
has 12 + 12 + 8 = 32 edges (12 for each normal cube plus eight to join 
corresponding corners). A distorted projection of such a 'cube' can be made 
for investigative purposes, as shown in Fig. S164.3, replacing the displacement 
by a magnification. Figure S164.3 shows one diagonal, AB, from the eight 
possible ones. 

Fig. S164.3 
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For a four-dimensional 'cube', four lines lead out of any one vertex and 
the endpoints of these are equipotentials. The same is true at the other end 
of the diagonal. The shortest way from one of these equipotential surfaces to 
the other is through any two resistors of the remaining 24. This means that 
the 'inner' points of the 24 resistors are also equipotential, i.e. two lots of 12 
resistors are connected in parallel and these are then connected in series. The 
redrawn circuit is shown in Fig. S164.4; the equivalent resistance is 213 n. 

A 

Fig. S164.4 

Note. The problem can be generalised to n-dimensional 'cubes' if, after 
connecting equipotential points, the circuit can be decomposed into sets of 
identical resistors connected in parallel with the sets then connected in series. 
In general, the equivalent resistance across a diagonal of an n-dimensional 
'cube' made of 1-Q resistors is Rn n, where Rn is given by 

1 1 1 1 
Rn = 1 (~) + 2 (~) + 3 (~) + ... + n (:)' 

8165 Let I denote the current flowing in the wire, A the cross-section of 
the wire, and Pl and P2 the resistivities of the metals. Ohm's law for a wire 
of length t gives V = I pt I A, which yields E = VI t = pi I A for the electric 
field strength in the wire. 

The resistivity of copper is lower than that of iron, and therefore the 
electric field strength has to be smaller in the copper than in the iron. 
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According to Gauss's law, the difference in the electric field strengths implies 
an accumulation of charge at the boundary of the two metals (see figure). 
The net accumulated charge is 

Q = eoA(EFe- Ecu) = eoi(PFe- Pcu). 

It is interesting that this quantity depends purely on the current and material 
constants, and not on the cross-section of the wire. 

Substituting the known data, the charge is found to be Q ~ 5 x 10-21 C, 
which is only lo of an elementary charge! Though a measurable macroscopic 
current flows through the wire, the accumulated charge is only a small 
proportion of the microscopic elementary charge. This strange result shows 
that classical electrodynamics (imagining charge carriers as small balls) 
cannot always correctly describe electrical phenomena. Only the application 
of the more sophisticated laws of quantum theory and statistical physics can 
give an accurate description. 

8166 In SI units the jet's speed is 200m s-1• 

(i) The magnetic field is vertically downwards, and the induced voltage is 
80 x 6 x 10-5 x 200 = 960 m V, with the starboard (right) wing tip at the 
higher potential. 

(ii) The motion is parallel to the field, and so no potential difference is 
developed. 

(iii) Since the field is a dipole its strength at the Equator is one-half that at 
the Pole. The field is horizontal, and the induced voltage is 8 X 3 X 1 o-s X 200 = 
48 m V, with the bottom of the jet at the higher potential. 

(iv) The vertical field is 5 x 10-5 x sin 66° T and the northward component 
of the velocity is 200 I.Ji m s-1, leading to a 520 m V potential difference 
across the wings with the starboard tip at the higher potential. In the same 
way, a p.d. of 23 m V appears between the top (higher potential) and the 
bottom of the jet's body. 

8167 Let that the rod move with speed v and acceleration a along the 
inclined plane, while current I flows in it. The magnetic field brakes the rod 
in accordance with Lenz's law, and its equation of motion is 

ma = mg sin oc - Btl. 

This equation is the same in all three cases. The differences result from the 
different relationships between the induced voltage and the current flowing 
in the rod. 

(i) If the circuit is closed by an ohmic resistor R, the current I and the 
induced voltage V = Btv are connected by the relationship I = VIR = 
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Btv I R. This shows that the braking force increases in proportion to the 
speed, with the result that the rod experiences decreasing acceleration and 
ultimately travels with uniform speed. This final maximum speed Vmax can 
be found from the equation of motion by setting a = 0, 

mgRsina 
Vmax = B2t2 

(ii) If the circuit is closed by a capacitor of capacitance C, the relationship 
between the induced voltage and the current is different. The charge on the 
capacitor is determined by the induced voltage, and given by 

Q = CV = CBtv. 

Note that the current flowing through the rod is equal to the time derivative 
of this, i.e. 

I= dQ = CdV = CBtdv = CBta. 
dt dt dt 

In other words, the current flowing in the rod is directly proportional to the 
acceleration of the rod. If the above expression for the current is substituted 
into the equation of motion, the rod is found to move on the rails with 
uniform acceleration 

mg sma 
a= m+ B2t 2c· 

Induction decreases the acceleration caused by gravity by, in effect, increasing 
the inertial mass of the rod. The speed of the rod and the charge on the 
capacitor are both directly proportional to the time elapsed. 

(iii) If the circuit is closed by a coil of inductance L, the relationship 
between the induced voltage and the current is 

L ~~ = Btv = Bt~~-
We note that, since I = 0 and x = 0 at the start of the motion, the 
above formula implies that the current is proportional to the x-coordinate, 
LI = Btx. Substituting for the current, from this relationship into the 
equation of motion, gives 

. B2t2 
ma = mgsma- Lx. 

The force acting on the rod is therefore the sum of a constant term and 
a negative term proportional to the displacement. This is the same as the 
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equation of motion of a body hung on a spring and then released. Thus, the 
rod makes harmonic oscillations about an equilibrium position 

mgL sin ex 
xo = B2t2 

The amplitude of the oscillation is A = xo, and the dependence of the 
displacement of the rod on time is 

B2t2 
where w2 = mL. 

x(t) = A(1 -cos wt), 

8168 (i) At the instant when the capacitor is connected, a current I = 
Vol R starts flowing in the rod, which experiences a force F = Btl and 
an initial acceleration a = BtVo/mR. In accordance with Lenz's law, the 
voltage induced in the moving rod causes the current flowing in the rod to 
decrease. The charge Q on the capacitor decreases and consequently so does 
the voltage across it. Meanwhile the voltage induced in the rod increases, 
until the two voltages cancel each other out. The rod then continues with its 
maximum velocity given by 

B P Qmin 
r,Vmax = C' (1) 

The equation of motion of the rod is 

dv dQ 
m- =ma=Btl =-Bt-

dt dt' 
(2) 

where the acceleration and the current have been expressed as the rates of 
change in velocity and charge, respectively. The proportionality between the 
two rates of change holds throughout. The speed of the rod increases from 
zero to Vmax. whilst the charge on the capacitor decreases from Qo = C Vo to 
Qmin· Equation (2) can therefore be rewritten as 

mVmax = Bt(Qo- Qmin). 

The final velocity and the residual charge on the capacitor can be calculated 
using equations (1) and (2), 

BtC Vo B2t 2C2 Vo 
Vmax = m + B2t2C and Qmin = m + B2t2C. 

(ii) The above relations show that the maximum velocity of the rod is 
proportional to the initial voltage Vo across the capacitor. Thus, the final 
kinetic energy of the rod is proportional to VJ (for given values of C 

and m), i.e. proportional to the initial energy of the system. The coefficient 
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of proportionality can be regarded as the efficiency 17 of the apparatus 
(considered as an electromagnetic gun), and can be written in the form 

1 2 1 2mvmax 11 - - --------.,.. 
- !cvJ - ( Jm Bt.jC)2. 

Bt.jC + .Jm 
The product of the two terms in the brackets is 1, and from the inequality 
between arithmetic and geometric means, it follows that their sum is at least 
2. This means that the efficiency of the electromagnetic gun cannot be more 
than 25 per cent. 

Note. If the condition for maximum efficiency m = CB2t 2 is substituted 
into the expression for the final charge on the capacitor we find that 
Qmin = VoC /2, i.e. only half of the initial charge on the capacitor is left. 
Thus, only one-quarter of the initial energy of the capacitor is left; one­
quarter of it is transformed into the kinetic energy of the rod, and the other 
half is dissipated in the rod as Joule heat. 

S169 (i) The rate of increase of magnetic energy (Emagn = LI2 /2) is the 
difference between the power output of the battery and the power dissipated 
in the resistor, 

dEmagn =VI- RI2 = -R (I- ~)2 y2 < y2 
dt 2R + 4R - 4R. 

It is clear that the rate of increase is maximal when I = V j(2R). 
(ii) After the switch has been closed, we can write Kirchhoff's law for the 

circuit as 
di 

V = IR+L dt' 

which gives the current-time relationship (see Fig. S169.1) 

I= ~ ( 1-e-ft). 

I 

-----------------------

Fig. S169.1 
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The power dissipated in the resistor by Joule heating is 

y2 2 
P = RI 2 = R ( 1- e-~t) . 

-------------=------

Fig. S169.2 

Figure 169.2 is a sketch of the power-time graph, and shows that the 
power increases monotonically. Whilst the rate of change of power initially 
increases, it later reaches a maximum, and beyond this point decreases 
monotonically to zero as shown in Fig. 8169.3. 

dP 
dt 

Fig. S169.3 

The fastest rate of change of energy occurs, for both the inductor and 
resistor, when I 2 is changing most rapidly. In part (i) we found that this 
happens when I = V j2R. Substituting this value for I into the above 
expression for the power, shows that it occurs when e-Rt/L = !, and hence 
that t = (L/ R) In 2 ~ 0.69 (L/ R). 

Note. (i) The rate of energy loss from the battery is VI, and so is proportional 
to the current, which increases monotonically. 

(ii) The fastest increase in the current takes place at t = 0, but that in / 2 

(which is proportional to the magnetic energy of the coil) occurs later. 
(iii) Just for fun you may wish to solve the twin of this problem, in which 

the inductor is replaced by a capacitor. 

8170 (i) These circuits are tricky to analyse using differential equa­
tions, but become straightforward if complex impedances are employed. The 
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impedance of an inductor of inductance L at angular frequency w is iwL, 
whilst that of a capacitor of capacitance C is 1/iwC. Here i is the square 
root of -1, i.e. i2 = -1. Combining impedances is governed by the same 
rules as those which apply to resistances R1 and R2 in series [R = R1 + R2] 
and in parallel [R = R1R2/(R1 + R2)]. 

Circuit (a) thus has total complex impedance 

Z _ iwL x iwL (1/iwC) x (1/iwC) _ iwL _1 __ 1 - w2 LC 
- iwL + iwL + (1/iwC) + (1/iwC) - 2 + 2iwC - 2iwC · 

The magnitude of the current drawn from the source is therefore 

IVol Vol2iwCI 2x 
II I = IZ I = 11 - w2 LCI = c Vowo 11 - x21' 

when LC is written as w02 and w I w0 is written as x. This is plotted 
in Fig. S170.1(a). It will be seen that, theoretically, the current increases 
without limit as w approaches wo; in practice the source will be unable 
to supply such a current. In any case, real inductors and connectors have 
non-zero resistance, and the calculated peak in Fig. S170.l(a) is then of finite 
amplitude. 

In a similar way the impedance of circuit (b) is 

leading to 

Z _ iwL x (1/iwC) iwL x (1/iwC) 
- iwL + (1/iwC) + iwL + (1/iwC)' 

2wL 
IZI = 11- w2Lq and 

This is plotted in Fig. S170.l(b). It will be noticed that at w = w0 the circuit 
has an infinite impedance and no current is drawn. It is also of interest that 
the x-dependences in Fig. S170.1(a) and (b) are reciprocal functions. 

III 

I~ 
(a) 

III 

X 

(b) 

Fig. S170.1 

X 
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(ii) Inductances of L, 2L, L/2, and capacitances of C, 2C, C /2, constructed 
from identical components in series or parallel as needed, are used to make 
circuits resonant at wo, wo/2, 2wo, wo/ J2, J'iwo. As shown in Fig. S170.2, 
for two of these there are two alternatives. 

0 .ffo 2 0 

Fig. S170.2 

8171 When the switch is closed, currents, as shown in Fig. Sl71.1, flow 
round the circuit. 

Fig. Sl71.1 

In the period immediately after opening the switch, the current flowing in 
each coil is practically unchanged; if this were not the case, there would be 
a rapid change in its magnetic flux which would induce a very high voltage 
in the coil. Currents of 2/ and I therefore continue to flow in the coils, and 
these determine the currents flowing through the lamps (see Fig. S171.2). 

Fig. S171.2 
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This means that the lamp closest to the switch suddenly flashes, but the 
brightness of the two other lamps does not change. This all takes place in a 
very brief period and later all three lamps fade and go out. 

8172 The cross-sectional area of the space to be filled is fixed, whilst that 
of the wire varies as d2• Thus n oc d-2. The resistance of one turn is inversely 
proportional to the cross-sectional area of the wire, i.e. varies as d-2, and 
hence the resistance per unit length of the solenoid is Roc nd-2 oc d-4 . The 
flux density B is oc nl and therefore the required current I oc n-1 oc d2• The 

heat dissipated per unit length is R/2, which is oc d-4 (d2) 2, i.e. independent 
of d. Thus (within limits) it does not matter what diameter wire is chosen so 
far as the heating effect is concerned. 

8173 The equation describing the forces that keep the free electron 
moving on a circular track (inside the cylinder) is 

eE ± erwB = mrw2, 

where e is the charge of the electron, m is its mass, r is its distance from the 
axis of rotation and E is the strength of the electrostatic field produced in 
the cylinder by the charge distribution. The + sign shows that the Lorentz 
magnetic force can be directed either inwards or outwards, depending on the 
sense of rotation of the cylinder. Re-arranging the equation of motion, 

( mw2 ) 
E = -e- ±mB r =Kr, 

shows the field strength to be directly proportional to the radius. 

Using Gauss's law, the electric charge density in the cylinder can be found. 
Consider the thin cylindrical shell shown in the figure and denote the electric 
charge density at distance r from the axis by p(r ). Electric flux of magnitude 
of 2nrLE(r) enters the shell and a flux of 2n (r + Ar)LE(r + Ar) leaves it. 
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According to Gauss's law 

K(r + Ar) 2n (r + Ar) L- Kr2nrL = (1/t:o)p 2nrArL. 

From this we obtain 

P = 2eo:m (w ± e:) 
for the charge density within the cylinder, noting that it is independent of r. 

The density can be positive, negative or zero- depending on the directions 
and magnitudes of the magnetic field and the angular velocity. It is zero, 
if w = lei B jm. For this situation, positive and negative charges are not 
separated inside the cylinder as the centripetal force provided by the Lorentz 
effect is just what is needed to sustain circular motion. 

Note. In order to get an idea of the orders of magnitude involved, assume 
that the magnetic field is comparable with the Earth's magnetic field near 
to the Equator, i.e. B = 3 x 10-s T. Zero charge density corresponds to an 
angular velocity w = eB /m = 5.3 x 106 s-1, which is more than 50 million 
revolutions per minute! Such rapid rotation cannot be realised in practice, 
since no material could stand it. 

8174 The electric charge distribution at any point is the same in the 
rotating frame :f{' as in the laboratory (inertial) frame Jr, because the 
charge density is proportional to the number of electrons in unit volume, 
and both the number and the volume are clearly invariant. It thus follows 
that the electric charge density is homogeneous in the rotating frame and 
equal to 

( mw2) p' = p = 2t:o ±Bw + -e- ~ ±2eoBw. 

The force F acting on a charged particle must be the same in both frames of 
reference (as demonstrated by the fact that the elongation of a spring which 
measures the force is independent of the frame of reference). Thus F' =F. 

In the frame rotating with the cylinder the free electrons of the metal are 
at rest, and thus the net force exerted on them must be zero (otherwise they 
would move); if the centrifugal force is neglected this implies that the electric 
field must also be zero (E' = 0). Further, 

Q(E + V X B) = F = F' = Q[E' + (v + Vrei) X B'], 

where Vrel is the relative velocity of the two frames, which is different at 
different points in the cylinder. Recalling that E = wBr and noting that 
Vrel x B' is directed radially with magnitude wB'r, we conclude that the 
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magnetic field is (vectorially) the same in both frames, i.e. B' =B. It follows 
that in a rotating frame of reference electric charges can exist without an 
associated electric field, as illustrated in Fig. S174.1. 

E(r) =0 (±) 
(±) (±) (±) 

(±) 

(±) (±) (±) 
(±) (±) 

(±) 

(±) (±) 
(±) 

(±) 
(±) 

(±) (±) 

qfO (±) 
(±) 

(±) 

Fig. S174.1 

Similarly, it can be proved that in the frame of reference of an observer 
spinning in a homogeneous magnetic field, an inhomogeneous electric field 
exists, although there are no electric charges present (Fig. S174.2). 

Fig. S174.2 

This means that Gauss's law (the connection between electric flux and the 
charges responsible for it) is not obeyed in rotating frames of reference. This 
surprising result has to be allowed for, even in low-speed (non-relativistic) 
motion. 

S175 It is a mistake to consider this question as a one-dimensional 
problem. The magnitude of the induced electric field calculated by Jack is 
correct [E(r) = rBc.o], but the electric field vector within the rotating spoke 
is not parallel to it; it is radial as shown in Fig. S175.1. This means that 
the electric flux is non-zero over the curved surface of the cylindrical rod. 
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Moreover, as shown below, for an elementary cylinder the total flux across 

this surface is equal in magnitude to the flux across its outer end. It is 

perhaps surprising that half of the electric flux escapes through the curved 

surface of the cylinder. 

® ® ® ® ® B 

~ 

~ 
_;;.-

:£®-®~£ ® 
-.,.... 

X 
-....,._ 

® ® (8) ® ® 

Fig. S175.1 

The correct result can be calculated using Gauss's law. The appropriate 

Gaussian surface is shown in Fig. S175.2. The net electric flux is 

'I' = E(r + ~r)h(r + ~r)8- E(r)hr8 

= Bwh8 [(r + ~r)2 - r 2] ~ 2Bhw8r~r. 

x¢ E -- ~ B ~ ~ 
-~: 

r .. =:: :::::~_ ------­

; 
___ .. -~ ...... ,, 

' 

' -_-_]-_~_ 
~·-=--~--~~~h-\~=== 

r !:lr 

Fig. S175.2 

We can relate this to the charge density using 

'I' = _!_ P ~ V = phr8 ~r, 
so eo 

which gives a value for p identical to Jill's. 

Note. The sign of the charge density can be either positive or negative, 
depending on the directions of both the rotation and the magnetic field. 
The charge distribution inside the spoke is homogeneous, but the net charge 
on the spoke is zero as there are charges of opposite sign on the spoke's 
surface. The surface distribution is complicated and cannot be found by 
elementary methods. 

8176 Resolve the magnetic field of the Earth into its horizontal and 
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vertical components. The vertical component induces no current in the ring, 
since its flux through the ring is always zero. Let the horizontal component 
of the magnetic field be B and the angular velocity of the ring be ro. The 
magnetic flux threading the ring is 

<I> = rcr2 B cos rot, 

and the induced voltage is V = -(d<l>/dt) = rcr2Bro sin rot. The current, 

V r2rcBro . 
I=-= SlDOJt R R ' 

flowing in the ring induces a magnetic field at the centre of the ring of 
magnitude 

I rcrBro . 
B1 = Jlo 2r = Jl02if""" smrot. 

The direction of the magnetic field B1 is perpendicular to the plane 
of the ring and rotates with it. Resolve the vector B1 into a component 
parallel to B and a component perpendicular to it. The parallel component 
is proportional to cos rot x sin rot = ! sin 2rot, which averages to zero over 
time. The perpendicular component can be written as 

rcrBro . 2 rcrBro 
B1.. = Jl02if""" sm rot= Jl04R (1- cos2rot). 

This expression consists of a term varying (relatively rapidly) with time and 
which, on average, is zero, and a constant term that causes the magnetic 
needle to deviate by a= 2° from its original (north-south) direction. Since 
the needle aligns itself with the direction of the (average) resultant field, 

B1.. rcrro 
tan a= B = JlO 4R. 

The needle will make small oscillations about the above position, with an 
amplitude determined by the mechanical and magnetic characteristics of the 
needle and by the damping forces. 

It is interesting to note that the angle of deviation of the magnetic needle 
does not depend on the magnitude of the Earth's magnetic field. The only 
important thing is that its horizontal component is non-zero. The resistance 
of the ring can be calculated from the above formula and is found to be 
1. 78 X 10-4 Q. 

8177 With I and i as defined in the hint, the required voltmeter reading 
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is given by Rl. In both cases, applying Kirchhoff's laws yields the equations: 

e 1 2 • 
R1 + 2nr(l + i) = 2a BA, 

. e 
rz + 2rr ri = na2 B. 

In case (a), i. = e and solution of the simultaneous equations shows that/, 
and hence the voltmeter reading, is zero. 

In case (b), i, = e - sine and straightforward but slightly lengthy algebra 
shows that the voltmeter reading will be 

2 2. . 
lVI = 2rr Ra B sme 

4rr2 R + re(2n - e). 

S178 Consider two touching discs each of radius R = L/2n as shown in 
Fig. S178.1. 

Fig. S178.1 

If the discs are placed with their plane perpendicular to a homogeneous 
magnetic field whose strength changes uniformly with time, the voltage 
induced in the piece of wire wrapped around their edge is 

V = 2nR2 ~~· 

(a) (b) (c) 

Fig. S178.2 

Now twist the disc on the right by 180° about its symmetry axis e 
(Fig. S178.2(a)). Its top (dark) side then becomes its bottom side (Fig. 
S178.2(b)). Turn the same disc again by 180°, but this time about axis t 
(Fig. S178.2(c)). At the end of this, the dark sides of both discs are on top 
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and the perimeter is exactly the same as that of the Moebius strip mentioned 
in the problem. 

Thus, with the strip in a uniformly changing magnetic field, the voltmeter 
reads 

V = 2 R2 dB = kL 2 
n M 2n · 

This value is much higher than what one would naively expect, if reasoning 
from the area of the paper band. The area of the (one-sided) surface covering 
the Moebius strip is not the same as the area of the paper band, and for 
narrow strips it is, in fact, much larger! 

The induced voltage can also be calculated by cutting the wire at the 
'twist' into two 'coils' of one turn each, and adding up the algebraic values of 
the voltages induced in each turn (taking account of their directions). In the 
present case, the directions of the two turns are the same, and therefore the 
voltage Vo = knR2 in one turn is doubled to give a total voltage of V = 2 V0. 

8179 The current at time t is I = kt in the outer coil, and 2/ = 2kt in 
the inner one, where k is a constant. Because of these currents the magnetic 
field in the outer coil is B = p,0nkt, whilst in the inner one it is 3B, where n 
is the number of turns per unit length. The magnetic flux enclosed by the 
particle's trajectory of radius r is 

<I>= nR2 x 2B + nr2 x B = ( 2R2 + r2) np,onkt. 

The (constant) magnitude of the induced electric field E can be calculated 
from the rate of change of magnetic flux with time: 

E x 2nr = ~~ = ( 2R2 + r2) TCJ.lQnk, 

and so 

( 2R2 + r2) Jlonk 
E= r -2-. 

The charged particle is held in its circular orbit by the magnetic field, and 
so, from the zero net radial component of the force acting on it, we obtain 

mv2 
-=qvB. 

r 
(1) 

The particle is accelerated along its circular orbit by the tangential compo­
nent of the net force according to mat= qE, where m is the mass and q the 
electric charge of the particle. 
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As the magnitude of the electric field is constant, the speed of the particle 
increases uniformly with time, 

qE ( 2R2 + r2) Jl.Onk q 
v = att = -t = -- -t. 

m r 2 m 

Inserting this and the value of B into equation (1), we get 

m ( 2R2 + r2) Jl.Onk q 
- -- -t = qJl.Onkt, 
r r 2 m 

which is satisfied if 

i.e. r = .jiR. 

8180 The changing magnetic field induces an electric field in the ring. 
Let us imagine the ring divided into small sections each of length lis and 
denote the tangential component of the induced electric field by Et (in the 
general case Et can vary from point to point). The charge on a small section 
of the ring is 

liQ = Q lis , 
2nr 

where r is the radius of the ring. The force exerted on it is 

and the resultant torque is 

li1: = r liFt. 

The total torque experienced by the ring is thus 

• = Lli• = LrQ 2lis Et = 2Q LEt lis. 
nr n 

Identifying the expression I: Et lis as the induced electromotive force along 
the ring, which is directly proportional to the rate of change in the magnetic 
flux, we have 

li$ 2 liB 
L Et lis = - lit = -nr lit . 

As a result of the torque, the ring, which has a moment of inertia I = mr2, 

starts to spin with angular acceleration ex. During a time interval lit its 
angular velocity changes by 

liro = ex lit = ~lit = J?.. (-nr2 liB ) - 1- lit = - _2_ liB. 
I 2n lit mr2 2m 
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Since the magnetic field strength increases from zero to B, the final angular 
velocity of the ring will be 

QB 
w=-2m" 

Note: (i) The negative sign shows that the direction of the angular velocity 
vector is opposite to the magnetic induction if Q is positive. 

(ii) It is interesting to note that the final angular velocity does not 
depend on the radius of the ring, the time over which the magnetic flux 
changes, or even on how the magnetic flux increases with time. 

(iii) In our calculation we ignored the magnetic field produced by the 
rotating ring. 

(iv) Except in the case of a cylindrically symmetric uniform field, it is 
not possible to find the actual value of the induced electric field within the 
ring because the geometrical structure of the magnetic field is unknown 
and we do not know the position of the ring in the magnetic field. We can 
determine the total induced electromotive force, but not the electric field 
itself. 

S181 The resultant magnetic field B' is the sum of the magnetic fields of 
the Earth and the coil, Bo and B respectively, i.e. 

B' = Bo±B. (1) 

The current flowing through the coil is determined by the induced voltage 
Vi and the resistance R, 

I _ Vi _ B' r2w 1 (2) 
- R- lR' 

where the induced voltage has been calculated from the rate at which a disc 
radius cuts the field's magnetic flux. The magnetic field produced by the coil 
itself is 

B = f.loni. (3) 

From the three equations above, B, B' and I can easily be determined. 
The two signs occurring in equation (1) allow for both positive and negative 
values of the angular frequency. The value of w is taken to be positive if 
the magnetic field of the coil acts in the same direction as that of the Earth. 
The following results are obtained for the resultant magnetic field and the 
current: 

B' = 2RBo and I = B0r2w . 
2R - J.l0nr2w' 2R - J.l0nr2w 

As expected, when the disc is at rest, the current is zero and the resultant 
magnetic field inside the coil is simply B0, the magnetic field of the Earth. 
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When the direction of rotation is such that the field in the coil opposes 
the external magnetic field (ro < 0) the resultant decreases asymptotically to 
zero as the (negative) angular frequency of the disc increases. At such high 
rotation speeds, the current flowing in the coil tends to -Bo/ Jlon (the value 
needed to cancel the magnetic field of the Earth). 

Rotation of the disc in the opposite direction, (ro > 0), causes the resultant 
magnetic field to increase. This leads to a higher voltage being induced 
and a larger current flowing, which in turn leads to a further increase 
in the magnetic field. Under these positive feedback conditions, both the 
magnetic field and the current tend to infinity as a particular 'critical' angular 
frequency, Wcrit = 2R/(Jlonr2), is approached, as shown in Fig. 8181.1. Such 
a state is obviously not realised in practice. If the angular frequency is 
increased too much, the current and the heat given out by the coil increase 
until the wires burn away! 

B' 

crit 

(b) 

Fig. 8181.1 

The strange behaviour of the system can be more easily understood if 
the relationship between the current in the coil and the resultant magnetic 
field is represented graphically as in Fig. 8181.2. According to equation (2), 
I is proportional to B' in such a way that the coefficient of proportionality 
depends on w. 

This is represented by a straight line through the origin, with a gradient 
proportional to w. Equations (1) and (3) show that B' = Bo + Jlonl; this is 
also a linear relationship, but its graph does not pass through the origin. 
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I 
X >Xcrit 

O < x < xcrit 

Fig. 8181.2 

The gradient of the latter is 1/(.uon) and independent of OJ. The intersection 
of these two straight lines determines the actual current and the resultant 
magnetic field. If OJ = Wcrit, then the gradients of the two straight lines are 
the same and the equations have no solution. In fact, the critical angular 
frequency is so high that the corresponding state cannot even be approached 
in practice. 

The Joule heat given out by the coil has to be equal to the mechanical 
work done in rotating the disc. The electrical power is Pel = / 2 R, while 
the mechanical work done per second is the product of the torque and 
the angular frequency, Pmech = Mw = B'Ir2wj2. (The torque M has been 
calculated as the product of the force B'Ir and the average perpendicular 
distance of its line of action from the axis, r /2.) Using the relationship 
between B' and I, it can be verified directly that Pel= Pmech· 

The strange device described in this problem is called a unipolar dynamo. 

S182 The total magnetic flux at the position of the ring is made up of 
that due to the external magnetic field and the effects of self-induction, 

<I>= Bz nr5 + LI. 

Any change in magnetic flux induces a current in the ring in accordance 
with 

RI = ~~-
However, this has to be zero since the ohmic resistance of a superconducting 
ring is zero. Accordingly, the magnetic flux through the ring has to be 
constant, i.e. 

<I> = Bo( 1 - rxz) nr5 + LI = constant. 
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From the initial conditions (z = 0, I = 0), the value of the constant is 
<I>= Bonrij. 

The current in the ring can be determined using the above equations which 
give 

1 2 
I= L Borxnr0 z. 

The Lorentz force acting on the ring (which can only be vertical, because of 
the symmetry of the assembly) can be expressed as 

1 2 
Fz = -Bri(z)2nro = -Bof3roLBorxnr0 2nroz = -kz. 

The Lorentz force is thus directly proportional to the vertical displace­
ment of the ring, with the coefficient of proportionality calculable from the 
given data. (This result is only valid for small displacements, since the mag­
netic induction is not adequately described by the given formulae for large 
ones.) 

The equation of motion of the ring is 

maz = Fz - mg = -kz -mg. 

This means that the ring makes harmonic oscillations about the equilibrium 
position zo = -mg/k with 

z(t)- zo =A coswt, 

where w = .Jkfiii. From the initial conditions it follows that A = -z0, and 
so 

z(t) =~(cos rot -1). 
w 

The vertical z-coordinate is never positive, and it follows that the Lorentz 
force always points upwards, being zero at the topmost point of the oscilla­
tion. The current always flows in the same direction around the ring. 

Substituting the numerical data gives w = 31.2 s-1 and A = 1 em. The 
time dependence of the current flowing in the ring can be expressed in terms 
of z(t) as 

1 1 
I= LBorxnrijz(t) = LBorxnrijA(coswt-1). 

The maximum value of the current, which flows at the bottom of the 
oscillation, is I max = 39 A. 
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8183 Let us apply the law of conservation of energy for a particle of 
mass m and charge Q: 

! 2 QKcosO _! 2 QK cos(n/2) _ 0 2 mv + r2 - 2 mvo + r2 - . 

We can then express the velocity of the bead at angle e as 

v= 
QK 

-2- cosO 
mr2 ' 

(~ :::;; e :::;; n). 

mg 

The circular motion needs a radial force component of mv2 jr. The radial 
component of the force on a unit charge due to the dipole (i.e. the effect of 
the radial component of the electric field) can be calculated as minus the 
derivative of the electric potential with respect to r, 

Er = _ 8cl> = 2 K cos 0 
ar r3 

Using the earlier expression for the velocity, we notice that QEr is just equal 
to -mv2 jr, the required centripetal force. Thus the string does not need to 
exert any force on the bead to sustain circular motion. If the string were 
not there, the bead would move along a circular path until it reached the 
point opposite its starting position. The bead would stop there, and then 
repeatedly retrace its path executing a periodic motion. 

Note. The time dependence of this motion is just the same as that of a 
simple pendulum subject to gravity after release from a displacement of90°. 

8184 Imagine that you are sitting in a frame of reference moving hor­
izontally at constant speed v perpendicular to the magnetic field lines, and 
you are carrying a charge q. In a frame of reference fixed to the ground, the 
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charge moving with velocity v is observed to experience a force of magni­
tude qvB (pointing upward or downward, depending on the direction of the 
motion). 

In the moving coordinate system, the charge is at rest and the Lorentz force 
does not act on it, though it still 'feels' the force. (The presence of a force 
caused by some interaction cannot depend on the coordinate system in which 
it is described.) This seeming contradiction can be resolved by transforming 
the electric and magnetic fields when changing from a stationary coordinate 
system to a moving one. In the present case, there is only a magnetic field in 
the stationary frame of reference and no electric field. In a frame that moves 
(at a speed much less than the speed of light), this same magnetic field can 
be observed, but an electric field of field strength E = vB is also present. 
This provides the force F = qE = qvB that would otherwise be missing in 
this frame. 

B® 
q 

v 

Let the velocity of the moving frame of reference be such that the electric 
force described above is the same as the gravitational force mentioned in the 
problem, i.e. 

qvB = qE = F =mg. 

We now describe the motion of the observed body in this coordinate 
system. Since the effects of the electric and gravitational fields cancel each 
other out and the body moves at velocity -v in this system, a force of -qvB 
(the magnetic Lorentz force) acts on the body. This makes it move on a 
circular track spiralling downward according to qvB = mv2 jr, where r is 
the radius of the circle and is given by r = mvjqB. Using the values of the 
velocity and the radius, the time in which the body makes one orbit is found 
to be T = 2nm/ qB, independent of the velocity v. 

In the coordinate system fixed to the ground, a uniform rectilinear motion 
is superimposed on this uniform circular motion. The particle therefore 
follows a cycloidal path as shown in the figure, falling down to 2r = 2mv 1 q B 
and then rising again to reach its initial height in time T. The corresponding 
horizontal displacement is Tv = 2nr. At this point the particle stops for a 
moment, before starting out on a new cycloid curve. 
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S185 When the magnet is falling with the constant terminal speed and 
it covers a distance L (L > h), its potential energy loss mgL is converted 
to Joule heat by the currents induced in L/h loops. Denoting by Q the heat 
produced in one particular loop, we can write: 

L 
mgL= hQ, i.e. Q = mgh. 

On what quantities can Q depend? Since the power dissipated in a resistor 
by a given voltage is inversely proportional to its resistance, Q oc R-1, when 
the magnet is moving with velocity vo we can express the heat function in 
the form 

1 
Q = R f(vo,fJ.,r). 

Thus it is a general function of the terminal velocity vo, the magnetic moment 
fl. and the radius r of the circular loop; moreover the formula could involve 
the vacuum permeability fl.O. 

Now consider the units of the individual quantities. The units of RQ are 

[RQ] = kg2 m4 s-5 A - 2, 

whilst 

[vo] = m s-1, [r] = m, [flO] =kg m s-2 A - 2. 

Thus it must be that 

RQ(vo, fl., r, fl.O) oc vo (fl.Of1.)2 r-3. 

But we know that Q = mgh, and so 

mghRr3 
vo oc 2 

fl. 

It follows that the terminal speed ratios in question are: 2, ~. 2, 2 and 8, 
respectively. 

S186 The speed of the electrons remains constant in the frame of refer­
ence fixed to the vacuum chamber (S) because the magnetic field can only 
change the direction of the velocity of the moving charge. Consider another 
frame of reference (S') moving parallel to the wire with constant speed vo 
with respect to the first one. We can write the Lorentz force experienced by 
a particle of charge Q in either frame: 

F' = F = Q(v x B) = Q(v' + vo) x B = Q(v' x B') + QE'. 

We first note that the electric current in both frames of reference must 
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be the same. In frame S, there are moving electrons and static positive ions 
whilst the wire itself is neutral. In reference frame S', the speed of electrons 
and so the current of electrons will be different, but the current of the moving 
positive ions just compensates for this change. The consequence of this is 
that there is the same magnetic field in both frames (B' = B). The equation 
above shows that in frameS' we have, in addition to the unaltered magnetic 
field, an electric field given by v0 x B. (Note that the transformation of a 
single magnetic field from S to S' does not generally alter the magnetic field 
if the speed of the moving system is much less than the speed of light.) 

Let us now describe an electron's motion in reference frame S'. In this 
frame there is an electric field (perpendicular to the wire) of strength 

E(r) = vo B(r) = J.Lo2vol ~. 
n r 

where r is the distance from the wire. Using the analogy of the cylindrical 
capacitor, we can find an appropriate electric potential function for this field 
(i.e. one that is such that minus its derivative with respect to r gives the 
field), namely, 

U(r) = _J.l~~I lnr. 

In the frame S', the initial speed of the electron (at a distance r from the 
wire) is .Jivo, and the electron just stops when it has approached within ro/2 
of the wire. We can apply the work-energy theorem to the motion of the 
electron as follows, 

~m ( v'2v0)
2 = J.Lo~~Q (1n ~ -lnro) = J.Lo~~Q ln2. 

Inserting numerical values into this expression, gives the initial speed of the 
electron as 

vo = 2J.LoQ I x ln 2 ~ 2.46 x 105 m s-1 ~ 250 km s-1• 
mn 

Note. (i) The initial speed of the electron is very large on a macroscopic 
scale, but is very small for electrons; an electron attains this speed if it 
is accelerated through a potential difference of as little as 0.2 V. Since 
250 km s-1 is much less than c, we justifiably ignored the relativistic mass 
increase of the electron in this problem. 

(ii) It is interesting to observe that if the electron cannot approach the 
wire closer than ro/2, then the maximum distance of the electron is also 
limited- it cannot be further away than 2ro. More generally, if the minimum 
distance is r0 /n, then the maximum distance must be nro. This can be proved 
using another frame of reference moving with velocity -vo. 
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S187 The Lorentz force 

F = Q(E+v x B) 

acts on a small body of charge Q moving with velocity v in a field of electric 
field strength E and magnetic field strength B. In a frame of reference 
moving at velocity v0 relative to the original one, the velocity of the particle 
is v' = v-v0. If all physical quantities in this new reference frame are denoted 
by primes, the expression for its Lorentz force is 

F' = Q'(E' + v' x B'). 

Now compare the two frames of reference. Any force acting on the particle 
which can be detected (e.g. through the acceleration it produces) cannot 
change, i.e. F' = F. The same is true for the electric charge: Q = Q'. (If 
particle charges depended on their velocity then an initially neutral body 
would show a net electric charge when heated- no trace of this is seen in 
nature.) 

Transforming the velocities yields 

Q(E + v x B) = Q(E' - v0 x B' + v x B'). 

This relation has to be satisfied for any v, and specifically for stationary 
particles. Therefore 

B'=B leading to E' = E+vo x B. 

It can be seen that electric and magnetic fields are not independent physical 
quantities, their values depend on the (velocity of the) frame of reference in 
which phenomena are described (see also P184). We now apply these general 
relationships (twice) to the problem in hand. 

Consider the frame of reference of the liquid. To get to this frame from 
the capacitor's frame requires a transformation with vo = -v. The magnetic 
field in this new frame is unaltered as B' = B, but an electric field E' of 
strength -v x B is also present. The stationary liquid is polarised by this field, 
and the electric field strength is consequently reduced by a factor 1/er to 
E' = -v x B(1/er). Returning to the original (capacitor) frame of reference 
requires a further transformation, but this time with v0 set equal to +v. 
Again the magnetic field is unchanged, B" = B' = B, but the electric field is 
given by 

E" = E' + v X B' = -v X B ( 1/ Br) + v X B = ( 1 - :J v X B. 
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Consequently, a p.d. of 

appears between the plates. 
For non-polarisable materials (er = 1), this voltage is obviously zero, whilst 

in the case of 'easily' polarisable materials (metals), V = vBd. This latter 
equation, describing the Hall effect, can be interpreted in the following way. 
The charges in the conductor moving in the magnetic field are displaced 
by the Lorentz force. The sideways migration of charges continues until 
an electrostatic field strong enough to balance the Lorentz force (which is 
proportional to the magnetic field) has been built up. From the condition for 
this, QE = QvB, the above relationship, V =Ed= vBd, can be recovered. 

8188 It is not correct in quantum mechanics to describe processes in 
terms of their various parts occurring in a particular order, nor to describe 
classically conserved quantities as being 'borrowed'. However, the 'classical' 
description of a quantum effect usually gives a qualitatively correct picture 
if the 'borrowing' of a quantity is interpreted as meaning that the more of it 
that is borrowed, the less likely the process is to occur. 

The volume of the uranium nucleus is equal to the sum of the volumes of 
its fission products, but the total surface area of the fission products is greater 
than that of the original uranium nucleus. This means there is a temporary 
loss of (binding) energy when the process starts (this is the energy that has 
to be 'credited' to initiate the fission process), which is later refunded by the 
decrease in Coulomb energy of the system when the daughter nuclei move 
away from each other. If the uranium nucleus were to split into three fission 
products, the energy required at the start of the process would be so much 
higher than for two, that, both in theory and in practice, the corresponding 
probability would be negligible. 

8189 Even if atoms are heated to a few thousand degrees, their thermal 
energy is still much smaller than their binding energy per nucleon. For this 
reason the rate of nuclear reactions is usually independent of temperature. 

However, the isotope 7Be transforms into 7Li via K-capture (the capture 
of an electron from the innermost K shell). At a temperature of a few 
thousand degrees the quantum of thermal energy kT is comparable with the 
ionisation energy of the two innermost electrons of the Be atom (consider the 
tail of the Maxwell velocity distribution). If some fraction of the beryllium 
atoms becomes ionised, the probability of nuclear electron capture occurring 
decreases by approximately the same percentage. Thus, at such temperatures, 
the radioactivity, and hence the half-life, of beryllium can be affected. 
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8190 In equilibrium, abundances are proportional to half-lives. In 10-3 kg 
of thorium, almost exclusively 232Th, there will be 

atoms of thorium. Consequently, there will be 

21 56 s 5 
2.595 X 10 X 1.41 X 1010 y ~ 3.3 X 10 

atoms of radon. 
Over the stated time span both isotopes of thorium will contribute to the 

radon population. Each contributes an amount which first increases at a rate 
governed by the slowest decay rate in the relevant intermediate decay chain, 
then remains steady at the equilibrium value, and finally decays at a rate 
governed by the decay rate of the parent. 

Thus the contribution from the §68Th rises with a half-life of 3.64 days 
and decays with a half-life of 1.91 years. Similarly, the contribution from the 
§ij2Th rises with a half-life of 5.7 years and decays with a half-life which is 
essentially infinite. The total ~~0Rn present is the sum of these two as shown 
in the figure. 

10-3 10-2 10-1 1 10 102 103 

Time/years 

The initial rise in the curve is due to radon produced from the §68Th 
present in the initial sample. Most of this has decayed away by the time 
that the radon originating from the original §ij2Th becomes significant. 
After about eight years the numbers of radon atoms from the two different 
ancestors become equal at about 0.9 x 105 each. After that the number again 
rises to the equilibrium value of 3.3 x 105 with virtually all atoms present 
having §ij2Th as their ancestor; it would remain at this value for about 
1010 years. 
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S191 The relativistic energy and momentum of a particle with (rest) mass 
m and speed r are 

and 

where c is the velocity of light. These two equations can also be combined 
as E = Jp2c2 + m2c4. 

As a result of particle-particle collisions, new (additional) particles, e.g. 
proton-antiproton pairs, can be produced. Antiprotons have the same rest 
mass as protons. The total energy of the final particles is lowest if they 
stay together, moving with negligible speed (in the reference frame of their 
centre of mass). For this situation, the four particles (three protons and an 
antiproton) can be considered as one particle of mass 4m, whose momentum 
is equal to the initial momentum of the accelerated proton. The law of 
conservation of energy prescribes that 

V p2c2 + m2c4 + mc2 = V(4m)2c4 + p2c2. 

Squaring both sides of the equation gives p = J48mc and Ep = 7mc2. The 
protons thus have to gain a kinetic energy of Ep- mc2 = 6mc2 ~ 6 GeV 
in the course of the acceleration, which requires an accelerating voltage of 
6 X 109 V. 

S192 Electrons of mass m and charge e can move freely in the wall of 
the Faraday cage to reach a state in which the resultant of the electric and 
gravitational forces acting on them is zero. This requires a small condensation 
of the electrons at the bottom of the metal wall, leading to a surplus 
of positive charge (lack of electrons) at the top. The charge displacement 
continues until the magnitude of the resulting vertical electric field is Eo = 
mg/lei-

As a homogeneous electric field is formed in the wall of the cage, the same 
field has to be present inside the cage itself. If this were not the case, the 
motion of a charged particle vertically upwards or downwards in the wall of 
the cage, and then back to its initial position through the inner part of the 
cage, would form the basis of a perpetual motion machine- and obviously 
this is not possible. 

Thus, as a result of charge displacement in the wall, an electrostatic field 
is set up which acts on a free electron placed inside the cage with the same 
force as gravity does. In other words, the cage shields the gravitational field 
as well! This shielding, however, only works for electrons; the condition of 
zero net force is not satisfied for particles with a different ratio of charge 
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to mass (ejm). In the case of positrons, for example, the resultant force is 
Eolel +mg = 2mg, i.e. these particles start moving vertically downwards with 
an acceleration of 2g. 

Numerically, Eo = 5.6 x w- 11 V m-1, a very small value, and therefore 
the phenomenon described cannot be seen under ordinary circumstances. 
Electrons cannot be placed into a Faraday cage with no initial speed, since 
even in the case of the photoelectric effect, in which electrons are pushed out 
of the metal with an energy of only 0.1 eV, they still travel with a speed of 
200 km s-1• The relative change in velocity after 1 metre of free fall is only 
about one part in 1010, which is immeasurably small. 

Note. So far, we have not considered the effect of the displacement of 
the charges in the wall due to the presence of the positron in the cage. 
The magnitude of this effect can be calculated using the method of image 
charges. A charge e at a small distance d from the wall, experiences a force 
caused by the polarised charges in the metal that is the same as the force 
Fimage produced by a charge of -e at distance 2d from the first charge (an 
'image charge'), i.e. 

(-e)e 
Fimage = k (2d)2 • 

In the case of electrons or positrons, this force is comparable to their weight 
if d ~ 2 m. Therefore if somebody wanted to verify the conclusions of the 
above reasoning using experimental data, the experimenter would need to 
build a Faraday cage large enough to allow the particles to be more than a 
few metres away from the wall. If it were smaller than this, it would not be 
the shielding effect of the cage which was being examined, but the effect of 
polarising the charges in the walls. 

8193 Let m and M denote the masses of the positron and the proton, 
respectively (M ~ 2000m), and let e denote the elementary charge. Because 
of the large mass ratio, the protons will hardly have moved by the time the 
positrons are already far away. We equate the energy of the initial state to 
that of the one in which the positrons have moved much further than 1 em 
away and are travelling at speed v1 : 

e2 (4 2 ) e2 1 1 
4neo a + .Jia = 4neo .Jia + 2 2mvf. 

Substitution of the numerical data yields VI = 350 m s-1• Thereafter, the 
speed of the positrons does not change significantly. 

The protons, on the other hand, although hardly moving whilst the 
positrons are close, do repel each other and are accelerated to a speed 
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v2. Conservation of energy can again be applied and now gives 

e2 1 1 
-4 Fi = 2 -2Mv~. neo y2a 

This yields the value v2 ::::::: 2.7 m s-1• 

253 

S194 The general equations of conservation of energy and momentum 
for Compton scattering are: 

hfo + moc2 = hf + mc2, 

hfo hf 
- = - cos (X + p cos fJ, 

c c 

hf . . fJ -smcx=psm , 
c 

( mc2) 2 = ( moc2) 2 + p2c2, 

where fo and f denote the frequencies of the incident and scattered photon 
respectively, ex and fJ are the photon and electron scattering angles (see figure) 
and mo is the rest mass of the electron. 

For the special case considered, 

and 
hf 
-=p. 
c 

Solving this system of equations we find that 

- 2 
(X = fJ = cos 1 3 ::::::: 48.2°' 

and so the angle between the scattered photon and recoil electron is ex + fJ ::::::: 
96.4°. The momentum of the scattered electron is 

3 mov 
p = -moe = ---;;=== 4 Jl- v2jc2' 

yielding the speed of the electron as v = ~c. This is of the same order of mag­
nitude as c, and consequently it was appropriate to use relativistic formulae. 
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S195 The energy of a photon of frequency f is hf, while its momentum 
is hf I c, where h is Planck's constant and c the velocity of light. The energy 
of the photon decreases to hf' after the collision, and its momentum, of 
magnitude hf' I c, is perpendicular to the original momentum. 

y 

Electron 

f Photon 

P, yo 
X 

P..: 

Photon 

f' 

It follows from momentum conservation that, as shown in the figure, the 
components of the electron's final momentum are Px = hf I c and Py = hf' I c. 
Using the principle of conservation of energy in its relativistic form, E2 = 
E6 + p2c2, where Eo is the rest-mass energy, we obtain 

hf +Eo= hf' + JE6 + (p~ + p~)c2. 
The above relationships yield the change in the wavelength of the photon as 

, c c he h _12 d.A. = A. - ). = - - - = - = - ~ 2.4 x 10 m. 
f' f Eo me 

Note. This interesting quantity with the dimensions of a length-dependent 
only on the mass of the electron, the speed of light and Planck's constant, 
i.e. natural constants-is called the Compton wavelength of the electron. 

S196 Applying the energy formula for spherical capacitors to the 'classi­
cal electron' gives 

which we can write as 

1 e2 
2 _2_4 __ <me' 

nsor 

1 e2 -15 
r > -4- -2 2 = 1.4 x 10 m. 

nso me 

This value is called the classical electron radius. 
The classical electron is considered as a rotating sphere of this radius with 

a homogeneous mass distribution, an angular frequency w and an angular 
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momentum corresponding to that of a rotating rigid body. Hence we obtain 
~mr2w = h/(4n). This gives the 'equatorial speed' as Veq = rw ~ 350c. Since 
this speed is many times higher than the limiting speed of relativistic physics, 
namely the speed of light, the original version of the classical electron model­
worked out by Lorentz and Abraham before the birth of quantum theory in 
the early 1900s- had to be abandoned. 

A modified version suggested that the electron could be a sphere of radius 
r, charged on its surface, which did not rotate but would contain a magnetic 
dipole to account for the experimental fact that electrons have a magnetic 
momentum. Outside the sphere, a multiple of the vector Ex B produced 
by the electric and magnetic fields, describes the current of electromagnetic 
momentum. This current carries angular momentum and with a suitable 
choice of the parameters can be made to equal the measured one. 

S197 Assume that the electron occupies a horizontal layer of thickness 
H just above the bottom of the box. Its vertical coordinate is then known 
with accuracy H. Therefore the uncertainty in its vertical momentum has 
to be at least tJ.p = nj tJ.x = nj H, where the quantity n is 1/(2n) times the 
Planck constant. In such circumstances, the electron has a potential energy 
of 

H 
Epotential = mgxaverage ~ mg 2, 

and a kinetic energy of 

Thus its total energy is 

1 
E(H) = Epotentiai(H) + Ekinetic(H) = AH + B H 2 ' 

where A and B are constants determined by the above equations. If H is 
small, the potential energy is low but the kinetic energy is high. If, on the 
other hand, H is large, the kinetic energy is low but the potential energy is 
high. The total energy will be at a minimum if Epotential and £kinetic are of 
the same order of magnitude. It can be shown using differential calculus that 
the optimum value for the energy ratio is 2 : 1 in favour of the potential 
energy. As we only want a rough estimate, the ratio of the energies can be 
taken to be unity. This gives 

( 
1i2 ) 1/3 

H~ - ~1mm. 
m2g 
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This is quite a large value compared with usual microscopic sizes. The reason 
for this is that gravitation is very weak compared to the electromagnetic 
interaction which determines the binding energies and sizes of molecules. 

S198 If a nucleus of atomic number Z restricts an electron to a sphere 
of radius r, then the electrostatic energy of the electron is Ee1 ~ -kZ e2 /r 
and its momentum can be estimated to be tzjr. If Z ::> 1 (i.e. the nucleus 
is a heavy one), the kinetic energy of the strongly bound electron can be 
calculated using the relativistic formula 

where c is the velocity of light and tz is the Planck constant divided by 2n. 
The total energy of the electron is 

1 Ze2 fie 
E(r) = EeJ(r) + Ekin(r) = --4 - + -. 

nso r r 

Since the fine-structure constant e2 /(4ne0tzc) is approximately 1/137, the total 
energy of the electron for small values of r is 

e2 1 
E(r) = -(137- Z) -. 

4nso r 

(The above expression is not valid for large values of r, as a small, non­
relativistic momentum would have to be taken into account.) 

According to the above formula, the electron would fall into the nucleus 
if Z > 137; or rather, it would be confined to a small volume of nuclear 
size. The figure 137 is only an estimate of the critical atomic number; more 
accurate calculations, which take the finite size of the nucleus into account, 
yield values around 150--160 for Zcrit· 

These calculations show that an electron could be confined to the nucleus 
of an element with atomic number greater than 150, if transuranic elements 
of such high atomic numbers could be made at all. 

S199 The speed of propagation of surface water waves depends on the 
surface tension y and the density p of water, and on their wavelength, A.. The 
dimensions of these quantities are 

N kg 
[y] =- = -, 

m s2 
kg 

[p] = m3' [A.]= m. 

An expression for velocity can only be derived from these quantities if y and 
p, appear in the combination yIp (otherwise the velocity, which involves only 
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length and time, would have to depend upon the unit of mass). However, as 

[~] = ~:, 
this expression has to be further divided by the wavelength, and then square­
rooted in order to make the result have the dimensions of speed. In summary, 
dimensional analysis dictates that the speed of propagation of capillary waves 
is proportional to the reciprocal of the square-root of the wavelength, 

v~ {£ ~ 5x· 
From this functional dependence (and the given data), we can conclude that 
the speed of propagation of surface waves would reach that of sound in 
water when their wavelengths are of the order of 10-8 em. 

Since the speed of propagation of surface waves cannot be greater than 
that of sound (the molecules cannot transmit a disturbance to each other 
faster at the surface than inside the matter), waves of wavelength less than 
approximately 10-8 em have no meaning. This is, in fact, the order of 
magnitude of the size of water molecules! 

8200 You will have noticed not only the acceleration, but also the 
increasing size of the champagne bubbles. As the sparkling champagne is 
super-saturated with carbon dioxide, gas is released continuously whilst the 
bubbles are rising. This is why the size of the bubbles increases, as does 
the buoyancy force provided by the liquid. The upthrust is proportional to 
the volume of the bubble, while the viscous drag, which is also increasing, 
is only proportional to the surface area of the bubble. Consequently, the 
net upward force increases with bubble size. However, increasing speed also 
leads to a larger viscous drag, and ultimately the bubble moves under the 
influence of a collection of balanced forces. 

0 0 
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